JP2024111338A - Aluminum-based member and manufacturing method thereof - Google Patents

Aluminum-based member and manufacturing method thereof Download PDF

Info

Publication number
JP2024111338A
JP2024111338A JP2023015756A JP2023015756A JP2024111338A JP 2024111338 A JP2024111338 A JP 2024111338A JP 2023015756 A JP2023015756 A JP 2023015756A JP 2023015756 A JP2023015756 A JP 2023015756A JP 2024111338 A JP2024111338 A JP 2024111338A
Authority
JP
Japan
Prior art keywords
aluminum
anodized film
sub
hole
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023015756A
Other languages
Japanese (ja)
Inventor
悠太 竹内
富美男 清水
秀明 松岡
広行 森
信也 浦田
裕樹 大谷
隆久 蟹江
良平 角
里沙 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Central R&D Labs Inc
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Central R&D Labs Inc, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2023015756A priority Critical patent/JP2024111338A/en
Priority to PCT/JP2023/039981 priority patent/WO2024166466A1/en
Publication of JP2024111338A publication Critical patent/JP2024111338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

【課題】高温下での耐割れ性や上層に対する密着性(アンカー効果)等に優れる陽極酸化膜を有するアルミニウム系部材を提供する。【解決手段】本発明は、アルミニウム基材の少なくとも一部表面が陽極酸化膜で被覆されたアルミニウム系部材である。その陽極酸化膜は、アルミニウム基材側から略直管状に延びた主孔とその主孔の側壁の一部に開口した副孔とを有する。その陽極酸化膜は、例えば、上面観察して求まる空孔率が18~65%である。主孔は、例えば、開口径が50~1000nmである。副孔は、主孔の底側よりも開口側に多く分布しているとよい。このような陽極酸化膜は、例えば、リン酸を含む電解液に接触させたアルミニウム基材へ、所定条件下で通電することにより得られる。【選択図】図1[Problem] To provide an aluminum-based member having an anodized film that is excellent in crack resistance at high temperatures and adhesion to an upper layer (anchor effect). [Solution] The present invention is an aluminum-based member in which at least a portion of the surface of an aluminum base is coated with an anodized film. The anodized film has a main hole extending in a substantially straight tube shape from the aluminum base side and a sub-hole opening in a portion of the side wall of the main hole. The anodized film has a porosity of 18 to 65% as determined by observing the top surface, for example. The main hole has an opening diameter of 50 to 1000 nm, for example. It is preferable that the sub-holes are distributed more on the opening side of the main hole than on the bottom side. Such an anodized film can be obtained, for example, by passing an electric current under specified conditions to an aluminum base in contact with an electrolyte containing phosphoric acid. [Selected Figure] Figure 1

Description

本発明は、少なくとも一部の表面に陽極酸化膜を有するアルミニウム系部材等に関する。 The present invention relates to an aluminum-based component having an anodized film on at least a portion of its surface.

アルミニウム系部材(Al系部材)は、耐食性や絶縁性等の確保を目的として、陽極酸化処理がなされる。陽極酸化処理は、電解液浴(硫酸浴、シュウ酸浴等)に浸漬等したアルミニウム基材(Al基材)を陽極(アノード)とした通電によりなされる。これによりAl基材表面(被処理面)には、酸化アルミニウム(Al等)からなる陽極酸化膜(アルマイト皮膜)が形成される。陽極酸化処理は、Al基材自体の酸化を伴う点で、めっき処理等とは異なっている。 Anodizing is performed on aluminum-based members (Al-based members) to ensure corrosion resistance, insulation, etc. Anodizing is performed by passing electricity through an aluminum base material (Al base material) immersed in an electrolytic solution bath (sulfuric acid bath, oxalic acid bath, etc.) as an anode. As a result, an anodic oxide film (anodized film) made of aluminum oxide (Al 2 O 3 , etc.) is formed on the surface of the Al base material (treated surface). Anodizing differs from plating and the like in that it involves oxidation of the Al base material itself.

陽極酸化膜は、通常、緻密で薄いバリア層(活性層)と、その上に成長したポーラス層(成長層)とからなる。一般的な陽極酸化膜は、表面側で開口した略直管(筒)状の微細孔(群)からなるポーラス層がその大部分を占める。耐食性の向上を目的とする陽極酸化膜は、ポーラス層の開口を閉じる封孔処理やその孔を埋める封止処理もなされ得る。 An anodic oxide film usually consists of a dense, thin barrier layer (active layer) and a porous layer (growth layer) grown on top of it. In a typical anodic oxide film, the majority of the film is made up of a porous layer consisting of roughly straight, tubular micropores (groups) that open on the surface side. An anodic oxide film intended to improve corrosion resistance can also be subjected to a sealing process to close the openings in the porous layer or a sealing process to fill the holes.

ところで、陽極酸化膜は、耐食性の確保以外に、その表面上に形成する上層(例えば塗膜等の樹脂層)の密着性や接着性等を確保する下層(下地)としても利用される。このような陽極酸化膜に関連する記載が、例えば、下記の特許文献にある。 Incidentally, in addition to ensuring corrosion resistance, anodized films are also used as underlayers (bases) that ensure the adhesion and bonding properties of upper layers (e.g., resin layers such as coatings) formed on the surface. For example, the following patent documents contain descriptions related to such anodized films:

米国特許4085012U.S. Patent 4,085,012 特開2008-13805Patent Publication 2008-13805 特開2013-76118Patent Publication No. 2013-76118 特開2021-75763Patent Publication No. 2021-75763

特許文献1は、リン酸(3~20%)を含む電解液(65~95°F/18~35℃)に接触させた純アルミニウムへ通電(3~25V)して陽極酸化膜を形成している(特許文献1のTABLE1参照)。特許文献1には、陽極酸化膜の形態については何ら記載がない。 In Patent Document 1, an anodic oxide film is formed by passing electricity (3 to 25 V) through pure aluminum that is in contact with an electrolyte (65 to 95°F/18 to 35°C) containing phosphoric acid (3 to 20%) (see TABLE 1 in Patent Document 1). Patent Document 1 does not disclose anything about the form of the anodic oxide film.

特許文献2は、リン酸ナトリウム(5重量%)とタンニン酸(1.25重量%)を含む電解液(50℃)に接触させたAl-Mn系基材(A3004)に、通電(2A/dm、14V)して、有機化合物成分を含有する陽極酸化膜を形成している。この陽極酸化膜は膜厚:20nm、含水率:2%、空孔率:3%であり、全体的に非常に薄くて緻密である(特許文献2の実施例5参照)。 In Patent Document 2, an anodic oxide film containing an organic compound component is formed by passing a current (2 A/ dm2 , 14 V) through an Al-Mn-based substrate (A3004) in contact with an electrolyte (50°C) containing sodium phosphate (5 wt%) and tannic acid (1.25 wt%). This anodic oxide film has a thickness of 20 nm, a water content of 2%, and a porosity of 3%, and is very thin and dense overall (see Example 5 of Patent Document 2).

