JP4931071B2 - A method for measuring the stability of submarine ground to waves. - Google Patents

A method for measuring the stability of submarine ground to waves. Download PDF

Info

Publication number
JP4931071B2
JP4931071B2 JP2007162698A JP2007162698A JP4931071B2 JP 4931071 B2 JP4931071 B2 JP 4931071B2 JP 2007162698 A JP2007162698 A JP 2007162698A JP 2007162698 A JP2007162698 A JP 2007162698A JP 4931071 B2 JP4931071 B2 JP 4931071B2
Authority
JP
Japan
Prior art keywords
ground
water pressure
seabed
pore water
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007162698A
Other languages
Japanese (ja)
Other versions
JP2009002020A (en
Inventor
均也 三浦
信吾 浅原
夏彦 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2007162698A priority Critical patent/JP4931071B2/en
Publication of JP2009002020A publication Critical patent/JP2009002020A/en
Application granted granted Critical
Publication of JP4931071B2 publication Critical patent/JP4931071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

本発明は沖合・沿岸構造物における海底基礎地盤の波浪に対する安定性を調査する方法で、これは土木工学、海岸工学分野、基礎地盤工学に関連するものである。 The present invention is a method for investigating the stability of ocean floor foundation ground against waves in offshore / coastal structures, and is related to civil engineering, coastal engineering, and foundation ground engineering.

台風などによる荒天時に沿岸・海洋域において防波堤や護岸などの種々の構造物が被害を受けることがある。波浪によって生じる過大な水圧が構造物に作用し、これが構造物の損傷・破壊させる直接的な原因となっている。図1には典型的なコンクリート製のケーソンを本体とする重力式防波堤の典型的な断面を示す。波浪による水圧の変動は防波堤の外洋側に直接作用するため、その合力を主要な変動外力として安定性を評価する段階で適切に考慮する必要がある。一般のこの形式の防波堤では、この波浪による衝撃力を低減するために、防波堤の外洋側にコンクリート製の消波ブロックを積み上げて配置している。 Various structures such as breakwaters and revetments may be damaged in coastal and marine areas during stormy weather such as typhoons. Excessive water pressure generated by waves acts on the structure, which is a direct cause of damage and destruction of the structure. FIG. 1 shows a typical section of a gravity breakwater having a typical concrete caisson as a main body. Since the fluctuation of water pressure due to waves directly affects the ocean side of the breakwater, it is necessary to properly consider the resultant force as the main fluctuating external force when evaluating stability. In this general type of breakwater, in order to reduce the impact force caused by the waves, concrete wave-dissipating blocks are stacked and arranged on the open ocean side of the breakwater.

この構造物に直接作用する変動水圧は構造物の不安定化においては最も重要な要素であるが、同時に変動水圧は構造物のみならず海底地盤にも作用する。これにより海底地盤が不安定化し、構造物(防波堤ケーソン)に対する地盤の基礎としての耐力が低下して構造物の機能が著しく損なわれる事例も少なくないことが非特許文献1に記載してある。 The fluctuating water pressure that directly acts on the structure is the most important factor in destabilizing the structure, but at the same time, the fluctuating water pressure acts not only on the structure but also on the seabed ground. Non-Patent Document 1 describes that there are many cases in which the seabed ground becomes unstable and the proof strength as the foundation of the ground against the structure (breakwater caisson) decreases and the function of the structure is significantly impaired.

海岸工学分野では海水の流速に応じて海底の地盤材料が浮遊あるいは移動することに着目した「海底地盤の洗掘現象」として防波堤の被災のメカニズムを検討するのが普通である。しかし、これまでに明らかになっている被災例においては、波浪による海底地盤の不安定化が明らかに海底面下数メートル程度にまで及んでいる例も見られることから、地盤工学的見地から海底地盤について深さを有する三次元連続体として扱い、海底地盤表面における水圧変動のへの地盤の応答を評価する必要があることが非特許文献2などによって示された。それ以降、地盤工学的な検討が活発に行われて、この分野における研究成果が蓄積されてきている。このことを力学的な面からとらえると、構造物−地盤−波浪が形成する複合的な力学系を固体−多孔質体−流体が形成する複合的なシステムとしてとらえ、力学的性質が本質的に異なる三者間の相互作用を適切に評価する必要があるということを意味している。構造物−地盤(固体−多孔質体)の相互作用は、陸上においては地下水の影響を考慮した従来の地盤工学分野において検討され、構造物に対する地盤の支持力問題として研究の蓄積がある。 In the field of coastal engineering, it is common to study the mechanism of breakwater damage as a “scouring phenomenon of the seabed ground” focusing on the floating or movement of the seafloor ground material according to the flow rate of seawater. However, in the disaster cases that have been clarified so far, there are cases where the instability of the seabed ground due to waves clearly reaches several meters below the seafloor. Non-Patent Document 2 and the like indicate that it is necessary to treat the ground as a three-dimensional continuum having depth and to evaluate the response of the ground to water pressure fluctuations on the surface of the seabed. Since then, geotechnical studies have been actively conducted and research results in this field have been accumulated. From a mechanical perspective, this is considered as a complex system formed by solids, porous bodies and fluids, and the mechanical properties are essentially the same. It means that it is necessary to appropriately evaluate the interaction between three different parties. The interaction between the structure and the ground (solid-porous body) is studied in the conventional geotechnical engineering field in consideration of the influence of groundwater on land, and research has been accumulated as a problem of bearing capacity of the ground for the structure.

これに対して、地盤−波浪(多孔質体−流体)の相互作用は比較的新しい問題であり、この相互作用を考慮したメカニズムによって沿岸・海洋構造物の不安定化現象が明らかにされつつあり、解析手法についても研究が進められている。 On the other hand, the ground-wave interaction (porous body-fluid) is a relatively new problem, and the mechanism that takes this interaction into account is revealing the instability of coastal and marine structures. Research is also being conducted on analytical methods.

海底地盤と波浪の相互作用は力学的には多孔質体と流体の相互作用であり、海底地盤の多孔質体としてのモデル化および定式化が必要である。多孔質体のモデル化と定式化に関わる力学的な研究は非特許文献3によって始められた。その後、海底地盤を連続体として固体と流体の二相系材料としてモデル化して波浪との相互作用に適用することで、海底地盤の挙動をある程度計算できることが明らかになってきている(非特許文献4―6)。 The interaction between the seabed and waves is mechanically the interaction between the porous body and the fluid, and modeling and formulation of the seabed ground as a porous body is necessary. Non-patent document 3 started mechanical research related to modeling and formulation of porous bodies. After that, it has become clear that the behavior of the seabed can be calculated to some extent by modeling the seabed ground as a continuum as a two-phase material of solid and fluid and applying it to the interaction with waves (non-patent literature). 4-6).

発明者らは非特許文献7で海底地盤と波浪の相互作用の解析における海底地盤の定式化、解析次元、動的・静的解析条件の最適化について検討した。その結果、波浪のような比較的周期の長い作用に対しては固体、流体ともに加速度の影響が無視できるほど小さいので、地盤をu−p モデルで定式化し、擬似動的な解析を行えば充分な精度で相互作用を考慮した挙動の解析が可能であることを示した。また、対象とする海底地盤の深度が波長に比べて十分に小さい場合には、地表面近くの数メートルの範囲では一次元解析で十分な精度の応答が得られることを示した。さらに、三浦らの研究を通じて明らかなったことは、地盤と海洋との相互作用における地盤物性の重要性である。数式解と数値解の比較検討から、種々の地盤物性の鋭敏性について検証し、その中でも特に地盤の飽和度と透水性は地盤内の応力変動に及ぼす影響が大きいことが明らかになった。 The inventors examined non-patent document 7 on the formulation of the seabed ground, analysis dimensions, and optimization of dynamic / static analysis conditions in the analysis of the interaction between the seabed ground and the waves. As a result, the effects of acceleration on both solids and fluids are negligibly small for actions with relatively long periods such as waves, so it is sufficient to formulate the ground using the up model and perform pseudo-dynamic analysis. It was shown that it was possible to analyze the behavior considering the interaction with high accuracy. In addition, when the depth of the target seabed was sufficiently small compared to the wavelength, it was shown that a sufficiently accurate response could be obtained by one-dimensional analysis in the range of several meters near the ground surface. Furthermore, what has been clarified through research by Miura et al. Is the importance of ground properties in the interaction between the ground and the ocean. From the comparison between the numerical solution and the numerical solution, the sensitivity of various ground properties was verified, and in particular, the saturation and water permeability of the ground had a great influence on the stress fluctuation in the ground.

