JP2024115173A - Flow path switching device - Google Patents

Flow path switching device Download PDF

Info

Publication number
JP2024115173A
JP2024115173A JP2023020710A JP2023020710A JP2024115173A JP 2024115173 A JP2024115173 A JP 2024115173A JP 2023020710 A JP2023020710 A JP 2023020710A JP 2023020710 A JP2023020710 A JP 2023020710A JP 2024115173 A JP2024115173 A JP 2024115173A
Authority
JP
Japan
Prior art keywords
flow path
valve
housing
seal
opening edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023020710A
Other languages
Japanese (ja)
Inventor
衛 吉岡
Mamoru Yoshioka
一真 中島
Kazuma Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2023020710A priority Critical patent/JP2024115173A/en
Priority to PCT/JP2024/000411 priority patent/WO2024171662A1/en
Publication of JP2024115173A publication Critical patent/JP2024115173A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)
  • Sliding Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To seal a passage securely with a valve seal member even if a seated state (a deformation state) of the valve seal member is changed by driving of a valve member.
SOLUTION: A flow path switching device 1 comprises a rotating disk 40 that rotates with respect to a housing 11. The housing includes housing flow paths 20, 30, 70, and the rotating disk includes a rotation flow path 60. A valve seal member 81 is provided between the housing and the rotating disk and slides relative to the housing. A fluid flow path is formed by the rotating disk rotating to selectively establish communication between the housing flow paths and the rotation flow path. The valve seal member 81 includes: a pair of first seal sections 91 that sandwiches therebetween an aperture rim 60a of the rotation flow path and that extends along a direction of rotation; and a pair of second seal sections 92 that intersects the direction of rotation of the rotating disk and that connects both ends of the pair of first seal sections. A second seal distance D2 between the aperture rim 60a and the second seal sections is set larger than a first seal distance D1 between the aperture rim 60a and the first seal sections 91.
SELECTED DRAWING: Figure 13
COPYRIGHT: (C)2024,JPO&INPIT

Description

この明細書に開示される技術は、流体が流れる流路を切り替えるように構成した流路切替装置に関する。 The technology disclosed in this specification relates to a flow path switching device configured to switch the flow path through which a fluid flows.

従来、この種の技術として、例えば、下記の特許文献1に記載される「流路切替バルブ」が知られている。この流路切替バルブは、ステータ(ハウジング)と、ハウジングに対して円周上に摺動しつつ回転するロータ(弁部材)に接続されたロータシール(弁シール部材)とを備える。ハウジングは、弁シール部材に開口する複数のステータ流路(ハウジング流路)を有する。弁シール部材は、複数のハウジング流路のうち二つ以上を連結するためのロータシール流路(弁流路)を有する。ここで、弁シール部材の流路端部のうち、弁流路の摺動方向の先端に位置する流路端部は、少なくとも摺動開始時に弁流路が接続するハウジング流路端部の摺動方向の逆方向に位置付けられる。 A conventional technique of this type is, for example, the "flow path switching valve" described in Patent Document 1 below. This flow path switching valve includes a stator (housing) and a rotor seal (valve seal member) connected to a rotor (valve member) that rotates while sliding circumferentially relative to the housing. The housing has a number of stator flow paths (housing flow paths) that open to the valve seal member. The valve seal member has a rotor seal flow path (valve flow path) for connecting two or more of the multiple housing flow paths. Here, among the flow path ends of the valve seal member, the flow path end located at the tip in the sliding direction of the valve flow path is positioned in the opposite direction to the sliding direction of the housing flow path end to which the valve flow path is connected at least when the sliding starts.

特開2020-144027号公報JP 2020-144027 A

ところが、特許文献1に記載の流路切替バルブでは、弁シール部材は弾性体であり、弁部材を回転させて流路を切り替えた後の弁シール部材の座り状態(変形状態)によっては、弁シール部材の先端接触部がハウジングに接して引きずられ、変位してハウジング流路に入り込み、弁流路のシールが不十分となり流体の漏れが発生するおそれがあった。 However, in the flow path switching valve described in Patent Document 1, the valve seal member is an elastic body, and depending on the seating state (deformed state) of the valve seal member after rotating the valve member to switch the flow path, the tip contact portion of the valve seal member may come into contact with the housing and be dragged, displaced, and enter the housing flow path, resulting in insufficient sealing of the valve flow path and causing fluid leakage.

この開示技術は、上記事情に鑑みてなされたものであって、その目的は、弁部材の駆動により弁シール部材の座り状態(変形状態)が変化しても、弁シール部材により流路を確実にシールすることを可能とした流路切替装置を提供することにある。 This disclosed technology was made in consideration of the above circumstances, and its purpose is to provide a flow path switching device that makes it possible to reliably seal the flow path with the valve seal member even if the seating state (deformation state) of the valve seal member changes due to the actuation of the valve member.

上記目的を達成するために、請求項1に記載の技術は、ハウジングと、ハウジングの内部に配置され、ハウジングに対し相対的に駆動する板状の弁部材とを備え、ハウジングは、複数のハウジング流路を含み、弁部材は、板面方向に沿って伸びる少なくとも一つの弁流路を含み、弁流路は、開口縁を含み、ハウジング流路は、弁流路に通可能な複数の開口部を含み、ハウジングと弁部材との間で弁流路の開口縁を囲むように配置され、弁部材の駆動に伴いハウジングとの間で摺動する弁シール部材が設けられ、弁部材が駆動することで弁流路により複数の開口部のうち少なくとも2つを接続してハウジング流路と弁流路を選択的に連通させることで流体の流路を形成するように構成した流路切替装置において、弁シール部材は、開口縁を挟んで弁部材の駆動方向に沿って伸びる一対の第1シール部と、開口縁を挟んで弁部材の駆動方向と交差する方向に配置され、一対の第1シール部の両端を繋ぐ一対の第2シール部とを含み、ハウジング流路の開口部と第2シール部との間の最短距離である第2シール距離は、ハウジング流路の開口部と第1シール部との間の最短距離である第1シール距離よりも大きく設定されることを趣旨とする。 In order to achieve the above object, the technology described in claim 1 comprises a housing and a plate-shaped valve member disposed inside the housing and driven relative to the housing, the housing includes a plurality of housing flow paths, the valve member includes at least one valve flow path extending along the plate surface direction, the valve flow path includes an opening edge, the housing flow path includes a plurality of openings that can pass through the valve flow path, a valve seal member is disposed between the housing and the valve member so as to surround the opening edge of the valve flow path, and slides between the housing and the valve member as the valve member is driven, and at least one of the plurality of openings is opened by the valve flow path when the valve member is driven. In a flow path switching device configured to selectively connect at least two of the housing flow path and the valve flow path to form a flow path for the fluid, the valve seal member includes a pair of first seal portions that extend along the drive direction of the valve member, sandwiching the edge of the opening, and a pair of second seal portions that are arranged in a direction intersecting the drive direction of the valve member, sandwiching the edge of the opening, and connect both ends of the pair of first seal portions, and the second seal distance, which is the shortest distance between the opening of the housing flow path and the second seal portions, is set to be greater than the first seal distance, which is the shortest distance between the opening of the housing flow path and the first seal portions.

上記技術の構成によれば、弁シール部材につき、ハウジング流路の開口部と第2シール部との間の第2シール距離をハウジング流路の開口部と第1シール部との間の第1シール距離よりも大きく設定しているので、弁シール部材が、弁部材の駆動に伴い、ハウジングに対する摺動抵抗により変位しても、第2シール部の先端部がハウジング流路に突出することなくハウジングの内面に接地する。 According to the configuration of the above technology, the second seal distance between the opening of the housing flow path and the second seal portion of the valve seal member is set to be larger than the first seal distance between the opening of the housing flow path and the first seal portion. Therefore, even if the valve seal member is displaced due to sliding resistance against the housing as the valve member is driven, the tip of the second seal portion does not protrude into the housing flow path and grounds to the inner surface of the housing.

上記目的を達成するために、請求項2に記載の技術は、請求項1に記載の技術において、流体の流路を形成した状態では、ハウジング流路の開口部が、弁流路の開口縁の駆動方向両端から間隔を隔てて位置し、開口縁の駆動方向両端は半円弧状をなしており、第2シール部は、開口縁の駆動方向両端に沿って半円弧状をなし、第2シール部と開口縁との距離は円周方向に沿って均一に設定されることを趣旨とする。 In order to achieve the above object, the technology described in claim 2 is the technology described in claim 1, in which, in a state in which a fluid flow path is formed, the opening of the housing flow path is located at a distance from both ends of the opening edge of the valve flow path in the driving direction, both ends of the opening edge are semicircular, the second seal portion is semicircular along both ends of the opening edge in the driving direction, and the distance between the second seal portion and the opening edge is set uniformly along the circumferential direction.

上記技術の構成によれば、請求項1に記載の技術の作用に加え、弁流路の駆動方向における両端がその駆動方向へ拡大され、第2シール部と開口縁との距離は円周方向に沿って均一化される。 According to the configuration of the above technology, in addition to the effect of the technology described in claim 1, both ends of the valve flow path in the drive direction are expanded in the drive direction, and the distance between the second seal portion and the opening edge is made uniform along the circumferential direction.

上記目的を達成するために、請求項3に記載の技術は、請求項1又は2に記載の技術において、弁シール部材は、その周方向に沿ってハウジング又は弁部材と接触可能な先端部を有し、先端部は、弁シール部材の内周寄りに配置されることを趣旨とする。 To achieve the above object, the technology described in claim 3 is the technology described in claim 1 or 2, in which the valve seal member has a tip portion that can contact the housing or the valve member along its circumferential direction, and the tip portion is positioned toward the inner circumference of the valve seal member.

上記技術の構成によれば、請求項1又は2に記載の技術の作用に加え、弁シール部材の先端部が、弁シール部材の内側寄りに配置されるので、弁シール部材の先端部のハウジングに対する接触長が短くなる。 According to the configuration of the above technology, in addition to the effect of the technology described in claim 1 or 2, the tip of the valve seal member is positioned closer to the inside of the valve seal member, so the contact length of the tip of the valve seal member with the housing is shortened.

上記目的を達成するために、請求項4に記載の技術は、請求項1又は2に記載の技術において、弁部材は、円板状をなし、その中心に設けられた回転軸を中心に回転可能に設けられ、弁流路の開口縁は、回転軸を中心側とする円弧状に形成され、回転軸に近い内径側開口縁と回転軸から遠い外径側開口縁とを含み、弁シール部材は、その周方向に沿ってハウジング又は弁部材と接触可能な先端部を有し、一対の第1シール部は、弁流路の外径側開口縁に沿って配置される外径側第1シール部と、弁流路の内径側開口縁に沿って配置される内径側第1シール部とを含み、外径側第1シール部の先端部は、外径側第1シール部の内周寄りに配置され、内径側第1シール部の先端部は、内径側第1シール部の外周寄りに配置されることを趣旨とする。 In order to achieve the above object, the technology described in claim 4 is the technology described in claim 1 or 2, in which the valve member is disk-shaped and rotatable around a rotation axis provided at its center, the opening edge of the valve flow path is formed in an arc shape with the rotation axis at the center and includes an inner diameter side opening edge close to the rotation axis and an outer diameter side opening edge far from the rotation axis, the valve seal member has a tip portion that can contact the housing or the valve member along its circumferential direction, the pair of first seal portions includes an outer diameter side first seal portion arranged along the outer diameter side opening edge of the valve flow path and an inner diameter side first seal portion arranged along the inner diameter side opening edge of the valve flow path, the tip portion of the outer diameter side first seal portion is arranged near the inner circumference of the outer diameter side first seal portion, and the tip portion of the inner diameter side first seal portion is arranged near the outer circumference of the inner diameter side first seal portion.

