JP2024091876A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2024091876A
JP2024091876A JP2024070184A JP2024070184A JP2024091876A JP 2024091876 A JP2024091876 A JP 2024091876A JP 2024070184 A JP2024070184 A JP 2024070184A JP 2024070184 A JP2024070184 A JP 2024070184A JP 2024091876 A JP2024091876 A JP 2024091876A
Authority
JP
Japan
Prior art keywords
energy storage
heat transfer
storage elements
cooling
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024070184A
Other languages
Japanese (ja)
Inventor
寛 向井
Hiroshi Mukai
良一 奥山
Ryoichi Okuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2024070184A priority Critical patent/JP2024091876A/en
Publication of JP2024091876A publication Critical patent/JP2024091876A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

To provide a good power storage device capable of preventing concatenation of overheat state between power storage elements well.SOLUTION: A power storage device 100 includes multiple power storage elements 1, and a cooling part 30 for cooling the power storage elements 1. The cooling part 30 incorporates liquid, and has a heat transmission part 31 placed at least between the power storage elements 1, in contact therewith, and cools the power storage elements 1 by the heat of vaporization of the liquid. In the heat transmission part 31 in contact with the power storage element 1 that generated heat, the power storage element 1 is cooled well by the heat of vaporization when the incorporated liquid evaporates.SELECTED DRAWING: Figure 2

Description

本発明は、複数の蓄電素子を備える蓄電装置に関する。 The present invention relates to an energy storage device having multiple energy storage elements.

携帯電話、自動車等の様々な機器に、充放電可能な蓄電素子が使用されている。中でも電気自動車(EV)やプラグインハイブリッド電気自動車(PHEV)等の電気エネルギーを動力源とする車両は、大きなエネルギーを必要とするため、複数の蓄電素子を備える大容量の蓄電装置を搭載している。 Chargeable and dischargeable energy storage elements are used in a variety of devices, including mobile phones and automobiles. In particular, vehicles that use electrical energy as a power source, such as electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), require large amounts of energy and are therefore equipped with large-capacity energy storage devices that include multiple energy storage elements.

このような蓄電装置では、通常の使用状態ではないが何らかの原因によりいずれか1つの蓄電素子の温度が過度に上昇した場合、この蓄電素子の熱が隣接する蓄電素子に伝導することにより隣接する蓄電素子が加熱される。これにより、隣接する蓄電素子の電極の活物質が自己発熱温度以上に加熱されると、この隣接する蓄電素子も自己発熱により過熱状態となってさらにその隣の蓄電素子を加熱し、連鎖的に多数の蓄電素子が過熱状態となるおそれがある。 In such an energy storage device, if the temperature of one of the energy storage elements rises excessively for some reason, even if it is not under normal use conditions, the heat from this energy storage element will be conducted to the adjacent energy storage element, causing the adjacent energy storage element to heat up. As a result, if the active material of the electrode of an adjacent energy storage element is heated to or above its self-heating temperature, this adjacent energy storage element will also become overheated due to self-heating, which will further heat the adjacent energy storage element, causing a chain reaction in which many energy storage elements will become overheated.

金属製のケースを樹脂フィルムで被覆した蓄電素子を用いる場合、蓄電素子が過熱状態となった場合、樹脂フィルムが溶融して金属製のケース同士が接触して熱伝導を助長する結果、過熱状態の連鎖が生じやすい。特に、金属製のケースを電極として用いる場合や、何らかの異常によって金属製のケースが異常な電位を有する場合、隣接する蓄電素子のケースと電気的に接触して隣接する蓄電素子に異常な電流を生じさせて、過熱状態を招くおそれがある。 When using energy storage elements with metal cases covered with a resin film, if the energy storage elements overheat, the resin film melts and the metal cases come into contact with each other, promoting heat conduction and making it easy for a chain reaction of overheating to occur. In particular, when the metal case is used as an electrode, or when the metal case has an abnormal electric potential due to some abnormality, it may come into electrical contact with the case of an adjacent energy storage element, causing an abnormal current in the adjacent energy storage element and resulting in an overheating state.

特開2015-195149号公報には、蓄電素子の熱が隣り合う蓄電素子に伝導することを抑制する技術が開示されている。 JP 2015-195149 A discloses a technology that prevents heat from one storage element from being transferred to an adjacent storage element.

特開2015-195149号公報JP 2015-195149 A

特許文献1の蓄電装置においては、マイカ集積材から形成される仕切部材によって蓄電素子間の熱の伝導を抑制している。
近年、蓄電素子及び蓄電装置のさらなる容量の増大が求められている。蓄電素子の容量を増大すると、一つの蓄電素子が過熱状態となったときにその蓄電素子から放出されるエネルギー及び熱も非常に大きい。蓄電素子間の空気層や仕切部材の厚みを増せば、断熱性を高めることができるが、それらの手法では、蓄電装置としてのエネルギー密度が低下する。そのため、エネルギー密度を低下させることなく蓄電素子間の過熱状態の連鎖を防止できる新しい対策が求められている。
In the electricity storage device of Patent Document 1, the heat transfer between the electricity storage elements is suppressed by the partition members formed from a mica aggregate material.
In recent years, there has been a demand for further increases in the capacity of energy storage elements and energy storage devices. When the capacity of an energy storage element is increased, the energy and heat released from the energy storage element when one of the energy storage elements becomes overheated is also very large. Increasing the thickness of the air layer or partition member between the energy storage elements can improve the thermal insulation, but these methods reduce the energy density of the energy storage device. Therefore, new measures are required that can prevent the chain reaction of overheating between the energy storage elements without reducing the energy density.

本発明は、蓄電素子間の過熱状態の連鎖を良好に防止できる蓄電装置を提供することを目的とする。 The present invention aims to provide an energy storage device that can effectively prevent a chain of overheating conditions between storage elements.

本発明に係る蓄電装置は、複数の蓄電素子と、前記蓄電素子を冷却する冷却部とを備え、前記冷却部は、液体を内蔵し、少なくとも前記蓄電素子間に配置され、前記蓄電素子に接触して、前記液体の気化熱により前記蓄電素子を冷却する伝熱部を有することを特徴とする。 The energy storage device according to the present invention comprises a plurality of energy storage elements and a cooling unit that cools the energy storage elements, and the cooling unit has a heat transfer unit that contains a liquid, is disposed at least between the energy storage elements, and is in contact with the energy storage elements to cool the energy storage elements by the heat of vaporization of the liquid.