これに関して非特許文献8では、弾性波探査のひとつの発展形として、弾性波の周波数依存性に着目した地盤物性の調査法を提案している。
Oka、 F.、 Yashima、 A.、 Miura、 K.、 Ohmaki、 S. and Kamata. A. (1995): Settlement of Breakwater on Submarine Soil Due to Wave−Induced Liquefaction、 5th International Symposium on Offshore and Polar Engineeing Conference、 Vol.2、 pp.237−242. Yamamoto、T. (1977):Wave Induced Instability in Seabed、 Proc. Coastal Sediments、 ASCE、 pp.898−913. Biot、 M. A. (1941): General Theory of Three−Dimentional Consolidation、” Journal of Applied Physics、 Vol.12、 pp.155−164. Putnam、 J. A. (1949): Loss of Wave Energy due to Percolation in a Permeable Sea Bottom、 American Geophysical Union、 Vol.30、 No. 3、 pp.349−356. Madsen、 O. S. (1978): Wave Induced Pore Pressures and Effective Stresses in a Porous Bed、 Geotechnique、 Vol.28、 No.4、 pp.377−393. Yamamoto、 T. Koning、 H. S. H. L. K. and Van Hijum、 E. (1978): Wave Induced Instability in Seabed、 Proc. Coastal Sediments、 ASCE、 pp.898−913. 三浦均也、浅原信吾、大塚夏彦、上野勝利(2004): 波浪に対する海底地盤応答の連成解析のための地盤の定式化、 第49回地盤工学シンポジウム、pp.233−240 Miura, K.、 Yoshida、 N. and Kim、 Y. S.(2001):Frequency Dependent Property of Waves in Saturated Soil 、 SOILS AND FOUNDATIONS、Vol.41、No.2
In this regard, Non-Patent Document 8 proposes a method for investigating ground physical properties, focusing on the frequency dependence of elastic waves, as one development of elastic wave exploration.
Oka, F.M. Yashima, A .; Miura, K .; Ohmaki, S .; and Kamata. A. (1995): Settlement of Breakwater on Submarine Soil Due to Wave-Induced Liquidation, 5th International Symposium on Offshore and Polar Envelope. 2, pp. 237-242. Yamamoto, T .; (1977): Wave Induced In Stability in Seabed, Proc. Coastal Sciences, ASCE, pp. 898-913. Biot, M.M. A. (1941): General Theory of Three-Dimensional Consolidation, “Journal of Applied Physics, Vol. 12, pp. 155-164. Putnam, J.M. A. (1949): Loss of Wave Energy due to Percolation in a Permable Sea Bottom, American Geophysical Union, Vol. 30, no. 3, pp. 349-356. Madsen, O.M. S. (1978): Wave Induced Pores Pressures and Effective Stresses in a Poor Bed, Geotechnique, Vol. 28, no. 4, pp. 377-393. Yamamoto, T .; Koning, H.C. S. H. L. K. and Van Hijuum, E.A. (1978): Wave Induced Instability in Seabed, Proc. Coastal Sciences, ASCE, pp. 898-913. Miura Hitoshi, Asahara Shingo, Otsuka Natsuhiko, Ueno Katsu (2004): Ground formulation for coupled analysis of submarine ground response to waves, 49th Geotechnical Engineering Symposium, pp. 233-240 Miura, K. et al. Yoshida, N .; and Kim, Y. et al. S. (2001): Frequency Dependent Property of Waves in Saturated Sol, SOILS AND FOUNDATIONS, Vol. 41, no. 2

非特許文献1は実際の被災事例を調査したものである。これは特定の被災事例に特定の解析手法を適用したのみであり、海底地盤の包括的な対波浪安定性の評価方法には言及していない。 Non-Patent Document 1 is an investigation of actual disaster cases. This only applies a specific analysis method to a specific disaster case, and does not refer to a comprehensive method for evaluating the stability of ocean waves in the seabed.

また、地盤−波浪(多孔質体−流体)の相互作用を考慮する方法である非特許文献2−8までの従来技術は、あくまで理論的なものであり、実用的な海底地盤の安定性測定方法ではない。 In addition, the conventional techniques up to Non-Patent Document 2-8, which is a method that considers the interaction between the ground and the waves (porous body-fluid), are only theoretical, and are practically used to measure the stability of the seabed. Not a way.

例えば、非特許文献2−6をより詳細に検討したものである非特許文献7においては、地盤の飽和度や透水性を明らかにする必要がある。しかし、それらを室内試験や原位置試験によって測定することは非常に難しいのが現状である。たとえば、透水係数や飽和度を保持した状態での土の不撹乱試料を得ることは今後もかなり難しいであろうし、原位置の海底地盤においてこれらの性質を直接測定する技術にも限界があるのが現状である。 For example, in Non-Patent Document 7, which examines Non-Patent Documents 2-6 in more detail, it is necessary to clarify the degree of saturation and water permeability of the ground. However, it is very difficult to measure them by laboratory tests or in-situ tests. For example, it will be quite difficult to obtain undisturbed soil samples while maintaining hydraulic conductivity and saturation, and there is a limit to the technology for directly measuring these properties in the original seabed. Is the current situation.

また、非特許文献8においては、しかしこの調査法はかなり高周波な領域での調査になるため、現在の測定技術では実施するのは困難である。また、この地盤の物性を調査することの困難さからも、沿岸・港湾構造物の設計に際して基礎地盤の波浪に対する安定性は充分に研究されず、経験的にしか検討されてこなかった。 In Non-Patent Document 8, however, since this investigation method is an investigation in a considerably high frequency region, it is difficult to implement with the current measurement technique. In addition, due to the difficulty of investigating the physical properties of the ground, the stability of the foundation ground to waves during the design of coastal and harbor structures has not been fully studied and has only been studied empirically.

そこで、本発明では、測定が容易な地盤内の間隙水圧をパラメータとして用いることで、実用的に海底地盤の安定性を計測できる方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method capable of practically measuring the stability of the seabed ground by using the pore water pressure in the ground, which can be easily measured, as a parameter.

以上の課題を解決するため、本発明者は鋭意検討を重ねた結果、次の発明を完成させるに至った。 In order to solve the above-mentioned problems, the present inventor has intensively studied, and as a result, has completed the following invention.

第一の発明は、海底地盤内の間隙水圧を測定し、測定した間隙水圧の卓越成分を用いて海底地盤の対波浪応答パラメータとなる水理圧密定数を計算し、計算された水理圧密定数と測定した間隙水圧の卓越成分から一次元間隙水圧係数を導出し、一次元間隙水圧係数より海底地盤の不安定化深さを算定し、波浪時の海底地盤内の安定性を予測することを特徴とする方法。 The first invention measures the pore water pressure in the seabed ground, calculates the hydraulic consolidation constant that becomes the anti-wave response parameter of the seabed ground using the dominant component of the measured pore water pressure, and calculates the hydraulic consolidation constant The one-dimensional pore water pressure coefficient is derived from the dominant component of the measured pore water pressure, the instability depth of the seabed ground is calculated from the one-dimensional pore water pressure coefficient, and the stability in the seabed ground during waves is predicted. Feature method.

第二の発明は、海底地盤内の間隙水圧は、地盤内の三点で測定されたものを用いることを特徴とする第一の発明に記載の方法である。   A second invention is the method according to the first invention, wherein the pore water pressure in the seabed ground is measured at three points in the ground.

これまでに推定するのが困難であった海底地盤の対波浪パラメータを推定することにより、これまで検討されてこなかった港湾・沿岸構造物の海底基礎地盤の対波浪安定性を簡便に推定することができるようになる。 Estimate the anti-sea wave stability of the submarine foundation ground of harbors and coastal structures that have not been studied so far by estimating the anti-sea wave parameters of the submarine ground, which has been difficult to estimate so far. Will be able to.