特許文献3は、リン酸水溶液(20重量%)からなる電解液(15~25℃)に接触させたAl-Mg-Si系基材(A6061)へ通電(2~4A/cm、20~80V)して陽極酸化膜を形成している。この陽極酸化膜は、軸方向に延びる孔からなる柱状セルと、その内周面から垂直方向に延びる枝孔とを有する(特許文献3の図1参照)。しかし、特許文献3に顕微鏡写真等の掲載はなく、その具体的な形態が不明である。Siを含む基材に陽極酸化処理をしているため、その枝孔は、ポーラス層がSiを避けて成長する過程でできた程度の微小なものと推察される。 In Patent Document 3, an anodic oxide film is formed by passing a current (2-4 A/cm 2 , 20-80 V) through an Al-Mg-Si-based substrate (A6061) in contact with an electrolyte (15-25°C) consisting of an aqueous phosphoric acid solution (20% by weight). This anodic oxide film has columnar cells consisting of holes extending in the axial direction and branch holes extending vertically from the inner peripheral surface (see FIG. 1 of Patent Document 3). However, Patent Document 3 does not include any microscopic photographs, and the specific form is unclear. Since the substrate containing Si is anodized, it is presumed that the branch holes are very small and were formed in the process in which the porous layer grew while avoiding the Si.

特許文献4は、リン酸水溶液(1.46モル/L)からなる電解液(15℃)に接触させたAl-Mg系基材(A5052)に通電(15V)して第1酸化皮膜を形成した後、さらに硫酸水溶液(3.67モル/L)からなる電解液(20~23℃)にも接触させて通電(12.5V)して第2酸化皮膜を形成している。このようにして形成される皮膜は、略直管状に延びた細孔を有する陽極酸化膜とは異なる複雑な形態をしている(特許文献4の図3参照)。 In Patent Document 4, a first oxide film is formed by passing electricity (15 V) through an Al-Mg-based substrate (A5052) in contact with an electrolyte (15°C) consisting of an aqueous phosphoric acid solution (1.46 mol/L), and then the substrate is further brought into contact with an electrolyte (20-23°C) consisting of an aqueous sulfuric acid solution (3.67 mol/L) and electricity (12.5 V) is passed through to form a second oxide film. The film formed in this way has a complex shape that differs from an anodic oxide film with pores that extend in a roughly straight tube shape (see Figure 3 in Patent Document 4).

本発明は、このような事情に鑑みてなされたものであり、新たな形態の陽極酸化膜を有するアルミニウム系部材等を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide an aluminum-based component having a new type of anodized film.

本発明者は、上記の課題を解決すべく鋭意研究した結果、略直管状に延びた主孔の側壁を貫通する副孔を有する陽極酸化膜の形成に成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of intensive research into solving the above problems, the inventors succeeded in forming an anodic oxide film with sub-holes that penetrate the side walls of a main hole that extends in a substantially straight tube shape. By expanding on this result, the inventors were able to complete the present invention, which is described below.

《アルミニウム系部材》
(1)本発明のアルミニウム系部材(「Al系部材」ともいう。)は、アルミニウム基材の少なくとも一部表面が陽極酸化膜で被覆されたアルミニウム系部材であって、該陽極酸化膜は、該アルミニウム基材側から略直管状に延びた主孔と該主孔の側壁の一部に開口する副孔とを有し、該陽極酸化膜は、上面観察して求まる空孔率が18~65%であるアルミニウム系部材である。
<Aluminum-based components>
(1) An aluminum-based member (also referred to as "Al-based member") of the present invention is an aluminum-based member in which at least a portion of the surface of an aluminum base is covered with an anodized film, the anodized film having a main hole extending in a substantially straight tubular shape from the aluminum base side and a sub-hole opening in a portion of a side wall of the main hole, and the anodized film has a porosity of 18 to 65% as determined by observing the top surface.

(2)本発明に係る陽極酸化膜は、全体的に空孔率が大きく、略直管状に延びた主孔に加えて、その主孔の側壁に開口した副孔も有する。このため、例えば、陽極酸化膜上に上層(例えば樹脂層)を形成する場合、その構成物(樹脂等)が主孔のみならず副孔にも侵入、充填、係絡等し易く、アンカー効果の増加等による上層の密着性や接着性等の向上が期待され得る。 (2) The anodized film according to the present invention has a high overall porosity, and in addition to the main holes that extend in a generally straight tube shape, it also has sub-holes that open into the side walls of the main holes. For this reason, for example, when an upper layer (e.g., a resin layer) is formed on the anodized film, the constituents (e.g., resin) can easily penetrate, fill, and engage not only the main holes but also the sub-holes, and it is expected that the adhesion and bonding properties of the upper layer will be improved due to an increased anchor effect, etc.

また本発明に係る陽極酸化膜は、主孔に加えて副孔を有し高空孔率であるため、柔軟性に富む。このような陽極酸化膜は、衝撃や熱応力等が加わっても割れ(クラック)等が発生し難く、優れた耐衝撃性や耐熱性等を発揮し得る。 The anodized film according to the present invention has a high porosity, with sub-holes in addition to main holes, and is therefore highly flexible. Such an anodized film is less likely to crack even when subjected to impact or thermal stress, and can exhibit excellent impact resistance and heat resistance.

《アルミニウム系部材の製造方法等》
本発明は、アルミニウム系部材の製造方法または陽極酸化方法としても把握される。例えば、本発明は、リン酸を含む電解液に接触させたアルミニウム基材へ通電する電解工程を備え、上述したアルミニウム系部材が得られる製造方法でもよい。
<<Manufacturing methods for aluminum-based components, etc.>>
The present invention can also be understood as a method for producing an aluminum-based member or an anodizing method. For example, the present invention may be a method for producing the aluminum-based member described above, comprising an electrolysis step of applying current to an aluminum base material that has been brought into contact with an electrolytic solution containing phosphoric acid.

