WO2013141242A1 - Lithium ion secondary battery using ionic liquid, lithium ion secondary battery module, and heat retention device for lithium ion secondary battery using ionic liquid or for lithium ion secondary battery module - Google Patents

Lithium ion secondary battery using ionic liquid, lithium ion secondary battery module, and heat retention device for lithium ion secondary battery using ionic liquid or for lithium ion secondary battery module Download PDF

Info

Publication number
WO2013141242A1
WO2013141242A1 PCT/JP2013/057826 JP2013057826W WO2013141242A1 WO 2013141242 A1 WO2013141242 A1 WO 2013141242A1 JP 2013057826 W JP2013057826 W JP 2013057826W WO 2013141242 A1 WO2013141242 A1 WO 2013141242A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion secondary
secondary battery
heat
battery
Prior art date
Application number
PCT/JP2013/057826
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 明
西村 拓也
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Publication of WO2013141242A1 publication Critical patent/WO2013141242A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery and a lithium ion secondary battery module using an ionic liquid, and a heat retaining device thereof.
  • Non-aqueous electrolyte secondary batteries such as lithium ion batteries have the advantages of high energy density, low self-discharge and good cycle performance. Therefore, in recent years, non-aqueous electrolyte secondary batteries are expected to be used as power sources for various industrial machinery by increasing the size or capacity.
  • non-aqueous solvent used in the non-aqueous electrolyte of such a lithium ion secondary battery examples include polar aprotic organic solvents such as ethylene carbonate and diethyl carbonate that easily dissolve lithium salts and are not easily electrolyzed. in use.
  • polar aprotic organic solvents such as ethylene carbonate and diethyl carbonate that easily dissolve lithium salts and are not easily electrolyzed. in use.
  • conventionally used organic solvents have a very low flash point, and have flammability and flammability. Therefore, there are cases where ignition, explosion, etc. may occur due to overheating or short circuit. Therefore, in the conventional lithium ion secondary battery, ensuring safety is an important issue.
  • An ionic liquid is an ionic substance that shows a liquid state even at room temperature, and has not only a feature that is excellent in the output of a lithium ion secondary battery that is highly conductive, but also a lithium ion secondary that is low in vapor pressure, non-volatile and flame retardant. It also has excellent characteristics for the safety of secondary batteries.
  • Patent Document 1 discloses a lithium ion secondary battery using an ionic liquid as a nonaqueous electrolytic solution.
  • a lithium ion secondary battery using an ionic liquid has a problem that its output is lower than that of a lithium ion secondary battery and a lead battery using an organic solvent, and it is difficult to put into practical use.
  • the main cause is considered to be the viscosity of the ionic liquid.
  • ionic conductivity greatly affects the battery performance.
  • ionic conductivity is proportional to the reciprocal of the viscosity of the liquid.
  • the viscosity of the ionic liquid is 10 times that of carbonate, which is a commonly used solvent for the electrolyte. Therefore, when an ionic liquid is used as a non-aqueous electrolyte, there is a problem in that the movement of lithium ions in the ionic liquid is limited, the conductivity is lowered, and the output of the lithium ion secondary battery is lowered.
  • the output may further decrease. Therefore, in the conventional lithium ion secondary battery using an ionic liquid, the output is about one-tenth that of a lithium ion secondary battery using an organic solvent, and a desired output cannot be obtained. Has occurred.
  • An object of the present invention is to provide a lithium ion secondary battery and a lithium ion secondary battery module using an ionic liquid capable of obtaining a higher output than before, and a heat insulating device for these.
  • Another object of the present invention is to provide a lithium ion secondary battery and a lithium ion secondary battery module that can maintain the viscosity of the ionic liquid at a low level, and a heat retaining device thereof.
  • Still another object of the present invention is to provide a lithium ion secondary battery and a lithium ion secondary battery module using the ionic liquid capable of keeping the ionic liquid at a temperature at which a high output can be obtained, and a heat insulation device thereof. There is to do.
  • the output of the lithium ion secondary battery is good.
  • the inventors have found that the reason why the output of the lithium ion secondary battery is good is that the viscosity of the ionic liquid decreases with increasing temperature. The present invention is based on such knowledge.
  • the lithium ion secondary battery using the ionic liquid of the present invention has a lithium ion battery main body and heat retaining means.
  • an ionic liquid is injected into the battery case as an electrolytic solution.
  • the heat retaining means keeps the electrolyte at a predetermined temperature.
  • the heat retaining means can be constituted by, for example, a heat insulating material that covers all or the main part of the battery case of the battery body.
  • the heat insulating material can be attached to the battery case.
  • the heat insulating material can be in the shape of a heat insulating container having a housing part that houses the whole or main part of the battery case of the battery body. If comprised in this way, when the lithium ion secondary battery using an ionic liquid is charged / discharged, it can suppress that the heat which generate
  • the ionic liquid may not be kept at a temperature at which sufficient output can be obtained with only the heat generated from the battery body.
  • the heat retaining means can further include a heating means for directly or indirectly heating the electrolytic solution. If comprised in this way, since the ionic liquid in a battery main body is heated positively, an ionic liquid can be heat-maintained to the temperature from which a sufficiently high output is obtained.
  • the heating means may use various heat media.
  • Lithium ion secondary batteries are used in factories or homes. In the factory, exhaust heat of 100 ° C. or less (referred to as low temperature exhaust heat) from a boiler or other heat generating device is discharged. This waste heat can be used as a heat source for the heat medium. In the home, hot water of 60 ° C. heated by a water heater that uses heat generated during power generation provided in a household fuel cell can be used as a heat medium. Therefore, the heat retaining means is disposed in the housing part that accommodates all or the main part of the battery main body and in the interior of the housing part or the wall that surrounds the housing part, and heats the battery case accommodated in the housing part.
  • a heat medium circulation container comprising a circulation path through which the heat medium heated by the external heat source circulates. If comprised in this way, the waste heat and warm water discharged
  • the present invention can also be applied to a lithium ion secondary battery module having an assembled battery composed of a plurality of lithium ion secondary batteries in which an ionic liquid is injected as an electrolyte into the battery case.
  • a lithium ion secondary battery module having an assembled battery composed of a plurality of lithium ion secondary batteries in which an ionic liquid is injected as an electrolyte into the battery case.
  • the temperature of the electrolyte solution of a plurality of lithium ion secondary batteries to be combined is different, the conduction characteristics of lithium ions in the electrolyte solution become uneven.
  • the electrolytic solution is an ionic liquid
  • the ionic conductivity of the ionic liquid inside the lithium ion secondary battery is several tens of times There is a difference.
  • the temperature difference between the plurality of lithium ion secondary batteries can be kept within 10 ° C. Therefore, when the present invention is applied to a lithium ion secondary battery module using an ionic liquid, the temperature of the electrolyte solution in the plurality of lithium ion secondary batteries is kept within a predetermined temperature range by the heat retaining means. With this configuration, since the outputs of the plurality of lithium ion secondary batteries do not differ greatly, not only can the output of the lithium ion secondary battery module using the ionic liquid be increased, but also a stable output can be obtained. Obtainable.
  • the heat retaining means used in the lithium ion secondary battery module can be constituted by a heat insulating material that covers at least a part of the assembled battery. Even in the case of the lithium ion secondary battery module, the heat insulating material may be attached to the battery case of the battery constituting the module. Moreover, you may comprise the heat insulation container which has an accommodating part which accommodates the whole or main part of an assembled battery with a heat insulating material. With this configuration, when the lithium ion secondary battery module is charged and discharged, heat generated from the assembled battery is not released to the outside of the heat insulating container. Therefore, the lithium ion secondary battery module can be kept at a temperature higher than room temperature with a simple configuration.
  • the heat retaining means may further include a plurality of heating means for respectively heating the battery cases of the plurality of lithium ion secondary batteries constituting the assembled battery.
  • the heat retaining means is disposed in the housing part that accommodates all or the main part of the assembled battery, and in the interior of the housing part or the wall that surrounds the housing part, and heats the assembled battery housed in the housing part.
  • the heat medium circulation container includes a circulation path through which the heat medium heated by the external heat source circulates.
  • the present invention can also be specified as a heat retention device for a lithium ion secondary battery using an ionic liquid as an electrolytic solution or a heat retention device for a lithium ion secondary battery module using an ionic liquid as an electrolytic solution.
  • (A) is a figure which shows the cylindrical lithium ion secondary battery main body and cylindrical vacuum insulation container of Example 1 of this invention
  • (b) is a cylindrical lithium ion secondary battery main body in a cylindrical vacuum insulation container. It is a figure which shows the state accommodated.
  • (A) is a figure which shows the cylindrical lithium ion secondary battery main body and cylindrical heat-medium circulation container of Example 2 of this invention
  • (b) is a cylindrical heat-medium circulation through a cylindrical lithium ion secondary battery main body. It is a figure which shows the state accommodated in the container.
  • (A) is a figure which shows the cylindrical lithium ion secondary battery main body and cylindrical vacuum heat insulation container by which the heater of Example 3 of this invention was wound
  • (b) is the cylindrical lithium ion secondary by which the heater was wound. It is a figure which shows the state which accommodated the battery main body in the cylindrical vacuum heat insulation container. It is a figure which shows the square lithium ion secondary battery which affixed the heat insulating material of Example 4 of this invention. It is a figure which shows the square lithium ion secondary battery main body and square heat-medium circulation container of Example 5 of this invention. It is a figure which shows the square lithium ion secondary battery main body and heat insulating material which wound the heater of Example 6 of this invention.
  • the lithium ion battery according to the embodiment of the present invention includes a battery body and a heat retention device.
  • the battery body includes an electrode plate group including a positive electrode plate, a negative electrode plate, and a separator, an ionic liquid as an electrolytic solution, and a battery can as a battery case that accommodates the electrode plate group and the ionic liquid therein.