上記技術の構成によれば、請求項1又は2に記載の技術の作用に加え、弁シール部材につき、外径側第1シール部の先端部は、外径側第1シール部の内周寄りにオフセットして配置され、内径側第1シール部の先端部は、内径側第1シール部の外周寄りにオフセットして配置される。従って、弁シール部材につき、外径側第1シール部の先端部と内径側第1シール部の先端部のハウジングに対する回転半径が小さくなる。 According to the configuration of the above technology, in addition to the effect of the technology described in claim 1 or 2, the tip of the outer diameter side first seal part of the valve seal member is offset toward the inner circumference of the outer diameter side first seal part, and the tip of the inner diameter side first seal part is offset toward the outer circumference of the inner diameter side first seal part. Therefore, the rotation radius of the tip of the outer diameter side first seal part and the tip of the inner diameter side first seal part of the valve seal member relative to the housing is reduced.

請求項1に記載の技術によれば、弁部材の駆動により弁シール部材のハウジングに対する座り状態(変形状態)が変化しても、弁シール部材により流路を確実にシールすることができる。 According to the technology described in claim 1, even if the seating state (deformation state) of the valve seal member relative to the housing changes due to the actuation of the valve member, the flow path can be reliably sealed by the valve seal member.

請求項2に記載の技術によれば、請求項1に記載の技術の効果に加え、弁シール部材と弁流路の内壁との間の壁幅を円周方向に均一化することができ、弁流路を有する弁部材を樹脂材により成形する場合でもその成形精度を確保することができる。 According to the technology described in claim 2, in addition to the effect of the technology described in claim 1, the wall width between the valve seal member and the inner wall of the valve flow passage can be made uniform in the circumferential direction, and molding precision can be ensured even when a valve member having a valve flow passage is molded from a resin material.

請求項3に記載の技術によれば、請求項1又は2に記載の技術の効果に加え、弁シール部材のハウジングに対する駆動トルクを低減することができる。 The technology described in claim 3 has the effect of the technology described in claim 1 or 2, and can also reduce the drive torque of the valve seal member relative to the housing.

請求項4に記載の技術によれば、請求項1又は2に記載の技術の効果に加え、弁シール部材のハウジングに対する駆動トルクを低減することができる。 The technology described in claim 4 has the effect of the technology described in claim 1 or 2, and can also reduce the drive torque of the valve seal member relative to the housing.

第1実施形態に係り、流路切替装置の外観を示す斜視図。FIG. 2 is a perspective view showing an external appearance of the flow path switching device in the first embodiment. 第1実施形態に係り、流路切替装置を示す分解斜視図。FIG. 2 is an exploded perspective view showing the flow path switching device in the first embodiment. 第1実施形態に係り、流路切替装置を示す断面図。FIG. 2 is a cross-sectional view showing the flow path switching device in the first embodiment. 第1実施形態に係り、回転ディスクを示す上面図。FIG. 2 is a top view showing the rotating disk in the first embodiment. 第1実施形態に係り、固定ディスクを示す上面図。FIG. 4 is a top view showing the fixed disk in the first embodiment. 第1実施形態に係り、第1の流路パターンを模式的に示すイメージ図。FIG. 4 is an image diagram illustrating a first flow path pattern in the first embodiment. 第1実施形態に係り、第2の流路パターンを模式的に示すイメージ図。FIG. 11 is an image diagram illustrating a second flow path pattern in the first embodiment. 対比例に係り、弁シール部材に変位がない場合を示すイメージ図。FIG. 11 is a conceptual diagram showing a case in which there is no displacement of a valve seal member according to a comparative example. 対比例に係り、弁シール部材に変位がある場合を示すイメージ図。FIG. 10 is an image diagram showing a case where a valve seal member is displaced, as a comparative example. 対比例に係り、図8の場合の弁シール部材、回転流路、流入流路の開口部及び固定流路の開口部の平面視における配置関係を示すイメージ図。FIG. 9 is a conceptual diagram showing the relative positions of the valve seal member, the rotary flow passage, the opening of the inlet flow passage, and the opening of the fixed flow passage in a plan view in the case of FIG. 8, for comparison. 対比例に係り、図9の鎖線四角で囲った部分を拡大して示すイメージ図。FIG. 10 is an enlarged conceptual diagram showing a portion surrounded by a dashed square in FIG. 9 in a comparative example. 第1実施形態に係り、回転ディスクの回転流路の周囲に設けられる弁シール部材を示す平面図。FIG. 4 is a plan view showing a valve seal member provided around the rotation flow path of the rotating disk in the first embodiment. 第1実施形態に係り、弁シール部材、回転流路、流入流路の開口部及び固定流路の開口部の平面視における配置関係を示す図10に準ずるイメージ図。FIG. 11 is a conceptual diagram equivalent to FIG. 10 showing the positional relationship in a plan view of a valve seal member, a rotational flow path, an opening of an inlet flow path, and an opening of a fixed flow path in the first embodiment. 第1実施形態に係り、第2シール部の部分を示す図13のA-A線断面図。FIG. 14 is a cross-sectional view taken along line AA in FIG. 13 , showing a portion of the second seal portion in the first embodiment. 第1実施形態に係り、第1シール部の部分を示す図13のB-B線断面図。FIG. 14 is a cross-sectional view of the first seal portion taken along line BB in FIG. 13 according to the first embodiment. 対比例に係り、第2シール部の部分を示す図10のC-C線断面図。FIG. 11 is a cross-sectional view taken along line CC of FIG. 10 showing a portion of the second seal portion in a comparative example. 対比例に係り、第1シール部を示す図10のD-D線断面図。FIG. 11 is a cross-sectional view taken along line DD in FIG. 10 , showing the first seal portion, in a comparative example. 第2実施形態に係り、弁シール部材、回転流路、流入流路の開口部及び固定流路の開口部の平面視における配置関係を示す図13に準ずるイメージ図。FIG. 14 is an image diagram equivalent to FIG. 13 showing the positional relationship in a plan view of a valve seal member, a rotational flow path, an opening of an inlet flow path, and an opening of a fixed flow path in the second embodiment. 第2実施形態に係り、図18の一部であって、弁シール部材、回転流路及び流入流路の開口部の平面視における配置関係を示すイメージ図。FIG. 19 is a conceptual diagram illustrating a positional relationship in a plan view of a valve seal member, a rotation flow passage, and an opening of an inlet flow passage according to a second embodiment, the diagram being a part of FIG. 18 . 第2実施形態に係り、第2シール部の部分を示す図18のE-E線断面図。FIG. 19 is a cross-sectional view of the second seal portion taken along line E-E in FIG. 18 according to the second embodiment. 第2実施形態に係り、第1シール部の部分を示す図18のF-F線断面図。FIG. 19 is a cross-sectional view of the first seal portion taken along line FF in FIG. 18 according to the second embodiment. 第1実施形態に係り、弁シール部材、回転流路及び流入流路の開口部の平面視における配置関係を示す図19に準ずるイメージ図。FIG. 20 is a conceptual diagram equivalent to FIG. 19 showing the positional relationship in a plan view of the valve seal member, the rotation flow passage, and the opening of the inlet flow passage in the first embodiment. 第3実施形態に係り、弁シール部材、回転流路、流入流路の開口部及び固定流路の開口部の平面視における配置関係を示す図18に準ずるイメージ図。FIG. 19 is an image diagram equivalent to FIG. 18 showing the positional relationship in a plan view of a valve seal member, a rotational flow path, an opening of an inlet flow path, and an opening of a fixed flow path in the third embodiment. 第3実施形態に係り、第2シール部の部分を示す図23のG-G線断面図。FIG. 24 is a cross-sectional view of the second seal portion taken along line GG in FIG. 23 according to the third embodiment. 第2実施形態に係り、第2シール部の部分を示す図24に準ずる断面図。FIG. 25 is a cross-sectional view equivalent to FIG. 24 showing a portion of a second seal portion in the second embodiment. 第4実施形態に係り、弁シール部材、回転流路、流入流路の開口部及び固定流路の開口部の平面視における配置関係を示す図23に準ずるイメージ図。FIG. 24 is an image diagram equivalent to FIG. 23 showing the positional relationship in a plan view of a valve seal member, a rotational flow path, an opening of an inlet flow path, and an opening of a fixed flow path in the fourth embodiment. 別の実施形態に係り、固定ディスクを省略したタイプの流路切替装置を示す断面図。FIG. 11 is a cross-sectional view showing a flow path switching device according to another embodiment, in which a fixed disk is omitted.

以下、流路切替装置を具体化したいくつかの実施形態につき詳細に説明する。 Below, we will explain in detail several embodiments of the flow path switching device.

<第1実施形態>
第1実施形態について図1~図17を参照して説明する。
First Embodiment
The first embodiment will be described with reference to FIGS.

[流路切替装置の概要について]
先ず、流路切替装置の概要について説明する。図1に、この実施形態の流路切替装置1の外観を斜視図により示す。図2に、この実施形態の流路切替装置1を分解斜視図により示す(駆動部13と制御部14の図示は省略)。図3に、この実施形態の流路切替装置1を断面図により示す(駆動部13と制御部14の図示は省略)。図1~図3に示すように、流路切替装置1は、ハウジング11と、弁体部12と、駆動部13と、制御部14とを備える。
[Overview of the flow path switching device]
First, an overview of the flow path switching device will be described. Fig. 1 shows a perspective view of the appearance of the flow path switching device 1 of this embodiment. Fig. 2 shows an exploded perspective view of the flow path switching device 1 of this embodiment (the drive unit 13 and the control unit 14 are omitted). Fig. 3 shows a cross-sectional view of the flow path switching device 1 of this embodiment (the drive unit 13 and the control unit 14 are omitted). As shown in Figs. 1 to 3, the flow path switching device 1 includes a housing 11, a valve body unit 12, a drive unit 13, and a control unit 14.

