JP2024100632A - NANO-PLASMA PARTICLE WATER GENERATION DEVICE WITH APPLICATION OF MECHANISM OF SEA SALT PARTICLE GENERATION ON OCEAN SURFACE FOR GENERATING NANO-PLASMA PARTICLE WATER (0.15 TO 1.0 nm) IN DEVICE HOUSING, DISSOLVING PARTICLE IN LIQUID UNDER PRESSURE TO GENERATE FUNCTIONAL WATER - Google Patents
NANO-PLASMA PARTICLE WATER GENERATION DEVICE WITH APPLICATION OF MECHANISM OF SEA SALT PARTICLE GENERATION ON OCEAN SURFACE FOR GENERATING NANO-PLASMA PARTICLE WATER (0.15 TO 1.0 nm) IN DEVICE HOUSING, DISSOLVING PARTICLE IN LIQUID UNDER PRESSURE TO GENERATE FUNCTIONAL WATER Download PDFInfo
- Publication number
- JP2024100632A JP2024100632A JP2023019493A JP2023019493A JP2024100632A JP 2024100632 A JP2024100632 A JP 2024100632A JP 2023019493 A JP2023019493 A JP 2023019493A JP 2023019493 A JP2023019493 A JP 2023019493A JP 2024100632 A JP2024100632 A JP 2024100632A
- Authority
- JP
- Japan
- Prior art keywords
- water
- particle
- nano
- air
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 199
- 229910001868 water Inorganic materials 0.000 title claims abstract description 195
- 239000002245 particle Substances 0.000 title claims abstract description 168
- 230000007246 mechanism Effects 0.000 title claims description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 title claims description 7
- 235000002639 sodium chloride Nutrition 0.000 title claims description 7
- 239000011780 sodium chloride Substances 0.000 title claims description 7
- 239000007788 liquid Substances 0.000 title description 12
- 239000002105 nanoparticle Substances 0.000 claims abstract description 77
- 238000002156 mixing Methods 0.000 claims abstract description 23
- 239000007921 spray Substances 0.000 claims abstract description 23
- 238000005192 partition Methods 0.000 claims abstract description 22
- 238000003860 storage Methods 0.000 claims abstract description 15
- 239000007789 gas Substances 0.000 claims description 33
- 238000005516 engineering process Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 238000009826 distribution Methods 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 10
- 239000013535 sea water Substances 0.000 claims description 8
- 235000013305 food Nutrition 0.000 claims description 7
- 239000011882 ultra-fine particle Substances 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 5
- 230000002829 reductive effect Effects 0.000 claims description 5
- 238000007667 floating Methods 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000000443 aerosol Substances 0.000 claims description 3
- 239000003792 electrolyte Substances 0.000 claims description 3
- 238000000746 purification Methods 0.000 claims description 3
- 241000894006 Bacteria Species 0.000 claims description 2
- 241000588724 Escherichia coli Species 0.000 claims description 2
- 230000006378 damage Effects 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 230000001954 sterilising effect Effects 0.000 claims description 2
- 239000002351 wastewater Substances 0.000 claims description 2
- 239000003643 water by type Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- 230000007797 corrosion Effects 0.000 claims 2
- 238000005260 corrosion Methods 0.000 claims 2
- 238000007689 inspection Methods 0.000 claims 2
- 229910001220 stainless steel Inorganic materials 0.000 claims 2
- 239000010935 stainless steel Substances 0.000 claims 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims 1
- 239000011575 calcium Substances 0.000 claims 1
- 229910052791 calcium Inorganic materials 0.000 claims 1
- 239000000701 coagulant Substances 0.000 claims 1
- 238000005345 coagulation Methods 0.000 claims 1
- 230000015271 coagulation Effects 0.000 claims 1
- 239000000645 desinfectant Substances 0.000 claims 1
- 229910052500 inorganic mineral Inorganic materials 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910001425 magnesium ion Inorganic materials 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 239000011707 mineral Substances 0.000 claims 1
- 235000010755 mineral Nutrition 0.000 claims 1
- 239000005416 organic matter Substances 0.000 claims 1
- 239000000575 pesticide Substances 0.000 claims 1
- 238000004062 sedimentation Methods 0.000 claims 1
- 229910052708 sodium Inorganic materials 0.000 claims 1
- 239000011734 sodium Substances 0.000 claims 1
- 238000004659 sterilization and disinfection Methods 0.000 claims 1
- 239000002101 nanobubble Substances 0.000 description 17
- 238000004090 dissolution Methods 0.000 description 11
- 239000003814 drug Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- SDGKUVSVPIIUCF-UHFFFAOYSA-N 2,6-dimethylpiperidine Chemical compound CC1CCCC(C)N1 SDGKUVSVPIIUCF-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000005427 atmospheric aerosol Substances 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005262 decarbonization Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Accessories For Mixers (AREA)
Abstract
Description
本発明装置のナノ・プラズマ粒子水(粒径0.1~1.0nm)は海洋面に浮遊している、大気中の超微細水粒子水、二酸化炭素ガス、エアロゾル粒子粉塵等の超微細粒子が水蒸気分圧の圧力差により、海水に溶解されている仕組みを応用し、大気中の成分を圧力差等により水用液中に取り込み該装置にナノ微細粒子水等を混入して機能水としてなるナノ・プラズマ粒子水発生装置をなしたものである。その仕組みは地球の海水温度に大きく影響される、海水温度の高い、赤道直下付近では二酸化炭素等の超微細粒子は海水から大気に移動する、海水温度の低い北南半球では、それぞれの二酸化炭素ガス等のその成分の分圧力の差により又加圧圧力によりそれらの超微細粒子成分等が海水に溶解されている。その仕組みは海洋面に浮遊している超微細粒子成分が膜状の海塩フィルム粒子と凝集吸着する特性をもっている。これは風が吹き渡る海面においては常に波が生成され砕け散って波しぶきが上がる。しかしこれはすぐに重力落下してしまう。ここで発生する海塩粒子の生成は波頭の破砕の際に海中に巻き込まれた空気により生じた泡が海面で破裂することにより引き起こされる。ここで生成された膜状のフィルム粒子の口径は0.1~10μm程度であると言われている.海塩粒子の生成機構によりフィルム粒子及びユニット液層が生成・構築することが出来る.wood cockをはじめとする多くの科学研究者による実験から海塩粒子の生成機構及びその効果が明らかになってきた。現在では世界中で大気に発生する二酸化炭素の約40%が海水に溶解されている事が、明らかになって来た。The nano-plasma particle water (particle size 0.1-1.0 nm) of the present invention is a nano-plasma particle water generating device that utilizes the mechanism in which ultrafine particles such as ultrafine water particles, carbon dioxide gas, aerosol particles, and dust particles in the atmosphere, which float on the ocean surface, are dissolved in seawater due to the pressure difference of the water vapor partial pressure, and the components in the atmosphere are taken into the water liquid due to the pressure difference, etc., and nano-fine particle water is mixed into the device to produce functional water. This mechanism is greatly affected by the seawater temperature on the earth. In the vicinity of the equator where the seawater temperature is high, ultrafine particles such as carbon dioxide move from the seawater to the atmosphere, while in the northern and southern hemispheres where the seawater temperature is low, the ultrafine particle components are dissolved in seawater due to the difference in partial pressure of the components such as carbon dioxide gas and the pressurized pressure. This mechanism has the characteristic that the ultrafine particle components floating on the ocean surface coagulate and adsorb with the membrane-like sea salt film particles. This is because waves are always generated and broken on the sea surface where the wind blows, causing sea spray. However, these quickly fall due to gravity. The sea salt particles are generated when air is caught in the sea when the crests break, and bubbles burst on the sea surface. The diameter of the membrane-like film particles generated here is said to be about 0.1 to 10 μm. The mechanism of sea salt particle generation allows film particles and unit liquid layers to be generated and constructed. The mechanism of sea salt particle generation and its effects have been clarified through experiments by many scientific researchers, including Wood Cock. It has now become clear that approximately 40% of the carbon dioxide generated in the atmosphere around the world is dissolved in seawater.
