JP2024501345A - Stability prediction method for deep water thin-walled steel cylinders - Google Patents

Stability prediction method for deep water thin-walled steel cylinders Download PDF

Info

Publication number
JP2024501345A
JP2024501345A JP2023541504A JP2023541504A JP2024501345A JP 2024501345 A JP2024501345 A JP 2024501345A JP 2023541504 A JP2023541504 A JP 2023541504A JP 2023541504 A JP2023541504 A JP 2023541504A JP 2024501345 A JP2024501345 A JP 2024501345A
Authority
JP
Japan
Prior art keywords
steel cylinder
weakening
load
condition parameters
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023541504A
Other languages
Japanese (ja)
Other versions
JP7431427B2 (en
Inventor
文彬 劉
樹奇 李
暁強 冦
智軍 陳
雪奎 王
和文 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIANJIN PORT ENGINEERING INSTITUTE CO., LTD. OF CCCC FIRST HARBOR ENGINEERING CO., LTD.
Original Assignee
TIANJIN PORT ENGINEERING INSTITUTE CO., LTD. OF CCCC FIRST HARBOR ENGINEERING CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIANJIN PORT ENGINEERING INSTITUTE CO., LTD. OF CCCC FIRST HARBOR ENGINEERING CO., LTD. filed Critical TIANJIN PORT ENGINEERING INSTITUTE CO., LTD. OF CCCC FIRST HARBOR ENGINEERING CO., LTD.
Publication of JP2024501345A publication Critical patent/JP2024501345A/en
Application granted granted Critical
Publication of JP7431427B2 publication Critical patent/JP7431427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Abstract

本発明は、まず海底地質条件パラメータと鋼製円筒条件パラメータに基づいて、鋼製円筒シミュレーション解析モデルを確立し、海底地質条件パラメータ、鋼製円筒条件パラメータと限界荷重との間の関数関係を確立し、そして波循環荷重作用下での鋼製円筒の周期的変位による海底土体への動的応力データを収集し、室内試験によって同等動的応力水平での海底土体の弱化範囲及び弱化強度の試験データを取得し、それと波循環荷重との関数関係を確立し、そして海底土体の弱化範囲及び弱化強度の試験データに基づいて、対応する弱化後の海底土体の耐荷力を算出し、反転により等価な海底地質条件パラメータを算出し、それと対応する限界荷重衰減係数を算出し、最後に限界荷重衰減係数と得られた関数関係と結び付けてから、波循環荷重作用下での鋼製円筒の限界荷重を考慮した予測モデルを取得することができる深水薄肉鋼製円筒の安定性予測方法を開示する。【選択図】図1The present invention first establishes a steel cylinder simulation analysis model based on seabed geological condition parameters and steel cylinder condition parameters, and establishes the functional relationship between seabed geological condition parameters, steel cylinder condition parameters, and limit load. Then, we collected dynamic stress data on the submarine soil body due to the periodic displacement of the steel cylinder under the action of wave circulation loading, and conducted laboratory tests to determine the weakening range and weakening strength of the submarine soil body under the same horizontal dynamic stress. Obtain the test data of , establish the functional relationship between it and the wave circulation load, and then calculate the corresponding load-bearing capacity of the submarine soil after weakening based on the test data of the weakened range and weakening strength of the submarine soil. , calculate the equivalent seabed geological condition parameters by inversion, calculate the corresponding critical load decay coefficient, and finally connect the critical load decay coefficient with the obtained functional relationship, and then A method for predicting the stability of a deep-water thin-walled steel cylinder is disclosed, which allows a prediction model that takes into account the cylinder's limit load to be obtained. [Selection diagram] Figure 1

Description

本発明は、深水鋼製円筒の位置安定性の設計分野に属し、具体的には、深水薄肉鋼製円筒の安定性予測方法に関する。 The present invention belongs to the field of designing the positional stability of deep water steel cylinders, and specifically relates to a method for predicting the stability of deep water thin walled steel cylinders.

挿入式円筒構造は、新型の海上工事構造として、低コスト、短工期、強い安定性などの利点があり、人工島建設の工事実践に広く応用されている。大量の工事経験と研究により、挿入式鋼製円筒構造は、作業メカニズムが複雑で、単純に重力式で考えることはできず、その安定性は、海底、波と内部フィラーなどの要素によって顕著に影響されることが判明されている。 As a new type of offshore construction structure, the insertion type cylindrical structure has the advantages of low cost, short construction period, and strong stability, and is widely applied in the construction practice of artificial island construction. A large amount of construction experience and research has shown that the insertion type steel cylindrical structure has a complex working mechanism and cannot be simply considered as a gravity type, and its stability is significantly affected by factors such as the seabed, waves and internal filler. has been found to be affected.

従来の中国国内外の工事実践において、鋼製円筒の不安定化を防止するために、現場試験と類似の工事経験によってしか鋼製円筒の耐不安定化設計が行われなかった。しかし、鋼製円筒の施工過程において、鋼製円筒の施工場所の水理地質条件は絶えず変化し、波循環荷重下の海底地盤の耐不安定化能力も絶えず変化し、初期設計ではこれらの変化による鋼製円筒の安定性への影響を正確に評価することが難しく、鋼製円筒に潜在的な不安定化リスクが発生する可能性がある。 In conventional construction practices in China and abroad, in order to prevent the destabilization of steel cylinders, the destabilization-resistant design of steel cylinders has only been carried out through on-site tests and similar construction experiences. However, during the construction process of the steel cylinder, the hydrogeological conditions of the steel cylinder construction site are constantly changing, and the destabilization ability of the seabed ground under wave circulation load is also constantly changing, and these changes are not included in the initial design. It is difficult to accurately assess the impact of oxidation on the stability of steel cylinders, which may pose a potential destabilization risk to steel cylinders.

本発明は、先行技術の欠陥を克服し、深水薄肉鋼製円筒の安定性予測方法を提供することを目的とする。 The present invention aims to overcome the deficiencies of the prior art and provide a method for predicting the stability of deep water thin-walled steel cylinders.

本発明は、以下の技術案により達成される。
海底地質条件パラメータと鋼製円筒条件パラメータに基づいて、有限要素解析ソフトウェアで鋼製円筒シミュレーション解析モデルを確立するステップ1と、
シミュレーション解析モデルで異なる海底地質条件パラメータと鋼製円筒条件パラメータ下で対応する鋼製円筒の不安定時の限界荷重を解析し、海底地質条件パラメータ、鋼製円筒条件パラメータと限界荷重との間の関数関係を確立するステップ2と、
異なる波循環荷重作用下での鋼製円筒の周期的変位による海底土体への動的応力の大きさ及び動的応力分布領域のデータを収集し、そして静的三軸せん断試験と動的三軸せん断試験で同等動的応力の大きさ及び動的応力分布下での海底土体の弱化範囲A及び弱化強度ηの試験データを取得し、そして海底土体の弱化範囲A及び弱化強度ηと波循環荷重との関数関係を確立するステップ3と、
ステップ3で取得された海底土体の弱化範囲A及び弱化強度η試験データに基づいて、室内モデル試験方法で対応する弱化後の海底土体の耐荷力を算出し、さらに弱化後の等価な海底地質条件パラメータを算出し、そしてステップ2で確立された海底地質条件パラメータ、鋼製円筒条件パラメータと限界荷重との間の関数関係と結び付けてから、弱化後の等価な海底地質条件パラメータに対応する限界荷重の大きさを算出し、さらに限界荷重衰減係数εを算出し、そして限界荷重衰減係数εと海底土体の弱化範囲A及び弱化強度ηとの関数関係を確立するステップ4と、
ステップ2~ステップ4で得られた関数を結び付けてから、波循環荷重作用下での鋼製円筒の不安定限界荷重が結び付けられた予測モデルを取得するステップ5と、を含む、
ことを特徴とする深水薄肉鋼製円筒の安定性予測方法。
The present invention is achieved by the following technical proposal.
Step 1: establishing a steel cylinder simulation analysis model with finite element analysis software based on the seabed geological condition parameters and steel cylinder condition parameters;
The simulation analysis model analyzes the critical load during instability of the corresponding steel cylinder under different seabed geological condition parameters and steel cylinder condition parameters, and calculates the function between seabed geological condition parameters, steel cylinder condition parameters, and critical load. Step 2 of establishing the relationship and
The data of the dynamic stress magnitude and dynamic stress distribution area on the seabed soil body due to the periodic displacement of the steel cylinder under the action of different wave circulation loads were collected, and the static triaxial shear test and the dynamic triaxial In the axial shear test, test data of the weakening range A and weakening strength η of the submarine soil body under the magnitude of equivalent dynamic stress and dynamic stress distribution were obtained, and the weakening range A and weakening strength η of the submarine soil body were obtained. Step 3 of establishing a functional relationship with the wave circulation load;
Based on the weakening range A and weakening strength η test data of the submarine soil body obtained in step 3, the load-bearing capacity of the submarine soil body after weakening is calculated using the indoor model test method, and then the equivalent seabed strength after weakening is calculated using the indoor model test method. Calculate the geological condition parameters and connect them with the functional relationship between the seabed geological condition parameters, steel cylinder condition parameters and critical load established in step 2, and then correspond to the equivalent seabed geological condition parameters after weakening. Step 4 of calculating the magnitude of the critical load, further calculating the critical load decay coefficient ε, and establishing a functional relationship between the critical load decay coefficient ε and the weakening range A and the weakening strength η of the submarine soil body;
a step 5 of combining the functions obtained in steps 2 to 4, and then obtaining a predictive model in which the unstable limit load of the steel cylinder under the action of wave circulation loading is connected;
A method for predicting the stability of deep-water thin-walled steel cylinders.

上記技術案において、海底地質条件パラメータは、土体の重量度、土体の粘着力及び土体の内摩擦角を含む。 In the above technical solution, the seabed geological condition parameters include the weight of the earth body, the adhesive strength of the earth body, and the internal friction angle of the earth body.