  • the positive electrode plate is formed by applying a positive electrode mixture composed of a positive electrode active material, a conductive agent and a binder on both surfaces of an aluminum foil, followed by drying and pressing.
  • the positive electrode active material 1) one represented by the chemical formula LiMO 2 (M is at least one transition metal) or 2) spinel manganese can be used. 3) A part of Mn, Ni, Co, etc. in the positive electrode active material such as lithium manganate, lithium nickelate, lithium cobaltate and the like can be substituted with one or more transition metals. . Further, a part of the transition metal of 3) substituted with a metal element such as Mg or Al can also be used.
  • phosphate compounds LiFePO 4 , LiMnPO 4 , LiMn X M 1-X PO 4 (0.3 ⁇ x ⁇ 1, M is Li, Fe, Ni, Co, Ti, Cu, Zn, Mg, And one or more elements selected from Zr) can be used.
  • a known conductive agent can be used.
  • a carbon-based conductive agent such as graphite, acetylene black, carbon black, or carbon fiber can be used. However, it is not limited to these materials.
  • binder a known binder can be used.
  • polyvinylidene fluoride, fluororubber, or the like can be used. However, it is not limited to these materials. In the present invention, polyvinylidene fluoride is preferred.
  • the solvent a known solvent can be appropriately selected and used.
  • an organic solvent such as N-methyl-2-pyrrolidone.
  • the mixing ratio of the positive electrode active material, the conductive agent and the binder in the positive electrode mixture is, for example, 1: 0.05 to 0.20: 0.02 to 0.10 by weight when the positive electrode active material is 1. can do. However, it is not limited to this range.
  • the negative electrode plate is formed by applying a negative electrode mixture comprising a negative electrode active material and a binder to both sides of a copper foil, and then drying and pressing.
  • a carbon-based material such as graphite or amorphous carbon
  • an oxide-based material such as lithium titanate
  • a metal / alloy-based material such as tin or silicon
  • binder for example, polyvinylidene fluoride, fluororubber, and the like can be used in the same manner as the positive electrode plate. However, it is not limited to these materials. In this invention, it is preferable that it is a polyvinylidene fluoride similarly to a positive electrode plate.
  • a known solvent can be appropriately selected and used in the same manner as in the positive electrode plate.
  • an organic solvent such as N-methyl-2-pyrrolidone is preferably used as in the negative electrode plate.
  • the mixing ratio of the negative electrode active material and the binder in the negative electrode mixture can be, for example, 1: 0.05 to 0.20 by weight when the negative electrode active material is 1. However, it is not limited to this range.
  • a polyolefin-based porous film can be generally used, and for example, a composite film of polyethylene and polypropylene can be used.
  • a ceramic composite separator in which a ceramic such as alumina is coated on the surface, and a ceramic composite separator using these as a part of the constituent material of the porous film may be used.
  • the material of a separator is not limited to these, A well-known thing can be used.
  • ionic liquid that exhibits liquid properties at room temperature and a lithium salt dissolved therein is used.
  • ionic liquid [NR 1 R 2 R 3 R 4 ] + (R 1 , R 2 , R 3 , R 4 are alkyl groups having 1 to 4 carbon atoms, or a methoxy group in which a methoxy group is partially substituted.
  • Any ionic liquid may be used as long as it is composed of 2 F) 2 ⁇ (FSI ⁇ ), N (SO 2 CF 3 ) 2 ⁇ (TFSI ⁇ ), and N (SO 2 CF 2 CF 3 ) 2 ⁇ (BETI ⁇ ).
  • LiN (SO 2 ) 2 LiN (SO 2 )
  • One or more lithium salts selected from 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 and the like can be dissolved to adjust the non-aqueous electrolyte.
  • a known material can be used for the battery can.
  • it can be a laminated container using a metal container or an aluminum laminate in which a film is attached to an aluminum foil as an exterior material.
  • the shape of the battery can be cylindrical or rectangular.
  • the embodiment of the heat retaining device of the present invention can be a heat insulating container made of a heat insulating material, a heater that can be attached to the outer wall surface of the battery case, or a heat medium circulating container having a circulation path through which the heat medium circulates.
  • a foam resin having heat insulating properties such as foamed urethane and polystyrene
  • a resin containing a core material and a core material such as glass wool and evacuating the inside
  • a heat insulating material such as a vacuum heat insulating material made of an existing exterior material and used for a refrigerator, or 3) glass wool used for a house.
  • a heat insulating material a material having particularly high heat insulating performance, that is, a material having low heat conductivity is preferable.
  • a heat insulating material having a heat conductivity of 0.02 W / (m ⁇ K) or less like a vacuum heat insulating material of a refrigerator is preferable.
  • LiMn 2 O 4 was used as the positive electrode active material, and the positive electrode active material, the conductive material graphite, and the binder polyvinylidene fluoride were kneaded at a weight ratio of 85: 10: 5 for 30 minutes using a kneader. It was created.
  • the obtained positive electrode mixture was applied to both surfaces of a current collector of aluminum foil having a thickness of 30 ⁇ m.
  • the current collector coated with the positive electrode mixture was roll-formed with a press machine and then vacuum dried at 150 ° C. for 5 hours to obtain a positive electrode plate.
  • a graphite material was used as the negative electrode active material, and polyvinylidene fluoride was used as the binder.
  • a negative electrode active material: binder 90: 10 weight ratio was kneaded for 30 minutes using a kneader to prepare a negative electrode mixture. The obtained negative electrode mixture was applied to both sides of a 20 ⁇ m thick copper foil current collector. The current collector coated with the negative electrode mixture was roll-formed with a press machine and then vacuum dried at 150 ° C. for 5 hours to obtain a negative electrode plate.
  • the positive electrode plate and the negative electrode plate were overlapped and wound so as to be insulated through a separator made of a porous polymer resin film made of polyethylene (PE) and having a thickness of 20 ⁇ m to form a wound electrode plate group.
  • the wound electrode plate group was inserted into a cylindrical battery can made of stainless steel.
  • the positive electrode plate was welded to an aluminum positive electrode current collector, and this positive electrode current collector was ultrasonically welded to the positive electrode pole column. After passing the positive electrode pole through the opening of the positive battery cover, the end of the positive electrode pole on the side where the positive electrode plate was not positioned was fixed with a positive hexagon nut serving as a positive electrode terminal.
  • the negative electrode plate was welded to an aluminum negative electrode current collector, and this negative electrode current collector was ultrasonically welded to the negative electrode pole column. After passing the negative electrode pole through the opening of the negative electrode battery cover, the end of the negative electrode pole on the side where the negative electrode plate was not positioned was fixed with a negative hexagon nut serving as a negative electrode terminal.
  • LiN (SO 2 CF 3 ) 2 / Py13TFSI lithium bis (trifluoromethanesulfonyl) imide /
  • a lithium salt solution composed of N-methyl N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide is injected as an ionic liquid, and a liquid injection port is screwed to form a cylinder with a battery capacity of 70 Ah shown in FIG.
  • the main body 1 of a lithium ion secondary battery was obtained.
  • the main part of the cylindrical lithium ion secondary battery main body 1 is a cylindrical vacuum heat insulating container having a cylindrical peripheral wall 3A and a bottom wall 3B that closes one end of the peripheral wall 3A. 3 to obtain a cylindrical lithium ion secondary battery with improved heat insulation as shown in FIG.
  • Each of the peripheral wall portions 3A and 3B has a double wall structure facing each other with a vacuum space therebetween, and the double wall portion is made of stainless steel.
  • one terminal portion 2 of the cylindrical lithium ion secondary battery main body 1 is exposed from the opening of the cylindrical vacuum heat insulating container 3.
  • the other terminal portion 4 of the cylindrical lithium ion secondary battery body 1 is electrically connected to the bottom wall portion 3B of the cylindrical vacuum heat insulating container 3.
  • the cylindrical vacuum heat insulating container 3 since the cylindrical vacuum heat insulating container 3 has conductivity, it electrically constitutes the other terminal electrode of the battery.
  • Example 2 A cylindrical lithium ion secondary battery main body 1 was produced in the same manner as in Example 1 (FIG. 2A). The main part of the lithium ion secondary battery body 1 was accommodated in the cylindrical heat medium circulation container 5 shown in FIG. 2A (FIG. 2B).
  • the cylindrical heat medium circulation container 5 has a cylindrical peripheral wall portion 5A and a bottom wall portion 5B that closes one end of the peripheral wall portion 5A.
  • the peripheral wall portions 5A and 5B have a double wall structure made of stainless steel, and each form a heat medium circulation space 5C between the double walls.
  • a heat medium inlet port is provided at the end of the peripheral wall 5A on the opening side, and the heat medium introduction hose 7 is connected to the inlet port.
  • a heat medium outlet port is provided at the end of the peripheral wall 5A on the bottom wall 5B side, and a heat medium discharge hose 9 is connected to the outlet port.
  • the heat medium circulation space 5C constitutes a circulation path through which the heat medium can be circulated.
  • the temperature of the electrolyte solution is indirectly measured by contacting the battery can 1A of the lithium ion secondary battery main body 1 and measuring the temperature of the battery can 1A inside the heat medium circulation vessel 5.
  • a temperature sensor for measuring is disposed.
  • the heat medium is composed of water or silicone oil, and is heated to 50 to 70 ° C. by an external heat source (not shown) and introduced from the heat medium introduction hose 7 into the heat medium circulation container 5, so that the heat medium circulation container 5 is circulated through the heat medium discharge hose 9.
  • the heat medium was circulated by the cylindrical heat medium circulation container 5 so that the temperature of the accommodated cylindrical lithium ion secondary battery body 1 was 50 ° C. or higher, and the end condition of 4.2 V, as in Example 1, A charge / discharge test was conducted by constant current constant voltage charge for 5 hours and constant current discharge at a termination condition of 3.0 V.