土粒子とその間隙を満たす流体の状態を表すためにはテンソル表記が用いられる。固体相の変位増分、応力増分、ひずみ増分はそれぞれΔusi、 Δσsij、 Δεsij、また、流体相の変位増分、応力増分、ひずみ増分はそれぞれΔufi、 Δσfij、 Δεfij、と表される。添え字s、f はそれぞれ固体相、流体相を表している。土骨格によって伝わる応力σsij は有効応力と呼ばれる。一方で流体相の応力は、間隙流体においてせん断抵抗が無い場合、 Tensor notation is used to represent the state of the fluid that fills the soil particles and the gaps between them. The displacement increment, stress increment, and strain increment of the solid phase are expressed as Δusi, Δσsij, and Δεsij, respectively, and the displacement increment, stress increment, and strain increment of the fluid phase are expressed as Δufi, Δσfij, and Δεfij, respectively. Subscripts s and f represent a solid phase and a fluid phase, respectively. The stress σsij transmitted by the soil skeleton is called effective stress. On the other hand, if the fluid phase stress has no shear resistance in the pore fluid,

Figure 0004931071
である。ここで、Δp は間隙水圧増分、δij はKronecker のデルタを表している。
Figure 0004931071
It is. Here, Δp represents the pore water pressure increment, and δij represents the Kronecker delta.

固体層の構成則は線形弾性理論から以下のように表される。 The constitutive law of the solid layer is expressed from the linear elasticity theory as follows.

Figure 0004931071
Figure 0004931071

さらに、変位勾配 Furthermore, the displacement gradient

Figure 0004931071
により変位と応力の関係は以下のようになる。
Figure 0004931071
Therefore, the relationship between displacement and stress is as follows.

Figure 0004931071
Figure 0004931071

ここで、Gs はせん断定数、λ s はLame の定数であり、剛性テンソルDijkl は以下のようである。 Here, Gs is a shear constant, λ s is a Lame constant, and the stiffness tensor Dijkl is as follows.

Figure 0004931071
Figure 0004931071

また、流体相の構成則は次のように表される。 The constitutive law of the fluid phase is expressed as follows.

Figure 0004931071
Figure 0004931071

ここで、Kf は体積圧縮係数を表していて、この式は流体の体積ひずみ増分Δεfii と間隙水圧増分Δpが比例関係にあることを表している。間隙流体が気体と間隙水によって構成されている場合、気体相と液体相を間隙流体の飽和度によって平均化した流体相として表すことが出来る。 Here, Kf represents a volume compression coefficient, and this equation represents that the volumetric strain increment Δεfii of the fluid and the pore water pressure increment Δp are in a proportional relationship. When the pore fluid is composed of gas and pore water, it can be expressed as a fluid phase obtained by averaging the gas phase and the liquid phase by the saturation degree of the pore fluid.

Figure 0004931071
Figure 0004931071

間隙水の変化は体積変化をもたらすが、それは次式によって表される。 The change in pore water results in a volume change, which is expressed by the following equation:

Figure 0004931071
Figure 0004931071

ここで、n は間隙率、Ks は土粒子の体積圧縮係数である。Skempton によるとKs >>Kf であるので、
(1−n)/ Ks の項は無視できる。ここで、Bf は流体の平均体積圧縮係数である。
Here, n is the porosity and Ks is the volume compression coefficient of the soil particles. According to Skempton, Ks >> Kf
The term (1-n) / Ks can be ignored. Here, Bf is an average volume compression coefficient of the fluid.

Figure 0004931071
Figure 0004931071

また、Δξは単位体積、単位時間当たりの浸透量(間隙水の増加量)である。新しく出てきたベクトル変数Δwi は固体層と液体層の見かけの相対変位を表す。ここで、ベクトル変数Δwi は多孔性体を通過する単位面積あたりの浸透流の量に等しく、ダルシーの流れに当てはまる。Δwi は以下のように与えられる。 Δξ is the permeation amount per unit volume and unit time (increase amount of pore water). The new vector variable Δwi represents the apparent relative displacement between the solid and liquid layers. Here, the vector variable Δwi is equal to the amount of osmotic flow per unit area passing through the porous body, and applies to Darcy flow. Δwi is given as follows.

Figure 0004931071
Figure 0004931071

固体相と流体相、全体における平衡条件は以下のように導き出される。 The equilibrium conditions in the solid phase and the fluid phase as a whole are derived as follows.

Figure 0004931071
Figure 0004931071

ここで、Δbi は単位物体力ベクトルで、物体に重力が作用するとき{0、0、g}となる。ρ
s、ρfはそれぞれ土粒子、間隙流体の密度を表している。数4を用いて整理すると、
Here, Δbi is a unit object force vector and becomes {0, 0, g} when gravity acts on the object. ρ
s and ρf represent the density of soil particles and pore fluid, respectively. Organizing using Equation 4,

Figure 0004931071
Figure 0004931071

また、 ρt は全密度を表す。 Ρt represents the total density.

Figure 0004931071
Figure 0004931071

流体相の平衡条件はダルシーの法則から以下のように表される。 The equilibrium condition of the fluid phase is expressed as follows from Darcy's law.

Figure 0004931071
Figure 0004931071

ここでh は水頭、kij はDarcy の透水性をテンソル表記したもので、rij はkij の逆数のテンソルを表している。通常、等方性材料では透水性テンソルは方向に依存しない一定値を持つ対角テンソルとして表される。 Here, h is the head of water, kij is the tensor notation of Darcy's permeability, and rij is the tensor of the reciprocal of kij. Usually, in an isotropic material, the water-permeable tensor is represented as a diagonal tensor having a constant value independent of the direction.

Figure 0004931071
ここで、k は通常用いられているダルシーの透水係数である。
加速度の項を考慮すると、数11は以下のように修正される。
Figure 0004931071
Here, k is a commonly used Darcy permeability coefficient.
Considering the acceleration term, Equation 11 is corrected as follows.

Figure 0004931071
Figure 0004931071

支配方程式は連立変微分方程式で定式化され、以下に示す4 つのタイプの支配方程式を動的、擬似動的、静的において検討している。動的解析では固体相と流体相の加速度の項をすべて考慮するが、擬似動的解析では加速度の項を無視し、静的解析では固体相の変位と流体相の速度の項のみを考慮する。
動的解析(dynamic):すべて考慮
擬似動的解析(quasi−dynamic): Δus = Δw = 0
静的解析(static): Δus= Δus= Δw = 0
まず最も厳密な定式化は数8、数12、数16から以下のように表現される。ここで、簡易のためΔus≡Δu としている。
The governing equations are formulated as simultaneous variable differential equations, and the following four types of governing equations are studied in dynamic, pseudo-dynamic and static. Dynamic analysis considers all solid phase and fluid phase acceleration terms, but pseudo dynamic analysis ignores acceleration terms and static analysis considers only solid phase displacement and fluid phase velocity terms. .
Dynamic analysis: all considered pseudo-dynamic analysis: Δus = Δw = 0
Static analysis: Δus = Δus = Δw = 0
First, the strictest formulation is expressed as follows from Equations 8, 12, and 16. Here, Δus≡Δu for simplicity.

Figure 0004931071
[u−w−p] formulation(完全相互作用モデル)
Figure 0004931071
[U-wp] formulation (complete interaction model)

この定式化は扱う問題によって、適切な仮定を考慮し、しばしば簡略化される。次の定式化[u−p]formulation は、流体相の相対加速度を無視する。すなわち、流体相の加速度が固体相のそれと同等に取り扱われる。 This formulation is often simplified depending on the problem being handled, taking into account appropriate assumptions. The following formulation [up] formation ignores the relative acceleration of the fluid phase. That is, the acceleration of the fluid phase is handled in the same way as that of the solid phase.