上記技術案において、鋼製円筒条件パラメータは、具体的には、鋼製円筒の外径、鋼製円筒の肉厚、鋼製円筒の高さ、鋼製円筒の埋設深さ及び鋼製円筒の内部フィラータイプを含む。 In the above technical proposal, the steel cylinder condition parameters specifically include the outer diameter of the steel cylinder, the wall thickness of the steel cylinder, the height of the steel cylinder, the embedding depth of the steel cylinder, and the steel cylinder wall thickness. Including internal filler types.

上記技術案において、波循環荷重は、水深、波の波長及び異なる波力のパラメータを含む。 In the above technical solution, the wave circulation load includes water depth, wave wavelength and different wave power parameters.

上記技術案において、ステップ2は、
シミュレーション解析モデルにおいて海底地質条件パラメータと鋼製円筒条件パラメータにおける単一パラメータx1の数値を変更し、そして所定荷重作用高さH下で対応する限界荷重の大きさPの変化を算出し、データ相関性解析を行い、所定荷重作用高さ下での該単一パラメータx1の影響程度を表す対応する無次元化影響係数β1を取得するステップS2.1と、
ステップS2.1を繰り返し、所定荷重作用高さH下での海底地質条件パラメータと鋼製円筒条件パラメータのうち残りのパラメータ(x2,x3,x4,x5…)の影響程度を表す無次元化影響係数(β2,β3,β4,β5…)を取得するステップS2.2と、
ステップS2.1とS2.2の結果に基づいて、各パラメータ(x1,x2,x3,x4,x5…)に基づいて限界荷重の大きさPを予測する関数関係式:P~ f(H,β1,β2,β3,β4,β5…)を確立するステップS2.3と、を含む。
In the above technical proposal, step 2 is
In the simulation analysis model, change the numerical value of the single parameter x 1 in the seabed geological condition parameter and the steel cylinder condition parameter, and then calculate the change in the corresponding limit load size P under a predetermined load action height H, and calculate the data step S2.1 of performing a correlation analysis to obtain a corresponding dimensionless influence coefficient β 1 representing the degree of influence of the single parameter x 1 under a predetermined load action height;
Repeat step S2.1 to express the degree of influence of the remaining parameters (x 2 , x 3 , x 4 , x 5 ...) among the seabed geological condition parameters and steel cylinder condition parameters under the predetermined load action height H. step S2.2 of obtaining dimensionless influence coefficients (β 2 , β 3 , β 4 , β 5 …);
Based on the results of steps S2.1 and S2.2, a functional relational expression that predicts the magnitude of the critical load P based on each parameter (x 1 , x 2 , x 3 , x 4 , x 5 ...): P ~f(H, β 1 , β 2 , β 3 , β 4 , β 5 . . . ).

上記技術案において、ステップ3において、鋼製円筒の周期的変位による海底土体への動的応力の大きさ及び動的応力分布領域のデータに基づいて、工事領域の地盤土体に対して元位置で採土し、原状土壌サンプルを実験室に輸送した後にそれぞれ静的三軸せん断と動的三軸せん断試験を行い、静的三軸せん断試験によって、土壌サンプルの静的せん断強度を取得し、動的三軸せん断試験によって、土壌サンプルの動的せん断強度を取得し、動的せん断強度と静的せん断強度を除算し、採土位置の土壌サンプルの弱化強度ηを得る。 In the above technical proposal, in Step 3, based on the magnitude of dynamic stress on the seabed soil body due to the periodic displacement of the steel cylinder and data on the dynamic stress distribution area, the original After collecting soil at the site and transporting the original soil sample to the laboratory, static triaxial shear and dynamic triaxial shear tests were conducted, respectively, and the static shear strength of the soil sample was obtained by the static triaxial shear test. , Obtain the dynamic shear strength of the soil sample by a dynamic triaxial shear test, and divide the dynamic shear strength and static shear strength to obtain the weakening strength η of the soil sample at the sampling location.

上記技術案において、ステップ3において、元位置での採土は、薄肉採土器で行われ、各採土位置では、少なくとも2つの隣接する原状土壌サンプルを採取し、1つの原状土壌サンプルは、土体の静的三軸せん断試験に用いられ、もう1つの原状土壌サンプルは、土体の動的三軸せん断試験に用いられる。 In the above technical proposal, in step 3, in-situ soil sampling is carried out with a thin-walled soil sampler, and at each sampling location, at least two adjacent original soil samples are collected, and one original soil sample is One soil sample is used for the static triaxial shear test of the soil body, and another soil sample is used for the dynamic triaxial shear test of the soil body.

上記技術案において、ステップ4において、εは、弱化後の等価な海底地質条件パラメータに対応する限界荷重の大きさを、波循環荷重作用を受けない海底土体の初期海底地質条件パラメータ下で対応する限界荷重の大きさで除算する値に等しい。 In the above technical proposal, in step 4, ε corresponds to the magnitude of the critical load corresponding to the equivalent seabed geological condition parameters after weakening under the initial seabed geological condition parameters of the seabed soil body that is not subjected to wave circulation loading action. equal to the value divided by the magnitude of the critical load.

上記技術案において、ステップ4において、算出された弱化後の等価な海底地質条件パラメータは、弱化後の土体の重量度W、弱化後の土体の粘着力c及び弱化後の土体の内摩擦角Φを含み、計算方法は、以下の通りである:
ハンセン地盤耐荷力計算式:
p=c×Nc×Sc×dc×ic+q×Nq×Sq×iq+0.5×W×D×Nr×Sr×irに基づいて、ここでSc、Sq、Srは、構造物の基礎形状補正係数であり、dcは、構造物の基礎埋設深さ補正係数であり、ic、iq、irは、構造物の荷重傾斜補正係数であり、qは、鋼製円筒構造の総重量であり、Dは、鋼製円筒の直径であり、この9つのパラメータは、海底土体の弱化前後で変化がないため、海底土体の弱化前後耐荷力の比

Figure 2024501345000002
について、pは、弱化前の海底土体の耐荷力であり、pは、弱化後の海底土体の耐荷力であり、G1は、Sc×dc×icを表し、G2は、q×Sq×iqを表し、G3は、0.5×D×Sr×irを表し、G1、G2、G3は、海底土体の弱化前後に変化せず、
Nc、Nq、Nrは、土体の内摩擦角Φに関する補正系数であり、
Figure 2024501345000003
、Nc = (Nq -1)cotΦ、 Nr = 1.5(Nq -1)tanΦ、
弱化後の海底耐荷力pが原耐荷力pのk倍であると仮定すると、
Figure 2024501345000004
を確保する必要があり、ここで、まず
Figure 2024501345000005
を算出し、
Figure 2024501345000006
にΦという未知数が1つしかないため、計算によって弱化後の土体の内摩擦角Φを取得し、次に
Figure 2024501345000007

Figure 2024501345000008
を算出し、Φが既知であれば、Nc弱とNr弱も既知となるため、cとWを求める。 In the above technical proposal, the equivalent seabed geological condition parameters after weakening calculated in step 4 are the weight of the soil body after weakening W weak , the cohesive strength of the soil body after weakening c weak , and the soil body after weakening The calculation method is as follows :
Hansen soil load-bearing capacity calculation formula:
Based on p=c×N c ×S c ×d c ×i c +q×N q ×S q ×i q +0.5×W×D×N r ×S r ×i r , here S c , S q , S r are the foundation shape correction coefficients of the structure, d c is the foundation burial depth correction coefficient of the structure, and i c , i q , i r are the load slope correction coefficients of the structure. , q is the total weight of the steel cylindrical structure, D is the diameter of the steel cylinder, and these nine parameters do not change before and after the weakening of the submarine soil body, so the weakening of the submarine soil body Ratio of front and rear load carrying capacity
Figure 2024501345000002
, p is the load-bearing capacity of the submarine soil before weakening, p is the load-bearing capacity of the submarine soil after weakening, G1 represents S c ×d c ×i c , and G2 is , q × S q × i q , G3 represents 0.5 × D × S r × i r , G1, G2, and G3 do not change before and after the weakening of the submarine soil body,
N c , N q , N r are correction coefficients regarding the internal friction angle Φ of the soil body,
Figure 2024501345000003
, N c = (N q -1)cotΦ, N r = 1.5(N q -1)tanΦ,
Assuming that the seabed load-bearing capacity p after weakening is k times the original load-bearing capacity p,
Figure 2024501345000004
Here, first you need to ensure
Figure 2024501345000005
Calculate,
Figure 2024501345000006
Since there is only one unknown quantity, Φweak , we obtain the internal friction angle Φweak of the soil body after weakening by calculation, and then
Figure 2024501345000007
and
Figure 2024501345000008
If Φ -weak is known, N c-weak and N r-weak are also known, so c- weak and W -weak are found.

本発明の利点と有益な効果は以下の通りである:
本発明の深水薄肉鋼製円筒の安定性予測方法は、各種の工事パラメータと鋼製円筒が耐えることのできる限界荷重相関性の数学モデルを確立することによって、鋼製円筒の安定性の予測と補強方案の設計が実現される。従来の工事経験と小規模室内モデル試験による従来の方法とは異なり、本発明は、各工事パラメータの鋼製円筒の不安定限界荷重に対する影響程度を開示し定量化するとともに、循環波荷重による地盤弱化問題も考慮するため、鋼製円筒の安定性への予測の信頼性は、従来の方法よりもはるかに高い。
The advantages and beneficial effects of the invention are as follows:
The method of predicting the stability of a deep water thin-walled steel cylinder of the present invention is a method for predicting the stability of a steel cylinder by establishing a mathematical model of the relationship between various construction parameters and the limit load that the steel cylinder can withstand. The design of the reinforcement scheme is realized. Unlike conventional methods based on conventional construction experience and small-scale indoor model tests, the present invention discloses and quantifies the degree of influence of each construction parameter on the unstable limit load of a steel cylinder, and also Because the weakening issue is also taken into account, the predictions for the stability of steel cylinders are much more reliable than traditional methods.

本発明の深水薄肉鋼製円筒の安定性予測方法のフローチャートである。It is a flowchart of the stability prediction method of the deep water thin-walled steel cylinder of this invention.