[ハウジングについて]
図1~図3に示すように、ハウジング11は、上ハウジング11Aと下ハウジング11Bを複数のネジ16で締結することで構成される。ハウジング11は、流体が流入する流入流路20と、流体が流出する流出流路30とを含む。この実施形態では、流路切替装置1は、一例として六方弁として構成され、ハウジング11は、3つの流入流路20と3つの流出流路30とを有する。3つの流入流路20として、上ハウジング11Aには、第1流入流路21、第2流入流路22及び第3流入流路23が設けられる。図3に示すように、回転ディスク40と対向する流入流路20の一端には、後述する回転流路60に連通可能な開口部20aが設けられる。また、3つの流出流路30として、下ハウジング11Bには、第1流出流路31、第2流出流路32及び第3流出流路33が設けられる。
[About housing]
As shown in FIGS. 1 to 3, the housing 11 is configured by fastening the upper housing 11A and the lower housing 11B with a plurality of screws 16. The housing 11 includes an inflow flow path 20 through which the fluid flows in and an outflow flow path 30 through which the fluid flows out. In this embodiment, the flow path switching device 1 is configured as a six-way valve as an example, and the housing 11 has three inflow flow paths 20 and three outflow flow paths 30. As the three inflow flow paths 20, a first inflow flow path 21, a second inflow flow path 22, and a third inflow flow path 23 are provided in the upper housing 11A. As shown in FIG. 3, an opening 20a that can communicate with a rotation flow path 60 described later is provided at one end of the inflow flow path 20 facing the rotating disk 40. In addition, as the three outflow flow paths 30, a first outflow flow path 31, a second outflow flow path 32, and a third outflow flow path 33 are provided in the lower housing 11B.

なお、ハウジング11は、例えば樹脂により形成される。ハウジング11(上ハウジング11A及び下ハウジング11B)は本開示技術の「ハウジング」の一例に相当し、流入流路20(第1流入流路21、第2流入流路22及び第3流入流路23)と、流出流路30(第1流出流路31、第2流出流路32及び第3流出流路33)は本開示技術の「ハウジング流路」の一例に相当する。 The housing 11 is formed, for example, from resin. The housing 11 (upper housing 11A and lower housing 11B) corresponds to an example of a "housing" in the disclosed technology, and the inlet flow path 20 (first inlet flow path 21, second inlet flow path 22, and third inlet flow path 23) and the outlet flow path 30 (first outlet flow path 31, second outlet flow path 32, and third outlet flow path 33) correspond to an example of a "housing flow path" in the disclosed technology.

[弁体部について]
弁体部12は、ハウジング11の内部に設けられる。この弁体部12は、図2と図3に示すように、回転しない固定ディスク50と、固定ディスク50に積層して配置され、上ハウジング11A及び固定ディスク50に対し回転する回転ディスク40と、回転ディスク40の中心にて同ディスク40と一体に設けられる回転軸42とを含む。
[About the valve body]
The valve body portion 12 is provided inside the housing 11. As shown in Figures 2 and 3, the valve body portion 12 includes a fixed disk 50 that does not rotate, a rotating disk 40 that is stacked on the fixed disk 50 and rotates relative to the upper housing 11A and the fixed disk 50, and a rotating shaft 42 that is provided integrally with the rotating disk 40 at the center of the rotating disk 40.

なお、回転ディスク40(回転軸42を含む)と固定ディスク50は、例えば樹脂により形成される。回転ディスク40は本開示技術の「弁部材」の一例に相当し、固定ディスク50は本開示技術の「ハウジング」の一部を構成する。 The rotating disk 40 (including the rotating shaft 42) and the fixed disk 50 are formed, for example, from resin. The rotating disk 40 corresponds to an example of a "valve member" in the disclosed technology, and the fixed disk 50 constitutes a part of the "housing" in the disclosed technology.

[回転ディスクについて]
図4に、回転ディスク40の上面図を示す。図2~図4に示すように、回転ディスク40は、上ハウジング11Aと固定ディスク50との間に配置される。回転ディスク40は、円板部41と回転軸42を含む。回転ディスク40(円板部41)は、円板状に形成されており、複数の回転流路60を含む。この回転流路60は、回転ディスク40を板厚方向(軸方向)に貫通し、板面方向に沿って伸び、流入流路20や後述する固定流路70と連通可能である。この実施形態で、回転ディスク40は、3つの回転流路60を含む。図2や図4に示すように、3つの回転流路60として、第1回転流路61、第2回転流路62及び第3回転流路63を含む。回転流路60(第1回転流路61、第2回転流路62及び第3回転流路63)は、本開示技術の「弁流路」の一例に相当する。
[About rotating disks]
FIG. 4 shows a top view of the rotating disk 40. As shown in FIGS. 2 to 4, the rotating disk 40 is disposed between the upper housing 11A and the fixed disk 50. The rotating disk 40 includes a disk portion 41 and a rotating shaft 42. The rotating disk 40 (disk portion 41) is formed in a disk shape and includes a plurality of rotating flow paths 60. The rotating flow paths 60 penetrate the rotating disk 40 in the plate thickness direction (axial direction), extend along the plate surface direction, and can communicate with the inlet flow path 20 and a fixed flow path 70 described later. In this embodiment, the rotating disk 40 includes three rotating flow paths 60. As shown in FIGS. 2 and 4, the three rotating flow paths 60 include a first rotating flow path 61, a second rotating flow path 62, and a third rotating flow path 63. The rotating flow paths 60 (the first rotating flow path 61, the second rotating flow path 62, and the third rotating flow path 63) correspond to an example of a "valve flow path" in the technology disclosed herein.

[回転軸について]
回転軸42は、その軸方向一端側にて回転ディスク40(円板部41)に接続され、他端側にて駆動部13に接続される。この回転軸42は、その中心軸が回転ディスク40の中心軸Lと一致するように円板部41と一体に形成される。そして、駆動部13から回転駆動力を得て回転軸42が回転することにより、回転ディスク40が回転する。
[About the rotation axis]
The rotating shaft 42 is connected to the rotating disk 40 (disk portion 41) at one axial end thereof, and is connected to the driving unit 13 at the other axial end thereof. The rotating shaft 42 is formed integrally with the disk portion 41 such that its central axis coincides with the central axis L of the rotating disk 40. The rotating shaft 42 receives a rotational driving force from the driving unit 13 and rotates, thereby rotating the rotating disk 40.

[固定ディスクについて]
図5に、固定ディスク50の上面図を示す。図2、図3及び図5に示すように、固定ディスク50は、円板部51と、円板部51と一体に形成された円筒部52とを含む。固定ディスク50と下ハウジング11Bとの間には、固定ディスク50を回転ディスク40の方向へ付勢し保持するための保持スプリング82が設けられる。保持スプリング82は、固定ディスク50の下面にて、各円筒部52を内包するように配置される。
[About fixed disks]
Fig. 5 shows a top view of the fixed disk 50. As shown in Figs. 2, 3 and 5, the fixed disk 50 includes a disk portion 51 and a cylindrical portion 52 formed integrally with the disk portion 51. A retaining spring 82 for urging and retaining the fixed disk 50 in the direction of the rotating disk 40 is provided between the fixed disk 50 and the lower housing 11B. The retaining spring 82 is disposed on the lower surface of the fixed disk 50 so as to enclose each cylindrical portion 52.

円板部51は、円板状に形成され、軸方向に貫通する固定流路70を含む。この実施形態では、3つの固定流路70として、第1固定流路71、第2固定流路72及び第3固定流路73を含む。3つの固定流路70は、互いに等角度間隔空けて配置される。なお、固定流路70は、本開示技術の「ハウジング流路」の一例に相当する。 The disk portion 51 is formed in a disk shape and includes a fixed flow passage 70 that penetrates in the axial direction. In this embodiment, the three fixed flow passages 70 include a first fixed flow passage 71, a second fixed flow passage 72, and a third fixed flow passage 73. The three fixed flow passages 70 are arranged at equal angular intervals from each other. The fixed flow passages 70 correspond to an example of a "housing flow passage" in the disclosed technology.

円筒部52は、固定流路70を囲うようにして円板部51から軸方向に延びるようにして形成される。この実施形態では、円筒部52は、3つの固定流路70のそれぞれに対応するようにして、3つ形成される。これら固定流路70の先端は、下ハウジング11Bに形成された流出流路30に接続される。図2~図4に示すように、回転ディスク40と対向する固定流路70の一端には、回転流路60に連通可能な開口部70aが設けられる。 The cylindrical portion 52 is formed to extend axially from the disk portion 51 so as to surround the fixed flow passage 70. In this embodiment, three cylindrical portions 52 are formed to correspond to the three fixed flow passages 70. The tips of these fixed flow passages 70 are connected to the outlet flow passages 30 formed in the lower housing 11B. As shown in Figures 2 to 4, an opening 70a that can communicate with the rotary flow passage 60 is provided at one end of the fixed flow passage 70 facing the rotating disk 40.

[駆動部について]
駆動部13は、回転軸42に回転駆動力を与えるためのモータ及び減速機構等(図示略)を含む。
[About the drive unit]
The drive unit 13 includes a motor, a reduction gear mechanism, and the like (not shown) for applying a rotational drive force to the rotating shaft 42 .

[制御部について]
制御部14は、例えば、CPUとROM,RAM等のメモリを備え、メモリに予め格納されているプログラムに応じて、駆動部13のモータ等を制御するようになっている。
[Regarding the control unit]
The control unit 14 includes, for example, a CPU and memories such as a ROM and a RAM, and controls the motor of the drive unit 13 and the like according to a program prestored in the memory.

以上のように構成した流路切替装置1は、流入流路20と回転流路60と固定流路70(流出流路30)とを連通させることで、流体が流れる流路を形成する。そして、流路切替装置1は、駆動部13により回転軸42を介し回転ディスク40を回転駆動させ、3つの回転流路60(61~63)と、3つの流入流路20(21~23)と、3つの固定流路70(71~73)と、3つの流出流路30(31~33)との連通の組み合わせを切り替えることで、流体の流路をいくつかのパターンに切り替えるようになっている。 The flow path switching device 1 configured as described above forms a flow path through which the fluid flows by connecting the inflow flow path 20, the rotating flow path 60, and the fixed flow path 70 (outflow flow path 30). The flow path switching device 1 rotates the rotating disk 40 via the rotating shaft 42 using the drive unit 13, and switches the combination of connections between the three rotating flow paths 60 (61-63), the three inflow flow paths 20 (21-23), the three fixed flow paths 70 (71-73), and the three outflow flow paths 30 (31-33), thereby switching the fluid flow path between several patterns.

[流路パターンについて]
例えば、第1の流路パターンとして、図6に示すように、3つの回転流路60(61~63)により、第1流入流路21と第1固定流路71と第1流出流路31とを連通させ、第2流入流路22と第2固定流路72と第2流出流路32とを連通させ、第3流入流路23と第3固定流路73と第3流出流路33とを連通させる。図6は、第1の流路パターンを模式的にイメージ図により示す。
[Flow path pattern]
For example, as a first flow path pattern, as shown in Fig. 6, three rotary flow paths 60 (61 to 63) communicate the first inflow flow path 21, the first fixed flow path 71, and the first outflow flow path 31, communicate the second inflow flow path 22, the second fixed flow path 72, and the second outflow flow path 32, and communicate the third inflow flow path 23, the third fixed flow path 73, and the third outflow flow path 33. Fig. 6 shows a schematic image of the first flow path pattern.