現在日本及び世界に存在する水の細粒化技術は、液中ナノバブル技術である。現在経済産業省、企業、大学、研究機関等あげて、独自の技術蓄積と国際標準化に向けて取り組んでいるところであり。この革新技術商品の利用範囲は農業分野、医療分野、食品分野、インフラ分野等非常に広範にわたる裾野の広い技術である。この技術関連産業は供給側では、製造装置メーカー、製造部品メーカー、計測器メーカー、エンジニアリング会社等多くの企業が関係し、需要側でも、土木関連、医療関連、薬品関連、化粧品関連、半導体関連、食品関連、更には農林水産関連まで多くのアプリケーションが関係する分野横断的特徴を有しており、技術の供給、需要双方の産業(ファインバブル産業)は、今後、自動車、家電等と同様に日本を代表する基幹産業となり、更には、世界的にも大きな市場を有する将来型産業となる可能性まで秘めていると考えられている。現在の粒子口径の極小生成技術、極限密度個数、溶存酸素高濃度等の技術の値は低く大きな効果がないことから広がっていない。これから更なる安定生成技術等の確立が急務である。The current water atomization technology in Japan and the world is the liquid nanobubble technology. Currently, the Ministry of Economy, Trade and Industry, companies, universities, research institutes, etc. are working to accumulate unique technologies and to internationally standardize them. This innovative technology product is a very wide-ranging technology that can be used in a wide range of fields, including agriculture, medicine, food, and infrastructure. On the supply side, this technology-related industry involves many companies such as manufacturing equipment manufacturers, manufacturing parts manufacturers, measuring instrument manufacturers, and engineering companies, and on the demand side, it has a cross-sectoral characteristic with many applications related to civil engineering, medicine, medicine, cosmetics, semiconductors, food, and even agriculture, forestry, and fisheries. The industry that both supplies and demands the technology (fine bubble industry) is thought to have the potential to become a core industry representing Japan in the future, like automobiles and home appliances, and even a future-oriented industry with a large market worldwide. The current technology for generating extremely small particle diameters, the ultimate density number, high dissolved oxygen concentration, etc., has low values and does not have a significant effect, so it has not spread. From now on, the establishment of further stable generation technology, etc. is urgently needed.
日本発のナノバブルの技術の開発経緯から考えると、マイクロバブルとは発生時の気泡直径が50μm以下の気泡であり通常の気泡が水中を急速に上昇して表面で破裂して消えるのに対して、水中で縮小していき、ついには消滅「完全溶解」してしまう。その中でも水中での消滅時におけるフリーラジカルの発生とナノバブルとしての残存が重要である。フリーラジカルは化学物質の分解性に優れているため、例えば水処理に使える。一方では1μm以下の極小気泡であり、ある程度の長時間、水中に存在している。このようなナノバブルを効率的に発生させる為にはある程度の電解質を含んだ水中でマイクロバブルを発生させ、これを自然な状態で浮遊させたり、簡単な物理的刺激を加えたりする必要がある。これにより縮小過程におけるマイクロバブルの周囲に電界質イオン類が高濃度に集積し、気泡内部の溶解を抑制する作用が生まれるため、結果的に極微小な気泡として長期に安定化する。ナノバブルは、気泡としての特性を失いかけている存在として認識できるが、一方において極めて興味深い特性を水に与える。いわゆる機能水としての作用であるConsidering the development history of nanobubble technology originating in Japan, microbubbles are bubbles with a diameter of 50 μm or less when they are generated. While normal bubbles rise rapidly in the water and burst at the surface and disappear, microbubbles shrink in the water and eventually disappear, "completely dissolving". Among them, the generation of free radicals and their survival as nanobubbles when they disappear in the water are important. Free radicals have excellent decomposition properties for chemical substances, so they can be used for water treatment, for example. On the other hand, they are extremely small bubbles of 1 μm or less and exist in the water for a certain amount of time. In order to generate such nanobubbles efficiently, it is necessary to generate microbubbles in water containing a certain amount of electrolytes, float them in a natural state, or apply simple physical stimuli. This causes electrolyte ions to accumulate in high concentrations around the microbubbles during the shrinking process, which creates an effect of suppressing the dissolution inside the bubbles, resulting in the microbubbles being stabilized for a long time as extremely small bubbles. Nanobubbles can be recognized as beings that are losing their properties as bubbles, but on the other hand, they give water extremely interesting properties. They act as so-called functional water.
現在日本におけるナノバブルの生成する方法とび特性について下記に記載する。
溶解型マイクロバブル発生装置。酸素等の気体は水中に溶解する。気体の種類によって溶解量には違いがあるが、基本的に特性として圧力に比例して気体の溶解量も増加する、加圧溶解型のマイクロバブル生成方法はこの特性を利用したものであり、ある程度の高圧で十分な量の気体を水中に溶解させた後、その圧力を開放してやることで溶解した気体の過飽和条件を作り出す。これにより過剰に溶解した気体は不安定な状態になり、過飽和部分の気体分子は水から飛び出そうとする。その結果水中に大量の気泡を発生させる。基本的なシステム構成は加圧駆動が可能なポンプを利用して水槽内の水を循環させる。この時に吸引側からは水と気体を取り込む。これらは押出し側から水槽内に排出されるが、先端にノズルが取り付けてあり、水流の流動抵抗と成るなるため押出し側の圧力が上昇する。一般的には3~4気圧程度の圧力に調整されている。押出し側の経路内には溶解槽が設けられており、吸引時に取り込んだ気体を水中に効果的に溶解させる。これにより生成された、一つの気泡の粒子径は10μmを中心粒径とし、二つ目はややブロードな分布を示すピークである。加圧溶解型のマイクロバブル発生装置の場合、50μm以下の気泡個数は1mlあたり数千個となる。下記に溶解型マイクロナノバブル発生装置の概念図を示す。
気液二相流旋回型マイクロバブル発生装置
一般的に利用されているマイクロバブルの発生手法であり、水流を起こして渦を発生させ、渦内に気体を巻き込み、この渦を崩壊させた時に気泡がバラバラに細分化する現象を利用している。渦の発生方法には多くの手法があり、多種類のマイクロバブル発生装置として市販されている。下記に示すのはその概念図である。これは配管の出口付近に傾斜のついた羽根を装着し、水流が通過するときに旋回流を発生させる。水流は気体を含んでおり、この渦流を崩壊させることでマイクロバブルを発生させる。渦流を崩壊させる方法としては、配管中の障害物を利用する場合もあるが一般的にはバルク水中に渦を放出する方法が利用されている。水槽内の水は止まった状態に相当するので、ノズル部から水槽内に吐き出された渦は瞬間的に崩壊する。これにより渦中の気泡は細分化されマイクロバブルになる。渦を作る方法としては、シャフトにプロペラを取り付けて管内で回転させる方法や、円筒もしくは卵状の容器内に水流を送り込み容器内での水流の回転半径を小さくすることで、強い渦流を発生させる方法などがある。ここで発生された気泡の粒径分布は30μm前後を中心に最少4μmと最大55μmに分布している。気泡個数は1mlあたり3000~5000個位である。
下記に気液二相流旋回型マイクロバブル発生装置の粒径分布と概念図を示す。
The methods for generating nanobubbles currently available in Japan and their characteristics are described below.