当業者に本発明の方案をより良く理解させるために、以下は、本発明の技術案を、具体的な実施例に係る図面であるワークフローチャートに即してさらに説明する。 In order to enable those skilled in the art to better understand the scheme of the present invention, the technical scheme of the present invention will be further explained below with reference to a workflow chart, which is a drawing according to a specific embodiment.

図1を参照し、深水薄肉鋼製円筒の安定性予測方法は、以下のステップを含む:
ステップS1:海底地質条件パラメータと鋼製円筒条件パラメータに基づいて、有限要素解析ソフトウェアで鋼製円筒シミュレーション解析モデルを確立する。
Referring to Figure 1, the stability prediction method of deep water thin-walled steel cylinder includes the following steps:
Step S1: Establish a steel cylinder simulation analysis model with finite element analysis software based on the seabed geological condition parameters and steel cylinder condition parameters.

まず、海底地質条件パラメータ(海底地質条件パラメータは、土体の重量度W、土体の粘着力c及び土体の内摩擦角Φを含む)と、鋼製円筒条件パラメータ(鋼製円筒条件パラメータは、鋼製円筒の外径D、鋼製円筒の肉厚w、鋼製円筒の高さHc、鋼製円筒の埋設深さS及び鋼製円筒の内部フィラータイプMを含む)とを含む現場工事の実測データを収集する。 First, seabed geological condition parameters (seafloor geological condition parameters include the weight W of the soil body, the cohesive force c of the soil body, and the internal friction angle Φ of the soil body) and the steel cylinder condition parameters (steel cylinder condition parameters is the site including the outer diameter D of the steel cylinder, the wall thickness w of the steel cylinder, the height Hc of the steel cylinder, the burial depth S of the steel cylinder, and the internal filler type M of the steel cylinder). Collect actual construction data.

上記データに基づいて、ABAQUS有限要素解析ソフトウェアで鋼製円筒シミュレーション解析モデルを確立し、該モデルで鋼製円筒の不安定時の限界荷重の大きさ及び限界荷重作用高さを算出することができる(該シミュレーション解析モデルにおいて鋼製円筒の設定高さ位置に荷重を印加し、鋼製円筒の変位量が無限に増大し始めた場合、このときの荷重は、不安定時に対応する限界荷重であり、荷重を印加する高さ位置は、限界荷重作用高さであり、つまり、異なる高さ位置に荷重を印加することにより、対応する不安定限界荷重の大きさを取得することができる)。
具体的には、本実施例では、まず、ABAQUSソフトウェアにおいて三次元ソリッドモデリングを行い、鋼製円筒モデル、鋼製円筒の内部フィラーモデル及び海底地盤モデルをそれぞれ確立する。ここで、鋼製円筒モデルの鋼製円筒の外径、肉厚及び高さは、工事資料に基づいて選択され、海底地盤モデルのサイズとしては、長さと幅がいずれも10倍の鋼製円筒の外径に等しく、深さが鋼製円筒埋設深さに50m加えられ、土体の重量度W、土体の粘着力c及び土体の内摩擦角Φなどのデータに基づいて、海底地盤モデルに適切なユニットタイプと拘束を与え、鋼製円筒と海底地盤土体とを組み立て、メッシュを分け、メッシュのサイズを1mを典型的なスケールとして分ける。
計算する時、地盤応力平衡解析ステップであって、原状地盤の土体内の地盤応力を復帰するために用いられる第1の解析ステップと、鋼製円筒打設シミュレーションステップであって、原状地盤の中の鋼製円筒の挿入部分の土体をくり抜き、鋼製円筒を指定された高さまで沈下し、そして鋼製円筒に重力を印加する第2のステップと、鋼製円筒のフィラーシミュレーションステップであって、鋼製円筒フィラーを鋼製円筒モデル内に充填し、筒内フィラーに重力を印加する第3のステップと、鋼製円筒の安定性解析ステップであって、鋼製円筒上のある点に集中水平力を印加し、該水平力作用で鋼製円筒に不安定破壊が発生するまで、該水平力の数値を段階的に増大し、このときの水平力の大きさ、及び該水平力印加点から海底泥面までの高さを記録し、この組の数値は、鋼製円筒の限界荷重の大きさPとそれに対応する限界荷重作用高さHである第4のステップとの、4つの解析ステップを設定する。
Based on the above data, a steel cylinder simulation analysis model is established using ABAQUS finite element analysis software, and with this model, the magnitude of the critical load and the critical load action height of the steel cylinder when it is unstable can be calculated ( In the simulation analysis model, if a load is applied to the set height position of the steel cylinder and the displacement of the steel cylinder begins to increase infinitely, the load at this time is the limit load corresponding to the unstable situation, The height position at which the load is applied is the critical load action height, that is, by applying the load at different height positions, the magnitude of the corresponding unstable critical load can be obtained).
Specifically, in this example, three-dimensional solid modeling is first performed using ABAQUS software to establish a steel cylinder model, an internal filler model of the steel cylinder, and a seabed ground model, respectively. Here, the outer diameter, wall thickness, and height of the steel cylinder of the steel cylinder model are selected based on construction materials, and the size of the submarine ground model is a steel cylinder whose length and width are both 10 times larger. The depth is equal to the outer diameter of the steel cylinder, and the depth is 50 m added to the buried depth of the steel cylinder. Apply appropriate unit types and constraints to the model, assemble the steel cylinder and subsea soil body, divide the mesh, and divide the mesh size with a typical scale of 1m.
When calculating, there is a first analysis step, which is a ground stress equilibrium analysis step, which is used to restore the ground stress within the soil body of the original ground, and a steel cylinder casting simulation step, which is used to restore the ground stress in the original ground. a second step of hollowing out the earth body at the insertion part of the steel cylinder, sinking the steel cylinder to a specified height, and applying gravity to the steel cylinder; and a filler simulation step of the steel cylinder. , a third step of filling a steel cylinder model with a steel cylinder filler and applying gravity to the cylinder filler, and a stability analysis step of the steel cylinder, in which the calculation is concentrated at a certain point on the steel cylinder. A horizontal force is applied, and the numerical value of the horizontal force is increased step by step until unstable fracture occurs in the steel cylinder due to the action of the horizontal force, and the magnitude of the horizontal force at this time and the point of application of the horizontal force are determined. This set of values is analyzed in four steps, with the fourth step being the critical load magnitude P of the steel cylinder and the corresponding critical load acting height H. Set steps.

ステップS2:上記シミュレーション解析モデルで異なる海底地質条件パラメータと鋼製円筒条件パラメータ下で対応する鋼製円筒の不安定時の限界荷重を解析し、以下のプロセスで海底地質条件パラメータ、鋼製円筒条件パラメータと限界荷重との間の関数関係を確立する。 Step S2: Analyze the limit load at the time of instability of the corresponding steel cylinder under different seabed geological condition parameters and steel cylinder condition parameters using the above simulation analysis model, and use the seabed geological condition parameters and steel cylinder condition parameters in the following process. Establish the functional relationship between and the critical load.

S2.1:シミュレーション解析モデルにおいて海底地質条件パラメータと鋼製円筒条件パラメータにおける単一パラメータx1の数値を変更し、そして所定荷重作用高さH下で対応する限界荷重の大きさPの変化を算出し、データ相関性解析を行い、所定荷重作用高さH下で該パラメータx1の影響程度を表す対応する無次元化影響係数β1を取得することができる。つまり、それぞれの異なる荷重作用高さは、異なる無次元化影響係数β1に対応し、本実施例では、鋼製円筒から40メートル以上で、鋼製円筒の高さ方向に沿って1メートル間隔ごとの高さを1つの荷重作用位置として決定し、各荷重作用位置は、該パラメータx1の影響程度を表す1つの無次元化影響係数β1に対応する。 S2.1: In the simulation analysis model, change the numerical value of single parameter x 1 in the seabed geological condition parameter and steel cylinder condition parameter, and change the corresponding limit load magnitude P under a predetermined load action height H. By calculating and performing data correlation analysis, a corresponding dimensionless influence coefficient β 1 representing the degree of influence of the parameter x 1 under a predetermined load action height H can be obtained. That is, each different load action height corresponds to a different nondimensionalization influence factor β 1 , which in this example is at least 40 meters from the steel cylinder and at 1 meter intervals along the height direction of the steel cylinder. Each height is determined as one load application position, and each load application position corresponds to one dimensionless influence coefficient β 1 representing the degree of influence of the parameter x 1 .

S2.2:ステップS2.1を繰り返し、所定荷重作用高さH下での残りのパラメータ(x2,x3,x4,x5…)の影響程度を表す無次元化影響係数(β2,β3,β4,β5…)を取得する。 S2.2 : Repeat step S2.1 and obtain the nondimensional influence coefficient ( β 2 , β 3 , β 4 , β 5 ...).

S2.3:ステップS2.1とS2.2の結果に基づいて、各パラメータ(x1,x2,x3,x4,x5…)に基づいて限界荷重の大きさPを予測する関数関係式:P~ f(H,β1,β2,β3,β4,β5…)を確立し、例えば、P=k1β1×k2β1×k3β3×k4β4×k5β5×…×knH/Hc、式中、Hcは、鋼製円筒の高さであり、k1、k2、k3、k4、k5、knは、未定係数であり、各荷重作用高さHは、1組の無次元化影響係数(β1,β2,β3,β4,β5…)に対応する。 S2.3: Based on the results of steps S2.1 and S2.2, a function that predicts the limit load magnitude P based on each parameter (x 1 , x 2 , x 3 , x 4 , x 5 ...) Establish the relational expression: P ~ f (H, β 1 , β 2 , β 3 , β 4 , β 5 ...), for example, P=k 1 β 1 ×k 2 β 1 × k 3 β 3 ×k 4 β 4 ×k 5 β 5 ×…×k n H/Hc, where Hc is the height of the steel cylinder, k 1 , k 2 , k 3 , k 4 , k 5 , k n are These are undetermined coefficients, and each load action height H corresponds to a set of dimensionless influence coefficients (β 1 , β 2 , β 3 , β 4 , β 5 . . . ).