本発明によれば、発熱した蓄電素子に接触する伝熱部において、内蔵する液体が蓄電素子から吸熱して蒸発し、蓄電素子が良好に冷却される。伝熱部は少なくとも前記蓄電素子間に配置されるので、発熱した蓄電素子に隣接する蓄電素子への熱の伝導が抑制され、3以上の蓄電素子を有する場合はさらに隣接する蓄電素子に連鎖的に伝熱するのが抑制される。即ち、蓄電素子間の過熱状態の連鎖が良好に防止される。
また、液体は伝熱部に内蔵されているので、気化した後、伝熱部内で液化し、蓄電素子の冷却に再利用され、蓄電素子は効率良く冷却される。
According to the present invention, in the heat transfer section that comes into contact with the heated electric storage element, the liquid contained therein absorbs heat from the electric storage element and evaporates, thereby effectively cooling the electric storage element. Since the heat transfer section is disposed at least between the electric storage elements, the conduction of heat to the electric storage element adjacent to the heated electric storage element is suppressed, and when there are three or more electric storage elements, the chain reaction of heat transfer to the adjacent electric storage elements is further suppressed. In other words, the chain reaction of overheating between the electric storage elements is effectively prevented.
In addition, since the liquid is contained within the heat transfer portion, after vaporization, it is liquefied within the heat transfer portion and is reused for cooling the electricity storage elements, thereby efficiently cooling the electricity storage elements.

蓄電素子の斜視図である。FIG. 第1実施形態に係る蓄電装置の斜視図である。1 is a perspective view of an electricity storage device according to a first embodiment; 冷却部の斜視図である。FIG. 図3のIV-IV線断面図である。4 is a cross-sectional view taken along line IV-IV of FIG. 3. 蓄電素子が発熱した場合における冷却部による冷却を説明するための説明図である。10 is an explanatory diagram for explaining cooling by a cooling unit when an electric storage element generates heat; FIG. 第2実施形態に係る冷却部の斜視図である。FIG. 11 is a perspective view of a cooling section according to a second embodiment. 第2実施形態において内部空間が連通されている場合の説明図である。FIG. 11 is an explanatory diagram illustrating a case where internal spaces are connected to each other in the second embodiment. 第3実施形態に係る冷却部の斜視図である。FIG. 11 is a perspective view of a cooling section according to a third embodiment. 第4実施形態に係る冷却部の斜視図である。FIG. 13 is a perspective view of a cooling section according to a fourth embodiment. 中央の蓄電素子の破裂弁が開放した場合の冷却を説明する説明図である。FIG. 13 is an explanatory diagram illustrating cooling when the burst valve of the central storage element is opened.

以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
(第1実施形態)
図1は第1実施形態に係る蓄電素子1の斜視図である。以下、蓄電素子1がリチウムイオン二次電池である場合を説明するが、蓄電素子1はリチウムイオン二次電池には限定されない。
蓄電素子1は、蓋板2及びケース本体3を有するケース11、正極端子4、負極端子8、ガスケット6,10、破裂弁20、集電体及び電極体(不図示)を備える。
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
First Embodiment
1 is a perspective view of an energy storage device 1 according to a first embodiment. In the following, a case where the energy storage device 1 is a lithium ion secondary battery will be described, but the energy storage device 1 is not limited to a lithium ion secondary battery.
The energy storage element 1 includes a case 11 having a cover plate 2 and a case body 3, a positive electrode terminal 4, a negative electrode terminal 8, gaskets 6 and 10, a burst valve 20, a current collector, and an electrode assembly (not shown).

ケース11は例えばアルミニウム、アルミニウム合金、ステンレス等の金属、又は合成樹脂からなり、直方体状をなし、電極体及び電解液(不図示)を収容する。 The case 11 is made of a metal such as aluminum, an aluminum alloy, or stainless steel, or a synthetic resin, has a rectangular parallelepiped shape, and contains the electrode body and the electrolyte (not shown).

正極端子4は、蓋板2を貫通する軸部、及び軸部の一端に設けられた板部を有する。
ガスケット6は例えばポリフェニレンサルファイド(PPS)又はポリプロピレン(PP)等の合成樹脂製である。正極端子4は、ガスケット6により板部の内面、及び軸部を覆われ、絶縁された状態で、蓋板2を貫通するように設けられている。
The positive electrode terminal 4 has a shaft portion that passes through the cover plate 2 and a plate portion provided at one end of the shaft portion.
The gasket 6 is made of a synthetic resin such as polyphenylene sulfide (PPS) or polypropylene (PP). The positive electrode terminal 4 is provided so as to penetrate the cover plate 2 while being insulated by covering the inner surface of the plate portion and the shaft portion with the gasket 6.

負極端子8は、蓋板2を貫通する軸部、及び軸部の一端に設けられた板部を有する。負極端子8は、ガスケット10により板部の内面、及び軸部を覆われ、絶縁された状態で、蓋板2を貫通するように設けられている。 The negative electrode terminal 8 has an axis that passes through the cover plate 2 and a plate provided at one end of the axis. The inner surface of the plate and the axis of the negative electrode terminal 8 are covered by a gasket 10, and the negative electrode terminal 8 is provided to pass through the cover plate 2 in an insulated state.

電極体は、複数の正極板及び負極板がセパレータを介して交互に積層されて直方体状に形成された本体と、本体から蓋板2に向けて延びる正極タブ及び負極タブを有する積層タイプであってもよい。正極タブは、集電体を介し正極端子4に接続されている。負極タブは、集電体を介し負極端子8に接続されている。
電極体は、正極板と負極板とをセパレータを介して扁平状に巻回して得られる巻回タイプであってもよい。
電極体は、充放電に伴う膨れ(ケース11のような金属ケース、ラミネート構造のパウチケース等の外装体の膨れ)が少ない、積層タイプがより好ましい。外装体の膨れが少ないので、通常使用時に外装体が伝熱部31を圧迫することを抑制できる。
The electrode body may be a laminate type having a main body formed into a rectangular parallelepiped shape by alternately stacking a plurality of positive and negative electrode plates with separators interposed therebetween, and a positive electrode tab and a negative electrode tab extending from the main body toward the cover plate 2. The positive electrode tab is connected to the positive electrode terminal 4 via a current collector. The negative electrode tab is connected to the negative electrode terminal 8 via a current collector.
The electrode assembly may be of a wound type obtained by winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween into a flat shape.
The electrode body is preferably a laminated type, which has less swelling (swelling of the exterior body such as a metal case like the case 11 or a pouch case with a laminate structure) associated with charging and discharging. Since the exterior body is less swollen, it is possible to prevent the exterior body from pressing against the heat transfer section 31 during normal use.

正極板は、アルミニウムやアルミニウム合金等からなる板状(シート状)又は長尺帯状の金属箔である正極基材箔上に正極活物質層が形成されたものである。負極板は、銅及び銅合金等からなる板状(シート状)又は長尺帯状の金属箔である負極基材箔上に負極活物質層が形成されたものである。セパレータは、合成樹脂からなる微多孔性のシートである。
正極活物質層に用いられる正極活物質、又は負極活物質層に用いられる負極活物質としては、リチウムイオンを吸蔵放出可能な正極活物質又は負極活物質であれば、適宜公知の材料を使用できる。
The positive electrode plate is a positive electrode active material layer formed on a positive electrode substrate foil, which is a plate-shaped (sheet-shaped) or long strip-shaped metal foil made of aluminum, an aluminum alloy, etc. The negative electrode plate is a negative electrode active material layer formed on a negative electrode substrate foil, which is a plate-shaped (sheet-shaped) or long strip-shaped metal foil made of copper, a copper alloy, etc. The separator is a microporous sheet made of a synthetic resin.
As the positive electrode active material used in the positive electrode active material layer or the negative electrode active material used in the negative electrode active material layer, any known material can be used as long as it is a positive electrode active material or a negative electrode active material capable of absorbing and releasing lithium ions.