Dissolution type microbubble generator. Gases such as oxygen dissolve in water. Although the amount of gas dissolved varies depending on the type of gas, the amount of gas dissolved increases in proportion to the pressure as a basic characteristic. The pressurized dissolution type microbubble generation method utilizes this characteristic, and after dissolving a sufficient amount of gas in water at a certain level of high pressure, the pressure is released to create a supersaturated condition for the dissolved gas. This makes the excessively dissolved gas unstable, and the gas molecules in the supersaturated part try to jump out of the water. As a result, a large amount of bubbles are generated in the water. The basic system configuration uses a pump that can be driven by pressure to circulate the water in the water tank. At this time, water and gas are taken in from the suction side. These are discharged into the water tank from the extrusion side, but a nozzle is attached to the tip, which becomes a flow resistance for the water flow, so the pressure on the extrusion side increases. The pressure is generally adjusted to about 3 to 4 atmospheres. A dissolution tank is installed in the extrusion side path, and the gas taken in during suction is effectively dissolved in the water. The particle diameter of the bubbles generated by this method has a central particle diameter of 10 μm, and the second peak shows a somewhat broad distribution. In the case of a pressurized dissolution type microbubble generator, the number of bubbles of 50 μm or less is several thousand per 1 ml. The conceptual diagram of a dissolution type micro/nano bubble generator is shown below.
Gas-liquid two-phase flow swirl type microbubble generatorThis is a commonly used method of generating microbubbles. It uses the phenomenon that a water flow is generated to generate a vortex, gas is entrained in the vortex, and when the vortex collapses, the bubbles break down into small pieces. There are many methods for generating vortexes, and many types of microbubble generators are commercially available. The conceptual diagram is shown below. In this method, an inclined blade is attached near the outlet of the pipe, and a swirling flow is generated when the water flow passes through. The water flow contains gas, and microbubbles are generated by breaking down this vortex. As a method of breaking down the vortex, an obstacle in the pipe may be used, but a method of releasing the vortex into the bulk water is generally used. Since the water in the water tank is equivalent to a stationary state, the vortex discharged from the nozzle into the water tank collapses instantly. This breaks down the air bubbles in the vortex into microbubbles. There are several methods for creating vortices, including attaching a propeller to a shaft and rotating it inside a tube, or sending a water current into a cylindrical or egg-shaped container to reduce the radius of rotation of the water current inside the container, thereby generating a strong vortex. The particle size distribution of the bubbles generated here is centered around 30 μm, with a minimum of 4 μm and a maximum of 55 μm. The number of bubbles is about 3,000 to 5,000 per ml.
The particle size distribution and conceptual diagram of a gas-liquid two-phase swirl type microbubble generator are shown below.
現在ナノバブルの応用として、これは酸素ナノバブルとかオゾンナノバブルと呼ばれている物があり、直径が100μm以下で半減期が数か月と非常に長い。酸素ナノバブル水には生物に対する活性効果をオゾンナノバブル水には強力な殺菌効果を認めている。これらのナノバブルを利用して医療や食品、バイオなどを始めとする分野で応用に向けた取り組みが進められている。Currently, nanobubbles are used in applications such as oxygen nanobubbles and ozone nanobubbles, which are less than 100 μm in diameter and have a very long half-life of several months. Oxygen nanobubble water is known to have an activating effect on living organisms, while ozone nanobubble water has a strong bactericidal effect. Efforts are being made to utilize these nanobubbles in applications in fields such as medicine, food, and biology.
マイクロバブルの大きな特性として、まず一つ目に、自己加圧効果がある。マイクロバブルは水中で縮小し、ついには消滅する特性を有している。この水中での消滅という現象が、マイクロバブルに非常に面白い特性を与えている。その一つが内部圧力の上昇である。計算上の話ではあるが、消滅の瞬間には無限大の圧力を形成させる。また、この特性は水中への気体の溶解に大きな影響を与えており,飽和濃度以上の気体の溶解を可能にする。これは工学的にも重要な意味をもつ。ここでは内部圧力の増加に関連した事象について紹介する。The first major characteristic of microbubbles is their self-pressurizing effect. Microbubbles have the property of shrinking in water and eventually disappearing. This phenomenon of disappearance in water gives microbubbles very interesting characteristics. One of these is the increase in internal pressure. Although this is only a calculation, it creates infinite pressure at the moment of disappearance. This characteristic also has a significant impact on the dissolution of gases in water, making it possible to dissolve gases at levels above the saturation concentration. This has important implications in engineering. Here, we will introduce phenomena related to the increase in internal pressure.
マイクロバブルが自己加圧するときにおきる、気泡の上昇速度は、その工学的な応用について検討する上で非常に重要な要素である。そこで透明な希少セルに導いたマイクロバブルを、内部対流が無い状態でマイクロスコープにより観測した。得られた画像データはパソコンに取り込み画像解析を」行って気泡径と上昇速度の関係を求めた。室温、大気圧環境の測定条件で、蒸留水中における空気のマイクロバブルの測定データを下記に示す。ここにはマイクロバブル
ノ上昇速度入れる。The rate at which microbubbles rise when they self-pressurize is a very important factor in considering their engineering applications. Therefore, microbubbles were introduced into a transparent rare-earth cell and observed under a microscope in the absence of internal convection. The obtained image data was imported into a computer and subjected to image analysis to determine the relationship between bubble diameter and rate of rise. The measurement data for air microbubbles in distilled water under the measurement conditions of room temperature and atmospheric pressure are shown below.
Enter the ascent speed.