ステップS3:異なる水深Hw、波の波長L、異なる波力Fの波循環荷重作用下での鋼製円筒の周期的変位による海底土体への動的応力の大きさ及び動的応力分布領域のデータを収集し、そして室内静的三軸せん断試験と動的三軸せん断試験で同等動的応力レベルにおける海底土体強度の弱化規律を解析し、海底土体の弱化範囲A及び弱化強度ηの試験データを取得する。
具体的には、まず、鋼製円筒の周期的変位による海底土体への動的応力の大きさ及び動的応力分布領域のデータに基づいて、工事領域の地盤土体に対して元位置で採土し、例えば、鋼製円筒からの水平距離100m内、深さ30m内の地盤土体が明らかな影響を受ける場合、該領域の土体に対してサンプリングを行う必要があり、動的応力の水平距離に伴う衰減程度に基づいて、採土位置の水平間隔を計画する。
動的応力の水平距離に伴う衰減が明らかである場合、採土位置の水平間隔を縮小する必要があり、動的応力の水平距離に伴う衰減が緩慢である場合、採土位置の水平間隔を適切に増大することができる。元位置での採土は、薄肉採土器で行われ、各採土位置では、少なくとも2つの隣接する原状土壌サンプルを採取し、1つの原状土壌サンプルは、土体の静的三軸せん断試験に用いられ、もう1つの原状土壌サンプルは、土体の動的三軸せん断試験に用いられる。
そして、原状土壌サンプルを実験室に輸送した後にそれぞれ静的三軸せん断と動的三軸せん断試験を行い、静的三軸せん断試験によって、土壌サンプルの静的せん断強度を取得し、動的三軸せん断試験によって、動力循環ロード後の土壌サンプルの動的せん断強度を取得し、動的せん断強度と元に得られた静的せん断強度を除算することにより、採土位置の土壌サンプルの弱化強度ηを得る。全ての採土位置での土壌サンプルの弱化強度ηデータに基づいて、海底土体の弱化領域範囲と弱化領域範囲内の弱化強度ηの分布状況を取得することができ、各採土位置の弱化強度ηの大きさ等級に基づいて、弱化範囲Aを合理的に区画し、本実施例では、弱化範囲AをA ≦ 1D、1D < A ≦ 2D、A > 2Dという3つの部分に分ける。
Step S3: Determining the magnitude of dynamic stress on the seabed soil body and the dynamic stress distribution area due to periodic displacement of the steel cylinder under the action of wave circulation loads of different water depths Hw, wave wavelengths L, and different wave forces F. Collect data, and analyze the weakening discipline of submarine soil strength at the same dynamic stress level by indoor static triaxial shear test and dynamic triaxial shear test, and calculate the weakening range A and weakening strength η of submarine soil body. Obtain test data.
Specifically, first, based on the magnitude of dynamic stress on the seabed soil body due to periodic displacement of the steel cylinder and data on the dynamic stress distribution area, If, for example, the ground body within a horizontal distance of 100 m and a depth of 30 m from the steel cylinder is clearly affected, it is necessary to sample the soil body in that area, and the dynamic stress Plan the horizontal spacing of the excavation locations based on the degree of attenuation with horizontal distance.
If the decay of dynamic stress with horizontal distance is obvious, the horizontal spacing of the sampling locations should be reduced; if the decay of dynamic stress with horizontal distance is slow, the horizontal spacing of the sampling locations should be reduced. It can be increased appropriately. In-situ soil sampling is performed with a thin-walled soil borer, and at each sampling location, at least two adjacent original soil samples are taken, and one original soil sample is subjected to static triaxial shear testing of the soil body. and another original soil sample is used for dynamic triaxial shear testing of the soil body.
Then, after transporting the original soil sample to the laboratory, static triaxial shear and dynamic triaxial shear tests were performed, and the static shear strength of the soil sample was obtained by the static triaxial shear test, and the dynamic triaxial shear strength was obtained by the static triaxial shear test. Obtain the dynamic shear strength of the soil sample after power cyclic loading by axial shear test, and calculate the weakening strength of the soil sample at the sampling location by dividing the dynamic shear strength and the originally obtained static shear strength. Get η. Based on the weakening strength η data of soil samples at all soil sampling locations, it is possible to obtain the weakened area range of the submarine soil body and the distribution status of the weakening strength η within the weakened area range, and to determine the weakening strength at each soil sampling location. The weakening range A is rationally divided based on the magnitude class of the strength η, and in this embodiment, the weakening range A is divided into three parts: A≦1D, 1D<A≦2D, and A>2D.

そして、取得された海底土体の弱化範囲Aと弱化強度ηデータに基づいて、最小二乗法で水深Hw、波の波長L、波力Fと海底土体の弱化範囲A、弱化強度ηとの関係をフィッティングし、海底土体の弱化範囲A及び弱化強度ηと水深Hw、波の波長L、波力Fとの関連関数:(A,η)~ ζ(Hw,L,F)、例えば、

Figure 2024501345000009
(式中、Dは、鋼製円筒の外径である)を確立する。 Then, based on the acquired weakening range A and weakening strength η data of the submarine soil body, the least squares method is used to calculate the relationship between the water depth Hw, wave wavelength L, wave force F, and the weakening range A and weakening strength η of the submarine soil body. By fitting the relationship, the related function between the weakening range A and weakening strength η of the submarine soil body, water depth Hw, wave wavelength L, and wave force F: (A, η) ~ ζ (Hw, L, F), for example,
Figure 2024501345000009
(where D is the outer diameter of the steel cylinder).

ステップS4:ステップS3の中の室内静的、動的三軸せん断試験で取得された海底土体の弱化範囲A及び弱化強度η試験データに基づいて、室内モデル試験方法で対応する弱化後の海底土体の耐荷力を算出し、耐荷力計算理論を採用して反転により弱化後の等価な海底地質条件パラメータ(弱化後の土体の重量度W、弱化後の土体の粘着力cと弱化後の土体の内摩擦角Φを含む)を算出し、具体的な計算方法は、以下の通りである:
ハンセン地盤耐荷力計算式:
p=c×Nc×Sc×dc×ic+q×Nq×Sq×iq+0.5×W×D×Nr×Sr×irに基づいて、ここでSc、Sq、Srは、構造物の基礎形状補正係数であり、dcは、構造物の基礎埋設深さ補正係数であり、ic、iq、irは、構造物の荷重傾斜補正係数であり、qは、鋼製円筒構造の総重量であり、Dは、鋼製円筒の直径であり、海底土体の弱化は、上記9つのパラメータの減少につながらないため、上記9つのパラメータは、海底土体の弱化前後で変化がないため、海底土体の弱化前後耐荷力の比

Figure 2024501345000010
について、pは、弱化前の海底土体の耐荷力であり、pは、弱化後の海底土体の耐荷力であり、G1は、Sc×dc×icを表し、G2は、q×Sq×iqを表し、G3は、0.5×D×Sr×irを表し、G1、G2、G3は、海底土体の弱化前後に変化しない値である。 Step S4: Based on the weakened range A and weakening strength η test data of the seabed soil obtained in the indoor static and dynamic triaxial shear test in Step S3, the seabed after weakening corresponds to the indoor model test method. The load-bearing capacity of the soil body is calculated, and the equivalent seabed geological condition parameters after weakening by inversion are calculated using the load-bearing capacity calculation theory (weight of the soil body after weakening W weak , cohesion strength of the soil body after weakening c weak) The specific calculation method is as follows :
Hansen soil load-bearing capacity calculation formula:
Based on p=c×N c ×S c ×d c ×i c +q×N q ×S q ×i q +0.5×W×D×N r ×S r ×i r , here S c , S q , S r are the foundation shape correction coefficients of the structure, d c is the foundation burial depth correction coefficient of the structure, and i c , i q , i r are the load slope correction coefficients of the structure. , q is the total weight of the steel cylindrical structure, D is the diameter of the steel cylinder, and the weakening of the submarine soil body does not lead to a decrease in the above nine parameters, so the above nine parameters are Since there is no change before and after weakening of the submarine soil, the ratio of the load-bearing capacity before and after weakening of the submarine soil is
Figure 2024501345000010
, p is the load-bearing capacity of the submarine soil before weakening, p is the load-bearing capacity of the submarine soil after weakening, G1 represents S c ×d c ×i c , and G2 is , q × S q × i q , G3 represents 0.5 × D × S r × i r , and G1, G2, and G3 are values that do not change before and after weakening of the seabed body.

Nc、Nq、Nrは、土体の内摩擦角Φに関する補正係数であり、

Figure 2024501345000011
、Nc = (Nq -1)cotΦ、 Nr = 1.5(Nq -1)tanΦ。 N c , N q , N r are correction coefficients regarding the internal friction angle Φ of the earth body,
Figure 2024501345000011
, N c = (N q -1)cotΦ, N r = 1.5(N q -1)tanΦ.

弱化後の海底耐荷力pが原耐荷力pのk倍(即ち

Figure 2024501345000012

k≦1)であると仮定すると、
Figure 2024501345000013
を確保するだけでよく、ここで、まず
Figure 2024501345000014
を算出し、
Figure 2024501345000015
にΦという未知数が1つしかないため、計算によって弱化後の土体の内摩擦角Φを取得することができ、次に
Figure 2024501345000016

Figure 2024501345000017
を計算し、Φが既知であれば、Nc弱とNr弱も既知であるため、cとWを求めることができる。 The seabed load-bearing capacity p after weakening is k times the original load-bearing capacity p (i.e.
Figure 2024501345000012
,
Assuming that k≦1),
Figure 2024501345000013
You just need to ensure that, here, first
Figure 2024501345000014
Calculate,
Figure 2024501345000015
Since there is only one unknown quantity, Φweak , we can obtain the internal friction angle Φweak of the soil body after weakening by calculation, and then
Figure 2024501345000016
and
Figure 2024501345000017
If Φ -weak is known, N c-weak and N r-weak are also known, so c- weak and W -weak can be found.