Figure 0004931071
[u−p] formulation;Δw = 0 (不完全相互作用モデル)
Figure 0004931071
[Up] formulation; Δw = 0 (incomplete interaction model)

誘導過程で流体相の相対速度は排除され、支配方程式は3次元条件においては4つの偏微分方程式から構成される。この定式化は定式化が簡易で、地震中では流体相の相対加速度が極めて小さいことから、地震中の振動解析に通常使われているものである。ここで、 The relative velocity of the fluid phase is eliminated during the induction process, and the governing equation is composed of four partial differential equations in the three-dimensional condition. Since this formulation is simple and the relative acceleration of the fluid phase is extremely small during an earthquake, it is commonly used for vibration analysis during an earthquake. here,

Figure 0004931071
Figure 0004931071

高い周波数領域の粘土地盤や対象とする時間が短い問題で、間隙水の影響を無視すると、支配方程式から浸透流を無視することが出来、非排水条件が仮定される。このケースでの定式化を[u]formulation として、流体の相対速度を相対加速度と同様に無視する。 If the influence of pore water is ignored, it is possible to ignore the osmotic flow from the governing equation, and the undrained condition is assumed. The formulation in this case is [u] formation, and the relative velocity of the fluid is ignored as well as the relative acceleration.

Figure 0004931071
[u] formulation;Δw = Δw = 0 (弾性−非排水モデル)
Figure 0004931071
[U] formulation; Δw = Δw = 0 (elasticity-undrained model)

[u−w−p] formulation の3番目の偏微分方程式においてΔp とΔu の関係を求め、1番目の偏微分方程式からΔp を消去した。支配方程式は3次元条件下においては3変数を含み、3つの偏微分方程式で構成される。   In the third partial differential equation of [u-wp] formulation, the relationship between Δp and Δu was obtained, and Δp was deleted from the first partial differential equation. The governing equation includes three variables under three-dimensional conditions and is composed of three partial differential equations.

Figure 0004931071
Figure 0004931071

間隙水圧と間隙水のみを考慮し固体相の変位を解析から取り除くと、定式化は簡略化され固体相を剛体であるとみなすことが出来る。この[w−p] formulation と名づけた定式化は粗い砂や礫のような高い透水性の材料に効果的である。 If only the pore water pressure and pore water are taken into account and the displacement of the solid phase is removed from the analysis, the formulation is simplified and the solid phase can be regarded as a rigid body. This formulation called [w-p] formulation is effective for highly water permeable materials such as coarse sand and gravel.

Figure 0004931071
[w−p] formulation;Δu= Δu = Δu= 0 (剛体−浸透流モデル)
Figure 0004931071
[W-p] formulation; Δu = Δu = Δu = 0 (rigid body-osmotic flow model)

[u−w−p]formulation の2番目と3番目の偏微分方程式においてΔu をゼロとすることによって誘導した。支配方程式は3次元条件下においては4変数を含み、4つの偏微分方程式で構成される。
以上、定式化と解析条件をまとめると図15として表される。
It was derived by setting Δu to zero in the second and third partial differential equations of [u-w-p] formation. The governing equation includes four variables under three-dimensional conditions and is composed of four partial differential equations.
The formulation and analysis conditions are summarized as shown in FIG.

本発明で取り上げる海底地盤は物性の異なるいくつかの相が水平方向に堆積しているものである。ここでは、海底地盤表面、層と層、層と岩盤、無限深さの4つの境界条件をそれぞれ一次元、二次元条件に関して示す。
図1、図2にはこの研究で取り上げる境界条件を図示している。図1においての波形は、波浪の複素関数における実数部を位相角θ(ωt+κx)によって表している。
The submarine ground taken up in the present invention is one in which several phases having different physical properties are accumulated in the horizontal direction. Here, the four boundary conditions of the seabed surface, layer and layer, layer and bedrock, and infinite depth are shown for one-dimensional and two-dimensional conditions, respectively.
1 and 2 illustrate the boundary conditions taken up in this study. The waveform in FIG. 1 represents the real part of the complex wave function by the phase angle θ (ωt + κx).

海底面には波浪のみが作用しているので、海底面 (z=0)における境界条件は次のように表される。 Since only waves are acting on the sea bottom, the boundary conditions at the sea bottom (z = 0) are expressed as follows.

Figure 0004931071
一次元 :
Figure 0004931071
One dimensional :

Figure 0004931071
二次元 :
p0:海底面の変動水圧振幅(Δp0=ρwgH/cosh(κh))
ρw:海水の密度
h:水深
ω:角振動数(=2π/T)
κ:波数(=2π/L)
H:波高
Figure 0004931071
Two dimensions :
p0: Fluctuating water pressure amplitude at the bottom of the sea (Δp0 = ρwgH / cosh (κh))
ρw: density of seawater h: water depth ω: angular frequency (= 2π / T)
κ: wave number (= 2π / L)
H: Wave height

堆積層と堆積層の境界については、2つの層の境界では、水圧、応力、固体相の変位、動水勾配の連続性が保たれなければならない。 Regarding the boundary between the deposited layers, the continuity of water pressure, stress, displacement of the solid phase, and hydrodynamic gradient must be maintained at the boundary between the two layers.

Figure 0004931071
一次元 :
二次元 :
Figure 0004931071
One dimensional :
Two dimensions :

Figure 0004931071
Figure 0004931071

以下、堆積層と岩盤の境界について述べる。層と、剛で不透水性の岩盤との境界においては、鉛直方向の透水が許されない、つまり鉛直方向の動水勾配がゼロにならなければならない。また、固体相の変位も許されない。 The following describes the boundary between the sedimentary layer and the rock mass. At the boundary between the stratum and the rigid and impermeable bedrock, vertical water permeability is not allowed, ie the vertical hydraulic gradient must be zero. Also, solid phase displacement is not allowed.

Figure 0004931071
一次元 :
Figure 0004931071
One dimensional :

Figure 0004931071
二次元 :
Figure 0004931071
Two dimensions :

無限深さ(z=∞)については、以下の通りである。海底面下の無限深さに置いて、固体相の変位と水圧はゼロにならなければならない。 The infinite depth (z = ∞) is as follows. At an infinite depth below the sea floor, the displacement and water pressure of the solid phase must be zero.

Figure 0004931071
一次元 :
Figure 0004931071
One dimensional :

Figure 0004931071
二次元 :
Figure 0004931071
Two dimensions :

ここでは厳密解の誘導の一例として、擬似動的条件における[u−p] formulation の一次元応答に対する解を導く。擬似動的解析では、支配方程式は式(17)から加速度の項を無視したもので表される。なお、ここでは物体力ベクトル増分i Δb は考慮していない。 Here, as an example of derivation of an exact solution, a solution for a one-dimensional response of [up] formulation under a pseudo dynamic condition is derived. In the pseudo dynamic analysis, the governing equation is expressed by ignoring the acceleration term from the equation (17). Note that the object force vector increment i Δb is not considered here.

Figure 0004931071
Figure 0004931071

Figure 0004931071
Figure 0004931071

これらの連立微分方程式は線形であるので、解の基本形は、 Since these simultaneous differential equations are linear, the basic form of the solution is

Figure 0004931071
Figure 0004931071

式(32)を支配方程式(31)に代入し、マトリクス表示すると以下のように表される。 Substituting the equation (32) into the governing equation (31) and displaying it in matrix form, it is expressed as follows.

Figure 0004931071
Figure 0004931071

右辺が0であるので、この連立方程式が有意な解を持つには変数が互いに従属していなければならない。この従属性は左辺のマトリクスの行列値がゼロになることを意味している。 Since the right side is 0, the variables must be dependent on each other for this simultaneous equation to have a significant solution. This dependency means that the matrix value of the left-hand side matrix becomes zero.

Figure 0004931071
Figure 0004931071

この解は以下に示す可能性がある。 The solution may be shown below.

Figure 0004931071
Figure 0004931071

Figure 0004931071
Figure 0004931071

ここで、cv はTerzaghi の一次元の圧密理論における圧密定数に相当する。解の可能性から、一般解を次のように書き表す。 Here, cv corresponds to a consolidation constant in Terzagi's one-dimensional consolidation theory. The general solution is written as follows from the possibility of the solution.