マイクバブルの二つ目の特性について、内部圧力の上昇について、気泡は気液界面により取り込まれた存在であり、その界面には水の表面張力が作用する。表面張力はその表面を小さくするように作用するため,球形の界面を持つ気泡によって、表面張力はその内部の気体を圧縮する力として機能する。環境圧に対しての気泡内部の圧力上昇は理論的にyong-laplaceの次の式により求められる。△p-=4σ/D △pは圧力上昇程度,σは表面張力,Dは気泡直径、である。直径が10μmの微小気泡では約0.3気圧、直径1μmでは約3気圧の圧力上昇となる。気体はヘンリーの法則に従って溶解するため、加圧された気体は効率的に周囲の水に溶解していく。図9にはマイクロバブルの水中での縮小を実測したデータを示す。圧力の上昇は気体の溶解速度を増加させるため,非表面積の増加と相まって、気泡が小さくなるほど縮小速度も大きくなる。そして最終的には水中で消滅する。
Regarding the second characteristic of microbubbles, the rise in internal pressure, bubbles are captured by the gas-liquid interface, and the surface tension of water acts on the interface. Since surface tension acts to reduce the surface, the surface tension functions as a force to compress the gas inside a bubble with a spherical interface. The pressure rise inside a bubble relative to the environmental pressure can be theoretically calculated by the following Young-laplace formula: △p-=4σ/D △p is the degree of pressure rise, σ is the surface tension, and D is the bubble diameter. For a microbubble with a diameter of 10 μm, the pressure rise is about 0.3 atmospheres, and for a microbubble with a diameter of 1 μm, the pressure rise is about 3 atmospheres. Gas dissolves according to Henry's law, so the pressurized gas dissolves efficiently in the surrounding water. Figure 9 shows data on the actual shrinkage of microbubbles in water. Since an increase in pressure increases the dissolution rate of the gas, coupled with an increase in the non-surface area, the smaller the bubble, the faster it shrinks. And it eventually disappears in water.
マイクロバブルの溶解ガス濃度の増加について気体を溶解させるという目的において、マイクロバブルの内部気圧の上昇「自己加圧効果」は重要である。通常のバブリングにおいては、気体の溶解には環境圧に関連した飽和圧が存在する。大気圧環境下では、一気圧に対応する溶解量以上に気体が溶け込むことはない。ところがマイクロバブルの場合、気泡内の圧力が環境圧力より高いため、水に溶け込む気体の溶解量は大気圧から想定されるよりも若干の過飽和条件まで踏み越す現象が認められる。これは水槽内において、表面における気体のやり取りは大気圧に規定されるが、内部における気体の溶解はマイクロバブルの状況に左右されるためである。なおこの飽和度は極端に大きなものではなく、気泡の粒径分布とのバランスで値が決定される。すなわち、水中に浮遊するマイクロバブルは大きさにバラツキを持つため、あるレベルよりも小さなマイクロバブルは縮小しながら気体を水中に溶解させるがそれよりも大きな気泡は、逆に水中に溶解した気体を取り込み、大きな気泡へと成長を始める。溶解気体量はこれらのバランスにより一
件を実現している。湖や港などの閉鎖性水域の環境汚染の最大の要因の一つは低層部の酸素欠乏である。特に夏場においては温度成層が形成されて表層の酸素を含んだ水が低層部にまで循環しないため、低酸素や無酸素状態になる.このような環境下では好気的な生物が死滅すると共に還元的な状況になって底泥などから栄養塩や重金属類の溶出が始まる。マイクロバブルは効率的に気体を溶解させるため、水環境の改善や化学工学などの分野において有効な手法となる。Regarding the increase in the concentration of dissolved gas in microbubbles, the increase in the internal air pressure of microbubbles, the "self-pressurizing effect," is important for the purpose of dissolving gas. In normal bubbling, there is a saturation pressure related to the environmental pressure when dissolving gas. In an atmospheric pressure environment, gas does not dissolve beyond the amount of dissolution corresponding to one atmosphere. However, in the case of microbubbles, the pressure inside the bubbles is higher than the environmental pressure, so the amount of gas dissolved in the water exceeds the supersaturation condition slightly more than expected from the atmospheric pressure. This is because in a water tank, the exchange of gas on the surface is determined by the atmospheric pressure, but the dissolution of gas inside is influenced by the condition of the microbubbles. Note that this saturation level is not extremely large, and the value is determined by the balance with the particle size distribution of the bubbles. In other words, since microbubbles floating in water vary in size, microbubbles smaller than a certain level dissolve gas into the water as they shrink, but bubbles larger than that level conversely take in the gas dissolved in the water and begin to grow into larger bubbles. The amount of dissolved gas is determined by these balances.
This has achieved the above results. One of the biggest causes of environmental pollution in closed waters such as lakes and harbors is a lack of oxygen in the lower layers. Particularly in the summer, temperature stratification occurs and the oxygen-containing water at the surface does not circulate to the lower layers, resulting in hypoxic or anoxic conditions. In such an environment, aerobic organisms die and the water becomes reductive, causing nutrients and heavy metals to begin eluting from the bottom mud. Microbubbles efficiently dissolve gases, making them an effective method for improving the water environment and in fields such as chemical engineering.
また、マイクロバブルを工学的に応用することを考えたとき,もっとも興味深い現象は消滅時におけるフリーラジカルの発生であり、極微小気泡としての残存である。これら相反する現象であるが、作用機序として表面電荷の濃縮が関与している。In addition, when considering the engineering application of microbubbles, the most interesting phenomenon is the generation of free radicals when the bubbles disappear, and their persistence as extremely small bubbles. Although these are contradictory phenomena, the concentration of surface charges is involved in the mechanism of action.
溶液内の気泡が帯電していることは50年以上もまえから知られているが、その詳細は不明であり、系統的な研究もなされていない。その最大の理由は測定の困難さにあった。しかし今日では電気永動法を利用することで正確な解析が可能となった。その結果気泡が帯電していることの工学的な意味合いは重要である。極めて濃厚なマイクロバブルを発生させても、静電気的な反発力が作用する為、気泡同士が合体して気泡濃度を低下させることはない。また汚染物質や金属イオンなどを静電気的な引力により表面に引き付ける効果も期待できる。It has been known for over 50 years that bubbles in a solution are electrically charged, but the details are unknown and no systematic research has been conducted. The main reason for this is the difficulty of measurement. However, today, accurate analysis is possible by using electrophoretic methods. As a result, the engineering implications of bubbles being electrically charged are important. Even if extremely dense microbubbles are generated, the bubbles do not coalesce and reduce the bubble concentration because of the electrostatic repulsive force. It is also expected to have the effect of attracting pollutants and metal ions to the surface by electrostatic attraction.
現在の日本における、マイクロバブルの発生する装置は上記に記載の通り、多くの種類があり市販もされている。しかし何れも液中における装置である。その結果気泡粒子口径は0.15μm前後であり、1ml当りの個数は約8億個といわれている。これらの得られた数値からは、水の特性と性質及びナノ水技術はまだまだ把握されていないのが実情であることから、本技術の可能性が非常に高いと考える。上記のことから現状技術にて得られた数値を踏まえると、大気中の流体抵抗値の差は約19倍と非常に大きいと言われていることから、実状の方法ではこれ以上の数値向上技術に限界があると考える。As mentioned above, there are many types of microbubble generating devices in Japan today, and they are commercially available. However, all of them are devices that are used in liquid. As a result, the bubble particle diameter is around 0.15 μm, and the number of bubbles per 1 ml is said to be about 800 million. From these obtained values, the characteristics and properties of water and nano water technology are still not fully understood, so we believe that this technology has great potential. Based on the above, taking into account the values obtained with current technology, it is said that the difference in fluid resistance in the atmosphere is very large, about 19 times, and we believe that there is a limit to how much the current method can improve the values further.
天羽 則博 ナノ細粒子水の大気中における空気浄化の技術。Norihiro Amano: Air purification technology using nano-particle water in the atmosphere.