そしてステップS2で確立された各海底地質条件パラメータと鋼製円筒条件パラメータに基づいて、限界荷重の大きさPを予測する関数関係式P~ f(H,β1,β2,β3,β4,β5…)を結び付けてから、弱化後の等価な海底地質条件パラメータに対応する限界荷重の大きさを算出し(計算する時、限界荷重の作用高さHは、ステップS3の中に対応する波循環荷重の水深Hwに従って値を取り、つまり水面位置で鋼製円筒に荷重を形成する)、さらに限界荷重衰減係数εを算出し、ε≦ 1、前記εは、弱化後の等価な海底地質条件パラメータに対応する限界荷重の大きさを、波循環荷重作用を受けない海底土体の初期海底地質条件パラメータ下で対応する限界荷重の大きさで除算する値に等しく、そして最小二乗法で海底土体の弱化範囲A及び弱化強度ηと限界荷重衰減係数εとの関係をフィッティングし、限界荷重衰減係数εと海底土体の弱化範囲A及び弱化強度ηとの関連関数関係ε~ g(A、η)を確立し、例えば、

Figure 2024501345000018
。 Then, based on each seabed geological condition parameter and steel cylinder condition parameter established in step S2, a functional relational expression P ~ f (H, β 1 , β 2 , β 3 , β 4 , β 5 ...), then calculate the magnitude of the critical load corresponding to the equivalent seabed geological condition parameters after weakening (when calculating, the working height H of the critical load is determined in step S3. The value is taken according to the water depth Hw of the corresponding wave circulation load, that is, the load is formed on the steel cylinder at the water surface position), and the critical load decay coefficient ε is further calculated, and ε≦1, the said ε is the equivalent value after weakening. equal to the magnitude of the critical load corresponding to the seabed geological condition parameters divided by the magnitude of the corresponding critical load under the initial seabed geological condition parameters of the seabed body not subjected to wave circulation loading action, and the least squares method The relationship between the weakening range A and weakening strength η of the submarine soil body and the critical load decay coefficient ε is fitted, and the related functional relationship ε~g between the critical load decay coefficient ε and the weakening range A and weakening strength η of the submarine soil body is calculated. Establish (A, η), for example,
Figure 2024501345000018
.

ステップS5:ステップS4で取得された限界荷重衰減係数εと海底土体の弱化範囲A、弱化強度ηとの関数関係、及びステップS3で取得された海底土体の弱化範囲A、弱化強度ηと水深Hw、波の波長L、波力Fとの関数関係に基づいて、限界荷重衰減係数εと水深Hw、波の波長L、波力Fとの関数関係を取得することができ、さらに限界荷重衰減係数εにステップS1で得られた予測限界荷重の大きさPの関数を乗算することにより、波循環荷重作用での鋼製円筒の不安定限界荷重を考慮した予測モデルを取得することができる:P~ ε×f(H,β1,β2,β3,β4,β5…)。 Step S5: The functional relationship between the critical load decay coefficient ε obtained in step S4, the weakening range A of the submarine soil body, and the weakening strength η, and the weakening range A and weakening strength η of the submarine soil body obtained in step S3. Based on the functional relationship between water depth Hw, wave wavelength L, and wave force F, it is possible to obtain the functional relationship between critical load attenuation coefficient ε and water depth Hw, wave wavelength L, and wave force F, and furthermore, the critical load By multiplying the damping coefficient ε by the function of the magnitude P of the predicted limit load obtained in step S1, it is possible to obtain a prediction model that takes into account the unstable limit load of the steel cylinder under the wave circulation load action. :P~ ε×f(H, β 1 , β 2 , β 3 , β 4 , β 5 …).

実際の工事設計において、上記深水薄肉鋼製円筒の安定性予測方法で海底地質条件パラメータ、鋼製円筒条件パラメータ及び波循環荷重パラメータに基づいて、鋼製円筒が耐えることのできる限界荷重P及び鋼製円筒の現在実際に耐える荷重PTを予測して算出することができ、且つ安全係数K、K=P/PTを自動的に計算することができる。
安全係数Kが1よりも小さく、構造が不安定な場合、まず循環荷重による衰減を考慮しない場合(即ちε=1)、安全係数Kが要求を満たすことができるか否かを試算する。要求を満たした場合、地盤補強処理方案設計を行い、関数(A,η)~ ζ(Hw,L,F)で与えられる海底地盤弱化範囲に基づいて、地盤補強深さと範囲の設計を行う。ε=1の場合の試算時の安全係数Kが依然として要求を満たさなかった場合、安全係数Kが要求を満たすまで鋼製円筒の設計を最適化する。
In actual construction design, the above stability prediction method for deep water thin-walled steel cylinders is used to calculate the limit load P that the steel cylinder can withstand and the It is possible to predict and calculate the load P T that the manufactured cylinder can currently withstand, and it is also possible to automatically calculate the safety factor K, K=P/P T.
If the safety factor K is smaller than 1 and the structure is unstable, first calculate whether the safety factor K can satisfy the requirements without taking into account damping due to cyclic loads (i.e., ε=1). If the requirements are met, a ground reinforcement treatment plan is designed, and the depth and range of ground reinforcement is designed based on the range of submarine ground weakening given by the functions (A, η) to ζ (Hw, L, F). If the safety factor K during the trial calculation when ε=1 still does not meet the requirements, the design of the steel cylinder is optimized until the safety factor K satisfies the requirements.

発明は、例示的に説明されており、なお、本発明の要旨を逸脱しない範囲で、いかなる簡単な変形、修正、又は当業者が創造的な労働を必要としない他の同等の置換は、全て本発明の請求範囲に含まれる。 The invention has been described by way of example, and it should be noted that any simple variations, modifications, or other equivalent substitutions that do not require creative effort by those skilled in the art may be made without departing from the spirit of the invention. within the scope of the present invention.

(付記)
(付記1)
海底地質条件パラメータと鋼製円筒条件パラメータに基づいて、有限要素解析ソフトウェアで鋼製円筒シミュレーション解析モデルを確立するステップ1と、
シミュレーション解析モデルで異なる海底地質条件パラメータと鋼製円筒条件パラメータ下で対応する鋼製円筒の不安定時の限界荷重を解析し、海底地質条件パラメータ、鋼製円筒条件パラメータと限界荷重との間の関数関係を確立するステップ2と、
異なる波循環荷重作用下での鋼製円筒の周期的変位による海底土体への動的応力の大きさ及び動的応力分布領域のデータを収集し、そして静的三軸せん断試験と動的三軸せん断試験で同等動的応力の大きさ及び動的応力分布下での海底土体の弱化範囲A及び弱化強度ηの試験データを取得し、そして海底土体の弱化範囲A及び弱化強度ηと波循環荷重との関数関係を確立するステップ3と、
ステップ3で取得された海底土体の弱化範囲A及び弱化強度η試験データに基づいて、室内モデル試験方法で対応する弱化後の海底土体の耐荷力を算出し、さらに弱化後の等価な海底地質条件パラメータを算出し、そしてステップ2で確立された海底地質条件パラメータ、鋼製円筒条件パラメータと限界荷重との間の関数関係と結び付けてから、弱化後の等価な海底地質条件パラメータに対応する限界荷重の大きさを算出し、さらに限界荷重衰減係数εを算出し、そして限界荷重衰減係数εと海底土体の弱化範囲A及び弱化強度ηとの関数関係を確立するステップ4と、
ステップ2~ステップ4で得られた関数を結び付けてから、波循環荷重作用下での鋼製円筒の不安定限界荷重が結び付けられた予測モデルを取得するステップ5と、を含む、
ことを特徴とする深水薄肉鋼製円筒の安定性予測方法。
(Additional note)
(Additional note 1)
Step 1: establishing a steel cylinder simulation analysis model with finite element analysis software based on the seabed geological condition parameters and steel cylinder condition parameters;
The simulation analysis model analyzes the critical load during instability of the corresponding steel cylinder under different seabed geological condition parameters and steel cylinder condition parameters, and calculates the function between seabed geological condition parameters, steel cylinder condition parameters, and critical load. Step 2 of establishing the relationship and
The data of the dynamic stress magnitude and dynamic stress distribution area on the seabed soil body due to the periodic displacement of the steel cylinder under the action of different wave circulation loads were collected, and the static triaxial shear test and the dynamic triaxial In the axial shear test, test data of the weakening range A and weakening strength η of the submarine soil body under the magnitude of equivalent dynamic stress and dynamic stress distribution were obtained, and the weakening range A and weakening strength η of the submarine soil body were obtained. Step 3 of establishing a functional relationship with the wave circulation load;
Based on the weakening range A and weakening strength η test data of the submarine soil body obtained in step 3, the load-bearing capacity of the submarine soil body after weakening is calculated using the indoor model test method, and then the equivalent seabed strength after weakening is calculated using the indoor model test method. Calculate the geological condition parameters and connect them with the functional relationship between the seabed geological condition parameters, steel cylinder condition parameters and critical load established in step 2, and then correspond to the equivalent seabed geological condition parameters after weakening. Step 4 of calculating the magnitude of the critical load, further calculating the critical load decay coefficient ε, and establishing a functional relationship between the critical load decay coefficient ε and the weakening range A and the weakening strength η of the submarine soil body;
a step 5 of combining the functions obtained in steps 2 to 4, and then obtaining a predictive model in which the unstable limit load of the steel cylinder under the action of wave circulation loading is connected;
A method for predicting the stability of deep-water thin-walled steel cylinders.

(付記2)
海底地質条件パラメータは、土体の重量度、土体の粘着力及び土体の内摩擦角を含む、ことを特徴とする付記1に記載の深水薄肉鋼製円筒の安定性予測方法。
(Additional note 2)
The method for predicting the stability of a deep water thin-walled steel cylinder according to appendix 1, wherein the seabed geological condition parameters include the weight of the earth body, the adhesive force of the earth body, and the internal friction angle of the earth body.