Figure 0004931071
Figure 0004931071

Figure 0004931071
Figure 0004931071

Figure 0004931071
Figure 0004931071

この解には8(4x2)個の未知定数が含まれていることがわかる。式(37)を支配方程式に代入すると、未知定数に以下に示す4個の相関関係が見つかる。 It can be seen that this solution contains 8 (4 × 2) unknown constants. Substituting equation (37) into the governing equation, the following four correlations are found in the unknown constant.

Figure 0004931071
Figure 0004931071

独立した4つの未定定数は境界条件により決定される。ここでは例として境界条件数23と数27により、有限深さで不透水性の岩盤が存在する地盤に対する解を求める(図3)。数23と数27により式が4(2x2)本で、未知数が4個であるから解が必ず求まる。これらの四元連立方程式を解くと、未知定数が以下のように決定される。 Four independent undetermined constants are determined by boundary conditions. Here, as an example, a solution for a ground where there is a water-impervious rock with a finite depth is obtained by boundary conditions 23 and 27 (FIG. 3). Equations 23 and 27 have 4 (2 × 2) equations and 4 unknowns, so a solution is always obtained. Solving these quaternary simultaneous equations, the unknown constant is determined as follows.

Figure 0004931071
Figure 0004931071

ここで、Dは海底地盤の岩盤までの深さである。 Here, D is the depth of the seabed to the bedrock.

波浪荷重による海底地盤の応答は、緩い砂、正規圧密粘土そして礫の3種類に対して計算した。
設定した土の物質的、力学的な特性は図15に取りまとめた。波浪については波高H=10m、周期T=13sec、水深h=20m、波長L=167.6m、海底面での水圧変動振幅po=37.9kN/m2 とした。鉛直方向の境界として、地表面では水圧のみが作用(B.C.1)しているとして、解析領域の下端では不透水性の岩盤(B.C.3)を想定している。
標準的なケースとして、鉛直有効応力と地表面に作用した波浪の振幅で正規化した過剰間隙水圧の深さ方向分布を、緩い砂、正規圧密粘土、礫に対して、[u−p] formulation、擬似動的条件、二次元の下で厳密解により計算した(図4、図5)。ここでは、海底地盤表面に波浪が作用したとき、地盤内の鉛直有効応力の鉛直方向分布を、8つの位相角に対応してあらわしている。図4では海底地盤表面の水圧が急激に下がる過程において鉛直応力が低下して土が不安定化していることが分かる。特に緩い砂の応答では鉛直有効応力が深さ4m弱までの範囲で、位相角の進行に伴って繰り返し負になり液状化状態に至ることを示唆している。応答には透水性の影響も大きいが、透水性については中間的な緩い砂で鉛直有効応力の変動が大きくなっている。その理由は、飽和度が低いために小さな値となっている間隙水圧係数B’値の影響である。海底地盤の飽和度は99%以上になることが通常ではあるが、空気の体積圧縮係数は水の体積圧縮係数よりもはるかに小さいために結果的に0.1%の飽和度の違いが間隙水圧の応答に与える影響は大きい。特に緩い砂地盤では他の地盤と比較して飽和度が小さいために水圧の深さ方向の減衰が大きく、地盤内で動水勾配が発達していることがわかる(図5)。図6では緩い砂地盤に対して、地表面z = 0m と深さz =1m における過剰間隙水圧の変相角に対応した変動を示している。圧力の減衰や、伝播の位相差が見られ、結果的に位相が3/4π〜πを中心に地盤内で上向き浸透流が発生し、地盤が不安定化している。一方で、正規圧密粘土では地表面近くで大きく変動しているが、それ以深では非排水状態の挙動を示している。礫ではその高い透水性のため地表面に作用した圧力が地盤内において減衰しにくいため、動水勾配が発達せず、地盤内の鉛直有効応力はほとんど変動していない。
The response of the seabed due to wave loads was calculated for three types: loose sand, regular compacted clay, and gravel.
The material and mechanical properties of the set soil are summarized in FIG. For the waves, the wave height H = 10 m, the period T = 13 sec, the water depth h = 20 m, the wavelength L = 167.6 m, and the water pressure fluctuation amplitude po at the sea bottom po = 37.9 kN / m 2. As the vertical boundary, only water pressure is acting on the ground surface (BC.1), and an impermeable rock (BC.3) is assumed at the lower end of the analysis region.
As a standard case, the depth distribution of excess pore water pressure normalized by the effective vertical stress and the amplitude of waves acting on the ground surface is [up] formulation for loose sand, normal consolidated clay and gravel. Calculated by exact solution under two-dimensional pseudo-dynamic conditions (FIGS. 4 and 5). Here, when waves act on the surface of the seabed ground, the vertical distribution of the vertical effective stress in the ground is shown corresponding to the eight phase angles. In FIG. 4, it can be seen that the vertical stress is reduced and the soil is destabilized in the process in which the water pressure on the surface of the seabed is drastically lowered. In particular, in response to loose sand, it is suggested that the effective vertical stress is in the range up to a depth of less than 4 m, and repeatedly becomes negative as the phase angle progresses, resulting in a liquefied state. The response is greatly affected by water permeability, but the vertical effective stress fluctuates with moderate loose sand. The reason is the influence of the pore water pressure coefficient B ′ value, which is a small value because the degree of saturation is low. Although the saturation level of the seabed ground is usually 99% or more, the volume compression coefficient of air is much smaller than the volume compression coefficient of water. The effect on water pressure response is significant. It can be seen that, especially in the loose sand ground, the degree of saturation in the depth direction is large because the degree of saturation is small compared to other ground, and a hydrodynamic gradient develops in the ground (Fig. 5). FIG. 6 shows the fluctuation corresponding to the phase change angle of the excess pore water pressure at the ground surface z = 0 m and the depth z = 1 m with respect to the loose sand ground. Attenuation of pressure and a phase difference of propagation are observed. As a result, an upward osmotic flow is generated in the ground around the phase of 3 / 4π to π, and the ground is unstable. On the other hand, the normal consolidated clay shows a large fluctuation near the ground surface, but it shows the behavior of undrained state deeper than that. In gravel, the pressure acting on the ground surface is difficult to attenuate in the ground due to its high water permeability, so the hydrodynamic gradient does not develop, and the vertical effective stress in the ground hardly fluctuates.

海底地盤の応答の問題では加速度の影響が小さいため、この問題では加速度を無視した[u−p] formulation、擬似動的解析で十分再現でき、また十分長い波長に対する応答では一次元応答で十分再現できることが既往の研究により示されている。ここでは、[u−p] formulation、擬似動的解析条件において、一次元、有限深さの地盤の境界条件を与えて解いた式について検討する。圧力の応答の式は数39、数41、数42から以下のようである。 In the problem of the response of the seabed ground, the influence of acceleration is small, so in this problem, the acceleration can be ignored by [up] formulation and pseudo dynamic analysis, and in the response to a sufficiently long wavelength, the response is sufficiently reproduced by a one-dimensional response. Previous studies have shown that this can be done. Here, in [up] formulation and pseudo-dynamic analysis conditions, an equation solved by giving a boundary condition of a one-dimensional, finite depth ground is examined. The expression of the pressure response is as follows from the equations 39, 41, and 42.