従来の日本国内にて現在開発製造されている、ナノバブル発生装置にて生成される粒子径は0.15ミクロン(150nm)個数密度が0.14%と非常に低い値であり現状の技術での応用範囲が限定される。また、日本の科学者達は過去の技術から更なる新技術を追求することが生まれない。現状からの変化を求めない且つ現状維持を打破しようとしない。本技術は、これらのことから打破するために開発したものである。Conventional nanobubble generators currently being developed and manufactured in Japan generate particles with a diameter of 0.15 microns (150 nm) and a number density of 0.14%, both of which are very low values, limiting the scope of application of current technology. Furthermore, Japanese scientists do not pursue new technologies based on past technology. They do not seek change from the status quo and do not try to break away from the status quo. This technology was developed to break away from these issues.
従来のナノバブル発生装置の性能数値は、粒子口径を測定する粒度分布装置の最小少値は平均粒径が0.15μmといわれている。密度個数は1mlあたり約4~8億個の値がしめされている。The performance figures for conventional nanobubble generators are said to be an average particle size of 0.15 μm, the smallest value for particle size distribution devices that measure particle diameter. The density number is approximately 400 to 800 million particles per ml.
また、ナノバブルの発生による大きな特性は自己加圧効果がある。これは球形の界面を持つ気泡によって表面張力によって内部の気体の圧縮する力として機能する。例えば気泡の口径が1μmの自己加圧力は計算上約3気圧の圧力破壊が働くといわれている。Another important characteristic of nanobubbles is the self-pressurizing effect. This function works as a force compressing the gas inside the bubbles due to the surface tension of the bubbles with a spherical interface. For example, it is said that the self-pressurizing force of a bubble with a diameter of 1 μm acts on the pressure collapse of about 3 atmospheres.
上記の[0007]記載による自己加圧力は液中内における、超微細水の運動が天文学的な挙動が発生すると言われている。実際に使われている実施例から例えば水の浄化処理に有効的に効果がある例が報告されている。この作用は自己加圧力時に発生する破壊圧力よる大腸菌、カビ、一般細菌の殺菌効果が得られていると考えられている。The self-pressurizing force described in [0007] above is said to cause the movement of ultrafine water particles in the liquid to behave in an astronomical manner. From examples of actual use, for example, examples where it is effectively used in water purification treatment have been reported. This action is thought to be due to the destruction pressure generated by the self-pressurizing force, which has a sterilizing effect on E. coli, mold, and general bacteria.
従来のナノバブル発生装置による性能値は、粒子口径を0.15μm以下にすることは液中内の損失抵抗を考慮すると技術的に厳しいと考える。With regard to the performance values of conventional nanobubble generators, it is considered technically difficult to reduce the particle diameter to 0.15 μm or less, taking into account the loss resistance within the liquid.
従来のナノバブイル発生装置は酸素濃度を液中内に溶存させるために、大気からの空気をポンプ経由若しくはその装置に加圧し引き込む方法が多く見受けられる。従来の方式では溶存酸素濃度を高い値で維持する事は難しいと考える。Conventional nanobubble generators often use a method of drawing in air from the atmosphere via a pump or pressurizing it into the device in order to dissolve oxygen in the liquid. It is considered difficult to maintain a high dissolved oxygen concentration using conventional methods.
本発明は,以上のような従来の欠点に鑑み、大気中にナノ粒子水を発生させ、そのナノ粒子水を含んだ空気と共に液中に溶解溶存させることにより、ナノ微細粒子水の最小縮小化及び密度個数の大幅増加及び溶存酸素濃度を高い濃度に維持することが可能となる、生成装置を提供することを目的としている。In view of the above-mentioned conventional drawbacks, the present invention aims to provide a generation device that generates nanoparticle water in the atmosphere and dissolves the nanoparticle water in a liquid together with air that contains the nanoparticle water, thereby making it possible to minimize the size of nano-fine particle water, significantly increase the density number, and maintain a high dissolved oxygen concentration.
本発明は海洋面の大気エアロゾル粒子群等の成分を波のメカニズムにより海洋水中に溶解溶存する自然界の仕組みを応用することがより革命的な装置を合理的に構築することが可能となる。それは、大気中空間においてナノ・プラズマ粒子水(0.1~1.0nm粒径)を噴霧し、大気中に存在するエアロゾル粒子群をナノ粒子水が吸着固定化を行い、そのナノ・プラズマ粒子水(0.1~1.0nm粒径)に固定化された微細粒子水を汚染水として水溶液中内に溶解溶存させる事により、一つの応用例として大気空間を浄化することが可能となる。その、ナノ粒子水(1.0nm粒径)及びナノ・プラズマ粒子水(0.1~0.5nm粒径)を急速に且つ大量に生成すること及び高濃度の溶存酸素を長期間維持出来ること等が可能になることが本発明装置の大きな特徴である。The present invention makes it possible to rationally construct a more revolutionary device by applying the mechanism of the natural world in which components such as atmospheric aerosol particles on the ocean surface are dissolved and dissolved in ocean water by the mechanism of waves. It is possible to purify the atmospheric space as one application example by spraying nano-plasma particle water (0.1 to 1.0 nm particle size) in the atmospheric space, adsorbing and immobilizing the aerosol particles present in the atmosphere with the nano-particle water, and dissolving the fine particle water immobilized in the nano-plasma particle water (0.1 to 1.0 nm particle size) in an aqueous solution as contaminated water. The major features of the device of the present invention are that it is possible to rapidly generate a large amount of nano-particle water (1.0 nm particle size) and nano-plasma particle water (0.1 to 0.5 nm particle size) and to maintain a high concentration of dissolved oxygen for a long period of time.
本発明装置筐体▲1▼は、噴霧室兼空気加圧混合室及びナノ粒子水貯留槽と10~100nm粒径沈殿槽を兼ね備えた筺体とし、該噴霧室兼空気加圧混合室は空気循環取入れ口と空気チャンバー室を設け、両者間には空気流通制御ベンチュリー隔壁が設けられ隔壁板及び中仕切り板により狭隘空間が形成されている。該噴霧室兼空気加圧混合室の空間においては、ナノ粒子水を墳出し加圧ファンにより、ナノ粒子水が貯留槽に溶解溶存して行くことになる。The housing 1 of the device of the present invention is a housing that combines a spray chamber/air pressure mixing chamber, a nanoparticle water storage tank, and a 10-100 nm particle size precipitation tank, and the spray chamber/air pressure mixing chamber is provided with an air circulation intake and an air chamber, and an air flow control Venturi partition is provided between the two, and a narrow space is formed by a partition plate and a partition plate. In the space of the spray chamber/air pressure mixing chamber, the nanoparticle water is blown out and dissolved in the storage tank by a pressurizing fan.
本発明装置筐体▲2▼は、エアーコンプレッサーとナノ・プラズマ生成室内に特殊ノズルユニット6個を設けている。これらでナノ・プラズマ粒子水を生成する装置を構築している。筐体の下部にナノ・プラズマ粒子水(0.1~0.5nm粒径)を貯蔵する水槽を下部に設けている。The housing 2 of the device of the present invention is equipped with an air compressor and six special nozzle units in the nano-plasma generation chamber. These constitute a device for generating nano-plasma particle water. At the bottom of the housing, there is a water tank for storing nano-plasma particle water (0.1 to 0.5 nm particle size).