そして、図6に示す第1の流路パターンの状態から、駆動部13により回転ディスク40を反時計回りに回転させることで、図7に示す第2の流路パターンに切り替えることができる。図7は、第2の流路パターンを模式的にイメージ図により示す。 Then, by rotating the rotating disk 40 counterclockwise from the first flow path pattern shown in FIG. 6 by the drive unit 13, it is possible to switch to the second flow path pattern shown in FIG. 7. FIG. 7 shows a schematic image of the second flow path pattern.

すなわち、第2の流路パターンでは、3つの回転流路60(61~63)により、第1流入流路21と第3固定流路73と第3流出流路33とを連通させ、第2流入流路22と第1固定流路71と第1流出流路31とを連通させ、第3流入流路23と第2固定流路72と第2流出流路32とを連通させる。 That is, in the second flow path pattern, three rotating flow paths 60 (61-63) connect the first inflow flow path 21, the third fixed flow path 73, and the third outflow flow path 33, connect the second inflow flow path 22, the first fixed flow path 71, and the first outflow flow path 31, and connect the third inflow flow path 23, the second fixed flow path 72, and the second outflow flow path 32.

なお、図7に示す第2の流路パターンの状態から、駆動部13により回転ディスク40を時計回りに回転させることで、図6に示す第1の流路パターンに切り替えることもできる。又は、回転ディスク40を更に半時計回りに回転させることで、図6に示す第1の流路パターンに切り替えることもできる(この場合、回転流路60の組み合わせは異なる)。 The second flow path pattern shown in FIG. 7 can be switched to the first flow path pattern shown in FIG. 6 by rotating the rotating disk 40 clockwise using the drive unit 13. Alternatively, the first flow path pattern shown in FIG. 6 can be switched to by further rotating the rotating disk 40 counterclockwise (in this case, the combination of rotating flow paths 60 is different).

[弁シール部材について]
この実施形態で、図3に示すように、流路切替装置1において、上ハウジング11Aと回転ディスク40との間及び回転ディスク40と固定ディスク50との間には、それぞれ、弁シール部材81として、流路における流体の漏れを抑制するための上弁シール部材81Aと下弁シール部材81Bが設けられる。これら弁シール部材81は、回転ディスク40の回転流路60の外周に沿って形成された周溝41cに対し圧入及び接着されて固定される。
[Valve seal member]
3, in the flow path switching device 1, an upper valve seal member 81A and a lower valve seal member 81B for suppressing leakage of fluid in the flow paths are provided between the upper housing 11A and the rotary disk 40 and between the rotary disk 40 and the fixed disk 50, as valve seal members 81. These valve seal members 81 are press-fitted and bonded to a circumferential groove 41c formed along the outer periphery of the rotary flow path 60 of the rotary disk 40, and fixed thereto.

この弁シール部材81は、図2~図4に示すように、回転ディスク40(円板部41)の上面41aと下面41bにて、長孔状に形成される回転流路60の開口縁60aの周囲を囲むようにして突条に設けられる。回転ディスク40の上面41aに設けられる上弁シール部材81Aは、上ハウジング11Aへ向けて突出するように設けられ、上ハウジング11Aの内面11aに接触して、流入流路20と流入流路20に連通する回転流路60との間に形成される流路を外部からシールするようになっている。また、回転ディスク40(円板部41)の下面41bに設けられる下弁シール部材81Bは、固定ディスク50に接触して、固定流路70とその固定流路70に連通する回転流路60との間に形成される流路を外部からシールするようになっている。 As shown in Figs. 2 to 4, the valve seal member 81 is provided on the upper surface 41a and the lower surface 41b of the rotating disk 40 (disk portion 41) in a protruding manner so as to surround the periphery of the opening edge 60a of the rotating flow passage 60 formed in the shape of an elongated hole. The upper valve seal member 81A provided on the upper surface 41a of the rotating disk 40 is provided so as to protrude toward the upper housing 11A and contacts the inner surface 11a of the upper housing 11A to seal the flow passage formed between the inflow flow passage 20 and the rotating flow passage 60 communicating with the inflow flow passage 20 from the outside. The lower valve seal member 81B provided on the lower surface 41b of the rotating disk 40 (disk portion 41) is provided so as to contact the fixed disk 50 to seal the flow passage formed between the fixed flow passage 70 and the rotating flow passage 60 communicating with the fixed flow passage 70 from the outside.

なお、この実施形態では、各弁シール部材81(81A,81B)は、例えば、弾性体であるゴムにより形成される。この他、各弁シール部材81は、フッ素樹脂(例えば、テフロン(登録商標))により形成したり、フッ素樹脂を貼付したゴムにより形成したり、フッ素樹脂やゴム以外の材料により形成したりすることもできる。 In this embodiment, each valve seal member 81 (81A, 81B) is formed, for example, from rubber, which is an elastic body. Alternatively, each valve seal member 81 can be formed from a fluororesin (for example, Teflon (registered trademark)), from rubber with a fluororesin attached, or from a material other than fluororesin or rubber.

[その他のシール部材]
図3に示すように、上ハウジング11Aと回転軸42との間には、リップシール83が設けられる。また、固定ディスク50の各円筒部52と下ハウジング11Bとの間には、リップシール84が設けられる。
[Other sealing materials]
3, a lip seal 83 is provided between the upper housing 11A and the rotating shaft 42. In addition, a lip seal 84 is provided between each cylindrical portion 52 of the fixed disk 50 and the lower housing 11B.

[流路切替時の弁シール部材の課題について]
図8~図11は、従前の対比例に係るイメージ図である。図8及び図9には、ハウジング11と回転ディスク40と固定ディスク50の断面であって、回転ディスク40を矢印Y1で示す方向へ駆動させて流路を切り替えた後の弁シール部材81(上弁シール部材81Aと下弁シール部材81B)の状態の一例をイメージ図により示す。図8は、弁シール部材81に変位がない場合をイメージ図により示す。図9は、弁シール部材81に変位がある場合をイメージ図により示す。図10に、図8の場合の弁シール部材81、回転流路60、流入流路20の開口部20a及び固定流路70の開口部70aの平面視における配置関係をイメージ図により示す。図11には、図9の鎖線四角S1で囲った部分を拡大してイメージ図により示す。
[Issues with valve seal materials when switching flow paths]
8 to 11 are conceptual diagrams for comparison with the conventional example. In Fig. 8 and Fig. 9, cross sections of the housing 11, the rotary disk 40, and the fixed disk 50 are shown in a conceptual diagram of an example of the state of the valve seal member 81 (upper valve seal member 81A and lower valve seal member 81B) after the rotary disk 40 is driven in the direction indicated by the arrow Y1 to switch the flow path. Fig. 8 shows a conceptual diagram of a case where the valve seal member 81 is not displaced. Fig. 9 shows a conceptual diagram of a case where the valve seal member 81 is displaced. Fig. 10 shows a conceptual diagram of the arrangement relationship in a plan view of the valve seal member 81, the rotary flow path 60, the opening 20a of the inflow flow path 20, and the opening 70a of the fixed flow path 70 in the case of Fig. 8. Fig. 11 shows an enlarged conceptual diagram of the part surrounded by the dashed square S1 in Fig. 9.

図8、図9に示すように、流路を切り替えるために回転ディスク40が矢印Y1の方向へ回転するときは、弁シール部材81の一部が、上ハウジング11Aの流入流路20の開口部20aや固定ディスク50の固定流路70の開口部70aを過る。そのため、弁シール部材81において、開口部20a,70aを過らずに常に上ハウジング11Aの内面11aや固定ディスク50(円板部51)の上面51aを摺動する部位と、それら内面11a及び上面51aを摺動しつつ開口部20a,70aを過る部位とが存在する。 As shown in Figures 8 and 9, when the rotating disk 40 rotates in the direction of the arrow Y1 to switch the flow path, a part of the valve seal member 81 passes through the opening 20a of the inlet flow path 20 of the upper housing 11A and the opening 70a of the fixed flow path 70 of the fixed disk 50. Therefore, there are parts of the valve seal member 81 that always slide over the inner surface 11a of the upper housing 11A and the upper surface 51a of the fixed disk 50 (disk portion 51) without passing through the openings 20a, 70a, and parts that slide over the inner surface 11a and upper surface 51a while passing through the openings 20a, 70a.

ここで、図12に、回転ディスク40の回転流路60の周囲に設けられる弁シール部材81を平面図により示す。図12に示すように、弁シール部材81は、回転流路60の開口縁60aを挟んで回転ディスク40の回転方向(駆動方向)に沿って伸びる一対の第1シール部91と、開口縁60aを挟んで回転ディスク40の回転方向と交差する方向に配置され、一対の第1シール部91の両端を繋ぐ一対の第2シール部92とを含む。 Figure 12 shows a plan view of the valve seal member 81 provided around the rotary flow passage 60 of the rotary disk 40. As shown in Figure 12, the valve seal member 81 includes a pair of first seal portions 91 that extend along the rotation direction (drive direction) of the rotary disk 40, sandwiching the opening edge 60a of the rotary flow passage 60, and a pair of second seal portions 92 that are arranged in a direction intersecting the rotation direction of the rotary disk 40, sandwiching the opening edge 60a, and connect both ends of the pair of first seal portions 91.

一対の第1シール部91は、開口部20a,70aを過らずに常に上ハウジング11Aの内面11a、固定ディスク50の上面51aを摺動する部位であり、回転ディスク40の回転方向に沿って形成され、図12の領域αに位置する。これら第1シール部91は、回転ディスク40が回転するときに、回転ディスク40の回転方向に沿って、上ハウジング11Aの内面11a、固定ディスク50の上面51aを摺動する。これら第1シール部91は、この開示技術の「第1シール部」の一例に相当する。 The pair of first seal portions 91 are portions that always slide on the inner surface 11a of the upper housing 11A and the upper surface 51a of the fixed disk 50 without passing through the openings 20a, 70a, are formed along the rotation direction of the rotating disk 40, and are located in region α in FIG. 12. These first seal portions 91 slide on the inner surface 11a of the upper housing 11A and the upper surface 51a of the fixed disk 50 along the rotation direction of the rotating disk 40 when the rotating disk 40 rotates. These first seal portions 91 correspond to an example of a "first seal portion" in this disclosed technology.

また、一対の第2シール部92は、上ハウジング11Aの内面11a、固定ディスク50の上面51aを摺動しつつ、開口部20a,70aを過って流入流路20、固定流路70に解放される部位であり、図12の領域βに位置する。これら第2シール部92には、回転ディスク40が回転するときに、上ハウジング11Aの内面11a、固定ディスク50の上面51aを摺動してせん断応力が生じる。これら第2シール部92は、この開示技術の「第2シール部」の一例に相当する。 The pair of second seal portions 92 slide over the inner surface 11a of the upper housing 11A and the upper surface 51a of the fixed disk 50, passing through the openings 20a, 70a and being released into the inlet flow passage 20 and the fixed flow passage 70, and are located in region β in FIG. 12. When the rotating disk 40 rotates, shear stress is generated in these second seal portions 92 as they slide over the inner surface 11a of the upper housing 11A and the upper surface 51a of the fixed disk 50. These second seal portions 92 correspond to an example of a "second seal portion" in this disclosed technology.