正極活物質としては、例えば、LiMPO4 、LiM2 SiO4 、LiMBO3 (MはFe、Ni、Mn、Co等から選択される1種又は2種以上の遷移金属元素)等のポリアニオン化合物、チタン酸リチウム、マンガン酸リチウム等のスピネル化合物、LiMO2(MはFe、Ni、Mn、Co等から選択される1種又は2種以上の遷移金属元素)等のリチウム遷移金属酸化物等を用いることができる。 Examples of the positive electrode active material that can be used include polyanion compounds such as LiMPO4 , LiM2SiO4 , and LiMBO3 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.), spinel compounds such as lithium titanate and lithium manganate, and lithium transition metal oxides such as LiMO2 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.).

負極活物質としては、例えば、リチウム金属、リチウム合金(リチウム-アルミニウム、リチウム-シリコン、リチウム-鉛、リチウム-錫、リチウム-アルミニウム-錫、リチウム-ガリウム、及びウッド合金等のリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えば黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温焼成炭素、非晶質カーボン等)、金属酸化物、リチウム金属酸化物(Li4 Ti5 12等)、ポリリン酸化合物等が挙げられる。 Examples of negative electrode active materials include lithium metal, lithium alloys (lithium metal-containing alloys such as lithium-aluminum, lithium-silicon, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and Wood's alloy), as well as alloys capable of absorbing and releasing lithium, carbon materials (e.g., graphite, difficult-to-graphitize carbon, easy-to-graphitize carbon, low-temperature fired carbon, amorphous carbon, etc.), metal oxides, lithium metal oxides (Li 4 Ti 5 O 12 , etc.), and polyphosphate compounds.

破裂弁20は、板厚を部分的に減じて形成される破断部200を有する。蓄電素子1の内圧上昇時に破断部200に沿って破断して、舌片状の部分が形成され、該部分が外側に跳ね上がることで蓋板2に開口が形成される。 The rupture valve 20 has a rupture section 200 formed by partially reducing the plate thickness. When the internal pressure of the energy storage element 1 rises, it ruptures along the rupture section 200 to form a tongue-shaped section, which then springs outward to form an opening in the cover plate 2.

図2は本実施形態に係る蓄電装置100の斜視図、図3は冷却部30の斜視図である。
蓄電装置100は、複数の蓄電素子1と、蓄電素子1を冷却する冷却部30と、蓄電素子1及び冷却部30を収納するケース40とを備える。図2においては、蓄電素子1が3個収納されているが、蓄電素子1の数は3個に限定されない。
ケース40は箱状をなし、例えば合成樹脂等の絶縁性の材料からなる。ケース40は蓄電素子1及び冷却部30を所定の位置に配置し、これらを衝撃から保護する。ケース40には、外部からの電気を充電し、外部へ電気を放電するための外部電極端子(不図示)が設けられている。
FIG. 2 is a perspective view of the power storage device 100 according to this embodiment, and FIG.
The energy storage device 100 includes a plurality of energy storage elements 1, a cooling unit 30 that cools the energy storage elements 1, and a case 40 that houses the energy storage elements 1 and the cooling unit 30. In Fig. 2, three energy storage elements 1 are housed, but the number of energy storage elements 1 is not limited to three.
The case 40 is box-shaped and made of an insulating material such as synthetic resin. The case 40 disposes the energy storage element 1 and the cooling unit 30 at predetermined positions and protects them from impact. The case 40 is provided with external electrode terminals (not shown) for charging with electricity from the outside and discharging electricity to the outside.

冷却部30は、良好な熱伝導性及び耐熱性を有する例えばアルミニウム等の金属からなってもよく、表面に絶縁膜を形成する等して絶縁処理が施されていてもよい。
図3に示すように、冷却部30は、板状の伝熱部31と、伝熱部31を連結する連結部32,33と、内圧開放弁34とを備える。2個の伝熱部31は、隣接する蓄電素子1の長側面間に介在し、2個の伝熱部31は両端の蓄電素子1の外側の長側面に当接する。ここで、長側面とは、図1における蓄電素子1の底面の長辺から上に延びるように設けられており、側面のうちで最も大きな面積を有する側面をいう。一方の外側の伝熱部31の上面には内圧開放弁34が設けられている。伝熱部31の数は蓄電素子1の数に対応して設けられてもよい。伝熱部31は蓄電素子1間に介在し、さらに両端の蓄電素子1の外側の長側面に当接するように設けられる。
外側の伝熱部31は省略することができる。例えば蓄電素子1の数が5個である場合、蓄電素子1間に4個の伝熱部31を配置し、4個の伝熱部31を連結部32,33により連結する。外側の蓄電素子1の長側面はケース40の側面に当接させる。外側の伝熱部31を設ける方が冷却効率はより良好である。
The cooling unit 30 may be made of a metal such as aluminum having good thermal conductivity and heat resistance, and may be subjected to an insulating treatment such as forming an insulating film on the surface.
As shown in FIG. 3, the cooling unit 30 includes a plate-shaped heat transfer unit 31, connecting units 32 and 33 that connect the heat transfer units 31, and an internal pressure release valve 34. The two heat transfer units 31 are interposed between the long side surfaces of the adjacent energy storage elements 1, and the two heat transfer units 31 abut against the outer long side surfaces of the energy storage elements 1 at both ends. Here, the long side surface is provided so as to extend upward from the long side of the bottom surface of the energy storage element 1 in FIG. 1, and refers to the side surface having the largest area among the side surfaces. An internal pressure release valve 34 is provided on the upper surface of one of the outer heat transfer units 31. The number of heat transfer units 31 may be provided corresponding to the number of energy storage elements 1. The heat transfer units 31 are interposed between the energy storage elements 1, and are further provided so as to abut against the outer long side surfaces of the energy storage elements 1 at both ends.
The outer heat transfer portion 31 can be omitted. For example, when the number of energy storage elements 1 is five, four heat transfer portions 31 are arranged between the energy storage elements 1, and the four heat transfer portions 31 are connected by the connecting portions 32, 33. The long side of the outer energy storage element 1 abuts against the side of the case 40. Providing the outer heat transfer portion 31 provides better cooling efficiency.