  • Example 3 A cylindrical lithium ion secondary battery main body 1 was produced in the same manner as in Example 1 (FIG. 3A).
  • a sheet-like heater 11 was wound around the outer wall surface of the battery can 1A of the lithium ion secondary battery body 1 as a heating means.
  • the lithium ion secondary battery body 1 around which the heater 11 was wound was housed in a stainless steel cylindrical vacuum insulation container 3 in the same manner as in Example 1 to obtain a cylindrical lithium ion secondary battery with improved heat insulation.
  • the power source of the heater 5 can utilize the lithium ion secondary battery body 1 itself. In FIG. 3, the electrical connection between the heater 11 and the battery body 1 is not shown.
  • Example 2 Using this cylindrical lithium ion secondary battery, a charge / discharge test was conducted in the same manner as in Example 1 by a termination condition of 4.2 V, a constant current constant voltage charge for 5 hours, and a constant current discharge of a termination condition of 3.0 V.
  • Cylindrical lithium ion secondary battery main body 1 produced in the same manner as in Example 1 has a termination condition of 4.2 V, a constant current and a constant voltage charge for 5 hours, and a termination condition as in Example 1, without imparting heat retention. A charge / discharge test using a constant current discharge of 3.0 V was performed.
  • Example 4 A plurality of positive electrode plates and a plurality of negative electrode plates made of the same material as in Example 1 are alternately stacked via separators of the same material as the separator used in Example 1, did.
  • This electrode plate group was housed in a rectangular battery can body (not shown) made of stainless steel.
  • the positive electrode plate was welded to a positive electrode current collector (not shown) made of aluminum, and this positive electrode current collector was ultrasonically welded to the positive electrode pole column.
  • the negative electrode plate was welded to a negative electrode current collector (not shown) of aluminum, and this negative electrode current collector was ultrasonically welded to the negative electrode pole column.
  • the lithium salt solution of the ionic liquid used in Example 1 was poured from a liquid inlet (not shown) provided in the battery lid 13A. Were screwed to obtain a prismatic lithium ion secondary battery body 13 having a battery capacity of 40 Ah.
  • the prismatic lithium ion secondary battery with improved heat insulation properties shown in FIG. 4 was obtained by pasting the heat insulating material 15 on the bottom and side surfaces of the prismatic lithium ion secondary battery body 13.
  • the heat insulating material 15 is composed of a core material composed of a laminated body of glass wool, a heat-sealing layer containing the core material and evacuating the inside, and a film formed with a gas barrier film. It is a vacuum heat insulating material comprised from the exterior material of the double wall structure which consists of a laminate film which has the gas barrier layer combined above.
  • a charge / discharge test was conducted by a termination condition of 4.2 V, a constant current constant voltage charge for 5 hours, and a constant current discharge of a termination condition of 3.0 V.
  • Example 5 A square lithium ion secondary battery main body 13 was produced in the same manner as in Example 4 (FIG. 5). The main part of the prismatic lithium ion secondary battery body 13 was accommodated in a prismatic heat medium circulation container 17 shown in FIG.
  • the rectangular heat medium circulation container 17 includes a cylindrical peripheral wall portion 17 ⁇ / b> A that faces the side wall portion of the square lithium ion secondary battery body 13, and a bottom wall that faces the bottom wall portion of the square lithium ion secondary battery body 13. Part 17B.
  • the peripheral wall portion 17A and the bottom wall portion 17B have a stainless steel double wall structure facing each other with an interval so as to form the heat medium circulation path 17 therebetween.
  • the heat medium circuit in the peripheral wall portion 17A and the heat medium circuit in the bottom wall portion 17B communicate with each other.
  • the peripheral wall portion 17A is provided with a heat medium inlet port and an outlet port.
  • the heat medium introduction hose 7 is connected to the inlet port, and the heat medium discharge hose 9 is connected to the outlet port.
  • the heat medium is composed of water or silicone oil, heated to 50 to 70 ° C. by an external heat source, and introduced from the heat medium introduction hose 7 into the heat medium circulation path inside the square heat medium circulation container 17. Then, it circulates in the square heat medium circulation container 17 and is discharged from the heat medium discharge hose 9. Also in the present embodiment, a temperature sensor for measuring the temperature of the battery can is disposed in the square heat medium circulation container 17.
  • the heat medium is circulated by the square heat medium circulation container 17 so that the temperature of the accommodated prismatic lithium ion secondary battery main body 13 is 50 ° C. or higher, and the end condition of 4.2 V, as in Example 4, A charge / discharge test was conducted by constant current constant voltage charge for 5 hours and constant current discharge at a termination condition of 3.0 V.
  • Example 6 A prismatic lithium ion secondary battery body 13 was produced in the same manner as in Example 4 (FIG. 6).
  • a sheet-like heater 11 was wound around the outer wall surface of the prismatic lithium ion secondary battery body 13 as a heating means.
  • a heat insulating material 15 ' having the same structure as that of the heat insulating material 15 used in Example 4 is bonded to the bottom and side surfaces of the prismatic lithium ion secondary battery body 13 around which the heater 11 is wound to enhance the heat insulating property shown in FIG.
  • a rectangular lithium ion secondary battery was obtained.
  • ⁇ Comparative example 2> The prismatic lithium ion secondary battery body 13 produced in the same manner as in Example 4 was subjected to a termination condition of 4.2 V, 5 hours of constant current and constant voltage and termination conditions as in Example 1 without imparting heat retention. A charge / discharge test using a constant current discharge of 3.0 V was performed.
  • Example 7 A plurality of positive electrode plates and a plurality of negative electrode plates made of the same material as in Example 1 are alternately stacked via separators of the same material as the separator used in Example 1, and the current collector of the positive electrode plate A metal plate made of aluminum or an aluminum alloy serving as a positive electrode terminal and a metal plate made of copper or a copper alloy serving as a negative electrode terminal were ultrasonically welded to a current collecting portion of the negative electrode plate to form an electrode plate group.
  • This electrode plate group was covered with a packaging material 19 made of an aluminum laminate film made of a resin sheet which is an adhesive portion with aluminum, and the lithium salt solution of the ionic liquid used in Example 1 was injected into the packaging material 19.
  • the ear portion 20 ⁇ / b> A of the positive electrode plate and the ear portion 20 ⁇ / b> B of the negative electrode plate are exposed to the outside of the packaging material 19. Thereafter, the inside of the packaging material 19 was vacuum depressurized and sealed at a high temperature to obtain a 40 Ah laminated lithium ion secondary battery body 21.
  • Example 4 the heat insulating material 15 was bonded to the bottom and side surfaces of the laminate type lithium ion secondary battery main body 21 to obtain a laminate type lithium ion secondary battery having improved heat insulation properties as shown in FIG.
  • a charge / discharge test was conducted by a constant current and constant voltage charge at a termination condition of 4.2 V, a constant current of 5 hours, and a constant current discharge at a termination condition of 3.0 V.
  • Example 8> A laminated lithium ion secondary battery main body 21 was produced in the same manner as in Example 7 (FIG. 8). The main part of the laminate-type lithium ion secondary battery main body 21 is housed in the square-shaped heat medium circulation container 17 shown in Example 5 to obtain a laminate-type lithium ion secondary battery with improved heat insulation. Using this laminate type lithium ion secondary battery, in the same manner as in Example 7, a charge / discharge test was conducted with a termination condition of 4.2 V, a constant current constant voltage charge of 5 hours, and a constant current discharge of a termination condition of 3.0 V. It was.
  • Example 9 A laminate type lithium ion secondary battery main body 21 was produced in the same manner as in Example 7 (FIG. 9). A sheet-like heater 11 was wound around the outer wall surface of the laminate type lithium ion secondary battery main body 21. A heat insulating material 15 was bonded to the bottom and side surfaces of the laminated lithium ion secondary battery main body 21 around which the heater 11 was wound in the same manner as in Example 7 to obtain a square lithium ion secondary battery with improved heat insulation. Using this prismatic lithium ion secondary battery, a charge / discharge test was conducted in the same manner as in Example 7 by a termination condition of 4.2 V, a constant current constant voltage charge of 5 hours, and a constant current discharge of a termination condition of 3.0 V.
  • Example 3 The laminated lithium ion secondary battery main body 21 produced in the same manner as in Example 7 was subjected to a termination condition of 4.2 V, 5 hours of constant current and constant voltage and termination conditions as in Example 7 without imparting heat retention. A charge / discharge test using a constant current discharge of 3.0 V was performed.
  • Table 1 shows the experimental results of the discharge capacity with respect to the design capacities of Examples 1 to 9 and Comparative Examples 1 to 3.
  • the discharge capacity of all of the cylindrical, square, and laminate type lithium ion secondary batteries was 7 times or more compared to the case where no heat insulating effect was given. Moreover, when it heated positively, discharge capacity became 8 times or more. Moreover, when heating and heat insulation were used in combination, the discharge capacity ratio was larger than when heating alone or heat insulation alone. Further, as can be seen from Table 1, the discharge capacity ratio was particularly improved in the laminated lithium ion secondary battery.
  • Example 10 The cylindrical lithium ion secondary battery with improved heat insulation composed of the cylindrical lithium ion secondary battery main body 1 and the cylindrical vacuum heat insulating container 3 created in Example 1 is arranged in 12 rows by 3 rows and 4 rows.
  • Type lithium ion secondary battery module (FIG. 10).
  • the twelve cylindrical lithium ion secondary batteries are fastened from the outside with a fastening band (not shown).
  • a protective cover (not shown) made of a flame retardant resin is provided on the top of the module to prevent heat dissipation.
  • a charge / discharge test was conducted by a constant current and constant voltage charge at a termination condition of 4.2 V, a constant current of 5 hours and a constant current discharge at a termination condition of 3.0 V.
  • Example 11 Twelve cylindrical lithium ion secondary battery bodies 1 created in Example 1 were accommodated in a module heat medium circulation container 23 (FIG. 11) to form a lithium ion secondary battery module.