なお、図10、図12は、説明上、回転ディスク40の回転方向(円周方向)を図面の左右方向に直線状にして表している。以下の説明で示す図13,18,19,22,23についても同様である。 For the sake of explanation, in Figures 10 and 12, the rotation direction (circumferential direction) of the rotating disk 40 is shown as a straight line extending from left to right on the drawing. The same applies to Figures 13, 18, 19, 22, and 23 shown in the following explanation.

ここで、第2シール部92は、開口部20a,70aを過るときに、流入流路20又は固定流路70に解放される状態となる。そのため、第2シール部92の先端部92a(図11に示す)は、流入流路20、固定流路70に突き出た状態になる。その後、回転ディスク40が更に回転すると、流入流路20、固定流路70に突き出た第2シール部92の先端部92aは、やがて流入流路20、固定流路70から上ハウジング11Aの内面11a、固定ディスク50の上面51aに乗り上げることになる。このとき、第2シール部92が流入流路20、固定流路70の開口部20a,70aに引きずられ、第2シール部92が変位することがある。このように第2シール部92に変位が生じると、弁シール部材81によるシール性が低下する懸念がある。 Here, when the second seal portion 92 passes through the openings 20a and 70a, it is released into the inflow passage 20 or the fixed passage 70. Therefore, the tip 92a (shown in FIG. 11) of the second seal portion 92 protrudes into the inflow passage 20 and the fixed passage 70. After that, when the rotary disk 40 further rotates, the tip 92a of the second seal portion 92 protruding into the inflow passage 20 and the fixed passage 70 will eventually run from the inflow passage 20 and the fixed passage 70 onto the inner surface 11a of the upper housing 11A and the upper surface 51a of the fixed disk 50. At this time, the second seal portion 92 may be dragged by the openings 20a and 70a of the inflow passage 20 and the fixed passage 70, causing the second seal portion 92 to be displaced. If the second seal portion 92 is displaced in this way, there is a concern that the sealing ability of the valve seal member 81 will be reduced.

この実施形態では、弁シール部材81は、弾性体であるゴムにより形成されるため、回転ディスク40が回転するときに上ハウジング11A、固定ディスク50に接触して摺動し、その摺動抵抗により接触部が上ハウジング11A、固定ディスク50に引きずられて変位することがある。特に、第2シール部92は、開口部20a,70aを過るときに、流入流路20、固定流路70に解放される状態になることから、第2シール部92の先端部92aは、流入流路20、固定流路70に突き出た状態になる。その後、回転ディスク40が更に回転すると、流入流路20、固定流路70に突き出た第2シール部92の先端部92aは、やがて上ハウジング11Aの内面11a、固定ディスク50の上面51aに乗り上げることになる。このとき、第2シール部92が流入流路20、固定流路70の開口部20a,70aに引きずられ、第2シール部92が変位する。 In this embodiment, the valve seal member 81 is made of rubber, which is an elastic body, and therefore when the rotary disk 40 rotates, it comes into contact with and slides against the upper housing 11A and the fixed disk 50, and the sliding resistance may cause the contact portion to be dragged and displaced by the upper housing 11A and the fixed disk 50. In particular, when the second seal portion 92 passes through the openings 20a and 70a, it is released into the inflow passage 20 and the fixed passage 70, so that the tip portion 92a of the second seal portion 92 protrudes into the inflow passage 20 and the fixed passage 70. When the rotary disk 40 then further rotates, the tip portion 92a of the second seal portion 92 protruding into the inflow passage 20 and the fixed passage 70 will eventually ride up onto the inner surface 11a of the upper housing 11A and the upper surface 51a of the fixed disk 50. At this time, the second seal portion 92 is dragged by the openings 20a and 70a of the inflow passage 20 and the fixed passage 70, and the second seal portion 92 is displaced.

ここで、流路を切り替えた後に弁シール部材81に変位がなければ、図8及び図10に示すように、第2シール部92の先端部92aが開口部20a,70aに入り込むことはない。このため、回転流路60が確実にシールされ、流入流路20、固定流路70で流体の漏れが発生することはない。これに対し、流路を切り替えた後に第2シール部92の先端部92aに変位があると、図9、図11に示すように、上弁シール部材81Aでは、第2シール部92の先端部92aが開口部20aに入り込み、流入流路20に突出するおそれがあり、流入流路20の圧損が増大したり、回転流路60のシールが不十分となって流入流路20で流体の漏れが発生したりする懸念がある。 If there is no displacement of the valve seal member 81 after switching the flow path, the tip 92a of the second seal portion 92 will not enter the openings 20a and 70a, as shown in Figures 8 and 10. Therefore, the rotary flow path 60 is reliably sealed, and no fluid leakage will occur in the inflow flow path 20 and the fixed flow path 70. In contrast, if there is displacement of the tip 92a of the second seal portion 92 after switching the flow path, as shown in Figures 9 and 11, in the upper valve seal member 81A, there is a risk that the tip 92a of the second seal portion 92 will enter the opening 20a and protrude into the inflow flow path 20, which may increase the pressure loss of the inflow flow path 20 or cause insufficient sealing of the rotary flow path 60, resulting in fluid leakage from the inflow flow path 20.

[弁シール部材の変位の対応策について]
そこで、この実施形態では、上記課題に対処するために、次のような対応策を講じた。図13に、この実施形態に係り、弁シール部材81、回転流路60、流入流路20の開口部20a及び固定流路70の開口部70aの平面視における配置関係を図10に準ずるイメージ図により示す。図14に、第2シール部92の部分であって、図13のA-A線断面図を示す。図15に、第1シール部91の部分であって、図13のB-B線断面図を示す。図13~図15は、流路を切り替えた後に回転ディスク40が停止し、流体の流路を形成した状態を示し、回転流路60の開口縁60aの長手方向両端における半円弧と、流入流路20の開口部20a及び固定流路70の開口部70aの半円弧が上下に一致(整合)する状態を示す。
[Countermeasures for displacement of valve seal members]
In this embodiment, the following countermeasures are taken to address the above-mentioned problems. Fig. 13 shows the arrangement of the valve seal member 81, the rotary flow path 60, the opening 20a of the inflow flow path 20, and the opening 70a of the fixed flow path 70 in a plan view in this embodiment, in an image diagram similar to Fig. 10. Fig. 14 shows a cross-sectional view of the second seal portion 92 taken along line A-A in Fig. 13. Fig. 15 shows a cross-sectional view of the first seal portion 91 taken along line B-B in Fig. 13. Figs. 13 to 15 show a state in which the rotary disk 40 stops after switching the flow path and a flow path for the fluid is formed, and show a state in which the semicircular arcs at both longitudinal ends of the opening edge 60a of the rotary flow path 60 and the semicircular arcs of the opening 20a of the inflow flow path 20 and the opening 70a of the fixed flow path 70 vertically coincide (align).

図13~図15に示すように、この実施形態では、流入流路20及び固定流路70の開口部20a,70aと第2シール部92との間の最短距離である第2シール距離D2は、流入流路20及び固定流路70の開口部20a,70aと第1シール部91との間の最短距離である第1シール距離D1よりも大きく設定される。この実施形態では、第2シール部92は、流入流路20の開口部20a、固定流路70の開口部70aに沿って円弧状をなして形成される。この実施形態の第2シール距離D2は、半円状の第2シール部92の位置によって異なり、その中央部で最も大きく、両端に近付くに連れて第1シール距離D1に近くなる。 As shown in Figures 13 to 15, in this embodiment, the second seal distance D2, which is the shortest distance between the openings 20a, 70a of the inflow flow passage 20 and the fixed flow passage 70 and the second seal portion 92, is set to be larger than the first seal distance D1, which is the shortest distance between the openings 20a, 70a of the inflow flow passage 20 and the fixed flow passage 70 and the first seal portion 91. In this embodiment, the second seal portion 92 is formed in an arc shape along the openings 20a of the inflow flow passage 20 and the openings 70a of the fixed flow passage 70. The second seal distance D2 in this embodiment varies depending on the position of the semicircular second seal portion 92, is largest at the center, and approaches the first seal distance D1 as it approaches both ends.

図16には、対比例に係り、第2シール部92の部分であって、図10のC-C線断面図を示す。図17に、対比例に係り第1シール部91であって、図10のD-D線断面図を示す。図15に示す本実施形態の第1シール距離D1は、図17に示す対比例の第1シール距離D1と同じであるが、図14に示す本実施形態の第2シール距離D2は、図16に示す対比例の第2シール距離D2よりも大きくなっている。 Figure 16 shows a cross-sectional view of the second seal portion 92 taken along line CC in Figure 10 for comparison. Figure 17 shows a cross-sectional view of the first seal portion 91 taken along line DD in Figure 10 for comparison. The first seal distance D1 of this embodiment shown in Figure 15 is the same as the first seal distance D1 of the comparison shown in Figure 17, but the second seal distance D2 of this embodiment shown in Figure 14 is greater than the second seal distance D2 of the comparison shown in Figure 16.

[流路切替装置の作用及び効果について]
以上説明したこの実施形態の流路切替装置1の構成によれば、図14、図15に示すように、弁シール部材81につき、流入流路20の開口部20aと第2シール部92との間の第2シール距離D2を流入流路20の開口部20aと第1シール部91との間の第1シール距離D1よりも大きく設定している。従って、図14に示すように、弁シール部材81(上弁シール部材81A)が、回転ディスク40の回転に伴い、上ハウジング11Aに対する摺動抵抗により変位しても、第2シール部92の先端部92aが、流入流路20に突出することなく上ハウジング11Aの内面11aに接地する。下弁シール部材81Bについては、固定ディスク50に対する摺動抵抗により第2シール部92が変位しても、その先端部92aが、固定流路70に突出することなく固定ディスク50の上面51aに接地することになる。このため、回転ディスク40(弁部材)の回転(駆動)により弁シール部材81の上ハウジング11A、固定ディスク50(ハウジング)に対する座り状態(変形状態)が変化しても、弁シール部材81により流路(すなわち、回転流路60、流入流路20及び固定流路70)を確実にシールすることができる。
[Actions and Effects of the Flow Path Switching Device]
According to the configuration of the flow path switching device 1 of this embodiment described above, as shown in Fig. 14 and Fig. 15, the second seal distance D2 between the opening 20a of the inflow flow path 20 and the second seal portion 92 of the valve seal member 81 is set to be larger than the first seal distance D1 between the opening 20a of the inflow flow path 20 and the first seal portion 91. Therefore, as shown in Fig. 14, even if the valve seal member 81 (upper valve seal member 81A) is displaced due to sliding resistance against the upper housing 11A with the rotation of the rotary disk 40, the tip portion 92a of the second seal portion 92 is grounded on the inner surface 11a of the upper housing 11A without protruding into the inflow flow path 20. As for the lower valve seal member 81B, even if the second seal portion 92 is displaced due to sliding resistance against the fixed disk 50, the tip portion 92a is grounded on the upper surface 51a of the fixed disk 50 without protruding into the fixed flow path 70. Therefore, even if the seating condition (deformation state) of the valve seal member 81 relative to the upper housing 11A and the fixed disk 50 (housing) changes due to the rotation (driving) of the rotating disk 40 (valve member), the valve seal member 81 can reliably seal the flow paths (i.e., the rotating flow path 60, the inlet flow path 20 and the fixed flow path 70).