図4は、図3のIV-IV線断面図である。
内圧開放弁34は円状の溝であり、図4に示すように、溝の底部の厚みが他の部分の厚みより薄い。内圧開放弁34は切削加工、プレス加工等により形成される。内圧開放弁34を切削加工により形成する場合、3次元NC等の曲面を切削できる装置が用いられる。内圧開放弁34をプレス加工により形成する場合、突起を有する金型により刻印を押すように形成される。
FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
The internal pressure release valve 34 is a circular groove, and as shown in Fig. 4, the thickness of the bottom of the groove is thinner than the thickness of other parts. The internal pressure release valve 34 is formed by cutting, pressing, etc. When the internal pressure release valve 34 is formed by cutting, a device capable of cutting curved surfaces, such as a three-dimensional NC, is used. When the internal pressure release valve 34 is formed by pressing, it is formed by pressing a stamp using a die having protrusions.

伝熱部31は中空であり、内部空間に液体が収容されている。液体は不燃性で、気化熱が大きく、耐食性を有し、有毒ガスを発生しないものが好ましい。液体は水を含むのが好ましい。水は無害で腐食性が少なく、発火性がなく、安全性が高い。液体は流動性を有するもの、またはゲル状であればよく、HFC系冷媒及び不活性ガスの溶液等の冷媒を含んでもよい。水と水以外の成分とを混合することにより、沸点を調整してもよい。
液体の収容量は、伝熱部31、及び連結部32,33の内容積、蓄電素子1の想定される発熱温度、液体が気化したときの体積等に基づいて、伝熱部31が破損しないように設定する。
The heat transfer section 31 is hollow, and liquid is contained in the internal space. The liquid is preferably non-flammable, has a large heat of vaporization, is corrosion resistant, and does not generate toxic gases. The liquid preferably contains water. Water is harmless, less corrosive, non-flammable, and highly safe. The liquid may be fluid or gel-like, and may contain refrigerants such as HFC refrigerants and inert gas solutions. The boiling point may be adjusted by mixing water with a component other than water.
The amount of liquid to be stored is set based on the internal volume of the heat transfer section 31 and the connecting sections 32 and 33, the expected heat generation temperature of the energy storage element 1, the volume of the liquid when vaporized, etc., so as not to damage the heat transfer section 31.

隣接する伝熱部31の長側面の一端の上部は、連結部32により連結されている。連結部32は中空であり、連結する伝熱部31内の気体が連結部32内を通流するように構成されている。
隣接する伝熱部31の長側面の一端の下部は、連結部33により連結されている。連結部33は中空であり、連結する伝熱部31内の液体が連結部33内を通流するように構成されている。
即ち、隣接する伝熱部31、連結部32、及び連結部33は、内部空間が連通している。
The upper portions of one end of the long side surfaces of adjacent heat transfer portions 31 are connected by a connecting portion 32. The connecting portion 32 is hollow and configured so that gas inside the connected heat transfer portions 31 flows through the connecting portion 32.
The lower portions of one end of the long side surfaces of adjacent heat transfer sections 31 are connected by a connecting section 33. The connecting section 33 is hollow and configured so that the liquid in the connected heat transfer sections 31 flows through the connecting section 33.
That is, the internal spaces of the adjacent heat transfer portions 31, the connecting portions 32, and the connecting portions 33 are in communication with each other.

図5は、蓄電素子1が発熱した場合における冷却部30による冷却を説明するための説明図である。
冷却部30には、液体として水Wが収容されており、中央の蓄電素子1が発熱したとする。
発熱した蓄電素子1から両側の伝熱部31,31に熱が伝導され、伝熱部31内の水Wが蒸発する(図5A)。水Wが蒸発するときの気化熱は大きく、吸熱反応により蓄電素子1は急速に冷却される。発熱した蓄電素子1の両側の伝熱部31内の水Wの量は、蒸発によって減る。
FIG. 5 is an explanatory diagram for explaining cooling by the cooling unit 30 when the energy storage element 1 generates heat.
It is assumed that water W is contained as liquid in the cooling section 30, and the central energy storage element 1 generates heat.
Heat is conducted from the heated energy storage element 1 to the heat transfer parts 31, 31 on both sides, and the water W in the heat transfer parts 31 evaporates ( FIG. 5A ). When the water W evaporates, the heat of vaporization is large, and the energy storage element 1 is rapidly cooled by an endothermic reaction. The amount of water W in the heat transfer parts 31 on both sides of the heated energy storage element 1 decreases due to evaporation.

前記伝熱部31内の水蒸気は熱対流により上部へ流れ、それぞれ連結部32,32を通って、温度が低い外側の伝熱部31へ移動する(図5B)。水蒸気は外側の伝熱部31内で凝縮し、外側の伝熱部31内の水Wの量は増加する。 The water vapor in the heat transfer section 31 flows upward due to thermal convection and passes through the connecting sections 32, 32 to the outer heat transfer section 31, which has a lower temperature (Figure 5B). The water vapor condenses in the outer heat transfer section 31, and the amount of water W in the outer heat transfer section 31 increases.

外側の伝熱部31内で増加した分、水Wが内側の伝熱部31へ連結部33を介して流れ、4つの伝熱部31の水量は等しくなる(図5C)。循環した水Wは、また蓄電素子1の発熱を吸収し、気化して、上記と同様に循環する。 The water W that increases in the outer heat transfer section 31 flows to the inner heat transfer section 31 through the connecting section 33, and the amount of water in the four heat transfer sections 31 becomes equal (Figure 5C). The circulated water W absorbs heat generated by the energy storage element 1 again, vaporizes, and circulates in the same manner as above.

液体として、水を用いた場合、水は100℃で蒸発し、気化熱が大きいため、蓄電素子1の熱を、不具合事象を引き起こすおそれのある百数十度より低く抑えることができる。即ち、蓄電装置100は、安全性が高い状態で、蓄電素子1を急速に冷却することができる。 When water is used as the liquid, it evaporates at 100°C and has a large heat of vaporization, so the heat of the energy storage element 1 can be kept below a hundred or so degrees, which may cause malfunctions. In other words, the energy storage device 100 can rapidly cool the energy storage element 1 in a highly safe state.

以上の蓄電装置100は、複数の蓄電素子1と、前記蓄電素子1を冷却する冷却部30とを備え、前記冷却部30は、液体を内蔵し、少なくとも前記蓄電素子1間に配置され、前記蓄電素子1の長側面に接触して、前記液体の気化熱により前記蓄電素子1を冷却する伝熱部31を有する。 The above-described energy storage device 100 includes a plurality of energy storage elements 1 and a cooling unit 30 that cools the energy storage elements 1. The cooling unit 30 includes a heat transfer unit 31 that contains a liquid, is disposed at least between the energy storage elements 1, and is in contact with the long sides of the energy storage elements 1 to cool the energy storage elements 1 by the heat of vaporization of the liquid.