  • the module heat medium circulation container 23 has 12 cylindrical storage portions 24 in 3 columns and 4 rows, and the main portions of the cylindrical lithium ion secondary battery main body 1 are respectively stored in the storage portions.
  • the module heat medium circulation container 23 may be made of stainless steel like the cylindrical heat medium circulation container 5 of the second embodiment, but may be formed of a resin molded product. In any case, a circulation path through which the heat medium can be circulated is formed inside the module heat medium circulation container 23.
  • An inlet port and an outlet port are formed on the peripheral wall portion of the module heat medium circulation container 23, the heat medium introduction hose 7 is connected to the inlet port, and the heat medium discharge hose 9 is connected to the outlet port. Yes.
  • a temperature sensor for measuring the temperature of the battery can of the cylindrical lithium ion secondary battery main body 1 accommodated in the accommodating portion 24 is disposed in the accommodating portion 24.
  • a protective cover (not shown) made of a flame retardant resin is provided on the top of the module to prevent heat dissipation.
  • the heat medium is made of water or silicone oil, and is heated to 50 to 70 ° C. by an external heat source, so that the heat medium introduction hose 7 supplies the module heat medium circulation container 23. It is introduced inside, circulates in the module heat medium circulation container 23, and is discharged from the heat medium discharge hose 9.
  • the heat medium is circulated by the module heat medium circulation container 23 so that the temperature of the accommodated 12 cylindrical lithium ion secondary battery main bodies 1 is 50 ° C. or higher.
  • a charge / discharge test was conducted by constant current and constant voltage charge at 2 V for 5 hours and constant current discharge at a termination condition of 3.0 V.
  • Example 12 In the same manner as in Example 3, cylindrical lithium ion housed in a stainless steel cylindrical vacuum insulation container 3 by winding a sheet-like heater 11 around the outer wall surface of the cylindrical lithium ion secondary battery body 1 prepared in Example 1 The secondary batteries were arranged in 3 columns and 4 rows and housed in a housing case 14 to form a lithium ion secondary battery module comprising 12 cylindrical lithium ion secondary batteries (FIG. 12).
  • the storage case 14 is made of stainless steel.
  • a protective cover made of a flame retardant resin is provided on the top of the module to prevent heat dissipation.
  • Example 4 The cylindrical lithium ion secondary battery main bodies 1 created in Example 1 were arranged in 3 columns and 4 rows to form a lithium ion secondary battery module having no heat retaining property composed of 12 cylindrical lithium ion secondary batteries. Using this lithium ion secondary battery module, a charge / discharge test was conducted in the same manner as in Example 10 by a termination condition of 4.2 V, a constant current constant voltage charge for 5 hours, and a constant current discharge of a termination condition of 3.0 V.
  • Example 13 Six prismatic lithium ion secondary battery bodies 13 prepared in Example 4 were arranged side by side to form an assembled battery, and this assembled battery was used as a lithium ion secondary battery module body.
  • the heat insulating material 15 was bonded to the bottom and side surfaces of the lithium ion secondary battery module main body made of this assembled battery to form a lithium ion secondary battery module made of a square lithium ion secondary battery. (FIG. 13). Also in this module, the positive hex nut 14A and the negative hex nut 14B are exposed.
  • the lithium ion secondary battery module body made of the assembled battery prepared in Example 13 was housed in the module heat medium circulation container 25 to form a lithium ion secondary battery module (FIG. 14).
  • the module heat medium circulation container 25 includes a cylindrical peripheral wall portion 25A facing the side wall portion of the lithium ion secondary battery module main body, and a bottom wall portion 25B facing the bottom wall portion of the lithium ion secondary battery module main body. Have.
  • the peripheral wall portion 25A and the bottom wall portion 25B are configured by double walls facing each other so as to form a heat medium circulation path therein, and the heat medium circulation path in the peripheral wall portion 25A and the heat in the bottom wall portion 25B.
  • the medium circuit is in communication.
  • a circulation path through which the heat medium can be circulated is formed inside the module heat medium circulation container 25.
  • a temperature sensor (not shown) is accommodated inside the module heat medium circulation container 25.
  • a protective cover (not shown) made of a flame retardant resin is provided on the top of the module to prevent heat dissipation.
  • the module heat medium circulation container 25 may be formed of stainless steel or a resin material.
  • the heat medium is made of water or silicone oil, and is heated to 50 to 70 ° C. by an external heat source, so that the heat medium introduction hose 7 supplies the module heat medium circulation container 25. It is introduced inside, circulates in the module heat medium circulation container 25, and is discharged from the heat medium discharge hose 9.
  • the heat medium is circulated by the module heat medium circulation container 25 so that the temperature of the accommodated lithium ion secondary battery module main body is 50 ° C. or higher, and the end condition is 4.2 V for 5 hours as in Example 13.
  • the charge / discharge test was conducted by constant current constant voltage charge and constant current discharge at a termination condition of 3.0V.
  • Example 15 As in Example 6, six prismatic lithium ion secondary battery bodies 13 each having a sheet-like heater 11 wound around an outer wall surface are arranged side by side to form an assembled battery, and this assembled battery is made into a lithium ion secondary battery module.
  • a heat insulating material 15 was bonded to the bottom and side surfaces of the lithium ion secondary battery module main body to obtain a lithium ion secondary battery module made of a square lithium ion secondary battery (FIG. 15). Also in this example, the positive hexagon nut 14A and the negative hexagon nut 14B of each square lithium ion secondary battery body 13 are exposed.
  • a protective cover (not shown) made of a flame retardant resin is provided on the top of the module to prevent heat dissipation.
  • Example 5 A plurality of prismatic lithium ion secondary battery bodies 13 created in Example 4 were arranged to form a lithium ion secondary battery module that did not have heat retention. Using this lithium ion secondary battery module, a charge / discharge test was conducted by a constant current and constant voltage charge at a termination condition of 4.2 V for 5 hours and a constant current discharge at a termination condition of 3.0 V.
  • Example 17 The laminate-type lithium ion secondary battery module body made of the assembled battery prepared in Example 16 was accommodated in the module heat medium circulation container 25 of Example 14 to obtain a lithium ion secondary battery module (FIG. 17).
  • a protective cover (not shown) made of a flame retardant resin is provided on the top of the module to prevent heat dissipation.
  • the heat medium is circulated by the module heat medium circulation container 25 so that the temperature of the accommodated lithium ion secondary battery module main body is 50 ° C. or higher, and the end condition is 4.2 V for 5 hours as in Example 16.
  • the charge / discharge test was conducted by constant current constant voltage charge and constant current discharge at a termination condition of 3.0V.
  • Example 18 Similarly to Example 9, five laminated lithium ion secondary battery bodies 21 each having a sheet-like heater 11 wound around the outer peripheral surface of the packaging material 19 were arranged side by side to form a lithium ion secondary battery module body. A heat insulating material 15 was bonded to the bottom and side surfaces of the lithium ion secondary battery module main body to obtain a lithium ion secondary battery module made of a laminated lithium ion secondary battery (FIG. 18). A protective cover (not shown) made of a flame retardant resin is provided on the top of the module to prevent heat dissipation. Using this lithium ion secondary battery module, a charge / discharge test was conducted by a constant current and constant voltage charge at a termination condition of 4.2 V for 5 hours and a constant current discharge at a termination condition of 3.0 V.
  • Example 6 A plurality of laminated lithium ion secondary battery bodies 21 prepared in Example 7 were arranged to form a lithium ion secondary battery module that did not have heat retention. Using this lithium ion secondary battery module, a charge / discharge test was conducted by a constant current and constant voltage charge at a termination condition of 4.2 V for 5 hours and a constant current discharge at a termination condition of 3.0 V.
  • the discharge capacity was 4 times or more compared to the case where the heat insulating effect was not given. Moreover, when it heated positively, the discharge capacity became 5 times or more. Moreover, when heating and heat insulation were used in combination, the discharge capacity ratio was larger than when heating alone or heat insulation alone. In particular, in the cylindrical type and the square type, it was possible to obtain an output almost as designed capacity. Further, as can be seen from Table 2, in the laminated lithium ion secondary battery, the discharge capacity ratio was particularly improved.
  • a lithium ion secondary battery is constituted by a lithium ion battery main body in which an ionic liquid is injected into the battery case as an electrolytic solution, and the heat retaining means. Therefore, since the heat retaining means can keep the electrolytic solution, which is an ionic liquid, at a predetermined temperature, the viscosity of the ionic liquid is lowered, and the output of the lithium ion secondary battery using the ionic liquid can be further increased. . *

Abstract

Provided are: a lithium ion secondary battery which uses an ionic liquid that is capable of achieving high output power; and a lithium ion secondary battery module. A cylindrical lithium ion secondary battery which is increased in heat insulation properties by having the main part of a cylindrical lithium ion secondary battery main body (1) contained in a cylindrical vacuum heat insulation container (3) that is formed of a stainless steel heat insulation material.

Description

イオン液体を用いたリチウムイオン二次電池及びリチウムイオン二次電池モジュール並びにこれらの保温装置Lithium ion secondary battery and lithium ion secondary battery module using ionic liquid, and their heat insulation devices
 本発明は、イオン液体を用いたリチウムイオン二次電池及びリチウムイオン二次電池モジュール並びにこれらの保温装置に関するものである。 The present invention relates to a lithium ion secondary battery and a lithium ion secondary battery module using an ionic liquid, and a heat retaining device thereof.
 リチウムイオン電池等の非水電解液二次電池は、エネルギー密度が高く、かつ自己放電が少なくてサイクル性能が良いという利点がある。そのため近年では、非水電解液二次電池を大型または大容量化することにより、各種の産業用機械器具の電源として使用することが期待されている。 Non-aqueous electrolyte secondary batteries such as lithium ion batteries have the advantages of high energy density, low self-discharge and good cycle performance. Therefore, in recent years, non-aqueous electrolyte secondary batteries are expected to be used as power sources for various industrial machinery by increasing the size or capacity.