<第2実施形態>
次に、第2実施形態について図18~図22を参照して説明する。なお、以下の説明において、第1実施形態と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に説明する。
Second Embodiment
Next, the second embodiment will be described with reference to Figures 18 to 22. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals and the description will be omitted, and the differences will be mainly described.

[弁シール部材の変位の対応策について]
この実施形態では、弁シール部材81の変位の対応策の点で第1実施形態と構成が異なる。第1実施形態では、第2シール部92の第2シール距離D2が、位置によって不均一となっている。すなわち、第2シール距離D2は、第2シール部92の中央部で最も大きく、両端に近付くに連れて第1シール距離D1に近くなっている。この点、回転ディスク40を樹脂で成形する場合、弁シール部材81が嵌め込まれる周溝41cと回転流路60の開口縁60aとの間の幅が不均一となり、回転ディスク40の成形精度が低下し、平面度が低下したり、反りや割れが生じたりする懸念があった。
[Countermeasures for displacement of valve seal members]
This embodiment differs from the first embodiment in terms of the countermeasure against the displacement of the valve seal member 81. In the first embodiment, the second seal distance D2 of the second seal portion 92 is non-uniform depending on the position. That is, the second seal distance D2 is largest at the center of the second seal portion 92, and approaches the first seal distance D1 as it approaches both ends. In this regard, when the rotating disk 40 is molded from resin, the width between the circumferential groove 41c into which the valve seal member 81 is fitted and the opening edge 60a of the rotating flow path 60 becomes non-uniform, and there is a concern that the molding accuracy of the rotating disk 40 will decrease, the flatness will decrease, and warping or cracking will occur.

そこで、この実施形態では、第2シール部92の第2シール距離D2を次のように設定した。図18に、この実施形態に係り、弁シール部材81、回転流路60、流入流路20の開口部20a及び固定流路70の開口部70aの平面視における配置関係を図13に準ずるイメージ図により示す。図19に、図18の一部であって、弁シール部材81、回転流路60及び流入流路20の開口部20aの平面視における配置関係をイメージ図により示す。図20に、第2シール部92の部分であって、図18のE-E線断面図を示す。図21に、第1シール部91の部分であって、図18のF-F線断面図を示す。図22に、第1実施形態に係り、弁シール部材81、回転流路60及び流入流路20の開口部20aの平面視における配置関係を図19に準ずるイメージ図により示す。図18~図20は、流路を切り替え後に回転ディスク40が停止し、流体の流路を形成した状態を示す。 Therefore, in this embodiment, the second seal distance D2 of the second seal portion 92 is set as follows. FIG. 18 shows the arrangement relationship of the valve seal member 81, the rotating flow path 60, the opening 20a of the inflow flow path 20, and the opening 70a of the fixed flow path 70 in a plan view in this embodiment, in an image diagram equivalent to FIG. 13. FIG. 19 shows the arrangement relationship of the valve seal member 81, the rotating flow path 60, and the opening 20a of the inflow flow path 20 in a plan view, in a part of FIG. 18, in an image diagram. FIG. 20 shows a cross-sectional view of the second seal portion 92 taken along line E-E in FIG. 18. FIG. 21 shows a cross-sectional view of the first seal portion 91 taken along line F-F in FIG. 18. FIG. 22 shows the arrangement relationship of the valve seal member 81, the rotating flow path 60, and the opening 20a of the inflow flow path 20 in a plan view in an image diagram equivalent to FIG. 19, in the first embodiment. Figures 18 to 20 show the state in which the rotating disk 40 stops after switching the flow path and a flow path for the fluid is formed.

この状態では、回転流路60の開口縁60aの長手方向両端における半円弧と、流入流路20の開口部20a及び固定流路70の開口部70aの半円弧が上下に一致(整合)しておらず、開口部20a,70aが、開口縁60aの回転方向(駆動転方向)両端から間隔を隔てて位置する状態となっている。そして、図18~図20に示すように、第2シール部92は、回転流路60の開口縁60aの回転方向(駆動方向)の両端に沿って半円弧状をなし、第2シール部92と開口縁60aとの距離は円周方向に沿って均一に設定される。換言すると、弁シール部材81を固定するための周溝41cに合わせ、その周溝41cと回転流路60の内壁との間の壁幅を、その円周方向に沿って均一化している。 In this state, the semicircular arcs at both longitudinal ends of the opening edge 60a of the rotating flow passage 60 and the semicircular arcs of the opening 20a of the inlet flow passage 20 and the opening 70a of the fixed flow passage 70 do not match (align) vertically, and the openings 20a, 70a are positioned at intervals from both ends of the opening edge 60a in the rotation direction (driving direction). As shown in Figures 18 to 20, the second seal portion 92 is semicircular along both ends of the opening edge 60a of the rotating flow passage 60 in the rotation direction (driving direction), and the distance between the second seal portion 92 and the opening edge 60a is set uniformly along the circumferential direction. In other words, the wall width between the circumferential groove 41c for fixing the valve seal member 81 and the inner wall of the rotating flow passage 60 is made uniform along the circumferential direction.

[流路切替装置の作用及び効果について]
以上説明したこの実施形態の流路切替装置1の構成によれば、回転流路60の回転方向(駆動方向)における両端が、第1実施形態の回転流路60(図20参照)に対し、その回転方向へ拡大され、第2シール部92と開口縁60aとの距離が円周方向に沿って均一化される(図19参照)。従って、図20に2点鎖線で示すように、回転ディスク40の回転(駆動)に伴い、弁シール部材81(上弁シール部材81A)が、上ハウジング11Aの内面11aに対する摺動抵抗により変位しても、第2シール部92の先端部92aが、流入流路20に突出することなく上ハウジング11Aの内面11aに接地する。下弁シール部材81Bについては、固定ディスク50に対する摺動抵抗により第2シール部92が変位しても、その先端部92aが、固定流路70に突出することなく固定ディスク50の上面51aに接地する。このため、第1実施形態と同様、回転ディスク40(弁部材)の回転(駆動)により弁シール部材81の上ハウジング11A、固定ディスク50に対する座り状態が変化しても、弁シール部材81により流路(すなわち、回転流路60、流入流路20及び固定流路70)を確実にシールすることができる。加えて、弁シール部材81と回転流路60の内壁との間の壁幅を円周方向に均一化することができ、回転流路60を有する回転ディスク40を樹脂材により成形する場合でもその成形精度を確保することができる。
[Actions and Effects of the Flow Path Switching Device]
According to the configuration of the flow path switching device 1 of this embodiment described above, both ends of the rotary flow path 60 in the rotation direction (drive direction) are enlarged in the rotation direction compared to the rotary flow path 60 of the first embodiment (see FIG. 20), and the distance between the second seal portion 92 and the opening edge 60a is uniformed along the circumferential direction (see FIG. 19). Therefore, as shown by the two-dot chain line in FIG. 20, even if the valve seal member 81 (upper valve seal member 81A) is displaced due to sliding resistance against the inner surface 11a of the upper housing 11A with the rotation (drive) of the rotary disk 40, the tip portion 92a of the second seal portion 92 is grounded on the inner surface 11a of the upper housing 11A without protruding into the inflow flow path 20. As for the lower valve seal member 81B, even if the second seal portion 92 is displaced due to sliding resistance against the fixed disk 50, the tip portion 92a is grounded on the upper surface 51a of the fixed disk 50 without protruding into the fixed flow path 70. Therefore, similarly to the first embodiment, even if the seating state of the valve seal member 81 with respect to the upper housing 11A and the fixed disk 50 changes due to the rotation (drive) of the rotary disk 40 (valve member), the flow paths (i.e., the rotary flow path 60, the inlet flow path 20, and the fixed flow path 70) can be reliably sealed by the valve seal member 81. In addition, the wall width between the valve seal member 81 and the inner wall of the rotary flow path 60 can be made uniform in the circumferential direction, and even when the rotary disk 40 having the rotary flow path 60 is molded from a resin material, the molding precision can be ensured.

<第3実施形態>
次に、第3実施形態について図23~図25を参照して説明する。
Third Embodiment
Next, a third embodiment will be described with reference to FIGS.

[弁シール部材の変位の対応策について]
この実施形態では、弁シール部材81の変位の対応策及び駆動時の摺動抵抗の対策の点で第2実施形態と構成が異なる。第1実施形態及び第2実施形態では、弁シール部材81をその回転方向の両端へ拡大した。このため、弁シール部材81の全長が増加し、その増加に伴い弁シール部材81の摺動抵抗が増加する懸念があった。この場合、回転ディスク40を回転させるモータの駆動トルクが増加してしまう。
[Countermeasures for displacement of valve seal members]
This embodiment differs from the second embodiment in terms of measures taken to counter the displacement of the valve seal member 81 and the sliding resistance during driving. In the first and second embodiments, the valve seal member 81 is expanded to both ends in the rotation direction. This increases the overall length of the valve seal member 81, and there is a concern that the sliding resistance of the valve seal member 81 will increase with this increase. In this case, the drive torque of the motor that rotates the rotary disk 40 will increase.

そこで、この実施形態では、弁シール部材81の断面形状を次のように変更した。図23に、この実施形態に係り、弁シール部材81、回転流路60、流入流路20の開口部20a及び固定流路70の開口部70aの平面視における配置関係を図18に準ずるイメージ図により示す。図24に、第2シール部92の部分であって、図23のG-G線断面図を示す。図25に、第2実施形態に係り、第2シール部92の部分であって、図24に準ずる断面図を示す。図23~図25は、流路を切り替え後に回転ディスク40が停止し、流体の流路を形成した状態を示す。 Therefore, in this embodiment, the cross-sectional shape of the valve seal member 81 has been changed as follows. Figure 23 shows the relative positions of the valve seal member 81, the rotary flow path 60, the opening 20a of the inlet flow path 20, and the opening 70a of the fixed flow path 70 in a plan view in this embodiment, in an image similar to Figure 18. Figure 24 shows a cross-sectional view of the second seal portion 92 taken along line G-G in Figure 23. Figure 25 shows a cross-sectional view of the second seal portion 92 in the second embodiment, similar to Figure 24. Figures 23 to 25 show the state in which the rotary disk 40 has stopped after switching the flow path, forming a flow path for the fluid.

この状態において、図24に断面で示す本実施形態の構成は、各部材の配置の点では図25に示す第2実施形態と同じであるが、弁シール部材81の断面形状の点で相違する。すなわち、この実施形態では、図23、図24に示すように、弁シール部材81は、その周方向に沿ってハウジング11(上ハウジング11A)と接触可能な先端部81a(先端部92aを含む)を有し、その先端部81aは、弁シール部材81の内周寄りに配置される。換言すると、弁シール部材81の断面形状における頂部は、弁シール部材81の内周寄りにオフセットして配置される。 In this state, the configuration of this embodiment shown in cross section in FIG. 24 is the same as the second embodiment shown in FIG. 25 in terms of the arrangement of each component, but differs in the cross-sectional shape of the valve seal member 81. That is, in this embodiment, as shown in FIGS. 23 and 24, the valve seal member 81 has a tip portion 81a (including tip portion 92a) that can contact the housing 11 (upper housing 11A) along its circumferential direction, and the tip portion 81a is positioned toward the inner periphery of the valve seal member 81. In other words, the apex of the cross-sectional shape of the valve seal member 81 is positioned offset toward the inner periphery of the valve seal member 81.