電解液にリン酸が含まれる場合、上述した陽極酸化膜の形成が促進されることに加えて、陽極酸化膜の表面が不溶性のリン酸塩皮膜で被覆され得る。リン酸塩皮膜により、陽極酸化膜の自然封孔(大気中に含まれる水分との水和反応)が抑止される。このため、例えば、陽極酸化膜を大気中に長時間放置しても、主孔や副孔の開口状態が維持され、陽極酸化膜の下地層としての機能が安定的に確保され得る。
《その他》
When the electrolyte contains phosphoric acid, the formation of the anodic oxide film described above is promoted, and the surface of the anodic oxide film can be coated with an insoluble phosphate film. The phosphate film suppresses natural pore sealing (hydration reaction with moisture in the air) of the anodic oxide film. Therefore, for example, even if the anodic oxide film is left in the air for a long time, the main pores and sub-pores remain open, and the function of the anodic oxide film as a base layer can be stably ensured.
"others"

(1)本明細書では、説明の便宜上、陽極酸化膜の最表面側(主孔の開口側)を上側または上面側という。逆に、その反対側(Al基材側)を下側または底側という。適宜、陽極酸化膜の膜厚方向(通常は主孔の成長方向)を縦方向、それに略直交する方向を横方向ともいう。 (1) In this specification, for ease of explanation, the outermost surface side of the anodic oxide film (the opening side of the main hole) is referred to as the upper side or top side. Conversely, the opposite side (the Al substrate side) is referred to as the lower side or bottom side. For convenience, the film thickness direction of the anodic oxide film (usually the growth direction of the main hole) is also referred to as the vertical direction, and the direction approximately perpendicular to that is also referred to as the horizontal direction.

空孔率や開口径は、陽極酸化膜の上面側を顕微鏡観察して得られた画像(観察像)に基づいて評価される。副孔の有無(個数)や形態は、その上面側の観察像に基づいても評価され得るが、陽極酸化膜の側(断)面(膜厚方向に切断して得られる縦断面)の観察像に基く評価が好ましい。副孔は、少なくとも、陽極酸化膜の最表面付近の表層域(深さ1μm×幅10μm)で評価されるとよい。 The porosity and opening diameter are evaluated based on an image (observation image) obtained by observing the top side of the anodized film under a microscope. The presence (number) and shape of sub-holes can also be evaluated based on the observation image of the top side, but evaluation based on the observation image of the side (cross-section) of the anodized film (longitudinal cross-section obtained by cutting in the film thickness direction) is preferable. Sub-holes should be evaluated at least in the surface layer region (depth 1 μm × width 10 μm) near the outermost surface of the anodized film.

観察像の評価は、例えば、画像解析ソフトウェアを利用して行なうとよい。副孔の個数(分布)なら、観察像に基づいて目視によりカウントでもよい。 The observed image can be evaluated, for example, using image analysis software. The number (distribution) of subholes can be counted visually based on the observed image.

観察像の視野(評価範囲)は問わないが、例えば、0.6×0.5μm~12.7×8.8μmとすればよい。 The field of view (evaluation range) of the observed image is not important, but it may be, for example, 0.6 x 0.5 μm to 12.7 x 8.8 μm.

空孔率は、観察した視野内にある陽極酸化膜の全面積に対する空孔面積(合計値)の割合である。開口径は、同視野内にある各空孔の円相当径の平均算術値とする。空孔率や開口径は、例えば、画像解析ソフト(Image J)により算出される。 Porosity is the ratio of the pore area (total value) to the total area of the anodized film within the observed field of view. The aperture diameter is the average arithmetic value of the circle-equivalent diameter of each pore within the same field of view. The porosity and aperture diameter are calculated, for example, using image analysis software (Image J).

陽極酸化膜の膜厚は、特に断らない限り、膜厚計により測定値とする。適宜、観察像に基づいて、陽極酸化膜の最底面(バリア層の最下面)から最表面(ポーラス層の最上面)までの距離(平均値)を膜厚としてもよい。 Unless otherwise specified, the thickness of the anodic oxide film is the measured value using a film thickness meter. If appropriate, the film thickness may be determined as the distance (average value) from the bottom surface of the anodic oxide film (the bottom surface of the barrier layer) to the top surface (the top surface of the porous layer) based on the observed image.

(2)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。 (2) Unless otherwise specified, "x to y" in this specification includes a lower limit of x and an upper limit of y. Any number included in the various numerical values or numerical ranges described in this specification may be used as a new lower limit or upper limit to create a new range such as "a to b."

第1実施例に係る陽極酸化膜の上面を観察したSEM像である。1 is a SEM image of the upper surface of an anodic oxide film according to a first example. その陽極酸化膜の側断面の上側を観察したSEM像である。This is an SEM image of the upper side of the cross section of the anodic oxide film. その陽極酸化膜の側断面の下側(底側)を観察したSEM像である。This is an SEM image of the lower side (bottom side) of a cross section of the anodic oxide film. 第2実施例に係る陽極酸化膜の側断面の上側を観察したSEM像である。13 is a SEM image of the upper side of a cross section of an anodic oxide film according to a second embodiment. その陽極酸化膜の側断面の下側(底側)を観察したSEM像である。This is an SEM image of the lower side (bottom side) of a cross section of the anodic oxide film. 第3実施例に係る陽極酸化膜の上面を観察したSEM像である。13 is a SEM image of the upper surface of an anodic oxide film according to the third example. 第3実施例に係る陽極酸化膜の上面を観察したSEM像である。13 is a SEM image of the upper surface of an anodic oxide film according to the third example.

本明細書で説明する内容は、本発明の物(Al系部材、陽極酸化膜等)のみならず、方法(Al系部材の製造方法、陽極酸化方法等)にも適宜該当し得る。本発明の構成要素に、本明細書中から任意に選択した一以上の構成要素を付加し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 The contents described in this specification may apply not only to the products of the present invention (Al-based members, anodized films, etc.) but also to methods (methods for manufacturing Al-based members, anodization methods, etc.) as appropriate. One or more components selected arbitrarily from this specification may be added to the components of the present invention. Which embodiment is best depends on the target, required performance, etc.

《陽極酸化膜》
陽極酸化膜は、Al基材側から略直管状に延びた主孔と、その主孔の側壁の一部に開口する副孔とを有する。
<Anodic oxide film>
The anodized film has a main hole extending in a substantially straight tube shape from the Al base side, and a sub-hole opening in a part of the side wall of the main hole.

(1)主孔
主孔は、例えば、Al基材側の底部から上部の開口まで延びる有底筒状である。その孔の形態(形状、大きさ)は、縦方向(深さ方向、軸方向または延在方向)に沿って多少変化してもよい。
(1) Main hole The main hole is, for example, a bottomed cylindrical hole extending from the bottom on the Al base side to the opening at the top. The form (shape, size) of the hole may vary slightly along the vertical direction (depth direction, axial direction, or extension direction).

主孔の開口径は、例えば、50~1000nm、100~500nmまたは150~350nmである。このような開口径は、従来の柱状孔(セル)よりも大きい傾向にある。 The opening diameter of the main hole is, for example, 50 to 1000 nm, 100 to 500 nm, or 150 to 350 nm. Such opening diameters tend to be larger than conventional columnar holes (cells).

(2)副孔
副孔は、主孔の側壁の一部で開口して、横方向(主孔の側壁に略直交する方向)に延びる。副孔の少なくとも一部は、主孔の側壁を貫通(隣接する主孔間を連通)してもよい。
(2) Sub-hole The sub-hole opens in a part of the side wall of the main hole and extends laterally (in a direction substantially perpendicular to the side wall of the main hole). At least a part of the sub-hole may penetrate the side wall of the main hole (connect adjacent main holes).