更に、噴霧室兼空気加圧混合室にナノ粒子水生成(1.0nm粒径)の噴霧用ノズルを生成量により、7.8.9.と設けられることが特徴である。また上記ノズルは噴霧室兼空気加圧混合室に設けた金具に固定され、該ノズルの先端から離れた位置に該ノズルからの噴射水の衝突によりナノ粒子水(1.0nm粒径)を生成する球体を設けたナノ粒子水を生成する装置システムを特徴とする。Furthermore, the spray chamber/air pressure mixing chamber is provided with a spray nozzle for generating nanoparticle water (1.0 nm particle size) in the order of 7, 8, 9, depending on the amount to be generated. The nozzle is fixed to a metal fitting provided in the spray chamber/air pressure mixing chamber, and the nanoparticle water generating device system is characterized by having a sphere that generates nanoparticle water (1.0 nm particle size) by collision of the water sprayed from the nozzle at a position away from the tip of the nozzle.
本発明装置から得られたの効果は、以上の説明から明らかなように、本発明装置によって生成された値は、次に列挙する効果が得られる。
(1)ナノ粒子水の大きさを解析する粒度分布装置計測から、従来技術と比較し約1500分の1以下の、0.1~0.5nm,1.0nm,1~5nm.の各粒径分布毎の粒径を生成することが出来た。(nmは単位、ナノメートルの略称)
(2)超微細水の密度個数を解析する装置計測により、従来技術の約1500万倍にあたる、1mlあたり10000兆個の値が得られた。
れ、且つ長時間維持していることが計測できた。この値は従来技術の約2~3倍にあたる。As is apparent from the above description, the effects obtained from the device of the present invention are as follows:
(1) Using a particle size distribution analyzer to analyze the size of nanoparticle water, we were able to generate particle sizes for each particle size distribution of 0.1-0.5 nm, 1.0 nm, and 1-5 nm, which is approximately 1/1500th of the size of the conventional technology. (nm is the unit of measurement, an abbreviation of nanometer.)
(2) By measuring the density and number of ultrafine water particles, a value of 10,000 trillion particles per milliliter was obtained, which is approximately 15 million times higher than conventional technology.
This value is about two to three times that of conventional technology.
以下、本発明の実施の形態を図面に基づき実施例に沿って説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
図-1は、本発明のナノ粒子水(1.0nm粒径)生成装置▲1▼及びナノ・プラズマ粒子水(0.1~0.5nm粒径)生成装置▲2▼の全体を示している。該、ナノ粒子水生成装置1.は、底板52.前後の側板50.左右の側板51.天板53.から成りたちほぼ直方体の形状(平面と立面の比率は2:4)及び平面は正四角形である。底面は角錐とし中心にナノ粒子水が排出し易い出口配管用取りだし口を設ける。これらの形状にて外形が構成される。FIG. 1 shows the entire nanoparticle water (1.0 nm particle size) generator 1 and nano-plasma particle water (0.1-0.5 nm particle size) generator 2 of the present invention. The nanoparticle water generator 1 is made up of a bottom plate 52, front and rear side plates 50, left and right side plates 51, and a top plate 53, and is roughly a rectangular parallelepiped (ratio of plan to elevation is 2:4) with a regular square plan. The bottom is pyramidal, and an outlet for outlet piping is provided in the center to facilitate the discharge of nanoparticle water. The exterior is made up of these shapes.
ナノ・プラズマ粒子(0.1~0.5nm粒径)生成装置筐体▲2▼.の形状は、円筒横型の形状(断面と横寸法の比率は1:3)が有効である。底面にナノ粒子水が貯留を有効にするのに一部底を50mm程度団落する形状とする。該、生成装置筐体内▲2▼の圧力をエア-コンプレッサー▲35▼を使用し装置筐体内の圧力を1.0Mpaに維持する。ナノ粒子水(1.0nm粒径)生成装置筐体▲1▼にて生成されたナノ粒子水(1.0nm)をナノ粒子水(1.0nm)高圧ポンプにてナノ粒子水配管を経由してナノ・プラズマ粒子(0.1~0.5nm)生成装置筐体▲2▼に配管内圧力7.mpaに保ったナノ粒子水(1.0nm)を該生成装置筐体▲2▼内の特殊ノズル6個から吐出されて、球体3個へ高速度にて球体に衝突させる。ナノ・プラズマ粒子水(0.1~0.5nm粒径)は、減圧弁にり1.0Mpaから大気圧まで減圧される。減圧されたナノ・プラズマ粒子水(0.1~0.5nm)はナノ・プラズマ粒子配管を経由して、ナノ・プラズマ粒子水の貯溜タンクに送られ蓄えることになる。ナノ・プラズマ粒子(0.1~0.5nm)の個数密度100%生成することが可能となる。The shape of the nano-plasma particle (0.1-0.5 nm particle diameter) generator housing ▲2 is effectively a horizontal cylindrical shape (with a cross-sectional to horizontal dimension ratio of 1:3). In order to effectively store nano-particle water on the bottom surface, the bottom is shaped to drop by about 50 mm. The pressure inside the generator housing ▲2 is maintained at 1.0 MPa using an air compressor ▲35. The nano-particle water (1.0 nm) generated in the nano-particle water (1.0 nm particle diameter) generator housing ▲1 is pumped through a nano-particle water piping to the nano-plasma particle (0.1-0.5 nm) generator housing ▲2 by a nano-particle water (1.0 nm) high-pressure pump. The nano-particle water (1.0 nm) maintained at a piping pressure of 7.0 MPa is discharged from six special nozzles inside the generator housing ▲2 and collided with three spheres at high speed. Nano plasma particle water (0.1-0.5 nm particle size) is reduced in pressure from 1.0 MPa to atmospheric pressure by a pressure reducing valve. The reduced pressure nano plasma particle water (0.1-0.5 nm) is sent to a nano plasma particle water storage tank via nano plasma particle piping and stored there. It is now possible to generate nano plasma particles (0.1-0.5 nm) with a 100% density of particles.
ナノ粒子水(1.0nm粒径)生成装置筐体▲1▼は、噴霧室兼空気加圧混合室▲11▼.内に加圧送風機ファン▲10▼.により空気を取り込み,該噴霧室兼空気加圧混合室▲11▼.ではナノ粒子水(粒径1.0nm)空気中の成分と共に該空気加圧混合室▲11▼.において取込まれた空気の流れにそって、噴霧室兼空気加圧室▲11▼.内の側壁である、空気・粒径制御ベンチュリー隔壁▲14▼.の下部付近から空気・粒径制御ベンチュリ―中仕切り板▲15▼.との狭隘空間に上昇した空気がナノ粒子水と共に最上部に蛇行上昇しその上部に達してからユータウンし次の、空気・粒径制御ベンチュリー隔壁▲16▼.との間に設けられた狭隘空間を下部方向に流れて、空気チャンバー室▲17▼.へと流れていくこととなる。3箇所の隔壁及び中仕切り板3枚の役割は、噴霧室兼空気加圧混合室▲11▼の、空間及び3面の側壁と天板において生成される2.0~100nm粒径水を上記記載の空気・粒径制御ベンチュリ―隔壁・中仕切り▲14▼▲15▼▲16▼を経由して空気チャンバーへ空気と共に送られる。そして沈殿槽▲13▼へと沈澱されることとなる。これらの装置全体が,ナノ粒子水(1.0nm)及びナノ・プラズマ粒子(0.1~0.5nm)を個数密度100%を生成することが可能となる、本発明装置の大きな特徴である。The nanoparticle water (1.0 nm particle size) generating device housing 1 takes in air into the spray chamber/air pressurized mixing chamber 11 by the pressurized blower fan 10, and in the spray chamber/air pressurized mixing chamber 11, the air rises along with the components in the nanoparticle water (particle size 1.0 nm) in the narrow space between the air/particle size control venturi partition plate 15 and the air/particle size control venturi partition plate 14, which is the side wall of the spray chamber/air pressurized mixing chamber 11, and meanders upward together with the nanoparticle water to the top, then flows downward through the narrow space provided between the air/particle size control venturi partition plate 16 and the air chamber 17. The role of the three partitions and three partition plates is to send 2.0 to 100 nm particle size water generated in the space and three side walls and top plate of the spray chamber/air pressurized mixing chamber 11 together with air to the air chamber via the air/particle size control venturi partitions/partitions 14, 15, and 16 described above. The water is then precipitated in the precipitation tank 13. The entire device is capable of generating nanoparticle water (1.0 nm) and nano plasma particles (0.1 to 0.5 nm) at a number density of 100%, which is a major feature of the device of the present invention.