Figure 0004931071
Figure 0004931071

ここで、 here,

Figure 0004931071
Figure 0004931071

Skempton のB値に対応する一次元変形における間隙水圧係数B’は間隙水の圧縮性(飽和度)に強く依存している。また、hv を「水理圧密定数(圧密係数Cv を間隙水の圧縮性を考慮して修正した値の逆数)」と呼ぶことにする。このhv は地盤の物性のみによって決定されるもので、波浪を受ける海底地盤内の応力、圧力変動の大きさを左右する係数である。これらの係数を数39に代入すると、 The pore water pressure coefficient B 'in one-dimensional deformation corresponding to the Skempton B value strongly depends on the compressibility (saturation degree) of the pore water. In addition, hv will be referred to as “hydraulic consolidation constant (reciprocal of a value obtained by correcting the consolidation coefficient Cv in consideration of the compressibility of pore water)”. This hv is determined only by the physical properties of the ground, and is a coefficient that determines the magnitude of the stress and pressure fluctuations in the seabed ground subjected to waves. Substituting these coefficients into Equation 39,

Figure 0004931071
数45における項e−2ζD を無視すると、層の厚さDが無限の場合に相当する以下の式が得られる(近似(1);海底地盤の不安定化が問題になる代表的な砂の場合hv は通常1から5程度で(図15参照)、この近似は層厚Dが2m以上であれば誤差は数パーセント以下と考えられる)。
Figure 0004931071
If the term e-2ζD in Equation 45 is ignored, the following equation corresponding to the case where the layer thickness D is infinite is obtained (approximate (1); representative sand instability of submarine ground) In this case, hv is usually about 1 to 5 (see FIG. 15), and this approximation is considered to have an error of several percent or less if the layer thickness D is 2 m or more).

Figure 0004931071
Figure 0004931071

海底地盤表面に作用した水圧変動は減衰しながら深さ方向へ伝播するので、等間隔dp の深さ3点における間隙水圧の変動は次のようになる(図7)。 Since the water pressure fluctuation acting on the seabed ground surface propagates in the depth direction while being attenuated, the fluctuation of the pore water pressure at three depths at equal intervals dp is as follows (FIG. 7).

Figure 0004931071
Figure 0004931071

近接する2点での間隙水圧の差分は、 The difference in pore water pressure between two adjacent points is

Figure 0004931071
Figure 0004931071

絶対値を取ることによって得られる振幅は、 The amplitude obtained by taking the absolute value is

Figure 0004931071
Figure 0004931071

したがって、二つの振幅からhv を以下のように算定できる。 Therefore, hv can be calculated from the two amplitudes as follows.

Figure 0004931071
Figure 0004931071

間隙水圧の数式46において深さ方向に生じる位相差(ζの虚数部)を無視すると、振幅は以下のように得られる(近似(2);条件によってはかなりの程度の誤差を生じる可能があり、後で検証する。)。 If the phase difference (imaginary part of ζ) generated in the depth direction in the pore water pressure equation 46 is ignored, the amplitude can be obtained as follows (approximate (2); depending on conditions, a considerable degree of error may occur). , We will verify later.)

Figure 0004931071
Figure 0004931071

よって、隣接するに点に関してそれぞれB’が算定でき、その平均値を用いることにする。この計算方法はd0 の測定誤差を排除するためである。 Therefore, B 'can be calculated for each adjacent point, and the average value is used. This calculation method is for eliminating the measurement error of d0.

Figure 0004931071
Figure 0004931071

海底地盤内における深さが異なる3点における間隙水圧の測定は、予め間隙水圧計を取り付けたロッドを海底地盤に挿入することによって可能であろうし、実際には波の不規則性を排除するために、測定値のスペクトル解析によって卓越周期を求め、その卓越成分に対してここで説明したパラメータの算定法を適用することになる。 Measurement of pore water pressure at three different depths in the seabed ground would be possible by inserting a rod with a pre-installed pore pressure gauge into the seabed ground, and in practice to eliminate wave irregularities. In addition, the dominant period is obtained by spectral analysis of the measured value, and the parameter calculation method described here is applied to the dominant component.

海底地盤の不安定化の判定方法として、ここでは繰り返して生じる液状化現象に着目した「計算上海底地盤内の鉛直有効応力が負になる」こと条件としている。先に説明した厳密解に基づき地盤内の鉛直有効応力を以下のように算定する。 Here, as a method for determining the instability of the seabed ground, the condition here is that “the calculated vertical effective stress in the Shanghai floor ground becomes negative”, focusing on the liquefaction phenomenon that occurs repeatedly. Based on the exact solution described above, the effective vertical stress in the ground is calculated as follows.

Figure 0004931071
Figure 0004931071

この振幅は、 This amplitude is

Figure 0004931071
Figure 0004931071

この振幅が地盤の静水圧状態での鉛直有効応力( ( ) ) zo t f Δσ = ρ -ρ gz を上回ると地盤内の有効応力が一時的に負になり液状化状態に至ることになる。 When this amplitude exceeds the vertical effective stress (()) zo t f Δσ = ρ -ρ gz in the hydrostatic pressure state of the ground, the effective stress in the ground temporarily becomes negative and leads to a liquefaction state.

Figure 0004931071
Figure 0004931071

したがって、この極限の深さ(液状化深さ)zl について解くことにより、地盤の液状化深さを求めることができる。 Therefore, the liquefaction depth of the ground can be obtained by solving for this extreme depth (liquefaction depth) zl.

Figure 0004931071
Figure 0004931071

ここで、 here,

Figure 0004931071
Figure 0004931071

このポテンシャル高さに相当するHp は海底面に作用する水圧や地盤材料の密度および間隙水圧係数B’から決まる値である。数56から、液状化深さzl と水理圧密定数hv の関係をHp をパラメータとして得たのが図8である。この図を用いることによって「3ゲージ法」による地盤内の物理定数の測定法と併せて、測定値から推定したパラメータから海底地盤の波浪に対する安定性を評価することができる。図9は海底地盤の対波浪安定性評価のための一連の手順を表したフローチャートを表している。 Hp corresponding to this potential height is a value determined from the water pressure acting on the sea bottom, the density of the ground material, and the pore water pressure coefficient B '. FIG. 8 shows the relationship between the liquefaction depth zl and the hydraulic consolidation constant hv obtained from Equation 56 using Hp as a parameter. By using this figure, together with the measurement method of the physical constant in the ground by the “3-gauge method”, it is possible to evaluate the stability of the seabed ground against waves from the parameters estimated from the measured values. FIG. 9 is a flowchart showing a series of procedures for evaluating the anti-wave stability of the seabed ground.

一連の海底地盤におけるパラメータの推定方法および液状化範囲推定方法では数46、数51において2つの近似を行った。以下、一連の土におけるパラメータの推定方法および液状化範囲推定方法に関する海底地盤の挙動が波浪や地盤のパラメータによってどのように影響を受けるか検討する。 In the series of submarine ground parameter estimation methods and liquefaction range estimation methods, two approximations were made in Equations 46 and 51. In the following, we will examine how the behavior of the seabed ground related to the parameter estimation method and the liquefaction range estimation method in a series of soils is affected by waves and ground parameters.

近似(1);数46で無視した成分による誤差で、以下の項に依存する。 Approximation (1): This is an error due to the component ignored in Equation 46, and depends on the following terms.

Figure 0004931071
Figure 0004931071

近似(2);図10は代表的な条件の下で計算した間隙水圧の深さ方向の分布を8つの位相で表している。また図中の青い線は数51から計算した近似包絡線(数59)で、緑の線は数45の振幅(数60)を示した包絡線を表している。 Approximation (2); FIG. 10 shows the distribution in the depth direction of pore water pressure calculated under typical conditions in eight phases. Further, the blue line in the figure is an approximate envelope (Formula 59) calculated from Formula 51, and the green line represents an envelope showing the amplitude of Formula 45 (Formula 60).

Figure 0004931071
Figure 0004931071

Figure 0004931071
Figure 0004931071

ここで、 here,

Figure 0004931071
Figure 0004931071

であるため、数51で計算した青い線の近似包絡線は、常に数45で計算した緑の線の包絡線の外側に存在する。したがって近似曲線によって算定されたB値は実際のB値をほとんどの場合で過小評価し、結果として数56、数57から推定される液状化深さを過大評価ことが予想される。これらの近似の妥当性を検証するために、ここでは以下の手順により計算で入力したB値:B’、水理圧密定数:hv および厳密解による液状化深さ:zl と、パラメータ推定法により得られたそれらを比較した。 Therefore, the approximate envelope of the blue line calculated in Formula 51 always exists outside the envelope of the green line calculated in Formula 45. Therefore, it is expected that the B value calculated by the approximate curve underestimates the actual B value in most cases, and as a result, the liquefaction depth estimated from Equations 56 and 57 is overestimated. In order to verify the validity of these approximations, here, the B value: B ′, the hydraulic consolidation constant: hv, and the liquefaction depth by exact solution: zl input by calculation according to the following procedure, and the parameter estimation method are used. Those obtained were compared.