副孔の分布は、主孔の縦方向に沿って均一的でも不均一的でもよい。副孔が主孔の底側よりも上側(開口側)が大きいと、陽極酸化膜表面に設けられる上層に対するアンカー効果等が増大し得る。 The distribution of the sub-holes may be uniform or non-uniform along the longitudinal direction of the main hole. If the sub-holes are larger on the upper side (opening side) of the main hole than on the bottom side, the anchoring effect on the upper layer provided on the surface of the anodized film may be increased.

副孔は、陽極酸化膜を側面観察した視野に少なくとも1個あればよい。さらにいえば、副孔を1個以上、3個以上さらには5個以上含む表層域(深さ1μm×幅10μm)が1箇所以上あるとよい。 There should be at least one sub-hole in the field of view when observing the anodized film from the side. Furthermore, it is desirable to have at least one surface region (depth 1 μm × width 10 μm) that contains one or more, three or more, or even five or more sub-holes.

(3)空孔率
陽極酸化膜の上面観察して求まる空孔率は、例えば、18~65%、20~55%、25~50%、30~45%または35~40%である。このような空孔率は、従来の柱状孔(セル)からなるポーラス層よりも大きい傾向にある。これにより、本発明に係る陽極酸化膜は、優れた柔軟性(耐割れ性)、上層に対する密着性や接着性等を発揮すると考えられる。
(3) Porosity The porosity determined by observing the top surface of the anodic oxide film is, for example, 18 to 65%, 20 to 55%, 25 to 50%, 30 to 45%, or 35 to 40%. Such porosity tends to be higher than that of conventional porous layers consisting of columnar holes (cells). It is believed that this allows the anodic oxide film according to the present invention to exhibit excellent flexibility (crack resistance), adhesion and bonding to upper layers, etc.

(4)膜厚
陽極酸化膜は、例えば、膜厚が0.1~20μm、0.5~10μmまたは1~5μmである。陽極酸化膜の膜厚には、いわゆるバリア層の厚みも含まれる。バリア層の厚さは、例えば、10~1000nm、50~500nm、100~300nmである。バリア層上に形成される主孔群を、適宜、本明細書でも「ポーラス層」という。
(4) Film Thickness The anodized film has a film thickness of, for example, 0.1 to 20 μm, 0.5 to 10 μm, or 1 to 5 μm. The film thickness of the anodized film includes the thickness of the so-called barrier layer. The thickness of the barrier layer is, for example, 10 to 1000 nm, 50 to 500 nm, or 100 to 300 nm. The group of main holes formed on the barrier layer is also referred to as the "porous layer" in this specification as appropriate.

(5)成分
陽極酸化膜は、主に酸化アルミニウム(Al)からなるが、電解液の組成に由来する成分を含んでもよい。例えば、リン酸を含む電解液を用いる場合なら、P、H等が陽極酸化膜中に含まれてもよい。また陽極酸化膜の表面付近に、リン酸塩(例えば、Al-P-O系化合物、Al-P-O-H系化合物)等があってもよい。
(5) Components The anodized film is mainly made of aluminum oxide (Al 2 O 3 ), but may contain components derived from the composition of the electrolyte. For example, if an electrolyte containing phosphoric acid is used, P, H, etc. may be contained in the anodized film. In addition, phosphates (e.g. Al-P-O compounds, Al-P-O-H compounds) may be present near the surface of the anodized film.

《Al基材》
主孔と副孔を有する陽極酸化膜が形成される限り、Al系部材の用途に応じたAl基材が選択されるとよい。代表的なAl基材として、例えば、その全体に対するAl含有量が98質量%以上、98.5質量%以上、99質量%以上さらには99.6質量%以上の純アルミニウム(JIS A1000系)がある。Al系部材が導電部材である場合なら、導電率が50%IACS(International Annealed Copper Standard)以上、55%IACS以上さらには60%IACS以上のAl基材を用いるとよい。なお、「%IACS」は、焼鈍標準軟銅(体積抵抗率:1.7241×10-8Ωm)の導電率(100%IACS)に対する相対指標(比率)である。
<<Aluminum base material>>
As long as an anodized film having main holes and sub-holes is formed, an Al base material may be selected according to the application of the Al-based member. A representative Al base material is, for example, pure aluminum (JIS A1000 series) having an Al content of 98 mass% or more, 98.5 mass% or more, 99 mass% or more, or even 99.6 mass% or more relative to the total. If the Al-based member is a conductive member, an Al base material having a conductivity of 50% IACS (International Annealed Copper Standard) or more, 55% IACS or more, or even 60% IACS or more may be used. Note that "%IACS" is a relative index (ratio) to the conductivity (100%IACS) of annealed standard soft copper (volume resistivity: 1.7241×10 −8 Ωm).

Al基材は、例えば、展伸材、鋳造材、塑性加工された加工材、溶射材等のいずれでもよい。Al基材は、機械的性質等を改善するため、Mg、Fe、Si等の改質元素を少量(例えば、合計で1質量%以下さらには0.5質量%以下)含んでもよい。 The Al substrate may be, for example, a wrought material, a cast material, a plastically processed material, a thermally sprayed material, etc. The Al substrate may contain small amounts (for example, a total of 1 mass % or less, or even 0.5 mass % or less) of modifier elements such as Mg, Fe, and Si to improve mechanical properties, etc.

《被着体》
陽極酸化膜の少なくとも一部に被着体があってもよい。被着体は、例えば、樹脂体、セラミックス体、金属体等のいずれでもよい。被着体は、層状(膜状を含む。)でも、ブロック状(バルク状)でもよい。樹脂体なら、例えば、塗膜等の樹脂層、封止材、接着材等がある。本明細書では、陽極酸化膜の表面に設けられる被着体を、その形態を問わず、適宜「上層」という。
《Substrate》
At least a part of the anodized film may have an adherend. The adherend may be, for example, a resin body, a ceramic body, a metal body, etc. The adherend may be a layer (including a film) or a block (bulk). In the case of a resin body, for example, there is a resin layer such as a coating film, a sealant, an adhesive, etc. In this specification, the adherend provided on the surface of the anodized film is appropriately referred to as an "upper layer" regardless of its form.

《製造方法/陽極酸化方法》
陽極酸化膜は、電解液に接触させたアルミニウム基材へ通電する電解工程により形成される。
《Manufacturing method/anodizing method》
The anodic oxide film is formed by an electrolytic process in which an electric current is passed through an aluminum substrate in contact with an electrolyte.