本装置筐体▲1▼内の側板に固定された特殊ノズル7.8.9..から墳出した高圧水を該衝突物体3個に.に衝突させることによりナノ粒子水を生成する。ナノ粒子水貯留槽12.に、加圧溶解と水蒸気分圧力の差によって、ナノ粒子水と溶存酸素が該、貯留槽に溶存溶解されてナノ粒子水が生成されていくこととなる。Nanoparticle water is generated by impacting the three impact objects with high-pressure water ejected from special nozzles 7, 8, 9, etc. fixed to the side panel inside the housing 1 of this device. Nanoparticle water and dissolved oxygen are dissolved in the nanoparticle water storage tank 12 due to the difference between the pressurized dissolution and the partial pressure of water vapor, and nanoparticle water is generated.
図1のナノ粒子水生成装置筐体▲1▼の噴霧室兼空気加圧混合室11.の中間部上方には側壁より、給水管6.はその先端に特殊ノズル7.8.9.を形成している。At the upper middle part of the spray chamber/air pressurized mixing chamber 11 of the nanoparticle water generating device housing 1 in Fig. 1, a water supply pipe 6 is provided from the side wall, and special nozzles 7, 8, and 9 are formed at the tip thereof.
図1の、ナノ・プラズマ粒子(0.1~0.5nm粒径)生成装置筐体▲2▼.の円筒長手側板中間部側壁より、高圧ナノ粒子水配管21.は、その先端に特殊ノズルユニット6個を形成している。The high-pressure nanoparticle water pipe 21 is attached to the cylindrical longitudinal side plate of the nano-plasma particle (0.1 to 0.5 nm particle diameter) generating device housing 2 in FIG. 1 from the middle part of the side wall, and has six special nozzle units formed at its tip.
現在のナノ粒子水技術は国内の産官学挙げて取り組んでいる、日本発の技術である。本発明技術の利用範囲は、脱炭素に大きく貢献できる、油との合成技術は特に期待がされる。また、農業分野おいては、酸素濃度の向上と野菜等の成長促進が確認されている、医療分野においては、目薬、薬品、皮膚薬、臓器医療再生技術に使われる、食品分野では飲料抽櫃、排水浄化、食品洗浄、食品乳化品、に既に一部が実用化されている。他に土木分野の汚泥処理装置、化粧品関連、半導体関連、水産関連等々に利用範囲が多岐に亘っており、それぞれに研究開発が進み、そして製品化が一部実用化されている。本発明装置から、生成が可能である粒子口径は、0.1~10nm(生成個数密度100%)となり従来の性能を大きく異なる装置を提供できることが可能になってきたのである。産業上広範囲に亘り、応用が可能となる装置である。The current nanoparticle water technology is a technology originating in Japan that is being tackled by the domestic industry, government, and academia. The scope of use of the technology of the present invention can greatly contribute to decarbonization, and the synthesis technology with oil is particularly promising. In the agricultural field, it has been confirmed that it improves oxygen concentration and promotes the growth of vegetables, etc. In the medical field, it is used in eye drops, medicines, skin medicines, and organ medical regeneration technology, and in the food field, it has already been partially put into practical use in beverage extraction, wastewater purification, food cleaning, and food emulsions. In addition, it has a wide range of uses, such as sludge treatment equipment in the civil engineering field, cosmetics-related, semiconductor-related, and fishery-related, and research and development is progressing in each of them, and some products have been put into practical use. The particle diameter that can be generated from the device of the present invention is 0.1 to 10 nm (100% generation number density), and it has become possible to provide a device with significantly different performance from the conventional one. It is a device that can be applied over a wide range of industries.
▲1▼ ナノ粒子水(1.0nm粒径)生成装置筐体
▲2▼ ナノ・プラズマ粒子(0.1~0.5nm粒径)生成装置筐体
▲3▼ 水貯留タンク
▲4▼ 給水管
▲5▼ 高圧水ポンプ
▲6▼ 高圧給水管
▲7▼ 特殊ノズル01-04
▲8▼ 特殊ノズル02-05
▲9▼ 特殊ノズル03-06
▲10▼ 空気供給送風機
▲11▼ 噴霧室兼空気加圧混合室
▲12▼ ナノ粒子水(1.0nm粒径)貯留槽
▲13▼ 10~100nm粒径沈殿槽
▲14▼ 空気粒径制御ベンチュリー隔壁
▲15▼ 空気粒径制御ベンチュリー中仕切板
▲16▼ 空気粒径制御ベンチュリー隔壁
▲17▼ 空気チャンバー室
▲18▼ 空気供給管
▲19▼ ナノ粒子水(1.0nm粒径)配管
▲20▼ ナノ粒子水(1.0nm粒径)高圧ポンプ
▲21▼ 高圧ナノ粒子水(1.0nm粒径)配管
▲22▼ 特殊ノズルユニット04
▲23▼ 特殊ノズルユニット05
▲24▼ 特殊ノズルユニット06
▲25▼ 特殊ノズルユニット07
▲26▼ 特殊ノズルユニット08
▲27▼ 特殊ノズルユニット09
▲28▼ 球体01
▲29▼ 球体02
▲30▼ 球体03
▲31▼ ナノ・プラズマ粒子水(0.15~0.5nm)配管
▲32▼ 減圧弁
▲33▼ ナノ・プラズマ粒子水(0.15~0.5nm粒径)貯留タンク
▲34▼ ナノ・プラズマ生成室
▲35▼ エアーコンプレッサー(高圧空気生成機)
▲36▼ 高圧空気補給管
▲37▼ 10~100nm粒子水排出弁
▲38▼ 一次給水ポンプ
▲39▼ 一次給水管フィルター
▲40▼ 一次給水管
▲41▼ ナノ・プラズマ粒子水貯留槽
50 前後の側板
51 左右の側板
52 底板
53 上板▲1▼ Nanoparticle water (1.0 nm particle size) generator housing ▲2▼ Nano plasma particle (0.1 to 0.5 nm particle size) generator housing ▲3▼ Water storage tank ▲4▼ Water supply pipe ▲5▼ High pressure water pump ▲6▼ High pressure water supply pipe ▲7▼ Special nozzle 01-04
▲8▼ Special nozzle 02-05
▲9▼ Special nozzle 03-06
▲10▼ Air supply blower ▲11▼ Spray chamber and air pressurized mixing chamber ▲12▼ Nanoparticle water (1.0 nm particle size) storage tank ▲13▼ 10-100 nm particle size precipitation tank ▲14▼ Air particle size control Venturi partition ▲15▼ Air particle size control Venturi middle partition plate ▲16▼ Air particle size control Venturi partition ▲17▼ Air chamber ▲18▼ Air supply pipe ▲19▼ Nanoparticle water (1.0 nm particle size) piping ▲20▼ Nanoparticle water (1.0 nm particle size) high pressure pump ▲21▼ High pressure nanoparticle water (1.0 nm particle size) piping ▲22▼ Special nozzle unit 04
▲23▼ Special nozzle unit 05
▲24▼ Special nozzle unit 06
▲25▼ Special nozzle unit 07
▲26▼ Special nozzle unit 08
▲27▼ Special nozzle unit 09
▲28▼ Sphere 01
▲29▼ Sphere 02
▲30▼ Sphere 03
▲31▼ Nano plasma particle water (0.15-0.5 nm) piping ▲32▼ Pressure reducing valve ▲33▼ Nano plasma particle water (0.15-0.5 nm particle size) storage tank ▲34▼ Nano plasma generation chamber ▲35▼ Air compressor (high pressure air generator)