(付記3)
鋼製円筒条件パラメータは、具体的には、鋼製円筒の外径、鋼製円筒の肉厚、鋼製円筒の高さ、鋼製円筒の埋設深さ及び鋼製円筒の内部フィラータイプを含む、ことを特徴とする付記1に記載の深水薄肉鋼製円筒の安定性予測方法。
(Additional note 3)
The steel cylinder condition parameters specifically include the outer diameter of the steel cylinder, the wall thickness of the steel cylinder, the height of the steel cylinder, the burial depth of the steel cylinder, and the internal filler type of the steel cylinder. , the method for predicting stability of a deep water thin-walled steel cylinder according to appendix 1.

(付記4)
波循環荷重は、水深、波の波長及び異なる波力のパラメータを含む、ことを特徴とする付記1に記載の深水薄肉鋼製円筒の安定性予測方法。
(Additional note 4)
The method for predicting stability of a deep water thin-walled steel cylinder according to appendix 1, wherein the wave circulation load includes parameters of water depth, wave wavelength, and different wave forces.

(付記5)
ステップ2は、
シミュレーション解析モデルにおいて海底地質条件パラメータと鋼製円筒条件パラメータにおける単一パラメータx1の数値を変更し、そして所定荷重作用高さH下で対応する限界荷重の大きさPの変化を算出し、データ相関性解析を行い、所定荷重作用高さ下での該単一パラメータx1の影響程度を表す対応する無次元化影響係数β1を取得するステップS2.1と、
ステップS2.1を繰り返し、所定荷重作用高さH下での海底地質条件パラメータと鋼製円筒条件パラメータのうち残りのパラメータ(x2,x3,x4,x5…)の影響程度を表す無次元化影響係数(β2,β3,β4,β5…)を取得するステップS2.2と、
ステップS2.1とS2.2の結果に基づいて、各パラメータ(x1,x2,x3,x4,x5…)に基づいて限界荷重の大きさPを予測する関数関係式:P~ f(H,β1,β2,β3,β4,β5…)を確立するステップS2.3と、を含む、
ことを特徴とする付記1に記載の深水薄肉鋼製円筒の安定性予測方法。
(Appendix 5)
Step 2 is
In the simulation analysis model, change the numerical value of the single parameter x 1 in the seabed geological condition parameter and the steel cylinder condition parameter, and then calculate the change in the corresponding limit load size P under a predetermined load action height H, and calculate the data step S2.1 of performing a correlation analysis to obtain a corresponding dimensionless influence coefficient β 1 representing the degree of influence of the single parameter x 1 under a predetermined load action height;
Repeat step S2.1 to express the degree of influence of the remaining parameters (x 2 , x 3 , x 4 , x 5 ...) among the seabed geological condition parameters and steel cylinder condition parameters under the predetermined load action height H. step S2.2 of obtaining dimensionless influence coefficients (β 2 , β 3 , β 4 , β 5 …);
Based on the results of steps S2.1 and S2.2, a functional relational expression that predicts the magnitude of the critical load P based on each parameter (x 1 , x 2 , x 3 , x 4 , x 5 ...): P and step S2.3 of establishing ~f(H, β 1 , β 2 , β 3 , β 4 , β 5 ...),
The method for predicting stability of a deep water thin-walled steel cylinder according to Supplementary Note 1.

(付記6)
ステップ3において、鋼製円筒の周期的変位による海底土体への動的応力の大きさ及び動的応力分布領域のデータに基づいて、工事領域の地盤土体に対して元位置で採土し、原状土壌サンプルを実験室に輸送した後にそれぞれ静的三軸せん断と動的三軸せん断試験を行い、静的三軸せん断試験によって、土壌サンプルの静的せん断強度を取得し、動的三軸せん断試験によって、土壌サンプルの動的せん断強度を取得し、動的せん断強度と静的せん断強度を除算し、採土位置の土壌サンプルの弱化強度ηを得る、ことを特徴とする付記1に記載の深水薄肉鋼製円筒の安定性予測方法。
(Appendix 6)
In Step 3, based on the data on the magnitude of dynamic stress on the seabed soil body due to the periodic displacement of the steel cylinder and the data on the dynamic stress distribution area, soil is excavated at the original location on the soil body in the construction area. After transporting the original soil sample to the laboratory, static triaxial shear and dynamic triaxial shear tests were conducted, respectively, and the static triaxial shear strength of the soil sample was obtained by the static triaxial shear test, and the dynamic triaxial Supplementary Note 1 characterized in that the dynamic shear strength of the soil sample is obtained by a shear test, and the dynamic shear strength and static shear strength are divided to obtain the weakening strength η of the soil sample at the soil sampling location. A method for predicting the stability of deep-water thin-walled steel cylinders.

(付記7)
ステップ3において、元位置での採土は、薄肉採土器で行われ、各採土位置では、少なくとも2つの隣接する原状土壌サンプルを採取し、1つの原状土壌サンプルは、土体の静的三軸せん断試験に用いられ、もう1つの原状土壌サンプルは、土体の動的三軸せん断試験に用いられる、ことを特徴とする付記6に記載の深水薄肉鋼製円筒の安定性予測方法。
(Appendix 7)
In step 3, in-situ soil sampling is carried out with a thin-walled soil sampler, and at each sampling location, at least two adjacent native soil samples are collected, one in-situ soil sample is a static three-dimensional sample of the soil body. The method for predicting stability of a deep water thin-walled steel cylinder according to appendix 6, wherein the soil sample is used for an axial shear test, and the other soil sample is used for a dynamic triaxial shear test of the soil body.

(付記8)
ステップ4において、εは、弱化後の等価な海底地質条件パラメータに対応する限界荷重の大きさを、波循環荷重作用を受けない海底土体の初期海底地質条件パラメータ下で対応する限界荷重の大きさで除算する値に等しい、ことを特徴とする付記1に記載の深水薄肉鋼製円筒の安定性予測方法。
(Appendix 8)
In step 4, ε is the magnitude of the critical load corresponding to the equivalent seabed geological condition parameters after weakening, and the magnitude of the critical load corresponding to the initial seabed geological condition parameters of the seabed body not subjected to wave circulation loading action. The method for predicting stability of a deep water thin-walled steel cylinder according to Supplementary Note 1, characterized in that the stability prediction method is equal to the value divided by .

(付記9)
ステップ4において、算出された弱化後の等価な海底地質条件パラメータは、弱化後の土体の重量度W、弱化後の土体の粘着力c及び弱化後の土体の内摩擦角Φを含み、計算方法は、以下の通りである:
ハンセン地盤耐荷力計算式:
p=c×Nc×Sc×dc×ic+q×Nq×Sq×iq+0.5×W×D×Nr×Sr×irに基づいて、ここでSc、Sq、Srは、構造物の基礎形状補正係数であり、dcは、構造物の基礎埋設深さ補正係数であり、ic、iq、irは、構造物の荷重傾斜補正係数であり、qは、鋼製円筒構造の総重量であり、Dは、鋼製円筒の直径であり、この9つのパラメータは、海底土体の弱化前後で変化がないため、海底土体の弱化前後耐荷力の比

Figure 2024501345000019
について、pは、弱化前の海底土体の耐荷力であり、pは、弱化後の海底土体の耐荷力であり、G1は、Sc×dc×icを表し、G2は、q×Sq×iqを表し、G3は、0.5×D×Sr×irを表し、G1、G2、G3は、海底土体の弱化前後に変化せず、
Nc、Nq、Nrは、土体の内摩擦角Φに関する補正係数であり、
Figure 2024501345000020
、Nc = (Nq -1)cotΦ 、 Nr = 1.5(Nq -1)tanΦ 、
弱化後の海底耐荷力pが原耐荷力pのk倍であると仮定すると、
Figure 2024501345000021
を確保する必要があり、ここで、まず
Figure 2024501345000022
を算出し、
Figure 2024501345000023
にΦという未知数が1つしかないため、計算によって弱化後の土体の内摩擦角Φを取得し、次に
Figure 2024501345000024

Figure 2024501345000025
を算出し、Φが既知であれば、Nc弱とNr弱も既知となるため、cとWを求める、
ことを特徴とする付記1に記載の深水薄肉鋼製円筒の安定性予測方法。 (Appendix 9)
In step 4, the calculated equivalent seabed geological condition parameters after weakening are the weight of the soil body after weakening W weak , the cohesive force of the soil body after weakening c weak , and the internal friction angle Φ of the soil body after weakening. The calculation method is as follows :
Hansen soil load-bearing capacity calculation formula:
Based on p=c×N c ×S c ×d c ×i c +q×N q ×S q ×i q +0.5×W×D×N r ×S r ×i r , here S c , S q and S r are the foundation shape correction coefficients of the structure, d c is the foundation burial depth correction coefficient of the structure, and i c , i q , and i r are the load slope correction coefficients of the structure. , q is the total weight of the steel cylindrical structure, D is the diameter of the steel cylinder, and these nine parameters do not change before and after the weakening of the submarine soil body, so the weakening of the submarine soil body Ratio of front and rear load carrying capacity
Figure 2024501345000019
, p is the load-bearing capacity of the submarine soil before weakening, p is the load-bearing capacity of the submarine soil after weakening, G1 represents S c ×d c ×i c , and G2 is , q × S q × i q , G3 represents 0.5 × D × S r × i r , G1, G2, and G3 do not change before and after the weakening of the submarine soil body,
N c , N q , N r are correction coefficients regarding the internal friction angle Φ of the earth body,
Figure 2024501345000020
, N c = (N q -1)cotΦ , N r = 1.5(N q -1)tanΦ ,
Assuming that the seabed load-bearing capacity p after weakening is k times the original load-bearing capacity p,
Figure 2024501345000021
Here, first you need to ensure
Figure 2024501345000022
Calculate,
Figure 2024501345000023
Since there is only one unknown quantity, Φweak , we obtain the internal friction angle Φweak of the soil body after weakening by calculation, and then
Figure 2024501345000024
and
Figure 2024501345000025
If Φ -weak is known, N c-weak and N r-weak are also known, so find c- weak and W -weak ,
The method for predicting stability of a deep water thin-walled steel cylinder according to Supplementary Note 1.