(1)電解液
主孔および副孔が形成される限り、電解液の成分を問わない。電解液は、例えば、無機酸液(リン酸水溶液、硫酸水溶液、クロム酸水溶液等)でも有機酸液(蓚酸水溶液等)でもよい。
(1) Electrolyte The composition of the electrolyte is not limited as long as the main pores and the sub pores are formed. The electrolyte may be, for example, an inorganic acid solution (such as an aqueous phosphoric acid solution, an aqueous sulfuric acid solution, or an aqueous chromic acid solution) or an organic acid solution (such as an aqueous oxalic acid solution).

リン酸を含む電解液を用いる場合、リン酸濃度は、例えば、1~30%、2~20%または3~10%とすればよい。なお、本明細書でいう電解液の濃度は、特に断らない限り、その全体に対する質量割合である。電解液の温度(浴温)は、例えば、15~80℃、20~60℃または25~40℃とすればよい。 When an electrolyte containing phosphoric acid is used, the phosphoric acid concentration may be, for example, 1 to 30%, 2 to 20%, or 3 to 10%. In this specification, the concentration of the electrolyte is the mass percentage relative to the total unless otherwise specified. The temperature of the electrolyte (bath temperature) may be, for example, 15 to 80°C, 20 to 60°C, or 25 to 40°C.

(2)通電
電解工程は、例えば、定電流通電や定電圧通電によりなさる。通電中に電流(密度)や印加電圧が変化(変動)してもよい。電解工程は、直流通電でなされても、交流通電でなされても、交流成分と直流成分を合成した交直重畳通電でなされてもよい。交流電流の波形は、正弦波の他、矩形波、パルス波等でもよい。
(2) Passing current The electrolysis process is performed, for example, by passing a constant current or a constant voltage. The current (density) or applied voltage may change (fluctuate) during the passage of current. The electrolysis process may be performed by direct current, alternating current, or superimposed AC/DC current in which an AC component and a DC component are combined. The waveform of the alternating current may be a sine wave, a rectangular wave, a pulse wave, or the like.

直流通電により電解工程を行なう場合、例えば、少なくとも一時的に30~250V、40~200Vさらには75~175V程度の高電圧がAl基材へ印加されてもよい。電解液中に設ける対極は問わないが、通常、白金電極や黒鉛電極等が用いられる。 When the electrolysis process is carried out by direct current, for example, a high voltage of about 30 to 250 V, 40 to 200 V, or even 75 to 175 V may be applied to the Al substrate at least temporarily. There is no restriction on the counter electrode placed in the electrolyte, but a platinum electrode or a graphite electrode is usually used.

《用途》
Al系部材は、その用途を問わない。陽極酸化膜を絶縁被膜またはその一部とするとき、Al系部材は導電部材(電線、エレメント等)でもよい。この場合、陽極酸化膜上に別な絶縁体が被着されてもよい。例えば、ポリイミド、ポリウレタン、エポキシ等の絶縁樹脂(エナメル材)からなる樹脂層(絶縁層)を陽極酸化膜上に設けてもよい。樹脂層には、フィラーが含まれてもよい。フィラーは、例えば、熱伝導性フィラー、耐サージフィラー、比誘電率低下フィラーである。
<<Uses>>
The Al-based member may be used in any application. When the anodized film is an insulating coating or a part thereof, the Al-based member may be a conductive member (electric wire, element, etc.). In this case, another insulator may be applied onto the anodized film. For example, a resin layer (insulating layer) made of an insulating resin (enamel material) such as polyimide, polyurethane, or epoxy may be provided on the anodized film. The resin layer may contain a filler. The filler may be, for example, a thermally conductive filler, an anti-surge filler, or a dielectric constant reducing filler.

条件の異なる陽極酸化処理を種々行い、Al基材の表面に陽極酸化膜が形成された試料(Al系部材)を複数種製作した。このような具体例を挙げつつ、以下に本発明をさらに詳しく説明する。 A variety of anodizing treatments were performed under different conditions to produce several types of samples (Al-based components) in which an anodized film was formed on the surface of the Al base material. The present invention will be described in more detail below with reference to these specific examples.

[第1実施例/定電流電解]
《試料の製作》
(1)Al基材
陽極酸化処理を施すAl基材として、純アルミニウム(JIS A1050)からなる試験片(50mm角×2mm厚)を用意した。
[First Example/Constant Current Electrolysis]
<Sample Preparation>
(1) Al Substrate As an Al substrate to be anodized, a test piece (50 mm square × 2 mm thick) made of pure aluminum (JIS A1050) was prepared.

(2)電解工程
試験片に対して、表1に示す条件下で電解工程を行なった。電解液には、リン酸、硫酸またはシュウ酸の水溶液を用いた。表1に示した濃度は、水溶液全体に対する質量割合である。
(2) Electrolysis Step The test piece was subjected to an electrolysis step under the conditions shown in Table 1. An aqueous solution of phosphoric acid, sulfuric acid or oxalic acid was used as the electrolyte. The concentrations shown in Table 1 are mass ratios to the entire aqueous solution.

電解液を入れた処理浴に試験片全体を浸漬し、その試験片を陽極、白金電極を陰極として、電解液を撹拌しつつ、定電流(密度)の直流通電を行なった。表1に示した電流密度は、試験片の被処理面積で印加電流値を除した値である。なお、試験片をマスキングして、その表面の一部のみ(24cm)を被処理面とした。 The entire test piece was immersed in a treatment bath containing an electrolytic solution, and a constant current (density) direct current was applied to the test piece as the anode and the platinum electrode as the cathode while stirring the electrolytic solution. The current density shown in Table 1 is the value obtained by dividing the applied current value by the treated area of the test piece. The test piece was masked, and only a part of its surface (24 cm2 ) was designated as the treated surface.

電解工程中の印加電圧は変動するが、参考に、通電開始から10分経過後の測定電圧を表1に併せて示した。 The applied voltage fluctuates during the electrolysis process, but for reference, the measured voltage 10 minutes after the start of current application is also shown in Table 1.

(3)電解工程後に電解液から取り出した試験片を蒸留水でよく洗浄し、圧縮空気を吹き付けて水分を除去した後、大気中で十分に乾燥させた。こうして得た陽極酸化処理後の試験片(試料1、A1、B1)を後述の測定および観察に供した。 (3) After the electrolysis process, the test pieces were removed from the electrolyte and thoroughly washed with distilled water. They were then sprayed with compressed air to remove moisture and thoroughly dried in the air. The anodized test pieces (samples 1, A1, and B1) obtained in this way were subjected to the measurements and observations described below.

《測定・観察》
(1)膜厚
各試料の陽極酸化処理面(単に「処理面」という。)を渦電流式膜厚計(株式会社サンコウ電子研究所製SWT-9200)で測定した。得られた膜厚を表1に併せて示した。
Measurement and Observation
(1) Film Thickness The anodized surface of each sample (simply referred to as the "treated surface") was measured with an eddy current film thickness meter (SWT-9200, manufactured by Sanko Electronics Laboratory Co., Ltd.). The film thicknesses obtained are also shown in Table 1.