[流路切替装置の作用及び効果について]
以上説明したこの実施形態の流路切替装置1の構成によれば、第2実施形態の作用及び効果に加え次のような作用及び効果が得られる。すなわち、図24に示す本実施形態の弁シール部材81の先端部81aが、図25に示す第2実施形態の弁シール部材81の先端部81aよりも開口縁60aの側寄り(内周寄り)に配置される。これにより、例えば、本実施形態の第2シール部92の先端部92a(弁シール部材81の先端部81a)の半径は、第2実施形態のそれに対し、図24で示す半径差ΔRだけ円弧の半径が短くなる。従って、弁シール部材81の先端部81aの上ハウジング11A、固定ディスク50に対する接触長が、第2実施形態のそれよりも短くなる。このため、弁シール部材81の上ハウジング11A、固定ディスク50に対する駆動トルクを低減することができる。この結果、回転ディスク40を回転させるためのモータによる駆動トルクを低減することができ、その分だけモータの小型化を図ることができる。
[Actions and Effects of the Flow Path Switching Device]
According to the configuration of the flow path switching device 1 of this embodiment described above, in addition to the actions and effects of the second embodiment, the following actions and effects can be obtained. That is, the tip 81a of the valve seal member 81 of this embodiment shown in FIG. 24 is disposed closer to the opening edge 60a (closer to the inner circumference) than the tip 81a of the valve seal member 81 of the second embodiment shown in FIG. 25. As a result, for example, the radius of the tip 92a (tip 81a of the valve seal member 81) of the second seal portion 92 of this embodiment is shorter than that of the second embodiment by the radius difference ΔR shown in FIG. 24. Therefore, the contact length of the tip 81a of the valve seal member 81 with the upper housing 11A and the fixed disk 50 is shorter than that of the second embodiment. Therefore, the drive torque of the valve seal member 81 with respect to the upper housing 11A and the fixed disk 50 can be reduced. As a result, the drive torque of the motor for rotating the rotating disk 40 can be reduced, and the motor can be made smaller accordingly.

<第4実施形態>
次に、第4実施形態について図26を参照して説明する。
Fourth Embodiment
Next, a fourth embodiment will be described with reference to FIG.

[弁シール部材の変位の対応策について]
この実施形態では、弁シール部材81の変位の対応策の点で第2実施形態と構成が異なる。ここで、図4を参照して説明すると、前記各実施形態では、回転ディスク40を回転軸42を中心に回転させることで、円弧状をなす長孔の回転流路60が弁シール部材81と共に回転軸42を中心に回転する。このため、弁シール部材81は、回転軸42から遠ざかる外径側程、内径側よりも上ハウジング11A、固定ディスク50に対する回転半径が大きくなる。これにより、弁シール部材81を摺動させるためのモータによる駆動トルクが、弁シール部材81の外径側程、内径側よりも増加することになる。
[Countermeasures for displacement of valve seal members]
This embodiment differs from the second embodiment in terms of the countermeasure against the displacement of the valve seal member 81. Referring to Fig. 4, in each of the above-described embodiments, the rotary disk 40 is rotated about the rotary shaft 42, so that the rotary flow passage 60 having an arc-shaped long hole rotates together with the valve seal member 81 about the rotary shaft 42. Therefore, the valve seal member 81 has a larger rotation radius relative to the upper housing 11A and the fixed disk 50 on the outer diameter side farther from the rotary shaft 42 than on the inner diameter side. As a result, the drive torque by the motor for sliding the valve seal member 81 is larger on the outer diameter side of the valve seal member 81 than on the inner diameter side.

そこで、この実施形態では、弁シール部材81の先端部81aの配置形状を、第2実施形態に対して次のように変更した。図26に、この実施形態に係り、弁シール部材81、回転流路60、流入流路20の開口部20a及び固定流路70の開口部70aの平面視における配置関係を図23に準ずるイメージ図により示す。図26では、回転流路60及び弁シール部材81が、図26の下側に位置する回転軸42を中心に回転する円弧状をなすことを想定し、やや湾曲して示す。 In this embodiment, the arrangement of the tip 81a of the valve seal member 81 has been changed from that of the second embodiment as follows. Figure 26 shows the arrangement of the valve seal member 81, the rotary flow path 60, the opening 20a of the inlet flow path 20, and the opening 70a of the fixed flow path 70 in a plan view in this embodiment, using an image similar to that of Figure 23. In Figure 26, the rotary flow path 60 and the valve seal member 81 are shown slightly curved, assuming that they form an arc shape that rotates around the rotation axis 42 located at the bottom of Figure 26.

すなわち、この実施形態では、回転ディスク40は、円板状をなし、その中心に設けられた回転軸42を中心に回転可能に設けられる。そして、回転流路60の開口縁60aは、回転軸42を中心側とする円弧状に形成され、回転軸42に近い内径側開口縁60aaと回転軸42から遠い外径側開口縁60abとを含む。弁シール部材81は、その周方向に沿って上ハウジング11A、固定ディスク50と接触可能な先端部81aを有する。そして、一対の第1シール部91は、回転流路60の外径側開口縁60abに沿って配置される外径側第1シール部91Aと、回転流路60の内径側開口縁60aaに沿って配置される内径側第1シール部91Bとを含む。ここで、外径側第1シール部91Aの先端部81aは、外径側第1シール部91Aの内周寄りにオフセットして配置され、内径側第1シール部91Bの先端部81aは、内径側第1シール部91Bの外周寄りにオフセットして配置される。第2シール部92の先端部81a(先端部92a)は、外径側第1シール部91Aと内径側第1シール部91Bとの間で連続的に徐々に変化する。 That is, in this embodiment, the rotating disk 40 is disk-shaped and rotatable around the rotating shaft 42 provided at its center. The opening edge 60a of the rotating flow path 60 is formed in an arc shape with the rotating shaft 42 at the center, and includes an inner diameter side opening edge 60aa close to the rotating shaft 42 and an outer diameter side opening edge 60ab far from the rotating shaft 42. The valve seal member 81 has a tip portion 81a that can contact the upper housing 11A and the fixed disk 50 along its circumferential direction. The pair of first seal portions 91 include an outer diameter side first seal portion 91A arranged along the outer diameter side opening edge 60ab of the rotating flow path 60, and an inner diameter side first seal portion 91B arranged along the inner diameter side opening edge 60aa of the rotating flow path 60. Here, the tip 81a of the outer diameter side first seal portion 91A is offset toward the inner circumference of the outer diameter side first seal portion 91A, and the tip 81a of the inner diameter side first seal portion 91B is offset toward the outer circumference of the inner diameter side first seal portion 91B. The tip 81a (tip 92a) of the second seal portion 92 changes gradually and continuously between the outer diameter side first seal portion 91A and the inner diameter side first seal portion 91B.

[流路切替装置の作用及び効果について]
以上説明したこの実施形態の流路切替装置1の構成によれば、第2実施形態の作用及び効果に加え次のような作用及び効果が得られる。すなわち、本実施形態の弁シール部材81につき、外径側第1シール部91Aの先端部81aは、外径側第1シール部91Aの内周寄りにオフセットして配置され、内径側第1シール部91Bの先端部81aは、内径側第1シール部91Bの外周寄りにオフセットして配置される(図26参照)。従って、弁シール部材81につき、外径側第1シール部91Aの先端部81aと内径側第1シール部91Bの先端部81aの、上ハウジング11A、固定ディスク50に対する回転半径が、第2実施形態のそれよりも小さくなる。このため、弁シール部材81の上ハウジング11A、固定ディスク50に対する駆動トルクを低減することができる。この結果、回転ディスク40を回転させるためのモータによる駆動トルクを低減することができ、その分だけモータの小型化を図ることができる。
[Actions and Effects of the Flow Path Switching Device]
According to the configuration of the flow path switching device 1 of this embodiment described above, in addition to the actions and effects of the second embodiment, the following actions and effects can be obtained. That is, in the valve seal member 81 of this embodiment, the tip 81a of the outer diameter side first seal portion 91A is disposed offset toward the inner circumference of the outer diameter side first seal portion 91A, and the tip 81a of the inner diameter side first seal portion 91B is disposed offset toward the outer circumference of the inner diameter side first seal portion 91B (see FIG. 26). Therefore, in the valve seal member 81, the rotation radius of the tip 81a of the outer diameter side first seal portion 91A and the tip 81a of the inner diameter side first seal portion 91B relative to the upper housing 11A and the fixed disk 50 is smaller than that of the second embodiment. Therefore, the drive torque of the valve seal member 81 relative to the upper housing 11A and the fixed disk 50 can be reduced. As a result, the drive torque of the motor for rotating the rotating disk 40 can be reduced, and the motor can be made smaller accordingly.

<別の実施形態>
なお、この開示技術は前記各実施形態に限定されるものではなく、開示技術の趣旨を逸脱することのない範囲で構成の一部を適宜変更して実施することもできる。
<Another embodiment>
The disclosed technology is not limited to the above-described embodiments, and may be implemented by modifying part of the configuration as appropriate without departing from the spirit of the disclosed technology.

(1)前記各実施形態では、流路切替装置1の弁体部12に、回転軸42を中心に回転する回転ディスク40と、下ハウジング11Bに固定された固定ディスク50を設けた。これに対し、弁体部から固定ディスクを省略し、回転軸を中心に回転する回転ディスクのみを設けてもよい。図27に、固定ディスクを省略したタイプの流路切替装置を断面図により示す。このタイプでは、上ハウジング11Aと下ハウジング11Bとの間に回転ディスク40が設けられ、回転ディスク40の上下両面に設けられた弁シール部材81は、上ハウジング11Aと下ハウジング11Bの内面に摺動可能となっている。 (1) In each of the above embodiments, the valve body portion 12 of the flow path switching device 1 is provided with a rotating disk 40 that rotates around the rotation axis 42, and a fixed disk 50 fixed to the lower housing 11B. In contrast, the fixed disk may be omitted from the valve body portion, and only a rotating disk that rotates around the rotation axis may be provided. Figure 27 shows a cross-sectional view of a flow path switching device of the type in which the fixed disk is omitted. In this type, the rotating disk 40 is provided between the upper housing 11A and the lower housing 11B, and the valve seal members 81 provided on both the upper and lower surfaces of the rotating disk 40 are slidable on the inner surfaces of the upper housing 11A and the lower housing 11B.

(2)前記各実施形態では、弁シール部材81(上弁シール部材81A及び下弁シール部材81B)をそれぞれ回転ディスク40の上下両面に固定し、上ハウジング11A及び固定ディスク50の内面に対し摺動可能に設けた。これに対し、弁シール部材をハウジングに固定し、回転ディスクに対し摺動可能に設けることもできる。 (2) In each of the above embodiments, the valve seal members 81 (upper valve seal member 81A and lower valve seal member 81B) are fixed to the upper and lower surfaces of the rotating disk 40, respectively, and are provided so as to be slidable relative to the inner surfaces of the upper housing 11A and the fixed disk 50. In contrast, the valve seal members can also be fixed to the housing and provided so as to be slidable relative to the rotating disk.