Claims (9)

海底地質条件パラメータと鋼製円筒条件パラメータに基づいて、有限要素解析ソフトウェアで鋼製円筒シミュレーション解析モデルを確立するステップ1と、
シミュレーション解析モデルで異なる海底地質条件パラメータと鋼製円筒条件パラメータ下で対応する鋼製円筒の不安定時の限界荷重を解析し、海底地質条件パラメータ、鋼製円筒条件パラメータと限界荷重との間の関数関係を確立するステップ2と、
異なる波循環荷重作用下での鋼製円筒の周期的変位による海底土体への動的応力の大きさ及び動的応力分布領域のデータを収集し、そして静的三軸せん断試験と動的三軸せん断試験で同等動的応力の大きさ及び動的応力分布下での海底土体の弱化範囲A及び弱化強度ηの試験データを取得し、そして海底土体の弱化範囲A及び弱化強度ηと波循環荷重との関数関係を確立するステップ3と、
ステップ3で取得された海底土体の弱化範囲A及び弱化強度η試験データに基づいて、室内モデル試験方法で対応する弱化後の海底土体の耐荷力を算出し、さらに弱化後の等価な海底地質条件パラメータを算出し、そしてステップ2で確立された海底地質条件パラメータ、鋼製円筒条件パラメータと限界荷重との間の関数関係と結び付けてから、弱化後の等価な海底地質条件パラメータに対応する限界荷重の大きさを算出し、さらに限界荷重衰減係数εを算出し、そして限界荷重衰減係数εと海底土体の弱化範囲A及び弱化強度ηとの関数関係を確立するステップ4と、
ステップ2~ステップ4で得られた関数を結び付けてから、波循環荷重作用下での鋼製円筒の不安定限界荷重が結び付けられた予測モデルを取得するステップ5と、を含む、
ことを特徴とする深水薄肉鋼製円筒の安定性予測方法。
Step 1: establishing a steel cylinder simulation analysis model with finite element analysis software based on the seabed geological condition parameters and steel cylinder condition parameters;
The simulation analysis model analyzes the critical load during instability of the corresponding steel cylinder under different seabed geological condition parameters and steel cylinder condition parameters, and calculates the function between seabed geological condition parameters, steel cylinder condition parameters, and critical load. Step 2 of establishing the relationship and
The data of the dynamic stress magnitude and dynamic stress distribution area on the seabed soil body due to the periodic displacement of the steel cylinder under the action of different wave circulation loads were collected, and the static triaxial shear test and the dynamic triaxial In the axial shear test, test data of the weakening range A and weakening strength η of the submarine soil body under the magnitude of equivalent dynamic stress and dynamic stress distribution were obtained, and the weakening range A and weakening strength η of the submarine soil body were obtained. Step 3 of establishing a functional relationship with the wave circulation load;
Based on the weakening range A and weakening strength η test data of the submarine soil body obtained in step 3, the load-bearing capacity of the submarine soil body after weakening is calculated using the indoor model test method, and then the equivalent seabed strength after weakening is calculated using the indoor model test method. Calculate the geological condition parameters and connect them with the functional relationship between the seabed geological condition parameters, steel cylinder condition parameters and critical load established in step 2, and then correspond to the equivalent seabed geological condition parameters after weakening. Step 4 of calculating the magnitude of the critical load, further calculating the critical load decay coefficient ε, and establishing a functional relationship between the critical load decay coefficient ε and the weakening range A and the weakening strength η of the submarine soil body;
a step 5 of combining the functions obtained in steps 2 to 4, and then obtaining a predictive model in which the unstable limit load of the steel cylinder under the action of wave circulation loading is connected;
A method for predicting the stability of deep-water thin-walled steel cylinders.
海底地質条件パラメータは、土体の重量度、土体の粘着力及び土体の内摩擦角を含む、ことを特徴とする請求項1に記載の深水薄肉鋼製円筒の安定性予測方法。 2. The method for predicting stability of a deep water thin-walled steel cylinder according to claim 1, wherein the seabed geological condition parameters include the weight of the earth body, the adhesive force of the earth body, and the internal friction angle of the earth body. 鋼製円筒条件パラメータは、具体的には、鋼製円筒の外径、鋼製円筒の肉厚、鋼製円筒の高さ、鋼製円筒の埋設深さ及び鋼製円筒の内部フィラータイプを含む、ことを特徴とする請求項1に記載の深水薄肉鋼製円筒の安定性予測方法。 The steel cylinder condition parameters specifically include the outer diameter of the steel cylinder, the wall thickness of the steel cylinder, the height of the steel cylinder, the burial depth of the steel cylinder, and the internal filler type of the steel cylinder. 2. The method for predicting stability of a deep water thin-walled steel cylinder according to claim 1. 波循環荷重は、水深、波の波長及び異なる波力のパラメータを含む、ことを特徴とする請求項1に記載の深水薄肉鋼製円筒の安定性予測方法。 The method for predicting stability of a deep water thin-walled steel cylinder according to claim 1, wherein the wave circulation load includes parameters of water depth, wave wavelength and different wave forces. ステップ2は、
シミュレーション解析モデルにおいて海底地質条件パラメータと鋼製円筒条件パラメータにおける単一パラメータx1の数値を変更し、そして所定荷重作用高さH下で対応する限界荷重の大きさPの変化を算出し、データ相関性解析を行い、所定荷重作用高さ下での該単一パラメータx1の影響程度を表す対応する無次元化影響係数β1を取得するステップS2.1と、
ステップS2.1を繰り返し、所定荷重作用高さH下での海底地質条件パラメータと鋼製円筒条件パラメータのうち残りのパラメータ(x2,x3,x4,x5…)の影響程度を表す無次元化影響係数(β2,β3,β4,β5…)を取得するステップS2.2と、
ステップS2.1とS2.2の結果に基づいて、各パラメータ(x1,x2,x3,x4,x5…)に基づいて限界荷重の大きさPを予測する関数関係式:P~ f(H,β1,β2,β3,β4,β5…)を確立するステップS2.3と、を含む、
ことを特徴とする請求項1に記載の深水薄肉鋼製円筒の安定性予測方法。
Step 2 is
In the simulation analysis model, change the numerical value of the single parameter x 1 in the seabed geological condition parameter and the steel cylinder condition parameter, and then calculate the change in the corresponding limit load size P under a predetermined load action height H, and calculate the data step S2.1 of performing a correlation analysis to obtain a corresponding dimensionless influence coefficient β 1 representing the degree of influence of the single parameter x 1 under a predetermined load action height;
Repeat step S2.1 to express the degree of influence of the remaining parameters (x 2 , x 3 , x 4 , x 5 ...) among the seabed geological condition parameters and steel cylinder condition parameters under the predetermined load action height H. step S2.2 of obtaining dimensionless influence coefficients (β 2 , β 3 , β 4 , β 5 …);
Based on the results of steps S2.1 and S2.2, a functional relational expression that predicts the magnitude of the critical load P based on each parameter (x 1 , x 2 , x 3 , x 4 , x 5 ...): P and step S2.3 of establishing ~f(H, β 1 , β 2 , β 3 , β 4 , β 5 ...),
The method for predicting stability of a deep water thin-walled steel cylinder according to claim 1.
ステップ3において、鋼製円筒の周期的変位による海底土体への動的応力の大きさ及び動的応力分布領域のデータに基づいて、工事領域の地盤土体に対して元位置で採土し、原状土壌サンプルを実験室に輸送した後にそれぞれ静的三軸せん断と動的三軸せん断試験を行い、静的三軸せん断試験によって、土壌サンプルの静的せん断強度を取得し、動的三軸せん断試験によって、土壌サンプルの動的せん断強度を取得し、動的せん断強度と静的せん断強度を除算し、採土位置の土壌サンプルの弱化強度ηを得る、ことを特徴とする請求項1に記載の深水薄肉鋼製円筒の安定性予測方法。 In Step 3, based on the data on the magnitude of dynamic stress on the seabed soil body due to the periodic displacement of the steel cylinder and the data on the dynamic stress distribution area, soil is excavated at the original location on the soil body in the construction area. After transporting the original soil sample to the laboratory, static triaxial shear and dynamic triaxial shear tests were conducted, respectively, and the static triaxial shear strength of the soil sample was obtained by the static triaxial shear test, and the dynamic triaxial Claim 1, characterized in that the dynamic shear strength of the soil sample is obtained by a shear test, and the dynamic shear strength and the static shear strength are divided to obtain the weakening strength η of the soil sample at the soil sampling location. The described method for predicting the stability of deep water thin-walled steel cylinders. ステップ3において、元位置での採土は、薄肉採土器で行われ、各採土位置では、少なくとも2つの隣接する原状土壌サンプルを採取し、1つの原状土壌サンプルは、土体の静的三軸せん断試験に用いられ、もう1つの原状土壌サンプルは、土体の動的三軸せん断試験に用いられる、ことを特徴とする請求項6に記載の深水薄肉鋼製円筒の安定性予測方法。 In step 3, in-situ soil sampling is carried out with a thin-walled soil sampler, and at each sampling location, at least two adjacent native soil samples are collected, one in-situ soil sample is a static three-dimensional sample of the soil body. 7. The method for predicting stability of a deep water thin-walled steel cylinder according to claim 6, wherein the soil sample is used for an axial shear test, and the other soil sample is used for a dynamic triaxial shear test of the soil body. ステップ4において、εは、弱化後の等価な海底地質条件パラメータに対応する限界荷重の大きさを、波循環荷重作用を受けない海底土体の初期海底地質条件パラメータ下で対応する限界荷重の大きさで除算する値に等しい、ことを特徴とする請求項1に記載の深水薄肉鋼製円筒の安定性予測方法。 In step 4, ε is the magnitude of the critical load corresponding to the equivalent seabed geological condition parameters after weakening, and the magnitude of the critical load corresponding to the initial seabed geological condition parameters of the seabed body not subjected to wave circulation loading action. 2. The method for predicting stability of a deep water thin-walled steel cylinder according to claim 1, wherein: ステップ4において、算出された弱化後の等価な海底地質条件パラメータは、弱化後の土体の重量度W、弱化後の土体の粘着力c及び弱化後の土体の内摩擦角Φを含み、計算方法は、以下の通りである:
ハンセン地盤耐荷力計算式:
p=c×Nc×Sc×dc×ic+q×Nq×Sq×iq+0.5×W×D×Nr×Sr×irに基づいて、ここでSc、Sq、Srは、構造物の基礎形状補正係数であり、dcは、構造物の基礎埋設深さ補正係数であり、ic、iq、irは、構造物の荷重傾斜補正係数であり、qは、鋼製円筒構造の総重量であり、Dは、鋼製円筒の直径であり、この9つのパラメータは、海底土体の弱化前後で変化がないため、海底土体の弱化前後耐荷力の比
Figure 2024501345000026
について、pは、弱化前の海底土体の耐荷力であり、pは、弱化後の海底土体の耐荷力であり、G1は、Sc×dc×icを表し、G2は、q×Sq×iqを表し、G3は、0.5×D×Sr×irを表し、G1、G2、G3は、海底土体の弱化前後に変化せず、
Nc、Nq、Nrは、土体の内摩擦角Φに関する補正係数であり、
Figure 2024501345000027
、Nc = (Nq -1)cotΦ、Nr = 1.5(Nq -1)tanΦ、
弱化後の海底耐荷力pが原耐荷力pのk倍であると仮定すると、
Figure 2024501345000028
を確保する必要があり、ここで、まず
Figure 2024501345000029
を算出し、
Figure 2024501345000030
にΦという未知数が1つしかないため、計算によって弱化後の土体の内摩擦角Φを取得し、次に
Figure 2024501345000031