(2)表面観察
各試料の処理面(表面/上面)を走査電子顕微鏡(SEM/株式会社日立ハイテク製S-5500)で観察した。得られたSEM像を図1にまとめて示した。
(2) Surface Observation The treated surface (surface/upper surface) of each sample was observed with a scanning electron microscope (SEM/S-5500 manufactured by Hitachi High-Technologies Corporation). The obtained SEM images are shown in FIG.

(3)断面観察
各試料の縦断面(側断面)をSEMで同様に観察した。得られたSEM像を図2A、図2B(両図を併せて「図2」という。)にまとめて示した。図2Aは処理面近傍の上側(表面側)を示し、図2Bはその下側(底側)を示す。
(3) Cross-section observation The longitudinal section (side section) of each sample was observed by SEM in the same manner. The obtained SEM images are shown in Figures 2A and 2B (collectively referred to as "Figure 2"). Figure 2A shows the upper side (front side) near the treated surface, and Figure 2B shows the lower side (bottom side).

《画像解析》
(1)空孔率
処理面(上面)のSEM像(図1参照)に基づいて、ImageJ(フリーソフトウェア)を用いた画像解析により、各試料の空孔率を求めた。任意に抽出した5視野分の空孔率の算術平均値を表1に併せて示した。
Image Analysis
(1) Porosity Based on the SEM image (see FIG. 1) of the treated surface (upper surface), the porosity of each sample was determined by image analysis using ImageJ (free software). The arithmetic mean value of the porosity of five arbitrarily selected fields of view is also shown in Table 1.

この際、試料1の1視野:1280nm×890nm、試料A1、B1の1視野:640nm×445nmとした。1視野のサイズ調整により、各視野に主孔が10個以上含まれるようにした。 In this case, the field of view for sample 1 was 1280 nm x 890 nm, and the field of view for samples A1 and B1 was 640 nm x 445 nm. The size of each field of view was adjusted so that each field of view contained 10 or more main holes.

空孔率は次のように求めた。先ず、解析する画像を8bit変換した後、二値化処理を行なって表面で開口した孔を抽出した。次に、各孔を分水嶺(Watershed Algorithm)処理した後、開口面積が100nm以上となる孔について開口面積の合計値を算出する。視野の全面積に対する開口面積の合計値の割合を空孔率とした。 The porosity was calculated as follows. First, the image to be analyzed was converted to 8 bits, and then binarized to extract the pores that were open on the surface. Next, each pore was processed by the Watershed Algorithm, and the total opening area was calculated for pores with an opening area of 100 nm2 or more. The ratio of the total opening area to the total area of the field of view was taken as the porosity.

(2)開口径
処理面(上面)のSEM像に基づいて同様な画像解析を行ない、各試料の開口径を求めた。同様に5視野分の開口径の算術平均値を表1に併せて示した。開口径は次のように求めた。先ず、上述したように、抽出した各孔の開口面積の合計値を孔の抽出数で除して平均開口面積を求める。その平均開口面積から算出した円相当径(孔を真円と仮定したときの直径)を開口径とした。なお、試料1の画像には、主孔の他に副孔も含まれているため、任意の10個の主孔の最大径(最大長)を測定して、その算術平均値を開口径とした。
(2) Aperture diameter A similar image analysis was performed based on the SEM image of the treated surface (upper surface) to determine the aperture diameter of each sample. Similarly, the arithmetic mean value of the aperture diameters for five fields of view is also shown in Table 1. The aperture diameter was determined as follows. First, as described above, the total value of the aperture area of each extracted hole is divided by the number of extracted holes to determine the average aperture area. The equivalent circle diameter (diameter when the hole is assumed to be a perfect circle) calculated from the average aperture area was used as the aperture diameter. Note that the image of sample 1 includes sub-holes in addition to the main holes, so the maximum diameter (maximum length) of any 10 main holes was measured, and the arithmetic mean value was used as the aperture diameter.

《評価》
(1)陽極酸化膜
表1からわかるよう、リン酸を含む電解液中で高電圧を印加して電解工程を行なった試料1は他の試料よりも、空孔率および開口径が顕著に大きくなった。また、図1および図2から明らかなように、試料1の陽極酸化膜では、Al基材側から略直管状に延びる太い主孔に加えて、その主孔の側壁に食い込んで開口した細い副孔が多数形成されていた。このような陽極酸化膜は、他試料の陽極酸化膜には観られないユニークな形態であった。
"evaluation"
(1) Anodized film As can be seen from Table 1, sample 1, which was subjected to the electrolysis process by applying a high voltage in an electrolyte containing phosphoric acid, had a significantly larger porosity and opening diameter than the other samples. Also, as is clear from Figures 1 and 2, in the anodized film of sample 1, in addition to the thick main holes extending in a substantially straight tube shape from the Al base side, many thin sub-holes were formed that penetrated into the side walls of the main holes. This type of anodized film had a unique form not seen in the anodized films of other samples.

(2)副孔
また、図2Aからわかるように、試料1の陽極酸化膜は、表層域(深さ1μm×幅10μm)に複数(10個程度)の副孔が形成されていた。さらに、図2Aと図2Bの対比からもわかるように、副孔は陽極酸化膜の下層域(底側、バリア層側)よりも上層域の方が大きかった。さらにいえば、陽極酸化膜の下方から上方に向けて副孔の密度は増加傾向にあった。
(2) Sub-holes As can be seen from Fig. 2A, the anodized film of Sample 1 had multiple (approximately 10) sub-holes formed in the surface region (depth 1 μm × width 10 μm). Furthermore, as can be seen from comparing Fig. 2A with Fig. 2B, the sub-holes were larger in the upper region of the anodized film than in the lower region (bottom side, barrier layer side). Moreover, the density of the sub-holes tended to increase from the bottom to the top of the anodized film.

[第2実施例/上層]
《試料の製作》
第1実施例の場合と同様に、表2に示す陽極酸化処理を行なった。得られた陽極酸化膜上にポリイミドワニスを繰返しスプレー塗布した後(塗布工程)、さらに炉加熱(350℃×1時間)した(熱硬化工程)。こうして陽極酸化膜上に樹脂層(上層)を被着させた試験片(試料2、A2、B2)を後述の測定および観察に供した。
[Second Example/Upper Layer]
<Sample Preparation>
As in the first embodiment, the anodization treatment shown in Table 2 was performed. After repeatedly spraying polyimide varnish onto the obtained anodized film (application step), the anodized film was further heated in an oven (350°C x 1 hour) (thermal curing step). The test pieces (samples 2, A2, and B2) in which a resin layer (upper layer) was thus adhered onto the anodized film were subjected to the measurements and observations described below.