(3)前記各実施形態では、弁部材をハウジングに対し回転する回転ディスクにより構成したが、弁部材をハウジングに対し直線的に移動する移動部材により構成することもできる。 (3) In each of the above embodiments, the valve member is configured as a rotating disk that rotates relative to the housing, but the valve member can also be configured as a moving member that moves linearly relative to the housing.

(4)前記各実施形態では、流路切替装置1を六方弁に具体化したが、これに限らず、三方弁や四方弁などのその他の多方弁に具体化することもできる。 (4) In each of the above embodiments, the flow path switching device 1 is embodied as a six-way valve, but it is not limited to this and can also be embodied as other multi-way valves such as a three-way valve or a four-way valve.

(5)前記各実施形態では、「弁体部」である回転ディスク40の板厚方向に貫通した回転流路60を「弁流路」として設けたが、弁体部を板厚方向に貫通しない弁流路を設けることもできる。 (5) In each of the above embodiments, the rotary flow passage 60 that penetrates the rotary disk 40, which is the "valve body portion," in the plate thickness direction is provided as the "valve flow passage." However, it is also possible to provide a valve flow passage that does not penetrate the valve body portion in the plate thickness direction.

この開示技術は、例えば、冷媒等の流体が流れる流体回路において流体の流路を切り替えるために利用することができる。 The disclosed technology can be used, for example, to switch the flow path of a fluid in a fluid circuit through which a fluid such as a refrigerant flows.

1 流路切替装置
11 ハウジング
20 流入流路(ハウジング流路)
20a 開口部
30 流出流路(ハウジング流路)
30a 開口部
40 回転ディスク(弁部材)
42 回転軸
50 固定ディスク(ハウジング)
60 回転流路(弁流路)
60a 開口縁
60aa 内径側開口縁
60ab 外径側開口縁
70 固定流路(ハウジング流路)
70a 開口部
81 弁シール部材
81a 先端部
91 第1シール部
91A 外径側第1シール部
91B 内径側第1シール部
92 第2シール部
D1 第1シール距離
D2 第2シール距離
1 Flow path switching device 11 Housing 20 Inlet flow path (housing flow path)
20a Opening 30 Outlet flow passage (housing flow passage)
30a Opening 40 Rotating disk (valve member)
42 Rotating shaft 50 Fixed disk (housing)
60 Rotational flow path (valve flow path)
60a: Opening edge 60aa: Inner diameter side opening edge 60ab: Outer diameter side opening edge 70: Fixed flow passage (housing flow passage)
70a Opening 81 Valve seal member 81a Tip 91 First seal portion 91A Outer diameter side first seal portion 91B Inner diameter side first seal portion 92 Second seal portion D1 First seal distance D2 Second seal distance

Claims (4)

ハウジングと、
前記ハウジングの内部に配置され、前記ハウジングに対し相対的に駆動する板状の弁部材と
を備え、
前記ハウジングは、複数のハウジング流路を含み、
前記弁部材は、板面方向に沿って伸びる少なくとも一つの弁流路を含み、
前記弁流路は、開口縁を含み、
前記ハウジング流路は、前記弁流路に連通可能な複数の開口部を含み、
前記ハウジングと前記弁部材との間で前記弁流路の前記開口縁を囲むように配置され、前記弁部材の駆動に伴い前記ハウジングとの間で摺動する弁シール部材が設けられ、
前記弁部材が駆動することで前記弁流路により前記複数の開口部のうち少なくとも2つを接続して前記ハウジング流路と前記弁流路を選択的に連通させることで流体の流路を形成するように構成した流路切替装置において、
前記弁シール部材は、前記開口縁を挟んで前記弁部材の駆動方向に沿って伸びる一対の第1シール部と、前記開口縁を挟んで前記弁部材の駆動方向と交差する方向に配置され、前記一対の第1シール部の両端を繋ぐ一対の第2シール部とを含み、
前記ハウジング流路の前記開口部と前記第2シール部との間の最短距離である第2シール距離は、前記ハウジング流路の前記開口部と前記第1シール部との間の最短距離である第1シール距離よりも大きく設定される
ことを特徴とする流路切替装置。
Housing and
a plate-shaped valve member disposed inside the housing and movable relative to the housing;
the housing includes a plurality of housing channels;
The valve member includes at least one valve flow passage extending along a plate surface direction,
The valve passage includes an opening edge,
the housing passage includes a plurality of openings that are communicable with the valve passage;
a valve seal member is provided between the housing and the valve member so as to surround the opening edge of the valve flow passage, and the valve seal member slides between the housing and the valve member as the valve member is driven;
a flow path switching device configured to form a flow path for a fluid by selectively connecting at least two of the plurality of openings through the valve flow path by driving the valve member to selectively communicate the housing flow path with the valve flow path,
the valve seal member includes a pair of first seal portions extending along a drive direction of the valve member with the opening edge therebetween, and a pair of second seal portions arranged in a direction intersecting the drive direction of the valve member with the opening edge therebetween and connecting both ends of the pair of first seal portions,
A flow path switching device characterized in that a second sealing distance, which is the shortest distance between the opening of the housing flow path and the second sealing portion, is set larger than a first sealing distance, which is the shortest distance between the opening of the housing flow path and the first sealing portion.
請求項1に記載の流路切替装置において、
前記流体の流路を形成した状態では、前記ハウジング流路の前記開口部が、前記弁流路の前記開口縁の駆動方向両端から間隔を隔てて位置し、前記開口縁の駆動方向両端は半円弧状をなしており、
前記第2シール部は、前記開口縁の駆動方向両端に沿って半円弧状をなし、前記第2シール部と前記開口縁との距離は円周方向に沿って均一に設定される
ことを特徴とする流路切替装置。
The flow path switching device according to claim 1 ,
In a state where the fluid flow path is formed, the opening of the housing flow path is located at a distance from both ends of the opening edge of the valve flow path in the drive direction, and both ends of the opening edge in the drive direction form semicircular arc shapes,
A flow path switching device characterized in that the second seal portion is semicircular along both ends of the opening edge in the driving direction, and the distance between the second seal portion and the opening edge is set uniformly along the circumferential direction.
請求項1又は2に記載の流路切替装置において、
前記弁シール部材は、その周方向に沿って前記ハウジング又は前記弁部材と接触可能な先端部を有し、前記先端部は、前記弁シール部材の内周寄りに配置される
ことを特徴とする流路切替装置。
The flow path switching device according to claim 1 or 2,
A flow path switching device characterized in that the valve seal member has a tip portion along its circumferential direction that can contact the housing or the valve member, and the tip portion is positioned toward the inner circumference of the valve seal member.
請求項1又は2に記載の流路切替装置において、
前記弁部材は、円板状をなし、その中心に設けられた回転軸を中心に回転可能に設けられ、
前記弁流路の前記開口縁は、前記回転軸を中心側とする円弧状に形成され、前記回転軸に近い内径側開口縁と前記回転軸から遠い外径側開口縁とを含み、
前記弁シール部材は、その周方向に沿って前記ハウジング又は前記弁部材と接触可能な先端部を有し、
前記一対の第1シール部は、前記弁流路の前記外径側開口縁に沿って配置される外径側第1シール部と、前記弁流路の前記内径側開口縁に沿って配置される内径側第1シール部とを含み、
前記外径側第1シール部の前記先端部は、前記外径側第1シール部の内周寄りに配置され、前記内径側第1シール部の前記先端部は、前記内径側第1シール部の外周寄りに配置される
ことを特徴とする流路切替装置。
The flow path switching device according to claim 1 or 2,
The valve member is disk-shaped and rotatable about a rotation axis provided at the center thereof.
the opening edge of the valve flow passage is formed in an arc shape with the rotation shaft as a center side, and includes an inner diameter side opening edge close to the rotation shaft and an outer diameter side opening edge far from the rotation shaft,
the valve seal member has a tip portion that can come into contact with the housing or the valve member along a circumferential direction thereof,
the pair of first seal portions includes an outer diameter side first seal portion arranged along an outer diameter side opening edge of the valve flow path, and an inner diameter side first seal portion arranged along an inner diameter side opening edge of the valve flow path,
A flow path switching device characterized in that the tip portion of the outer diameter side first seal portion is positioned toward the inner circumference of the outer diameter side first seal portion, and the tip portion of the inner diameter side first seal portion is positioned toward the outer circumference of the inner diameter side first seal portion.
JP2023020710A 2023-02-14 2023-02-14 Flow path switching device Pending JP2024115173A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023020710A JP2024115173A (en) 2023-02-14 2023-02-14 Flow path switching device
PCT/JP2024/000411 WO2024171662A1 (en) 2023-02-14 2024-01-11 Flow path switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023020710A JP2024115173A (en) 2023-02-14 2023-02-14 Flow path switching device

Publications (1)

Publication Number Publication Date
JP2024115173A true JP2024115173A (en) 2024-08-26

Family

ID=92421451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023020710A Pending JP2024115173A (en) 2023-02-14 2023-02-14 Flow path switching device

Country Status (2)

Country Link
JP (1) JP2024115173A (en)
WO (1) WO2024171662A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122395A (en) * 1996-10-22 1998-05-15 Calsonic Corp Four-way selector valve
JP5835454B2 (en) * 2014-02-07 2015-12-24 ダイキン工業株式会社 Four-way selector valve
JP7314461B2 (en) * 2019-02-21 2023-07-26 Smc株式会社 Spool switching valve
WO2022172743A1 (en) * 2021-02-15 2022-08-18 イーグル工業株式会社 Selector valve

Also Published As

Publication number Publication date
WO2024171662A1 (en) 2024-08-22

Similar Documents

Publication Publication Date Title
CN108302206B (en) Double eccentric valve
JP2011094787A (en) Rotary valve
JP2023528531A (en) Variable cylinder wall for sealing plug valve
JP2024524034A (en) Rotary Disc Valve
WO2024171662A1 (en) Flow path switching device
WO2022070839A1 (en) Valve device
JP2010261564A (en) Rotary valve and method for producing the same
US11255449B2 (en) Valve device
JP7163695B2 (en) valve device
CN116265788A (en) Rotary disk valve
JP6945859B2 (en) Flow switching valve
JP5820644B2 (en) Rotating damper
JP7287245B2 (en) control valve
EP3680523B1 (en) Valve
JP7148449B2 (en) three-way valve
EP3680522B1 (en) Valve
JPH11325276A (en) Passage selector valve
WO2024232140A1 (en) Flow path switching device
WO2024135384A1 (en) Rotary valve
KR102717973B1 (en) A valve for a vehicle
WO2024210157A1 (en) Flow path switching valve
JP7235328B2 (en) valve
EP4411184A1 (en) Multi-way valve
WO2024105986A1 (en) Flow passage switching device
JP7568317B1 (en) Rotary Valve