 このようなリチウムイオン二次電池の非水電解液に使用される非水溶媒としては、リチウム塩を溶解しやすく、かつ電気分解しにくいエチレンカーボネートやジエチルカーボネート等の極性非プロトン性の有機溶媒が使用されている。しかしながら従来使用されている有機溶媒は、引火点が非常に低く、引火性及び可燃性を有しているため、過充電時や短絡時の発熱により引火や爆発等が生じることがある。そのため、従来のリチウムイオン二次電池では、安全性を確保することが重要な課題となっている。 Examples of the non-aqueous solvent used in the non-aqueous electrolyte of such a lithium ion secondary battery include polar aprotic organic solvents such as ethylene carbonate and diethyl carbonate that easily dissolve lithium salts and are not easily electrolyzed. in use. However, conventionally used organic solvents have a very low flash point, and have flammability and flammability. Therefore, there are cases where ignition, explosion, etc. may occur due to overheating or short circuit. Therefore, in the conventional lithium ion secondary battery, ensuring safety is an important issue.
 この課題を解決するために最近では、リチウムイオン二次電池の非水電解液として、イオン液体を使用することが種々検討されている。イオン液体は、常温でも液体状を示すイオン性物質であり、高導電性というリチウムイオン二次電池の出力に優れた特徴だけでなく、蒸気圧が低く、不揮発性及び難燃性というリチウムイオン二次電池の安全性にとって優れた特徴も有している。特開2010-287380号公報(特許文献1)には、非水電解液としてイオン液体を使用したリチウムイオン二次電池が開示されている。 In order to solve this problem, various studies have recently been made on the use of ionic liquids as non-aqueous electrolytes for lithium ion secondary batteries. An ionic liquid is an ionic substance that shows a liquid state even at room temperature, and has not only a feature that is excellent in the output of a lithium ion secondary battery that is highly conductive, but also a lithium ion secondary that is low in vapor pressure, non-volatile and flame retardant. It also has excellent characteristics for the safety of secondary batteries. Japanese Patent Laying-Open No. 2010-287380 (Patent Document 1) discloses a lithium ion secondary battery using an ionic liquid as a nonaqueous electrolytic solution.
特開2010-287380号公報JP 2010-287380 A
 しかしながら、イオン液体を用いたリチウムイオン二次電池は、有機溶媒を使用したリチウムイオン二次電池及び鉛電池に比べて出力が低く、実用化が難しいという問題がある。出力が低い原因は種々考えられるが、主たる原因は、イオン液体の粘度であると考えられる。 However, a lithium ion secondary battery using an ionic liquid has a problem that its output is lower than that of a lithium ion secondary battery and a lead battery using an organic solvent, and it is difficult to put into practical use. There are various causes for the low output, but the main cause is considered to be the viscosity of the ionic liquid.
 リチウムイオン二次電池は正極・負極間をリチウムイオンが移動することで充放電が行われるため、イオン伝導度は電池性能に大きく影響する。一般にイオン伝導度は、液体の粘度の逆数に比例する。イオン液体の粘度は、一般に用いられている電解液の溶媒であるカーボネートと比較して、10倍の値である。そのため、イオン液体を非水電解液として使用すると、イオン液体内でのリチウムイオンの移動が制限されて伝導度が低下してしまい、リチウムイオン二次電池の出力が低下してしまう問題がある。また、粘度が高いと表面張力も高くなるため、従来のリチウムイオン二次電池で使用されている多孔体であるセパレータや、正極材料及び負極材料に対する濡れ性が悪くなり、リチウムイオン二次電池の出力がさらに低下してしまう場合がある。そのため、従来のイオン液体を用いたリチウムイオン二次電池では、有機溶媒を使用したリチウムイオン二次電池に比べて出力が10分の1程度になってしまい、所望の出力を得られないという問題が生じている。 Since lithium ion secondary batteries are charged and discharged by movement of lithium ions between the positive electrode and the negative electrode, the ionic conductivity greatly affects the battery performance. In general, ionic conductivity is proportional to the reciprocal of the viscosity of the liquid. The viscosity of the ionic liquid is 10 times that of carbonate, which is a commonly used solvent for the electrolyte. Therefore, when an ionic liquid is used as a non-aqueous electrolyte, there is a problem in that the movement of lithium ions in the ionic liquid is limited, the conductivity is lowered, and the output of the lithium ion secondary battery is lowered. In addition, since the surface tension increases when the viscosity is high, the wettability with respect to the separator, which is a porous body used in the conventional lithium ion secondary battery, and the positive electrode material and the negative electrode material is deteriorated. The output may further decrease. Therefore, in the conventional lithium ion secondary battery using an ionic liquid, the output is about one-tenth that of a lithium ion secondary battery using an organic solvent, and a desired output cannot be obtained. Has occurred.
 本発明の目的は、従来よりも高い出力を得ることができるイオン液体を用いたリチウムイオン二次電池及びリチウムイオン二次電池モジュール並びにこれらの保温装置を提供することにある。 An object of the present invention is to provide a lithium ion secondary battery and a lithium ion secondary battery module using an ionic liquid capable of obtaining a higher output than before, and a heat insulating device for these.
 本発明の他の目的は、イオン液体の粘度を低く維持できるリチウムイオン二次電池及びリチウムイオン二次電池モジュール並びにこれらの保温装置を提供することにある。 Another object of the present invention is to provide a lithium ion secondary battery and a lithium ion secondary battery module that can maintain the viscosity of the ionic liquid at a low level, and a heat retaining device thereof.
 本発明のさらに他の目的は、高出力を得ることができる温度にイオン液体を保温することができるイオン液体を用いたリチウムイオン二次電池及びリチウムイオン二次電池モジュール並びにこれらの保温装置を提供することにある。 Still another object of the present invention is to provide a lithium ion secondary battery and a lithium ion secondary battery module using the ionic liquid capable of keeping the ionic liquid at a temperature at which a high output can be obtained, and a heat insulation device thereof. There is to do.
 イオン液体の温度が常温よりも高い状態では、リチウムイオン二次電池の出力は良好である。リチウムイオン二次電池の出力が良好になる理由は、イオン液体の粘度が温度の上昇とともに低下することにあることを発明者は見いだした。本発明はこのような知見に基づくものである。 When the temperature of the ionic liquid is higher than normal temperature, the output of the lithium ion secondary battery is good. The inventors have found that the reason why the output of the lithium ion secondary battery is good is that the viscosity of the ionic liquid decreases with increasing temperature. The present invention is based on such knowledge.
 本発明のイオン液体を用いたリチウムイオン二次電池は、リチウムイオン電池本体と、保温手段とを有している。本発明のリチウムイオン電池本体は、電解液としてイオン液体が電池ケースの内部に注入されている。保温手段は、電解液を所定の温度に保温する。このように構成すると、リチウムイオン二次電池を常温よりも高い所定の温度以上に保温することができるので、リチウムイオン二次電池の内部のイオン液体の温度も常温より高くなり、イオン液体の粘度が低下する。そのため、イオン液体を用いたリチウムイオン二次電池の出力を常温時の出力より高くすることができる。 The lithium ion secondary battery using the ionic liquid of the present invention has a lithium ion battery main body and heat retaining means. In the lithium ion battery main body of the present invention, an ionic liquid is injected into the battery case as an electrolytic solution. The heat retaining means keeps the electrolyte at a predetermined temperature. With this configuration, the lithium ion secondary battery can be kept at a predetermined temperature higher than normal temperature, so the temperature of the ionic liquid inside the lithium ion secondary battery is also higher than normal temperature, and the viscosity of the ionic liquid Decreases. Therefore, the output of the lithium ion secondary battery using an ionic liquid can be made higher than the output at normal temperature.
 保温手段は、例えば電池本体の電池ケースの全部または主要部を覆う断熱材により構成することができる。断熱材は、電池ケースに貼り付けることができる。また、断熱材は、電池本体の電池ケースの全部または主要部を収容する収容部を有する断熱容器の形状とすることができる。このように構成すると、イオン液体を用いたリチウムイオン二次電池を充放電したときに、電池本体内部で発生した熱が外部に放熱されることを抑制できる。そのため簡単な構成で、イオン液体を用いたリチウムイオン二次電池を常温よりも高い温度に保温することができる。 The heat retaining means can be constituted by, for example, a heat insulating material that covers all or the main part of the battery case of the battery body. The heat insulating material can be attached to the battery case. Moreover, the heat insulating material can be in the shape of a heat insulating container having a housing part that houses the whole or main part of the battery case of the battery body. If comprised in this way, when the lithium ion secondary battery using an ionic liquid is charged / discharged, it can suppress that the heat which generate | occur | produced inside the battery main body is thermally radiated outside. Therefore, the lithium ion secondary battery using the ionic liquid can be kept at a temperature higher than room temperature with a simple configuration.
 電池の環境温度によっては、電池本体から発生した熱だけでは、十分な出力を得ることができる温度でイオン液体を保温することができない場合がある。このような場合には、保温手段は、電解液を直接または間接的に加熱する加熱手段をさらに備えることができる。このように構成すると、電池本体内のイオン液体が積極的に加熱されるので、十分に高い出力が得られる温度にイオン液体を保温することができる。 Depending on the environmental temperature of the battery, the ionic liquid may not be kept at a temperature at which sufficient output can be obtained with only the heat generated from the battery body. In such a case, the heat retaining means can further include a heating means for directly or indirectly heating the electrolytic solution. If comprised in this way, since the ionic liquid in a battery main body is heated positively, an ionic liquid can be heat-maintained to the temperature from which a sufficiently high output is obtained.