《測定・観察》
(1)膜厚
各試料の樹脂層の膜厚を上述した渦電流式膜厚計により測定した。その結果を表2に併せて示した。なお、塗布工程前に予め測定した陽極酸化膜自体の膜厚も表2に併せて示した。樹脂層の膜厚は、樹脂層形成後の全体膜厚から、陽極酸化膜単体の膜厚を減算して求めた。つまり、表2に示した樹脂層の膜厚は、陽極酸化膜の最表面から樹脂層の最表面までの距離を意味する。
Measurement and Observation
(1) Film Thickness The film thickness of the resin layer of each sample was measured using the eddy current film thickness meter described above. The results are also shown in Table 2. The film thickness of the anodized film itself, which was measured before the coating process, is also shown in Table 2. The film thickness of the resin layer was determined by subtracting the film thickness of the anodized film alone from the total film thickness after the resin layer was formed. In other words, the film thickness of the resin layer shown in Table 2 means the distance from the outermost surface of the anodized film to the outermost surface of the resin layer.

(2)表面観察
各試料の表面(樹脂層)を目視で観察して、割れ(クラック)の有無を確認した。その結果を表2に併せて示した。
(2) Surface Observation The surface (resin layer) of each sample was visually observed to check for the presence or absence of cracks. The results are shown in Table 2.

(3)断面観察
各試料の縦断面をSEMで観察した。得られたSEM像を図3A、図3B(両図を併せて「図3」という。)にまとめて示した。図3Aは、処理面近傍の上側を示し、図2Bはその下側を示す。
(3) Cross-Section Observation The longitudinal sections of each sample were observed by SEM. The obtained SEM images are shown in Figures 3A and 3B (collectively referred to as "Figure 3"). Figure 3A shows the upper side near the treated surface, and Figure 2B shows the lower side.

《評価》
(1)耐割れ性
表2に示したように、試料2は表面に割れが観られず、耐割れ性(耐熱性)に優れることがわかった。一方、他の試料では表面に割れが観られた。このような割れは、Al基材(金属)と陽極酸化膜(セラミックス)の熱膨張係数差を反映した熱応力によって生じると考えられる。試料2の陽極酸化膜は、試料1と同程度の高い空孔率を有し、柔軟性に優れるため割れ難かったと考えられる。
"evaluation"
(1) Crack Resistance As shown in Table 2, no cracks were observed on the surface of sample 2, indicating that it had excellent crack resistance (heat resistance). On the other hand, cracks were observed on the surface of the other samples. Such cracks are thought to be caused by thermal stress reflecting the difference in thermal expansion coefficient between the Al base material (metal) and the anodized film (ceramics). The anodized film of sample 2 has a high porosity similar to that of sample 1 and is highly flexible, so it is thought to have been less likely to crack.

(2)密着性
図3からわかるように、試料2の場合、ポリイミドが陽極酸化膜中へ侵入して、主孔を充填すると共に、副孔にも係止された状態となっていた。このような状況は、他試料の陽極酸化膜には殆ど観られなかった。なお、試料2において、ポリイミドが充填されていない主孔が観られる理由は、その試験片を切断する時に、ポリイミドが破断・脱離したためと考えられる。
(2) Adhesion As can be seen from Figure 3, in the case of sample 2, polyimide penetrated into the anodized film, filling the main holes and also being retained in the sub-holes. This situation was hardly observed in the anodized films of the other samples. The reason why the main holes in sample 2 were not filled with polyimide is thought to be because the polyimide broke and fell off when the test piece was cut.

[第3実施例/定電圧電解]
《試料の製作》
既述したAl基材からなる試験片に対して、表3に示す条件下で、定電圧の直流通電により電解工程を行なった。その他の処理条件は第1実施例と同様とした。
[Third Example/Constant-potential electrolysis]
<Sample Preparation>
The test piece made of the above-mentioned Al base material was subjected to an electrolysis process using a constant voltage direct current under the conditions shown in Table 3. The other treatment conditions were the same as those in the first example.

《測定・観察》
各試料の陽極酸化処理後の試験片(試料31~36)を、第1実施例と同様に測定した。空孔率と開口径の測定結果を表3に併せて示した。但し、試料31~33の1視野:2560nm×1780nm、試料34~36の1視野:1280nm×890nmとした。
Measurement and Observation
The test pieces (samples 31 to 36) of each sample after anodization treatment were measured in the same manner as in Example 1. The measurement results of the porosity and opening diameter are also shown in Table 3. However, one visual field of samples 31 to 33 was 2560 nm × 1780 nm, and one visual field of samples 34 to 36 was 1280 nm × 890 nm.

各試料の試験片表面(上面)を観察したSEM像を、第1実施例と同様に、図4A、図4B(両図を併せて「図4」という。)にまとめて示した。 SEM images of the test piece surface (top surface) of each sample are shown together in Figures 4A and 4B (both figures collectively referred to as "Figure 4"), as in the first example.

《評価》
表3および図4からわかるように、リン酸を含む電解液を用いた場合、その温度(浴温)が高いほど、または印加電圧が大きいほど、空孔率や開口径も大きくなることがわかった。
"evaluation"
As can be seen from Table 3 and FIG. 4, when an electrolyte containing phosphoric acid was used, the porosity and opening diameter increased as the temperature (bath temperature) increased or the applied voltage increased.

以上から、本発明により特有な形態の陽極酸化膜が得られ、その陽極酸化膜は高温下での耐割れ性や上層に対して高いアンカー効果等を発揮し得ることが確認された。 From the above, it was confirmed that the present invention produces an anodic oxide film with a unique shape, which has crack resistance at high temperatures and can exert a strong anchor effect on the upper layer.

Figure 2024111338000002
Figure 2024111338000002

Figure 2024111338000003
Figure 2024111338000003

Figure 2024111338000004
Figure 2024111338000004

Claims (14)