(1) 厳密解により、深さが異なる3点における過剰間隙水圧の時刻暦を計算する。
(2) 時刻歴の振幅や時刻歴の差分の振幅から一次元間隙水圧係数B’と水理圧密定数hv を算定する。
(3) 図2に示す関係から液状化深さを算定し、厳密解から得られる液状化深さと比較する。
図11〜14には海底面に作用する波浪による圧力:p0、波浪の周期:T、海底地盤のB値:B’、透水係数:kを変化させたときの液状化深さの比較を示している。これらの図では海底地盤の不透水層までの深さ:Dを4m、5m、6m、100mと変化させているが、このDによるばらつきは近似(1)によるばらつきと解釈でき、Dを十分大きくしたとき(D=100m)に残留している誤差は近似(2)による誤差と解釈できる。標準的な条件は緩い砂として基本となる波の性質は海底面に作用する波浪による圧力:p0=40(kN)、波浪の周期:T=8(s)としている。またパラメータの推定では3点の深さにおける間隙水圧の応答が必要になるが、この検討では深さ0.5m、1.0m、1.5mを対象としている。
(1) The time calendar of excess pore water pressure at three points with different depths is calculated by exact solution.
(2) The one-dimensional pore water pressure coefficient B ′ and the hydraulic consolidation constant hv are calculated from the amplitude of the time history and the difference between the time histories.
(3) The liquefaction depth is calculated from the relationship shown in FIG. 2 and compared with the liquefaction depth obtained from the exact solution.
FIGS. 11 to 14 show a comparison of liquefaction depth when the pressure due to waves acting on the sea floor is p0, the period of waves is T, the B value of the seabed is B ′, and the hydraulic conductivity is k. ing. In these figures, the depth of the seabed to the impermeable layer: D is changed to 4m, 5m, 6m, and 100m. The variation due to D can be interpreted as variation due to approximation (1), and D is sufficiently large. Error (D = 100 m) can be interpreted as an error due to approximation (2). The standard condition is that the characteristics of waves that are basic as loose sand are pressure due to waves acting on the sea bottom: p0 = 40 (kN), wave period: T = 8 (s). In addition, the parameter estimation requires a response of pore water pressure at three depths. In this study, depths of 0.5 m, 1.0 m, and 1.5 m are targeted.

図11には海底面に作用する波浪の圧力をp0=2.0(kN)、p0=3.0(kN)、p0=4.0(kN)と変化させたときのB値:B’、水理圧密定数:hv および厳密解による液状化深さ:zl と、パラメータ推定法により得られたそれらを比較して示している。海底地盤の不透水層までの深さDを変化させたときのばらつきは小さいため、この条件では近似(1)による誤差は無視できるほど小さいと考えられる。 FIG. 11 shows B values when the wave pressure acting on the sea bottom is changed to p0 = 2.0 (kN), p0 = 3.0 (kN), and p0 = 4.0 (kN): B ′ The hydraulic consolidation constant: hv and the liquefaction depth by exact solution: zl are compared with those obtained by the parameter estimation method. Since the variation when the depth D of the seabed to the impermeable layer is changed is small, the error due to approximation (1) is considered to be negligible under this condition.

また、近似(2)はhv の推定には影響を及ぼさないため、推定したhv は入力した値に極めて近い値を示している。B値の推定ではp0 によって変化はなく推定したB値は0.26と過小評価しており、結果として液状化深さは0.5〜0.7(m)程度過大評価している。 Further, since approximation (2) does not affect the estimation of hv, the estimated hv is very close to the input value. In the estimation of the B value, there is no change depending on p0, and the estimated B value is underestimated to be 0.26. As a result, the liquefaction depth is overestimated by about 0.5 to 0.7 (m).

図12には海底面に作用する波浪の周期をT=3.0(s)、T=8.0(s)、T=13.0(s)と変化させたときのB値:B’、水理圧密定数:hv および厳密解による液状化深さ:zl を比較して示している。波浪の周期Tが大きくなり、海底地盤の不透水層までの深さDが小さい場合は推定値のばらつきもわずかに大きくなっているように見えるが、無視できる程度の変動である。また近似(2)の波浪の周期による変動は小さく液状化深さは0.6〜0.7(m)程度過大評価している。 FIG. 12 shows a B value when the period of waves acting on the sea bottom is changed to T = 3.0 (s), T = 8.0 (s), and T = 13.0 (s): B ′ , Hydraulic consolidation constant: hv and liquefaction depth by exact solution: zl. When the wave period T is large and the depth D to the impermeable layer of the seabed is small, the variation in the estimated value seems to be slightly large, but the fluctuation is negligible. Moreover, the fluctuation | variation by the wave period of the approximation (2) is small, and the liquefaction depth overestimates about 0.6 to 0.7 (m).

図13には海底地盤のB値をB’=0.4、B’=0.5、B’=0.6と変化させたときのB値:B’、水理圧密定数:hv および厳密解による液状化深さ:zl を比較して示している。ここでもDの変化によるばらつきは軽微であり、液状化深さはほぼ一様に0.6m〜0.7m程度過大評価している。 FIG. 13 shows B values when the B value of the seabed ground is changed to B ′ = 0.4, B ′ = 0.5, and B ′ = 0.6: B ′, hydraulic consolidation constant: hv and exact The liquefaction depth by solution: zl is shown in comparison. Here, the variation due to the change in D is slight, and the liquefaction depth is overestimated by about 0.6 to 0.7 m almost uniformly.

図14には海底地盤の透水係数をk=1.0*10−5(m/s)、k=1.0*10−4(m/s)、k=1.0*10−3(m/s)と変化させたときのB値:B’、水理圧密定数:hv および厳密解による液状化深さ:zl を比較して示している。k=1.0*10−5(m/s)やk=1.0*10−4(m/s)の場合ではDの変化による推定値のばらつきはほとんど見られないが、k=1.0*10−3(m/s)のような比較的透水性の良い地盤の場合では推定値にばらつきが見られる。このような透水性の高い地盤の場合では海底地盤の不透水層までの深さが小さい場合において、液状化深さの推定値が厳密な計算結果を下回る可能性がある。透水性の高い地盤で地表面近くに不透水層がある場合を除いて、液状化深さの推定値と厳密な計算結果は大きくは離れておらず、推定値は厳密な計算結果を上回っている。 In FIG. 14, the permeability coefficient of the seabed ground is k = 1.0 * 10-5 (m / s), k = 1.0 * 10-4 (m / s), k = 1.0 * 10-3 ( m / s) and B value: B ′, hydraulic consolidation constant: hv, and liquefaction depth by exact solution: zl. In the case of k = 1.0 * 10-5 (m / s) and k = 1.0 * 10-4 (m / s), there is almost no variation in the estimated value due to the change in D, but k = 1. In the case of ground with relatively good water permeability such as 0.0 * 10-3 (m / s), the estimated value varies. In the case of such highly permeable ground, the estimated value of the liquefaction depth may be less than the exact calculation result when the depth of the seabed to the impermeable layer is small. Except when there is an impermeable layer near the ground surface in highly permeable ground, the estimated value of liquefaction depth is not significantly different from the exact calculation result, and the estimated value exceeds the exact calculation result. Yes.