上記構成によれば、発熱が生じた蓄電素子1に接触する伝熱部31において、内蔵する液体が気化する際の気化熱が奪われることにより蓄電素子1が良好に冷却される。伝熱部31は少なくとも前記蓄電素子1間に配置されるので、発熱した蓄電素子1に隣接する蓄電素子1への熱の伝導が抑制され、さらに隣接する蓄電素子1に連鎖的に伝熱するのが抑制される。即ち、蓄電素子1間の過熱状態の連鎖が良好に防止される。
蓄電素子1の冷却の構造は簡単であり、程度が低い発熱が生じたときにも蓄電素子1を冷却できる。
また、液体は伝熱部31に内蔵されているので、気化した後、伝熱部31内で液化し、蓄電素子1の冷却に再利用され、蓄電素子1を効率良く冷却する。
According to the above configuration, the heat transfer section 31 in contact with the electric storage element 1 where heat has been generated removes the heat of vaporization when the liquid contained therein vaporizes, thereby effectively cooling the electric storage element 1. Since the heat transfer section 31 is disposed at least between the electric storage elements 1, the conduction of heat to the electric storage element 1 adjacent to the electric storage element 1 where heat has been generated is suppressed, and further, the chain reaction of heat transfer to the adjacent electric storage elements 1 is suppressed. In other words, the chain reaction of overheating between the electric storage elements 1 is effectively prevented.
The structure for cooling the energy storage elements 1 is simple, and the energy storage elements 1 can be cooled even when a small amount of heat is generated.
Furthermore, since the liquid is contained within the heat transfer section 31, after vaporization, it is liquefied within the heat transfer section 31 and is reused for cooling the energy storage elements 1, thereby efficiently cooling the energy storage elements 1.

上述の蓄電装置100において、前記冷却部30は、内部空間が連通するように複数の前記伝熱部31を連結する連結部32,33を有する。 In the above-mentioned energy storage device 100, the cooling section 30 has connecting sections 32, 33 that connect the heat transfer sections 31 together so that the internal spaces are connected to each other.

上記構成によれば、発熱した蓄電素子1に接触する一の伝熱部31内で、液体が気化して生じた気体が熱対流により連結部32,33内を通流し、他の伝熱部31へ流れる。気体は他の伝熱部31内で液化し、前記一の伝熱部31へ流れて、液体が循環する。
従って、液体は蓄電素子1の冷却に再利用され、蓄電素子1は効率良く冷却される。
また、一つの蓄電素子1における、一方の伝熱部31に接触する長側面と、他方の伝熱部31に接触する長側面との間の温度差が低減し、蓄電素子1間の温度差が低減する。そして、気体及び液体の循環により、複数の蓄電素子1間の温度差を減じて効率良く冷却することができる。異常ではない、程度が低い発熱が生じた場合においても、伝熱部31により、蓄電素子1からの熱が良好に放熱され、蓄電素子1間の温度差が低減される。
According to the above configuration, in one heat transfer section 31 in contact with the heated energy storage element 1, the liquid is evaporated, and the gas generated flows through the connecting sections 32 and 33 by thermal convection and flows to the other heat transfer section 31. The gas is liquefied in the other heat transfer section 31 and flows to the one heat transfer section 31, and the liquid circulates.
Therefore, the liquid is reused for cooling the electric storage elements 1, and the electric storage elements 1 are cooled efficiently.
Furthermore, the temperature difference between the long side surface of one energy storage element 1 that contacts one heat transfer section 31 and the long side surface that contacts the other heat transfer section 31 is reduced, thereby reducing the temperature difference between the energy storage elements 1. Then, the circulation of gas and liquid reduces the temperature difference between the multiple energy storage elements 1, enabling efficient cooling. Even in the case of low-level heat generation that is not abnormal, the heat transfer section 31 effectively dissipates heat from the energy storage elements 1, reducing the temperature difference between the energy storage elements 1.

上述の蓄電装置100において、前記冷却部30は、該冷却部30の内圧が所定の圧力を超えた場合に、前記内圧を開放する内圧開放弁34を有する。 In the above-mentioned energy storage device 100, the cooling unit 30 has an internal pressure release valve 34 that releases the internal pressure when the internal pressure of the cooling unit 30 exceeds a predetermined pressure.

上記構成によれば、液体の蒸発量が多く、冷却部30の内圧が所定の圧力を超えた場合、内圧開放弁34が開放し、気体が外部へ放出される。気体により冷却部30が膨れて蓄電素子1が押圧されるのが防止される。燃焼性のガスが存在する場合、気体と混合されることにより、発火が防止される。 According to the above configuration, when a large amount of liquid evaporates and the internal pressure of the cooling unit 30 exceeds a predetermined pressure, the internal pressure release valve 34 opens and the gas is released to the outside. This prevents the cooling unit 30 from expanding due to the gas and pressing against the energy storage element 1. If a flammable gas is present, it is mixed with the gas to prevent ignition.

中央ではなく、端部の蓄電素子1が発熱した場合も、上記と同様に伝熱部31により吸熱され、蓄電素子1は急速に冷却される。隣接する蓄電素子1の発熱した蓄電素子1と対向する長側面も急速に冷却され、発熱した蓄電素子1からの伝熱が抑制され、蓄電素子間の過熱状態の連鎖が防止される。
なお、冷却部30の構造は、図3の構造に限定されない。4つの伝熱部31の長手方向の各一端の上部及び下部を、それぞれ角筒が貫通するようにして、連結部を設けてもよい。
Even if the electric storage element 1 at the end generates heat, instead of at the center, the heat is absorbed by the heat transfer section 31 in the same manner as described above, and the electric storage element 1 is rapidly cooled. The long side surface of the adjacent electric storage element 1 that faces the heated electric storage element 1 is also rapidly cooled, suppressing heat transfer from the heated electric storage element 1 and preventing a chain reaction of overheating between the electric storage elements.
The structure of the cooling section 30 is not limited to the structure shown in Fig. 3. A connecting section may be provided such that a rectangular tube penetrates through the upper and lower parts of each of the four heat transfer sections 31 at one end in the longitudinal direction.

(第2実施形態)
図6は、第2実施形態に係る冷却部35の斜視図である。図中、図3と同一部分は同一符号を付して詳細な説明を省略する。 冷却部35は、4つの伝熱部31と、冷却プレート36とを備える。
冷却部35は、4つの伝熱部31が連結部32,33により連結されている第1実施形態と異なり、4つの伝熱部31の端面31aが冷却プレート36に当接している。伝熱部31には、第1実施形態と同様に、液体として例えば水が収容されている。
伝熱部31と冷却プレート36とは、内部空間が連通されていてもよいし、内部空間が連通されていなくてもよい。
Second Embodiment
Fig. 6 is a perspective view of a cooling unit 35 according to the second embodiment. In the figure, the same parts as those in Fig. 3 are denoted by the same reference numerals and detailed description thereof will be omitted. The cooling unit 35 includes four heat transfer units 31 and a cooling plate 36.
Unlike the first embodiment in which the four heat transfer parts 31 are connected by the connecting parts 32 and 33, the cooling part 35 has end faces 31a of the four heat transfer parts 31 abutting against the cooling plate 36. As in the first embodiment, the heat transfer parts 31 contain liquid such as water.
The internal spaces of the heat transfer section 31 and the cooling plate 36 may or may not be in communication with each other.