▲36▼ High pressure air supply pipe ▲37▼ 10-100 nm particle water discharge valve ▲38▼ Primary water supply pump ▲39▼ Primary water supply pipe filter ▲40▼ Primary water supply pipe ▲41▼ Nano plasma particle water storage tank 50 Front and rear side panels 51 Left and right side panels 52 Bottom panel 53 Top panel
Claims (14)
10μs/cmの値を示すこと。上記の性能数値は機能水として、ナノ粒子水(1.0nm)発生することができることが本発明装置の大きな特徴である。The nanoparticle water (1.0 nm particles) produced by the device of the present invention has a particle count of about 1.0 nm per ml.
The above performance values indicate that the device of the present invention is capable of generating nanoparticle water (1.0 nm) as functional water.
ることが可能になる装置であることが本発明装置の大きな特徴である。By connecting multiple spray chambers and air pressure mixing chambers of this device, it is possible to control the distribution of nanoparticle water (particle size 1.0 nm) and nano-plasma particle water (particle size 0.15 to 0.5 nm) of functional water, which are measured and analyzed by a particle size distribution device that shows the performance of functional water. The number of particles is also measured.
A major feature of the device of the present invention is that it is an apparatus that makes it possible to
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023019493A JP2024100632A (en) | 2023-01-13 | 2023-01-13 | NANO-PLASMA PARTICLE WATER GENERATION DEVICE WITH APPLICATION OF MECHANISM OF SEA SALT PARTICLE GENERATION ON OCEAN SURFACE FOR GENERATING NANO-PLASMA PARTICLE WATER (0.15 TO 1.0 nm) IN DEVICE HOUSING, DISSOLVING PARTICLE IN LIQUID UNDER PRESSURE TO GENERATE FUNCTIONAL WATER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023019493A JP2024100632A (en) | 2023-01-13 | 2023-01-13 | NANO-PLASMA PARTICLE WATER GENERATION DEVICE WITH APPLICATION OF MECHANISM OF SEA SALT PARTICLE GENERATION ON OCEAN SURFACE FOR GENERATING NANO-PLASMA PARTICLE WATER (0.15 TO 1.0 nm) IN DEVICE HOUSING, DISSOLVING PARTICLE IN LIQUID UNDER PRESSURE TO GENERATE FUNCTIONAL WATER |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024100632A true JP2024100632A (en) | 2024-07-26 |
Family
ID=91958493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023019493A Pending JP2024100632A (en) | 2023-01-13 | 2023-01-13 | NANO-PLASMA PARTICLE WATER GENERATION DEVICE WITH APPLICATION OF MECHANISM OF SEA SALT PARTICLE GENERATION ON OCEAN SURFACE FOR GENERATING NANO-PLASMA PARTICLE WATER (0.15 TO 1.0 nm) IN DEVICE HOUSING, DISSOLVING PARTICLE IN LIQUID UNDER PRESSURE TO GENERATE FUNCTIONAL WATER |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024100632A (en) |
-
2023
- 2023-01-13 JP JP2023019493A patent/JP2024100632A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Temesgen et al. | Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review | |
Azevedo et al. | Bulk nanobubbles in the mineral and environmental areas: Updating research and applications | |
Favvas et al. | Bulk nanobubbles, generation methods and potential applications | |
Levitsky et al. | Micro and nanobubbles in water and wastewater treatment: A state-of-the-art review | |
Khan et al. | Micro–nanobubble technology and water-related application | |
WO2009116711A2 (en) | Apparatus of generating microbubbles | |
Zimmerman et al. | Towards energy efficient nanobubble generation with fluidic oscillation | |
JP6762467B2 (en) | Aeration device | |
JP2011523372A (en) | Method for designing hydrodynamic cavitation reactors for process enhancement | |
Ulatowski et al. | Gas nanobubble dispersions as the important agent in environmental processes–generation methods review | |
Michailidi et al. | Fundamentals and applications of nanobubbles | |
KR101191146B1 (en) | Ballast water treatment apparatus based on plasma discharging using micro bubble | |
WO2004030837A1 (en) | Nanobubble utilization method and device | |
CN204469572U (en) | Gas-fluid mixing systems | |
WO2016119087A1 (en) | Gas-liquid mixing device | |
Hashim et al. | Application of colloidal gas aphrons for pollution remediation | |
JP2018176148A (en) | Component such as ultramicro particles floating on sea surface is dissolved in sea water. mechanism of natural world is utilized. nanobubble generator which generates nanomicroparticle water in air to dissolve the particles in liquid by compression dissolution to work as functional water | |
US20140158631A1 (en) | Separation of neutrally buoyant materials from water | |
CN108392961B (en) | Nano-bubble organic waste gas treatment method and system | |
Jia et al. | Full life circle of micro-nano bubbles: Generation, characterization and applications | |
Han et al. | A review and perspective on micro and nanobubbles: What They Are and Why They Matter | |
Zhang et al. | Physicochemical characteristics and the scale inhibition effect of air nanobubbles (A-NBs) in a circulating cooling water system | |
Kim et al. | Effects on swirling chamber and breaker disk in pressurized-dissolution type micro-bubble generator | |
CA2921749A1 (en) | Method and system for removing hydrogen sulfide from wastewater | |
JP2024100632A (en) | NANO-PLASMA PARTICLE WATER GENERATION DEVICE WITH APPLICATION OF MECHANISM OF SEA SALT PARTICLE GENERATION ON OCEAN SURFACE FOR GENERATING NANO-PLASMA PARTICLE WATER (0.15 TO 1.0 nm) IN DEVICE HOUSING, DISSOLVING PARTICLE IN LIQUID UNDER PRESSURE TO GENERATE FUNCTIONAL WATER |