現在では透水係数や飽和度を保持した状態での土の不撹乱試料を得ることは難しく、原位置の海底地盤においてこれらを測定する技術にも限界があるのが現状である。また、この地盤の物性の調査の困難さからも、沿岸・港湾構造物の設計に際して基礎地盤の波浪に対する安定性は検討されていない。これに対して提案する「3ゲージ法による地盤の物理定数の調査方法」は、海底地盤内の3点で間隙水圧変動を測定するだけで、「水理液状化定数」はじめ海底地盤の安定性に影響を与える地盤の物性を簡易に測定することができる。また、この方法は特に海底地盤の応力変動が大きい緩い砂地盤に有効であるので、「液状化深さの推定方法」と併せて、沿岸および沖合における構造物の基礎地盤の対波浪安定性の検証への活用が大いに期待できる。 At present, it is difficult to obtain undisturbed soil samples while maintaining the hydraulic conductivity and saturation, and there is a limit to the technology for measuring these samples in the original seabed. Also, due to the difficulty of investigating the physical properties of the ground, the stability of the foundation ground against waves during the design of coastal and harbor structures has not been studied. In contrast to this, the proposed “3-gauge method for investigating the physical constant of the ground” measures the pore water pressure fluctuations at three points within the seabed ground, and the stability of the seabed ground, including the “hydraulic liquefaction constant”. It is possible to easily measure the physical properties of the ground that affect the soil. In addition, this method is particularly effective for loose sandy ground where the seafloor ground has large stress fluctuations. Therefore, in addition to the “liquefaction depth estimation method”, the stability of the foundation ground of structures on the coast and offshore can be improved. It can be expected to be used for verification.

本発明は沖合・沿岸構造物の設計に関して、基礎地盤の波浪に対する安定性の検討に利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used to study the stability of foundation ground against waves for the design of offshore and coastal structures.

解析条件Analysis conditions 成層地盤に対する境界条件Boundary conditions for stratified ground. 境界条件boundary condition 鉛直有効応力の深さ方向の変動Variation of depth of vertical effective stress 正規化した過剰間隙水圧の深さ方向の変動Variation in depth of normalized excess pore water pressure 間隙水圧変動の減衰と鉛直有効応力の変動Damping of pore water pressure fluctuation and fluctuation of vertical effective stress 間隙水圧の測定Measurement of pore water pressure 海底地盤の液状化深さの推定Estimation of liquefaction depth of submarine ground 海底地盤の対波浪安定性評価フローチャートFlow chart for evaluating the stability of ocean waves on the seabed 間隙水圧変動の近似曲線Approximate curve of pore water pressure fluctuation 波浪の圧力の検討Examination of wave pressure 波浪の周期の検討Examination of wave cycle B値の検討Examination of B value 透水係数の検討Examination of hydraulic conductivity 解析で用いた代表的な土質の物理的・力学的性質Physical and mechanical properties of typical soil used in the analysis

Claims (2)

海底地盤内の間隙水圧を測定し、測定した間隙水圧の卓越成分を用いて海底地盤の対波浪応答パラメータとなる水理圧密定数を計算し、計算された水理圧密定数と測定した間隙水圧の卓越成分から一次元間隙水圧係数を導出し、一次元間隙水圧係数と水理圧密定数により海底地盤の不安定化深さを算定し、波浪時の海底地盤内の安定性を測定することを特徴とする方法。 Measure the pore water pressure in the submarine ground, calculate the hydraulic consolidation constant that is the response parameter of the seabed ground using the dominant component of the measured pore water pressure, and calculate the calculated hydraulic consolidation constant and the measured pore water pressure. Deriving the one-dimensional pore water pressure coefficient from the dominant component, calculating the instability depth of the seabed ground from the one-dimensional pore water pressure coefficient and hydraulic consolidation constant, and measuring the stability in the seabed ground during waves And how to. 前記、海底地盤内の間隙水圧は、地盤内の三点で測定されたものを用いることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the pore water pressure in the seabed ground is measured at three points in the ground.
JP2007162698A 2007-06-20 2007-06-20 A method for measuring the stability of submarine ground to waves. Active JP4931071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007162698A JP4931071B2 (en) 2007-06-20 2007-06-20 A method for measuring the stability of submarine ground to waves.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007162698A JP4931071B2 (en) 2007-06-20 2007-06-20 A method for measuring the stability of submarine ground to waves.

Publications (2)

Publication Number Publication Date
JP2009002020A JP2009002020A (en) 2009-01-08
JP4931071B2 true JP4931071B2 (en) 2012-05-16

Family

ID=40318699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007162698A Active JP4931071B2 (en) 2007-06-20 2007-06-20 A method for measuring the stability of submarine ground to waves.

Country Status (1)

Country Link
JP (1) JP4931071B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2450245C1 (en) * 2011-01-20 2012-05-10 Юрий Николаевич Жуков Method of plotting tidal charts
CN106767723A (en) * 2016-11-29 2017-05-31 山东大学 A kind of model assay systems and method for following the trail of wave configuration of surface
CN107246951A (en) * 2017-07-26 2017-10-13 叶剑红 Marine structure and the live long-term observation system of seabed foundations Wave power response
CN114186505B (en) * 2021-11-19 2024-09-24 天津大学 Method for evaluating subsidence of non-explosive bomb under seabed transient liquefaction condition caused by waves
CN113806852B (en) 2021-11-22 2022-02-22 中交天津港湾工程研究院有限公司 Method for predicting stability of deepwater thin-wall steel cylinder
CN114814165B (en) * 2022-04-07 2023-11-21 河海大学 Sandy seabed shear damage assessment method and assessment device under action of solitary waves
CN115906715B (en) * 2023-03-03 2023-05-19 河海大学 Method and system for calculating movement speed of compressible muddy seabed soil under wave action
CN118483291A (en) * 2024-05-11 2024-08-13 河海大学 Seabed stability evaluation method and device based on pressure-guiding pore water pressure measurement system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835836A (en) * 1994-07-22 1996-02-06 Jdc Corp Method and apparatus for measuring displacement of subsoil of sea bottom
JPH09242046A (en) * 1996-03-06 1997-09-16 Pub Works Res Inst Ministry Of Constr Reclamation construction method of the sea by soft earth and sand
JP5152738B2 (en) * 2006-09-27 2013-02-27 国立大学法人豊橋技術科学大学 Anti-wave stabilization method for seabed using permeable column

Also Published As

Publication number Publication date
JP2009002020A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
JP4931071B2 (en) A method for measuring the stability of submarine ground to waves.
Qi et al. Wave induced instantaneously-liquefied soil depth in a non-cohesive seabed
Cheng et al. Solutions of pore pressure build up due to progressive waves
Chen et al. Effect of vertical seismic motion on the dynamic response and instantaneous liquefaction in a two-layer porous seabed
Jahed Orang et al. Large-scale shake table tests on a shallow foundation in liquefiable soils
Ulker Pore pressure, stress distributions, and instantaneous liquefaction of two-layer soil under waves
Ichii Fragility curves for gravity-type quay walls based on effective stress analyses
Harada et al. Initiation process of tension cracks in soil embankment on liquefied sandy ground investigated from centrifuge model test
Sadrekarimi Dynamic behavior of granular soils at shallow depths from 1 g shaking table tests
Shen et al. Subsidence estimation of breakwater built on loosely deposited sandy seabed foundation: Elastic model or elasto-plastic model
Aziz et al. Estimation of negative skin friction in deep pile foundation using the practical and theoretically approaches
Maeno et al. In-situ measurements of wave-induced pore pressure for predicting properties of seabed deposits
Masini et al. Seismic behaviour of large earth dams: from site investigations to numerical modelling
Jeng A general finite element model for wave-seabed-structure interaction
Cihan et al. Dynamic responses of two blocks under dynamic loading using experimental and numerical studies
Hu et al. Study on py curves of large-diameter steel pipe piles for offshore wind farm in sand based on in-situ tests
Zhang et al. Numerical study on the wave-induced seabed response around a trenched pipeline
Meijers et al. On the modelling of wave-induced liquefaction, taking into account the effect of preshearing
Yan et al. Model Tests and Parametric Analysis on Pore Pressure Response in Silty Clay Seabed under Vertical Caisson Breakwater
Wang et al. Finite difference model for assessing sandy seabed response
Wang et al. Examining the behaviors of sandy and silty seabed under wave actions
Saathoff et al. Three-dimensional simulation of liquefiable subsoil with a steel pile under cyclic horizontal loading
Shabani et al. 3D modeling of wave-seabed-pipeline in marine environments
Durante et al. Analysis of seismic earth pressures on flexible underground box structures
Lim et al. A case study in evaluating the status of consolidation of a soft soil deposit by incomplete piezocone dissipation tests using laboratory and field data

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

R150 Certificate of patent or registration of utility model

Ref document number: 4931071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250