図7は、本実施形態において内部空間が連通されている場合の説明図である。伝熱部31間に蓄電素子1が挿入され、伝熱部31及び冷却プレート36には水Wが収容されている。
中央の蓄電素子1が発熱した場合、第1実施形態と同様に、蓄電素子1に当接する伝熱部31内の水が蓄電素子1から気化熱を奪って蒸発し、蓄電素子1が急冷される。この伝熱部31内の水量は減る。生じた水蒸気は冷却プレート36を介して他の伝熱部31へ流れ、凝縮により生じた水が、水量が減じた伝熱部31へ流れる。水はまた吸熱して蓄電素子1を冷却し、生じた水蒸気が上述のように循環する。冷却プレート36は、当接している蓄電素子1の側面も冷却する。
7 is an explanatory diagram of a case where the internal spaces are in communication in this embodiment. The energy storage element 1 is inserted between the heat transfer parts 31, and water W is contained in the heat transfer parts 31 and the cooling plate 36.
When the central energy storage element 1 generates heat, as in the first embodiment, the water in the heat transfer section 31 that contacts the energy storage element 1 absorbs the heat of vaporization from the energy storage element 1 and evaporates, rapidly cooling the energy storage element 1. The amount of water in this heat transfer section 31 decreases. The generated water vapor flows to the other heat transfer sections 31 via the cooling plate 36, and water generated by condensation flows to the heat transfer section 31 with the reduced amount of water. The water also absorbs heat to cool the energy storage element 1, and the generated water vapor circulates as described above. The cooling plate 36 also cools the side surface of the energy storage element 1 that it contacts.

内部空間が連通されていない場合、蓄電素子1が発熱したとき、蓄電素子1に当接する伝熱部31内の水が蓄電素子1から気化熱を奪って蒸発し、蓄電素子1が急冷される。生じた水蒸気は冷却プレート36により冷却され、水に凝縮される。水は蓄電素子1から吸熱して気化し、蓄電素子1は冷却される。 If the internal spaces are not connected, when the energy storage element 1 generates heat, the water in the heat transfer section 31 that contacts the energy storage element 1 absorbs the heat of vaporization from the energy storage element 1 and evaporates, rapidly cooling the energy storage element 1. The generated water vapor is cooled by the cooling plate 36 and condenses into water. The water absorbs heat from the energy storage element 1 and vaporizes, and the energy storage element 1 is cooled.

本実施形態においても、簡単な構造の冷却部35により、発熱した蓄電素子1に隣接する蓄電素子1への熱の伝導が抑制され、さらに隣接する蓄電素子1に連鎖的に伝熱するのが抑制される。 In this embodiment, the cooling section 35 has a simple structure, which prevents the heat from being transferred to the adjacent storage element 1 from being transferred to the heated storage element 1, and also prevents the heat from being transferred to the adjacent storage elements 1 in a chain reaction.

加えて、上述の蓄電装置において、前記蓄電素子1それぞれが直方体状に形成され、前記冷却部35は、前記蓄電素子1それぞれの前記伝熱部31が当接する長側面とは異なる面に接触して、前記複数の蓄電素子1を冷却する冷却プレート36を備え、前記冷却部35は、前記冷却プレート36と前記伝熱部31との間で熱が伝導可能に構成される。 In addition, in the above-mentioned energy storage device, each of the energy storage elements 1 is formed in a rectangular parallelepiped shape, the cooling unit 35 is provided with a cooling plate 36 that cools the multiple energy storage elements 1 by contacting a surface other than the long side on which the heat transfer unit 31 of each of the energy storage elements 1 abuts, and the cooling unit 35 is configured to allow heat to be conducted between the cooling plate 36 and the heat transfer unit 31.

上記構成によれば、冷却プレート36と前記伝熱部31との間で熱が伝導されるので、良好に放熱される。液体が気化して生じた気体が冷却されて液化し、再度、液体が蓄電素子から吸熱して蓄電素子1を冷却できる。 With the above configuration, heat is conducted between the cooling plate 36 and the heat transfer section 31, so heat is dissipated well. The gas generated by the evaporation of the liquid is cooled and liquefied, and the liquid absorbs heat from the energy storage element 1 again, allowing it to cool the energy storage element 1.

上述の蓄電装置において、前記冷却プレート36と前記伝熱部31とは、前記液体、又は該液体が気化した気体が循環できるように一体化されている。 In the above-mentioned power storage device, the cooling plate 36 and the heat transfer section 31 are integrated so that the liquid or the gas produced by vaporizing the liquid can circulate.

上記構成によれば、発熱した蓄電素子1に接触する一の伝熱部31内で、液体が気化して生じた気体が熱対流により冷却プレート36内を通流し、他の伝熱部31へ流れる。気体は他の伝熱部31内で液化し、前記一の伝熱部31へ流れて、液体が循環する。
従って、液体は蓄電素子1の冷却に再利用され、蓄電素子1を効率良く冷却する。
また、一つの蓄電素子1の一方の長側面と他方の長側面との間の温度差が低減し、蓄電素子1間の温度差が低減する。そして、気体及び液体の循環により、複数の蓄電素子1間の温度差を減じて効率良く冷却することができる。異常ではない、程度が低い発熱が生じた場合においても、伝熱部31により、蓄電素子1からの熱が良好に放熱され、蓄電素子1間の温度差が低減される。
According to the above configuration, the liquid in one heat transfer section 31 in contact with the heated energy storage element 1 evaporates, and the gas generated flows through the cooling plate 36 by thermal convection and flows to the other heat transfer section 31. The gas is liquefied in the other heat transfer section 31 and flows to the one heat transfer section 31, and the liquid circulates.
Therefore, the liquid is reused for cooling the energy storage elements 1, and the energy storage elements 1 are cooled efficiently.
Furthermore, the temperature difference between one long side surface and the other long side surface of one energy storage element 1 is reduced, and the temperature difference between the energy storage elements 1 is reduced. Then, the circulation of gas and liquid reduces the temperature difference between the multiple energy storage elements 1, enabling efficient cooling. Even when a low level of heat generation occurs that is not abnormal, the heat transfer section 31 effectively dissipates the heat from the energy storage elements 1, and the temperature difference between the energy storage elements 1 is reduced.