 加熱手段は、各種の熱媒体を利用したものとすることも可能である。リチウムイオン二次電池は、工場内または家庭内で用いられる。工場内では、ボイラーやその他の発熱体である装置の100℃以下の排熱(低温排熱と呼ばれている)が排出される。この廃熱を熱媒体の熱源とすることができる。また家庭内では、家庭用燃料電池に備えられた発電時の熱を利用する給湯器により加熱された60℃のお湯を熱媒体とすることができる。そこで保温手段を、電池本体の全部または主要部を収容する収容部と、収容部の内部または収容部を囲む壁部の内部に配置されて、収容部に収容された電池ケースを加熱するように、外部熱源で加熱された熱媒体が循環する循環路とを備えてなる熱媒体循環容器とすることができる。このように構成すると、工場内または家庭内の既存設備から排出される廃熱や温水を熱媒体として利用することができる。そのため、イオン液体を用いたリチウムイオン二次電池の温度を保つために電池本体を加熱する必要がある場合でも、コストを抑えることができる。 The heating means may use various heat media. Lithium ion secondary batteries are used in factories or homes. In the factory, exhaust heat of 100 ° C. or less (referred to as low temperature exhaust heat) from a boiler or other heat generating device is discharged. This waste heat can be used as a heat source for the heat medium. In the home, hot water of 60 ° C. heated by a water heater that uses heat generated during power generation provided in a household fuel cell can be used as a heat medium. Therefore, the heat retaining means is disposed in the housing part that accommodates all or the main part of the battery main body and in the interior of the housing part or the wall that surrounds the housing part, and heats the battery case accommodated in the housing part. And a heat medium circulation container comprising a circulation path through which the heat medium heated by the external heat source circulates. If comprised in this way, the waste heat and warm water discharged | emitted from the existing facility in a factory or a household can be utilized as a heat medium. Therefore, even when it is necessary to heat the battery body in order to maintain the temperature of the lithium ion secondary battery using the ionic liquid, the cost can be suppressed.
 本発明はまた、電解液としてイオン液体が電池ケースの内部に注入された複数のリチウムイオン二次電池からなる組電池を有するリチウムイオン二次電池モジュールにも適用することができる。この種のリチウムイオン二次電池モジュールでは、組み合わされる複数のリチウムイオン二次電池の電解液の温度が異なると、電解液中のリチウムイオンの伝導特性にムラが出てしまう。特に電解液がイオン液体である場合には、組み合わされる複数のリチウムイオン二次電池に数10℃もの温度差があると、リチウムイオン二次電池内部のイオン液体のイオン伝導度に数十倍の差が出る。そのため、リチウムイオン二次電池モジュールでは、複数のリチウムイオン二次電池の温度差が10℃以内となるように保温できることが望まれる。そこで、本発明をイオン液体を用いたリチウムイオン二次電池モジュールに適用する場合には、保温手段により、複数のリチウムイオン二次電池内の電解液を所定の温度範囲に保温する。このように構成すると、複数のリチウムイオン二次電池の出力が大きく異なることがないので、イオン液体を用いたリチウムイオン二次電池モジュールの出力をより高くすることができるだけでなく、安定した出力を得ることができる。 The present invention can also be applied to a lithium ion secondary battery module having an assembled battery composed of a plurality of lithium ion secondary batteries in which an ionic liquid is injected as an electrolyte into the battery case. In this type of lithium ion secondary battery module, if the temperature of the electrolyte solution of a plurality of lithium ion secondary batteries to be combined is different, the conduction characteristics of lithium ions in the electrolyte solution become uneven. In particular, when the electrolytic solution is an ionic liquid, if there is a temperature difference of several tens of degrees Celsius among a plurality of combined lithium ion secondary batteries, the ionic conductivity of the ionic liquid inside the lithium ion secondary battery is several tens of times There is a difference. Therefore, in the lithium ion secondary battery module, it is desired that the temperature difference between the plurality of lithium ion secondary batteries can be kept within 10 ° C. Therefore, when the present invention is applied to a lithium ion secondary battery module using an ionic liquid, the temperature of the electrolyte solution in the plurality of lithium ion secondary batteries is kept within a predetermined temperature range by the heat retaining means. With this configuration, since the outputs of the plurality of lithium ion secondary batteries do not differ greatly, not only can the output of the lithium ion secondary battery module using the ionic liquid be increased, but also a stable output can be obtained. Obtainable.
 リチウムイオン二次電池モジュールに用いる保温手段は、組電池の少なくとも一部を覆う断熱材により構成することができる。リチウムイオン二次電池モジュールの場合でも、断熱材を、モジュールを構成する電池の電池ケースに貼り付けてもよい。また、断熱材により、組電池の全部または主要部を収容する収容部を有する断熱容器を構成してもよい。このように構成すると、リチウムイオン二次電池モジュールを充放電させたときに、組電池から発生した熱が断熱容器の外部に放出されることがない。そのため簡単な構成で、リチウムイオン二次電池モジュールを常温よりも高い温度に保温することができる。 The heat retaining means used in the lithium ion secondary battery module can be constituted by a heat insulating material that covers at least a part of the assembled battery. Even in the case of the lithium ion secondary battery module, the heat insulating material may be attached to the battery case of the battery constituting the module. Moreover, you may comprise the heat insulation container which has an accommodating part which accommodates the whole or main part of an assembled battery with a heat insulating material. With this configuration, when the lithium ion secondary battery module is charged and discharged, heat generated from the assembled battery is not released to the outside of the heat insulating container. Therefore, the lithium ion secondary battery module can be kept at a temperature higher than room temperature with a simple configuration.
 また保温手段は、組電池を構成する複数のリチウムイオン二次電池の電池ケースをそれぞれ加熱する複数の加熱手段をさらに備えていてもよい。 Further, the heat retaining means may further include a plurality of heating means for respectively heating the battery cases of the plurality of lithium ion secondary batteries constituting the assembled battery.
 二次電池モジュールにおいても、加熱手段として、熱媒体を利用した構造のものを使用することも可能である。具体的には、保温手段を組電池の全部または主要部を収容する収容部と、収容部の内部または収容部を囲む壁部の内部に配置されて、収容部に収容された組電池を加熱するように、外部熱源で加熱された熱媒体が循環する循環路とを備えてなる熱媒体循環容器とする。 Also in the secondary battery module, it is possible to use a structure using a heat medium as a heating means. Specifically, the heat retaining means is disposed in the housing part that accommodates all or the main part of the assembled battery, and in the interior of the housing part or the wall that surrounds the housing part, and heats the assembled battery housed in the housing part. As described above, the heat medium circulation container includes a circulation path through which the heat medium heated by the external heat source circulates.
 本発明は、イオン液体を電解液として用いたリチウムイオン二次電池の保温装置またはイオン液体を電解液として用いたリチウムイオン二次電池モジュールの保温装置として特定することも可能である。 The present invention can also be specified as a heat retention device for a lithium ion secondary battery using an ionic liquid as an electrolytic solution or a heat retention device for a lithium ion secondary battery module using an ionic liquid as an electrolytic solution.
(a)は本発明の実施例1の円筒形リチウムイオン二次電池本体及び円筒形真空断熱容器を示す図であり、(b)は円筒形リチウムイオン二次電池本体を円筒形真空断熱容器に収容した状態を示す図である。(A) is a figure which shows the cylindrical lithium ion secondary battery main body and cylindrical vacuum insulation container of Example 1 of this invention, (b) is a cylindrical lithium ion secondary battery main body in a cylindrical vacuum insulation container. It is a figure which shows the state accommodated. (a)は本発明の実施例2の円筒形リチウムイオン二次電池本体及び円筒形熱媒体循環容器を示す図であり、(b)は円筒形リチウムイオン二次電池本体を円筒形熱媒体循環容器に収容した状態を示す図である。(A) is a figure which shows the cylindrical lithium ion secondary battery main body and cylindrical heat-medium circulation container of Example 2 of this invention, (b) is a cylindrical heat-medium circulation through a cylindrical lithium ion secondary battery main body. It is a figure which shows the state accommodated in the container. (a)は本発明の実施例3のヒーターが巻き付けられた円筒形リチウムイオン二次電池本体及び円筒形真空断熱容器を示す図であり、(b)はヒーターを巻き付けた円筒形リチウムイオン二次電池本体を円筒形真空断熱容器に収容した状態を示す図である。(A) is a figure which shows the cylindrical lithium ion secondary battery main body and cylindrical vacuum heat insulation container by which the heater of Example 3 of this invention was wound, (b) is the cylindrical lithium ion secondary by which the heater was wound. It is a figure which shows the state which accommodated the battery main body in the cylindrical vacuum heat insulation container. 本発明の実施例4の断熱材を貼り付けた角型リチウムイオン二次電池を示す図である。It is a figure which shows the square lithium ion secondary battery which affixed the heat insulating material of Example 4 of this invention. 本発明の実施例5の角型リチウムイオン二次電池本体及び角型熱媒体循環容器を示す図である。It is a figure which shows the square lithium ion secondary battery main body and square heat-medium circulation container of Example 5 of this invention. 本発明の実施例6のヒーターを巻き付けた角型リチウムイオン二次電池本体と断熱材とを示す図である。It is a figure which shows the square lithium ion secondary battery main body and heat insulating material which wound the heater of Example 6 of this invention. 本発明の実施例7の断熱材を貼り付けたラミネート型リチウムイオン二次電池を示す図である。It is a figure which shows the laminate-type lithium ion secondary battery which affixed the heat insulating material of Example 7 of this invention. 本発明の実施例8のラミネート型リチウムイオン二次電池本体及び角型熱媒体循環容器を示す図である。It is a figure which shows the lamination-type lithium ion secondary battery main body and square-shaped heat carrier circulation container of Example 8 of this invention. 本発明の実施例9のヒーターを巻き付けたラミネート型リチウムイオン二次電池本体と断熱材とを示す図である。It is a figure which shows the laminate-type lithium ion secondary battery main body and heat insulating material which wound the heater of Example 9 of this invention. 本発明の実施例10のリチウムイオン二次電池モジュールを示す図である。It is a figure which shows the lithium ion secondary battery module of Example 10 of this invention. 本発明の実施例11のモジュール用熱媒体循環容器を示す図である。It is a figure which shows the thermal-medium circulation container for modules of Example 11 of this invention. 本発明の実施例12のリチウムイオン二次電池モジュールを示す図である。It is a figure which shows the lithium ion secondary battery module of Example 12 of this invention. 本発明の実施例13のリチウムイオン二次電池モジュール本体と断熱材とを示す図である。It is a figure which shows the lithium ion secondary battery module main body and heat insulating material of Example 13 of this invention. 本発明の実施例14のリチウムイオン二次電池モジュール本体とモジュール用熱媒体循環容器とを示す図である。It is a figure which shows the lithium ion secondary battery module main body of Example 14 of this invention, and the thermal-medium circulation container for modules. 本発明の実施例15のリチウムイオン二次電池モジュール本体と断熱材とを示す図である。It is a figure which shows the lithium ion secondary battery module main body and heat insulating material of Example 15 of this invention. 本発明の実施例16のリチウムイオン二次電池モジュール本体と断熱材とを示す図である。It is a figure which shows the lithium ion secondary battery module main body and heat insulating material of Example 16 of this invention. 本発明の実施例17のリチウムイオン二次電池モジュール本体とモジュール用熱媒体循環容器とを示す図である。It is a figure which shows the lithium ion secondary battery module main body of Example 17 of this invention, and the thermal-medium circulation container for modules. 本発明の実施例18のリチウムイオン二次電池モジュール本体と断熱材とを示す図である。It is a figure which shows the lithium ion secondary battery module main body and heat insulating material of Example 18 of this invention.