アルミニウム基材の少なくとも一部表面が陽極酸化膜で被覆されたアルミニウム系部材であって、
該陽極酸化膜は、該アルミニウム基材側から略直管状に延びた主孔と該主孔の側壁の一部に開口する副孔とを有し、
該陽極酸化膜は、上面観察して求まる空孔率が18~65%であるアルミニウム系部材。
An aluminum-based member in which at least a part of the surface of an aluminum base is coated with an anodized film,
the anodic oxide film has a main hole extending in a substantially straight tube shape from the aluminum base material side and a sub-hole opening in a part of a side wall of the main hole,
The anodized film is an aluminum-based member having a porosity of 18 to 65% as determined by observing the top surface.
前記主孔は、開口径が50~1000nmである請求項1に記載のアルミニウム系部材。 The aluminum-based component according to claim 1, wherein the main pores have an opening diameter of 50 to 1000 nm. 前記副孔は、該主孔の底側よりも開口側が大きい請求項1に記載のアルミニウム系部材。 The aluminum-based component according to claim 1, wherein the opening side of the sub-hole is larger than the bottom side of the main hole. 前記副孔は、観察した側面の表層域(深さ1μm×幅10μm)に1個以上ある請求項3に記載のアルミニウム系部材。 The aluminum-based component according to claim 3, wherein the sub-hole is present in one or more of the surface regions (depth 1 μm × width 10 μm) of the observed side surface. 前記副孔の少なくとも一部は、前記主孔の側壁を貫通している請求項1に記載のアルミニウム系部材。 The aluminum-based component according to claim 1, wherein at least a portion of the sub-hole penetrates the side wall of the main hole. 前記陽極酸化膜は、膜厚が0.1~20μmである請求項1に記載のアルミニウム系部材。 The aluminum-based member according to claim 1, wherein the anodized film has a thickness of 0.1 to 20 μm. 前記アルミニウム基材は、その全体に対してAlを98質量%以上含む請求項1に記載のアルミニウム系部材。 The aluminum-based member according to claim 1, wherein the aluminum base contains 98% by mass or more of Al. 前記アルミニウム基材は、導電率が50%IACS以上ある請求項1に記載のアルミニウム系部材。 The aluminum-based member according to claim 1, wherein the aluminum base material has a conductivity of 50% IACS or more. 前記陽極酸化膜の少なくとも一部を被覆する上層をさらに有する請求項1に記載のアルミニウム系部材。 The aluminum-based component according to claim 1, further comprising an upper layer that covers at least a portion of the anodized film. 前記陽極酸化膜の少なくとも一部に樹脂が被着している請求項1に記載のアルミニウム系部材。 The aluminum-based member according to claim 1, wherein at least a portion of the anodized film is coated with a resin. 導電部材である請求項1に記載のアルミニウム系部材。 The aluminum-based member according to claim 1, which is a conductive member. リン酸を含む電解液に接触させたアルミニウム基材へ通電する電解工程を備え、
請求項1~11のいずれかに記載のアルミニウム系部材が得られる製造方法。
The method includes an electrolysis step of applying a current to an aluminum substrate that is in contact with an electrolytic solution containing phosphoric acid,
A manufacturing method for obtaining the aluminum-based member according to any one of claims 1 to 11.
前記電解工程は、前記電解液を15~80℃にしてなされる請求項12に記載のアルミニウム系部材の製造方法。 The method for manufacturing an aluminum-based component according to claim 12, wherein the electrolysis step is performed with the electrolytic solution at a temperature of 15 to 80°C. 前記電解工程は、前記アルミニウム基材へ30~250Vを印加してなされる請求項12に記載のアルミニウム系部材の製造方法。 The method for manufacturing an aluminum-based component according to claim 12, wherein the electrolysis step is performed by applying 30 to 250 V to the aluminum base material.
JP2023015756A 2023-02-06 2023-02-06 Aluminum-based member and manufacturing method thereof Pending JP2024111338A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023015756A JP2024111338A (en) 2023-02-06 2023-02-06 Aluminum-based member and manufacturing method thereof
PCT/JP2023/039981 WO2024166466A1 (en) 2023-02-06 2023-11-07 Aluminum-based member and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023015756A JP2024111338A (en) 2023-02-06 2023-02-06 Aluminum-based member and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2024111338A true JP2024111338A (en) 2024-08-19

Family

ID=92262856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023015756A Pending JP2024111338A (en) 2023-02-06 2023-02-06 Aluminum-based member and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2024111338A (en)
WO (1) WO2024166466A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344496A (en) * 1989-07-11 1991-02-26 Furukawa Alum Co Ltd Aluminum or aluminum alloy material having superior adhesion to coating film and production thereof
GB2329608B (en) * 1996-03-27 2000-04-12 Toyo Kohan Co Ltd Thermplastic resin-coated aluminum alloy plate, and process and apparatus for producing the same
JP2002266099A (en) * 2001-03-12 2002-09-18 Mitsubishi Alum Co Ltd Surface treated aluminum can end material having excellent resin adhesion property and method for manufacturing the same
US7906057B2 (en) * 2005-07-14 2011-03-15 3M Innovative Properties Company Nanostructured article and method of making the same
JP5890643B2 (en) * 2011-09-29 2016-03-22 株式会社東芝 Casting product for electrical insulation

Also Published As

Publication number Publication date
WO2024166466A1 (en) 2024-08-15

Similar Documents

Publication Publication Date Title
CN101031674B (en) Method for anticorrosion-treating aluminum or aluminum alloy
Duan et al. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D
Malayoglu et al. Influence of post-treatment on the corrosion resistance of PEO coated AM50B and AM60B Mg alloys
Arrabal et al. Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings
Akbari et al. Electrochemically-induced TiO2 incorporation for enhancing corrosion and tribocorrosion resistance of PEO coating on 7075 Al alloy
Barchiche et al. A better understanding of PEO on Mg alloys by using a simple galvanostatic electrical regime in a KOH–KF–Na3PO4 electrolyte
Gnedenkov et al. Electrochemical properties of the superhydrophobic coatings on metals and alloys
EP0058023A2 (en) Process of treating anodic oxide film, printed wiring board and process of making the same
KR20100116546A (en) Method for treating the surface of metal
Zhang et al. Relationship between porosity, pore parameters and properties of microarc oxidation film on AZ91D magnesium alloy
Shore et al. Adhesive bond strength of PEO coated AA6060-T6
Chaharmahali et al. Corrosion behavior of calcium-phosphorus coatings on AZ31B Mg alloy by plasma electrolytic oxidation in Hank's balanced salt solution
Awad et al. Effect of various de-anodizing techniques on the surface stability of non-colored and colored nanoporous AAO films in acidic solution
Zhang et al. The pore structure and properties of microarc oxidation films on 2024 aluminum alloy prepared in electrolytes with oxide nanoparticles
Yang et al. The electrochemical corrosion behavior of plasma electrolytic oxidation coatings fabricated on aluminum in silicate electrolyte
WO2024166466A1 (en) Aluminum-based member and method for producing same
JP5369083B2 (en) Surface-treated aluminum member having high withstand voltage and method for producing the same
JP2017214603A (en) Piston for internal combustion engine and manufacturing method therefor
Gnedenkov et al. Composite peo-coatings as defence against corrosion and wear: A review
WO2005035829A1 (en) Corrosion-resistant aluminum conductive material and process for producing the same
Zhang et al. Correlation between microhardness and microstructure of anodic film on 2024 aluminum alloy
JP6539200B2 (en) Method of anodizing aluminum-based members
Wei et al. Microstructure and corrosion resistance studies of PEO coated Mg alloys with a HF and US pretreatment
JP2019026924A (en) Surface treated aluminum alloy material and manufacturing method thereof
JP6168723B2 (en) Surface-treated aluminum material and method for producing the same