(第3実施形態)
図8は、第3実施形態に係る冷却部37の斜視図である。図中、図3と同一部分は同一符号を付して詳細な説明を省略する。
第3実施形態の冷却部37は、第1実施形態の冷却部30の4つの伝熱部31の底面31bが冷却プレート38に当接した構成を有する。伝熱部31には、第1実施形態と同様に、液体として、例えば水が収容されている。
伝熱部31と冷却プレート38とは、内部空間が連通されていない。冷却プレート38は冷却装置(不図示)により冷却するように構成してもよい。
Third Embodiment
8 is a perspective view of a cooling unit 37 according to the third embodiment. In the figure, the same parts as those in FIG. 3 are denoted by the same reference numerals and detailed description thereof will be omitted.
The cooling unit 37 of the third embodiment has a configuration in which the bottom surfaces 31b of the four heat transfer units 31 of the cooling unit 30 of the first embodiment are in contact with a cooling plate 38. As in the first embodiment, the heat transfer units 31 contain liquid, such as water.
There is no internal communication between the heat transfer portion 31 and the cooling plate 38. The cooling plate 38 may be configured to be cooled by a cooling device (not shown).

中央の蓄電素子1が発熱した場合、第1実施形態と同様に、蓄電素子1に当接する伝熱部31内の水が蒸発し、蒸発する際の気化熱により蓄電素子1が冷却される。生じた水蒸気は他の伝熱部31を通流し、凝縮により生じた水が、水量の少ない伝熱部31へ流れる。冷却プレート38は蓄電素子1の底面を冷却するとともに伝熱部31を冷却する。蓄電素子1に当接する伝熱部31内の水はまた蓄電素子1から吸熱して蒸発し、蓄電素子1が冷却される。 When the central energy storage element 1 generates heat, as in the first embodiment, the water in the heat transfer section 31 that contacts the energy storage element 1 evaporates, and the heat of vaporization that occurs during evaporation cools the energy storage element 1. The resulting water vapor flows through the other heat transfer sections 31, and water produced by condensation flows to the heat transfer section 31 with the least amount of water. The cooling plate 38 cools the bottom surface of the energy storage element 1 and also cools the heat transfer section 31. The water in the heat transfer section 31 that contacts the energy storage element 1 absorbs heat from the energy storage element 1 and evaporates, cooling the energy storage element 1.

本実施形態においても、第1実施形態及び第2実施形態と同様に、簡単な構造の冷却部37により、発熱した蓄電素子1に隣接する蓄電素子1への熱の伝導が抑制され、さらに隣接する蓄電素子1に連鎖的に伝熱するのが抑制される。 In this embodiment, as in the first and second embodiments, the cooling section 37 has a simple structure to suppress the transfer of heat to the adjacent storage element 1 from the heated storage element 1, and also to suppress the chain transfer of heat to the adjacent storage elements 1.

(第4実施形態)
図9は、第4実施形態に係る冷却部39の斜視図である。図中、図3と同一部分は同一符号を付して詳細な説明を省略する。
本実施形態においては、各伝熱部31の上面の中央部に内圧開放弁34が設けられている。
Fourth Embodiment
9 is a perspective view of a cooling unit 39 according to a fourth embodiment. In the figure, the same parts as those in FIG. 3 are denoted by the same reference numerals and detailed description thereof will be omitted.
In this embodiment, an internal pressure release valve 34 is provided in the center of the upper surface of each heat transfer portion 31 .

図10は、中央の蓄電素子1の破裂弁20が開放した場合の冷却を説明する説明図である。蓄電素子1の内圧が所定値以上に達した場合、破裂弁20が開放し、揮発した電解液の成分が外部へ放出される。
この蓄電素子1の熱により、隣接する伝熱部31の内圧開放弁34が開放する。図10においては、隣接する2つの伝熱部31の内圧開放弁34が開放した場合を示す。
内圧開放弁34から蒸気が噴出し、このときの気化熱により蓄電素子1が冷却される。
伝熱部31は連結部32,33により連結されているので、内圧開放弁34が開放していない伝熱部31内の液体が常に供給され、蓄電素子1の冷却が継続される。
この液体の量が、合計で一つの蓄電素子1を冷却できる量であれば、エネルギー密度の減少を最小限に抑えて、過熱状態の連鎖を効率よく抑制できる。
10 is an explanatory diagram for explaining cooling when the burst valve 20 of the central storage element 1 is opened. When the internal pressure of the storage element 1 reaches or exceeds a predetermined value, the burst valve 20 opens and the volatilized components of the electrolyte are released to the outside.
The internal pressure release valves 34 of the adjacent heat transfer sections 31 are opened by the heat of the energy storage elements 1. Fig. 10 shows a case where the internal pressure release valves 34 of the two adjacent heat transfer sections 31 are opened.
Steam is ejected from the internal pressure release valve 34, and the heat of vaporization at this time cools the energy storage element 1.
Since the heat transfer sections 31 are connected by the connecting sections 32 and 33, the liquid in the heat transfer sections 31 whose internal pressure release valves 34 are not opened is constantly supplied, and the energy storage elements 1 are continuously cooled.
If the amount of liquid is sufficient to cool one energy storage element 1 in total, the reduction in energy density can be minimized and the chain reaction of overheating can be efficiently suppressed.

本発明は上述した実施形態の内容に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。
第1実施形態乃至第3実施形態において、蓄電素子1がリチウムイオン二次電池である場合につき説明しているが、蓄電素子1はリチウムイオン二次電池には限定されない。蓄電素子1は、有機溶剤を有する他の二次電池であってもよいし、一次電池であってもよいし、キャパシタ等の電気化学セルであってもよい。
本発明に係る蓄電装置は、車両用の動力源として特に好適に利用することができる。また、本発明に係る蓄電装置は、蓄電システム(大規模蓄電システム、家庭用小規模蓄電システム)、太陽光や風力等の自然エネルギーと組わせた分散電源システム、鉄道向け電源システム、無人搬送車(AGV)向け電源システムといった産業用途にも好適に利用することができる。
The present invention is not limited to the contents of the above-described embodiment, and various modifications are possible within the scope of the claims. In other words, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
In the first to third embodiments, the energy storage element 1 is a lithium ion secondary battery, but the energy storage element 1 is not limited to a lithium ion secondary battery. The energy storage element 1 may be another secondary battery containing an organic solvent, a primary battery, or an electrochemical cell such as a capacitor.
The power storage device according to the present invention can be particularly suitably used as a power source for vehicles. The power storage device according to the present invention can also be suitably used for industrial purposes such as power storage systems (large-scale power storage systems, small-scale home power storage systems), distributed power supply systems combined with natural energy such as solar power and wind power, power supply systems for railways, and power supply systems for automated guided vehicles (AGVs).