 以下、図面を参照して本発明のイオン液体を用いたリチウムイオン二次電池及びリチウムイオン二次電池モジュール並びに保温装置の実施の形態の構成を詳細に説明する。 Hereinafter, the configuration of the embodiment of the lithium ion secondary battery, the lithium ion secondary battery module, and the heat retaining device using the ionic liquid of the present invention will be described in detail with reference to the drawings.
 本発明の実施の形態のリチウムイオン電池は、電池本体と、保温装置とから構成される。電池本体は、正極板、負極板及びセパレータからなる極板群と、電解液としてのイオン液体と、極板群及びイオン液体を内部に収容する電池ケースとしての電池缶とを有している。 The lithium ion battery according to the embodiment of the present invention includes a battery body and a heat retention device. The battery body includes an electrode plate group including a positive electrode plate, a negative electrode plate, and a separator, an ionic liquid as an electrolytic solution, and a battery can as a battery case that accommodates the electrode plate group and the ionic liquid therein.
<正極板>
 正極板は、正極活物質、導電剤および結着剤から構成された正極合剤を、アルミニウム箔の両面に塗布した後、乾燥、プレスして形成される。
<Positive electrode plate>
The positive electrode plate is formed by applying a positive electrode mixture composed of a positive electrode active material, a conductive agent and a binder on both surfaces of an aluminum foil, followed by drying and pressing.
 正極活物質には、1)化学式LiMO(Mは少なくとも1種の遷移金属)で表されるもの、あるいは2)スピネルマンガンなどを用いることができる。また、3)マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウムなどの正極活物質中のMn、Ni、Coなどの一部を1種あるいは2種以上の遷移金属で置換したものとすることができる。さらに、3)の遷移金属の一部をMg、Alなどの金属元素で置換したものを用いることもできる。この他にもリン酸塩化合物、LiFePO、LiMnPO、LiMn1-XPO(0.3≦x≦1、MはLi,Fe,Ni,Co,Ti,Cu,Zn,Mg,及びZrから選ばれる一種以上の元素)が使用可能である。 As the positive electrode active material, 1) one represented by the chemical formula LiMO 2 (M is at least one transition metal) or 2) spinel manganese can be used. 3) A part of Mn, Ni, Co, etc. in the positive electrode active material such as lithium manganate, lithium nickelate, lithium cobaltate and the like can be substituted with one or more transition metals. . Further, a part of the transition metal of 3) substituted with a metal element such as Mg or Al can also be used. In addition to this, phosphate compounds, LiFePO 4 , LiMnPO 4 , LiMn X M 1-X PO 4 (0.3 ≦ x ≦ 1, M is Li, Fe, Ni, Co, Ti, Cu, Zn, Mg, And one or more elements selected from Zr) can be used.
 導電剤には、公知の導電剤を用いることができ、例えば黒鉛、アセチレンブラック、カーボンブラック、炭素繊維などの炭素系導電剤を用いることができる。ただし、これらの材料に限定されない。 As the conductive agent, a known conductive agent can be used. For example, a carbon-based conductive agent such as graphite, acetylene black, carbon black, or carbon fiber can be used. However, it is not limited to these materials.
 結着剤には、公知の結着剤を用いることができ、例えばポリフッ化ビニリデン、フッ素ゴムなどを用いることができる。ただし、これらの材料に限定されない。本発明では、ポリフッ化ビニリデンが好ましい。 As the binder, a known binder can be used. For example, polyvinylidene fluoride, fluororubber, or the like can be used. However, it is not limited to these materials. In the present invention, polyvinylidene fluoride is preferred.
 溶剤には、公知の溶剤を適宜選択して使用することができる。本発明では、例えばN-メチル-2-ピロリドン等の有機溶剤を用いることが好ましい。 As the solvent, a known solvent can be appropriately selected and used. In the present invention, it is preferable to use an organic solvent such as N-methyl-2-pyrrolidone.
 正極合剤における正極活物質、導電剤および結着剤の混合比は、例えば正極活物質を1とした場合、重量比で1:0.05~0.20:0.02~0.10とすることができる。ただし、この範囲に限定されない。 The mixing ratio of the positive electrode active material, the conductive agent and the binder in the positive electrode mixture is, for example, 1: 0.05 to 0.20: 0.02 to 0.10 by weight when the positive electrode active material is 1. can do. However, it is not limited to this range.
<負極板>
 負極板は、負極活物質および結着剤からなる負極合剤を、銅箔の両面に塗布した後、乾燥、プレスされて形成される。
<Negative electrode plate>
The negative electrode plate is formed by applying a negative electrode mixture comprising a negative electrode active material and a binder to both sides of a copper foil, and then drying and pressing.
 負極活物質は、1)黒鉛あるいは非晶質炭素などの炭素系の材料、2)チタン酸リチウムのような酸化物系の材料、3)スズ、シリコンのような金属・合金系材料を用いることができる。 As the negative electrode active material, 1) a carbon-based material such as graphite or amorphous carbon, 2) an oxide-based material such as lithium titanate, 3) a metal / alloy-based material such as tin or silicon should be used. Can do.
 結着剤は、例えば上記正極板と同様に、ポリフッ化ビニリデン、フッ素ゴムなどを用いることができる。ただし、これらの材料に限定されない。本発明では、正極板と同様にポリフッ化ビニリデンであることが好ましい。 As the binder, for example, polyvinylidene fluoride, fluororubber, and the like can be used in the same manner as the positive electrode plate. However, it is not limited to these materials. In this invention, it is preferable that it is a polyvinylidene fluoride similarly to a positive electrode plate.
 溶剤は、例えば上記正極板と同様に、公知の溶剤を適宜選択して使用することができる。本発明では負極板と同様に、N-メチル-2-ピロリドン等の有機溶剤を用いることが好ましい。 As the solvent, for example, a known solvent can be appropriately selected and used in the same manner as in the positive electrode plate. In the present invention, an organic solvent such as N-methyl-2-pyrrolidone is preferably used as in the negative electrode plate.
 負極合剤における負極活物質および結着剤の混合比は、例えば負極活物質を1とした場合、重量比で1:0.05~0.20とすることができる。ただし、この範囲に限定されない。 The mixing ratio of the negative electrode active material and the binder in the negative electrode mixture can be, for example, 1: 0.05 to 0.20 by weight when the negative electrode active material is 1. However, it is not limited to this range.
<セパレータ>
 セパレータは、一般的にポリオレフィン系多孔質膜を使用することができ、例えばポリエチレンとポリプロピレンとの複合膜とすることができる。またセパレータには耐熱性が要求されるため、アルミナ等のセラミックスを表面に塗布したセラミックス複合セパレータ、及びそれらを多孔質膜の構成材の一部としたセラミックス複合セパレータを用いてもよい。ただし、セパレータの材料はこれらに限定されるものではなく、公知のものを使用することができる。
<Separator>
As the separator, a polyolefin-based porous film can be generally used, and for example, a composite film of polyethylene and polypropylene can be used. In addition, since the separator is required to have heat resistance, a ceramic composite separator in which a ceramic such as alumina is coated on the surface, and a ceramic composite separator using these as a part of the constituent material of the porous film may be used. However, the material of a separator is not limited to these, A well-known thing can be used.