Figure 2024501345000032
を算出し、Φが既知であれば、Nc弱とNr弱も既知となるため、cとWを求める、
ことを特徴とする請求項1に記載の深水薄肉鋼製円筒の安定性予測方法。
In step 4, the calculated equivalent seabed geological condition parameters after weakening are the weight of the soil body after weakening W weak , the cohesive force of the soil body after weakening c weak , and the internal friction angle Φ of the soil body after weakening. The calculation method is as follows :
Hansen soil load-bearing capacity calculation formula:
Based on p=c×N c ×S c ×d c ×i c +q×N q ×S q ×i q +0.5×W×D×N r ×S r ×i r , here S c , S q and S r are the foundation shape correction coefficients of the structure, d c is the foundation burial depth correction coefficient of the structure, and i c , i q , and i r are the load slope correction coefficients of the structure. , q is the total weight of the steel cylindrical structure, D is the diameter of the steel cylinder, and these nine parameters do not change before and after the weakening of the submarine soil body, so the weakening of the submarine soil body Ratio of front and rear load carrying capacity
Figure 2024501345000026
, p is the load-bearing capacity of the submarine soil before weakening, p is the load-bearing capacity of the submarine soil after weakening, G1 represents S c ×d c ×i c , and G2 is , q × S q × i q , G3 represents 0.5 × D × S r × i r , G1, G2, and G3 do not change before and after the weakening of the submarine soil body,
N c , N q , N r are correction coefficients regarding the internal friction angle Φ of the earth body,
Figure 2024501345000027
, N c = (N q -1)cotΦ, N r = 1.5(N q -1)tanΦ,
Assuming that the seabed load-bearing capacity p after weakening is k times the original load-bearing capacity p,
Figure 2024501345000028
Here, first you need to ensure
Figure 2024501345000029
Calculate,
Figure 2024501345000030
Since there is only one unknown quantity, Φweak , we obtain the internal friction angle Φweak of the soil body after weakening by calculation, and then
Figure 2024501345000031
and
Figure 2024501345000032
If Φ -weak is known, N c-weak and N r-weak are also known, so find c- weak and W -weak ,
The method for predicting stability of a deep water thin-walled steel cylinder according to claim 1.
JP2023541504A 2021-11-22 2022-04-02 Stability prediction method for deep water thin-walled steel cylinders Active JP7431427B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202111381589.0 2021-11-22
CN202111381589.0A CN113806852B (en) 2021-11-22 2021-11-22 Method for predicting stability of deepwater thin-wall steel cylinder
PCT/CN2022/085055 WO2023087601A1 (en) 2021-11-22 2022-04-02 Stability prediction method for deep water thin-walled steel cylinder

Publications (2)

Publication Number Publication Date
JP2024501345A true JP2024501345A (en) 2024-01-11
JP7431427B2 JP7431427B2 (en) 2024-02-15

Family

ID=78937505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023541504A Active JP7431427B2 (en) 2021-11-22 2022-04-02 Stability prediction method for deep water thin-walled steel cylinders

Country Status (3)

Country Link
JP (1) JP7431427B2 (en)
CN (1) CN113806852B (en)
WO (1) WO2023087601A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113806852B (en) * 2021-11-22 2022-02-22 中交天津港湾工程研究院有限公司 Method for predicting stability of deepwater thin-wall steel cylinder
CN114809125B (en) * 2022-04-15 2023-09-12 中交天津港湾工程研究院有限公司 Method for predicting anti-tilting stability of steel cylinder
CN116882320B (en) * 2023-08-16 2024-03-22 珠江水利委员会珠江水利科学研究院 Stability evaluation method, device and medium for offshore engineering service period foundation structure
CN117404258B (en) * 2023-12-13 2024-03-29 江苏道达风电设备科技有限公司 Composite cylindrical foundation offshore construction cloud monitoring system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032237A2 (en) * 2004-09-21 2006-03-30 Spaceframe21 Gmbh Gondola for a wind energy system; rotative connection for a wind energy system; wind energy system; method for operating a wind energy system
WO2007046178A1 (en) * 2005-10-17 2007-04-26 National University Corporation Nagoya University Coupled calculator of water and soil skeleton and coupled calculation method of water and soil skeleton
JP4931071B2 (en) 2007-06-20 2012-05-16 国立大学法人豊橋技術科学大学 A method for measuring the stability of submarine ground to waves.
US10203268B2 (en) * 2008-12-04 2019-02-12 Laura P. Solliday Methods for measuring and modeling the process of prestressing concrete during tensioning/detensioning based on electronic distance measurements
US20150132539A1 (en) * 2013-08-29 2015-05-14 Jeffrey R. Bailey Process for Applying a Friction Reducing Coating
CN106644733A (en) * 2016-11-21 2017-05-10 上海交通大学 Testing equipment for simulating response on embedded type pile-seabed by one-dimensional wave load
CN108018751A (en) * 2017-12-01 2018-05-11 青海省公路建设管理局 The construction technology of roadbed filling is carried out using strength concrete pile
CN110909494B (en) * 2018-09-13 2024-01-02 中国石油化工股份有限公司 Beach sea land and shore facility safety evaluation method
CN109724864B (en) * 2019-01-23 2019-11-26 中国海洋大学 It tests the more loads of ocean engineering pile foundation-soil dynamic response and couples loading device
US20210340334A1 (en) * 2019-09-27 2021-11-04 California Institute Of Technology Self-assembly of shell-based architected materials
CN112734081B (en) * 2020-12-15 2022-06-21 福建工程学院 Prediction method of impact force of landslide collapse block on submarine pipeline
CN112861409B (en) 2021-02-26 2022-05-13 山东大学 Single pile foundation bearing capacity calculation method, system, storage medium and equipment
CN112948939B (en) 2021-03-12 2022-07-12 上海大学 Single-pile dynamic stability analysis method and system under ship impact load action
CN113806852B (en) * 2021-11-22 2022-02-22 中交天津港湾工程研究院有限公司 Method for predicting stability of deepwater thin-wall steel cylinder

Also Published As

Publication number Publication date
CN113806852A (en) 2021-12-17
JP7431427B2 (en) 2024-02-15
CN113806852B (en) 2022-02-22
WO2023087601A1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
JP7431427B2 (en) Stability prediction method for deep water thin-walled steel cylinders
Elia et al. Fully coupled dynamic analysis of an earth dam
Gonzalez et al. Analysis of tunnel excavation in London Clay incorporating soil structure
CN105275024B (en) Defective Big-Diameter Rock-Embedded Pile vertical bearing capacity detection and the method reinforced
Zhou et al. Effect of shaft on resistance of a ball penetrometer
Parsa-Pajouh et al. Analyzing consolidation data to predict smear zone characteristics induced by vertical drain installation for soft soil improvement
Ahmed et al. Numerical analysis of the carrying capacity of a piled raft foundation in soft clayey soils
Justo et al. The use of rock mass classification systems to estimate the modulus and strength of jointed rock
Yan et al. Prediction of pile set-up in clays and sands
MIEI Experimental investigations of driven pile group behaviour in Belfast soft clay
Reddy Modelling Pile Capacity And Load-Settlement Behaviour Of Piles Embedded In Sand & Mixed Soils Using Artificial Intelligence
Omer et al. An empirical method for analysis of load transfer and settlement of single piles
Győri et al. Liquefaction and post-liquefaction settlement assessment—a probabilistic approach
Wan et al. A data-driven approach for forecasting embankment settlement accounting for multi-stage construction
Doherty et al. A data-driven approach for predicting the time-dependent settlement of embankments on soft soils
Li et al. Assessment of reinforced embankment stability over soft soils based on monitoring results
Le et al. Modelling the behaviour of the Ballina test embankment
Sheikhtaheri Experimental and numerical modeling studies for interpreting and estimating the p–δ behavior of single model piles in unsaturated sands
Cunha et al. Importance of the excavation level on the prediction of the settlement pattern from piled raft analyses
Moriwaki et al. Earthquake-induced deformations of soft clay slopes
Salahudeen Evaluation of foundation settlement characteristics and analytical model development
Liang et al. Initial excess pore water pressures induced by tunnelling in soft ground
Strokova Effect of the overconsolidation ratio of soils in surface settlements due to tunneling
Kenarsari et al. Effect of vertical heterogeneity in soil strength on pile bearing capacity prediction from CPT data
CN115879201B (en) Analysis method for permanent pile casing and sediment solidification and lifting cast-in-place pile bearing capacity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230705

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240125

R150 Certificate of patent or registration of utility model

Ref document number: 7431427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150