1 蓄電素子 2 蓋板
3 ケース本体
4 正極端子
8 負極端子
6、10 ガスケット
11 ケース
20 破裂弁
30、35、37、39 冷却部
31 伝熱部
32、33 連結部
34 内圧開放弁
36、38 冷却プレート
40 ケース
100 蓄電装置
REFERENCE SIGNS LIST 1 Energy storage element 2 Cover plate 3 Case body 4 Positive electrode terminal 8 Negative electrode terminal 6, 10 Gasket 11 Case 20 Rupture valve 30, 35, 37, 39 Cooling section 31 Heat transfer section 32, 33 Connection section 34 Internal pressure release valve 36, 38 Cooling plate 40 Case 100 Energy storage device

Claims (5)

複数の蓄電素子と、
前記蓄電素子を冷却する冷却部とを備え、
前記冷却部は、液体を内蔵し、少なくとも前記蓄電素子間に配置され、前記蓄電素子に接触して、前記液体の気化熱により前記蓄電素子を冷却する伝熱部を有することを特徴とする蓄電装置。
A plurality of storage elements;
a cooling unit that cools the power storage element,
The cooling section contains a liquid, is arranged at least between the energy storage elements, and has a heat transfer section in contact with the energy storage elements to cool the energy storage elements by the heat of vaporization of the liquid.
内部空間が連通するように複数の前記伝熱部を連結する連結部を有することを特徴とする請求項1に記載の蓄電装置。 The power storage device according to claim 1, characterized in that it has a connecting portion that connects a plurality of the heat transfer portions so that the internal spaces are connected. 前記蓄電素子それぞれが直方体状に形成され、
前記冷却部は、前記蓄電素子それぞれの前記伝熱部が当接する長側面とは異なる面に接触して、前記複数の蓄電素子を冷却する冷却プレートを備え、
前記冷却部は、前記冷却プレートと前記伝熱部との間で熱が伝導可能に構成されることを特徴とする請求項1又は2に記載の蓄電装置。
Each of the storage elements is formed in a rectangular parallelepiped shape,
the cooling unit includes a cooling plate that is in contact with a surface of each of the energy storage elements that is different from a long side surface that is in contact with the heat transfer unit and that cools the plurality of energy storage elements;
3 . The power storage device according to claim 1 , wherein the cooling portion is configured to allow heat to be conducted between the cooling plate and the heat transfer portion. 4 .
前記冷却プレートと前記伝熱部とは、前記液体、又は該液体が気化した気体が循環できるように一体化されていることを特徴とする請求項3に記載の蓄電装置。 The power storage device according to claim 3, characterized in that the cooling plate and the heat transfer section are integrated to allow the liquid or the gas produced by vaporizing the liquid to circulate. 前記冷却部は、該冷却部の内圧が所定の圧力を超えた場合に、前記内圧を開放する内圧開放弁を有することを特徴とする請求項1から4までのいずれか1項に記載の蓄電装置。 The electric storage device according to any one of claims 1 to 4, characterized in that the cooling section has an internal pressure release valve that releases the internal pressure when the internal pressure of the cooling section exceeds a predetermined pressure.
JP2024070184A 2017-09-22 2024-04-24 Power storage device Pending JP2024091876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024070184A JP2024091876A (en) 2017-09-22 2024-04-24 Power storage device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017182895A JP7159543B2 (en) 2017-09-22 2017-09-22 power storage device
JP2022163647A JP7480815B2 (en) 2017-09-22 2022-10-12 Power storage device
JP2024070184A JP2024091876A (en) 2017-09-22 2024-04-24 Power storage device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022163647A Division JP7480815B2 (en) 2017-09-22 2022-10-12 Power storage device

Publications (1)

Publication Number Publication Date
JP2024091876A true JP2024091876A (en) 2024-07-05

Family

ID=66177884

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017182895A Active JP7159543B2 (en) 2017-09-22 2017-09-22 power storage device
JP2022163647A Active JP7480815B2 (en) 2017-09-22 2022-10-12 Power storage device
JP2024070184A Pending JP2024091876A (en) 2017-09-22 2024-04-24 Power storage device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2017182895A Active JP7159543B2 (en) 2017-09-22 2017-09-22 power storage device
JP2022163647A Active JP7480815B2 (en) 2017-09-22 2022-10-12 Power storage device

Country Status (1)

Country Link
JP (3) JP7159543B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220320624A1 (en) * 2019-09-26 2022-10-06 Panasonic Intellectual Property Management Co., Ltd. Power storage pack

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0915004D0 (en) 2009-08-28 2009-09-30 Ineos Fluor Holdings Ltd Heat transfer composition
KR101596107B1 (en) 2010-12-29 2016-02-19 쉔젠 비와이디 오토 알앤디 컴퍼니 리미티드 Battery temperature managing system and vehicle comprising the same
JP5617746B2 (en) 2011-04-07 2014-11-05 住友電気工業株式会社 Closed molten salt battery
JP5772428B2 (en) 2011-09-15 2015-09-02 日産自動車株式会社 Secondary battery cooling device
JP2013125617A (en) * 2011-12-13 2013-06-24 Sanyo Electric Co Ltd Power supply device and vehicle having the same, and power storage device
JP5983534B2 (en) * 2013-05-22 2016-08-31 株式会社デンソー Battery temperature control system
JP6627593B2 (en) 2016-03-16 2020-01-08 株式会社オートネットワーク技術研究所 Cooling member and power storage module

Also Published As

Publication number Publication date
JP7480815B2 (en) 2024-05-10
JP7159543B2 (en) 2022-10-25
JP2022179667A (en) 2022-12-02
JP2019061736A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6755341B2 (en) Battery module, battery pack containing it and car containing this battery pack
EP3671943A1 (en) Electricity storage device
US9214705B2 (en) Battery cell of improved cooling efficiency
US9496540B2 (en) Secondary battery having electrode with self cutting part to be destructed on application of over-current
JP5211022B2 (en) Lithium ion secondary battery
JP2024091876A (en) Power storage device
US11469479B2 (en) Busbar for a battery pack, intended to electrically connect at least one accumulator battery of the pack and to allow a heat transfer fluid to flow therein in order to optimally cool the accumulator battery and the pack, in particular in the case of thermal runaway
JP5772428B2 (en) Secondary battery cooling device
WO2013005650A1 (en) Nonaqueous electrolyte battery module
US20110177366A1 (en) Battery pack
JP5776005B2 (en) Sealed secondary battery
JPWO2019107560A1 (en) Partition member and assembled battery
WO2013141242A1 (en) Lithium ion secondary battery using ionic liquid, lithium ion secondary battery module, and heat retention device for lithium ion secondary battery using ionic liquid or for lithium ion secondary battery module
JP7009892B2 (en) Power storage module and power storage pack
JP5673838B2 (en) Secondary battery
JP2008300103A (en) Power storage module
JP5617746B2 (en) Closed molten salt battery
JP2013149398A (en) Nonaqueous electrolyte secondary battery
JP6504012B2 (en) Assembled battery
EP2509132A1 (en) Casing for a secondary battery with reaction control material against thermal runaway
JP7517383B2 (en) Power storage device
JP4766449B2 (en) Battery pack
JP6953982B2 (en) Electrochemical device and electrochemical device pack
JP2011100622A (en) Solid battery system
CN113994530A (en) Battery module, and battery pack and power storage device including the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240514

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240514