<電解液>
 非水電解液としては、常温で液体の性質を示すイオン液体にリチウム塩を溶解したものを用いる。イオン液体としては、[NR(R、R、R、Rは炭素数1~4個のアルキル基、または一部をメトキシ基に置換したメトシキ基アルキル基(-(CHOCH、n=2~4))で表される鎖状の四級アンモニウム系のカチオンまたは窒素を含有する環状化合物である六員環であるピペリジウムあるいは五員環であるピロリジウムの四級アンモニウム系のカチオンと、無機系アニオンのBF または有機系アニオンのB(C 、CHSO 、CFSO 、N(SOF) (FSI)、N(SOCF (TFSI)、N(SOCFCF (BETI)から成るイオン液体であればよい。これらの溶媒であるイオン液体の1種以上に、例えばLiBF、LiClO、LiB(C、LiCHSO、LiCFSO、LiN(SOF)、LiN(SOCF、LiN(SOCFCF等から選ばれた1種以上のリチウム塩を溶解させて非水電解液を調整することができる。
<Electrolyte>
As the non-aqueous electrolyte, an ionic liquid that exhibits liquid properties at room temperature and a lithium salt dissolved therein is used. As the ionic liquid, [NR 1 R 2 R 3 R 4 ] + (R 1 , R 2 , R 3 , R 4 are alkyl groups having 1 to 4 carbon atoms, or a methoxy group in which a methoxy group is partially substituted. Piperidium or five-membered ring that is a chain-like quaternary ammonium cation represented by an alkyl group (— (CH 2 ) n OCH 3 , n = 2 to 4)) or a nitrogen-containing cyclic compound The quaternary ammonium cation of pyrrolidinium ring and the inorganic anion BF 4 or the organic anion B (C 6 H 5 ) 4 , CH 3 SO 3 , CF 3 SO 3 , N (SO Any ionic liquid may be used as long as it is composed of 2 F) 2 (FSI ), N (SO 2 CF 3 ) 2 (TFSI ), and N (SO 2 CF 2 CF 3 ) 2 (BETI ). For example, LiBF 4 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 F) 2 , and LiN (SO 2 ) One or more lithium salts selected from 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 and the like can be dissolved to adjust the non-aqueous electrolyte.
<電池缶>
 電池缶には、公知の材料を用いることができ、例えば、金属性容器またはアルミ箔にフィルムを貼ったアルミラミネートを外装材としたラミネート型容器とすることができる。電池缶の形状は、円筒形または角型とすることができる。
<Battery can>
A known material can be used for the battery can. For example, it can be a laminated container using a metal container or an aluminum laminate in which a film is attached to an aluminum foil as an exterior material. The shape of the battery can can be cylindrical or rectangular.
<保温装置>
 本発明の保温装置の実施の形態は、断熱材からなる断熱容器、電池ケースの外壁面に貼付可能なヒーターまたは熱媒体が循環する循環路を有する熱媒体循環容器とすることができる。
<Insulation device>
The embodiment of the heat retaining device of the present invention can be a heat insulating container made of a heat insulating material, a heater that can be attached to the outer wall surface of the battery case, or a heat medium circulating container having a circulation path through which the heat medium circulates.
<断熱材>
 断熱材の素材としては、1)発泡ウレタン、発泡スチロールのような断熱性を有する発泡体の樹脂、2)ガラスウールなどの芯材と芯材を収納して内部を真空排気してなる樹脂を用いた外装材からなり冷蔵庫に使用される真空断熱材、または3)住宅に用いるガラスウールといった断熱材を用いることが望ましい。断熱材として、特に断熱性能が高いもの、すなわち熱伝導性の低いものが好ましく、例えば冷蔵庫の真空断熱材のように熱伝導率が0.02W/(m・K)以下のものが好ましい。
<Insulation material>
As the material of the heat insulating material, 1) a foam resin having heat insulating properties such as foamed urethane and polystyrene, and 2) a resin containing a core material and a core material such as glass wool and evacuating the inside are used. It is preferable to use a heat insulating material such as a vacuum heat insulating material made of an existing exterior material and used for a refrigerator, or 3) glass wool used for a house. As the heat insulating material, a material having particularly high heat insulating performance, that is, a material having low heat conductivity is preferable. For example, a heat insulating material having a heat conductivity of 0.02 W / (m · K) or less like a vacuum heat insulating material of a refrigerator is preferable.
 次に本発明の実施例及び比較例について説明する。なお本発明は、下記の実施例に制限されるものではない。 Next, examples and comparative examples of the present invention will be described. In addition, this invention is not restrict | limited to the following Example.
 まず、円筒型リチウムイオン二次電池について比較実験を行った。 First, a comparative experiment was conducted on a cylindrical lithium ion secondary battery.
<実施例1>
 正極活物質としてLiMnを用い、正極活物質,導電剤の黒鉛,結着剤のポリフッ化ビニリデンを85:10:5の重量比で混練機を用いて30分間混練し、正極合剤を作成した。得られた正極合剤を、厚さ30μmのアルミニウム箔の集電体の両面に塗布した。正極合剤が塗布された集電体を、プレス機で圧延成型した後、150℃で5時間真空乾燥して正極板とした。
<Example 1>
LiMn 2 O 4 was used as the positive electrode active material, and the positive electrode active material, the conductive material graphite, and the binder polyvinylidene fluoride were kneaded at a weight ratio of 85: 10: 5 for 30 minutes using a kneader. It was created. The obtained positive electrode mixture was applied to both surfaces of a current collector of aluminum foil having a thickness of 30 μm. The current collector coated with the positive electrode mixture was roll-formed with a press machine and then vacuum dried at 150 ° C. for 5 hours to obtain a positive electrode plate.
 負極活物質として黒鉛材を用い、結着剤としてポリフッ化ビニリデンを用いた。負極活物質:結着剤=90:10の重量比で混練機を用いて30分間混練し、負極合剤を作成した。得られた負極合剤を厚さ20μmの銅箔の集電体の両面に塗布した。負極合剤が塗布された集電体を、プレス機で圧延成型した後、150℃で5時間真空乾燥して負極板とした。 A graphite material was used as the negative electrode active material, and polyvinylidene fluoride was used as the binder. A negative electrode active material: binder = 90: 10 weight ratio was kneaded for 30 minutes using a kneader to prepare a negative electrode mixture. The obtained negative electrode mixture was applied to both sides of a 20 μm thick copper foil current collector. The current collector coated with the negative electrode mixture was roll-formed with a press machine and then vacuum dried at 150 ° C. for 5 hours to obtain a negative electrode plate.
 正極板及び負極板を、ポリエチレン(PE)からなる厚さ20μmの多孔性高分子樹脂膜からなるセパレータを介して絶縁するように重ねて捲回し、捲回型極板群とした。捲回型極板群をステンレスからなる円筒状の電池缶に挿入した。 The positive electrode plate and the negative electrode plate were overlapped and wound so as to be insulated through a separator made of a porous polymer resin film made of polyethylene (PE) and having a thickness of 20 μm to form a wound electrode plate group. The wound electrode plate group was inserted into a cylindrical battery can made of stainless steel.
 正極板をアルミニウムの正極集電体に溶接し、この正極集電体を正極極柱に超音波溶接した。正極極柱を正極側電池蓋の開口部に通した後、正極板が位置しない側の正極極柱の端部を正極端子となる正極六角ナットで固定した。 The positive electrode plate was welded to an aluminum positive electrode current collector, and this positive electrode current collector was ultrasonically welded to the positive electrode pole column. After passing the positive electrode pole through the opening of the positive battery cover, the end of the positive electrode pole on the side where the positive electrode plate was not positioned was fixed with a positive hexagon nut serving as a positive electrode terminal.
 負極板をアルミニウムの負極集電体に溶接し、この負極集電体を負極極柱に超音波溶接した。負極極柱を負極側電池蓋の開口部に通した後、負極板が位置しない側の負極極柱の端部を負極端子となる負極六角ナットで固定した。 The negative electrode plate was welded to an aluminum negative electrode current collector, and this negative electrode current collector was ultrasonically welded to the negative electrode pole column. After passing the negative electrode pole through the opening of the negative electrode battery cover, the end of the negative electrode pole on the side where the negative electrode plate was not positioned was fixed with a negative hexagon nut serving as a negative electrode terminal.
 正極電池蓋及び負極電池蓋を電池缶に超音波溶接した後、負極側電池蓋に設けられた注液口から、LiN(SOCF/Py13TFSI(リチウムビス(トリフルオロメタンスルホニル)イミド/N-メチルN-プロピルピロリジニウムビス(トリフルオロメタンスルホニル)イミド)からなるリチウム塩溶液をイオン液体として注入し、注液口をネジ留めして、図1(a)に示す電池容量70Ahの円筒形リチウムイオン二次電池本体1を得た。 After ultrasonically welding the positive electrode battery cover and the negative electrode battery cover to the battery can, LiN (SO 2 CF 3 ) 2 / Py13TFSI (lithium bis (trifluoromethanesulfonyl) imide / A lithium salt solution composed of N-methyl N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide) is injected as an ionic liquid, and a liquid injection port is screwed to form a cylinder with a battery capacity of 70 Ah shown in FIG. The main body 1 of a lithium ion secondary battery was obtained.
 この円筒形リチウムイオン二次電池本体1の主要部を、図1(a)に示すように筒状の周壁部3Aと周壁部3Aの一端を塞ぐ底壁部3Bとを有する円筒形真空断熱容器3に収容して、図1(b)に示す断熱性を高めた円筒形リチウムイオン二次電池とした。周壁部3A及び3Bは、それぞれ真空空間を間に介して対向する二重壁構造を有しており、この二重壁部は、ステンレス製である。本実施例では、円筒形真空断熱容器3の開口部から円筒形リチウムイオン二次電池本体1の一方の端子部2を露出させている。円筒形リチウムイオン二次電池本体1の他方の端子部4は、円筒形真空断熱容器3の底壁部3Bに電気的に接続されている。本実施例では、円筒形真空断熱容器3が導電性を有するため、電気的には電池の他方の端子電極を構成している。 As shown in FIG. 1 (a), the main part of the cylindrical lithium ion secondary battery main body 1 is a cylindrical vacuum heat insulating container having a cylindrical peripheral wall 3A and a bottom wall 3B that closes one end of the peripheral wall 3A. 3 to obtain a cylindrical lithium ion secondary battery with improved heat insulation as shown in FIG. Each of the peripheral wall portions 3A and 3B has a double wall structure facing each other with a vacuum space therebetween, and the double wall portion is made of stainless steel. In this embodiment, one terminal portion 2 of the cylindrical lithium ion secondary battery main body 1 is exposed from the opening of the cylindrical vacuum heat insulating container 3. The other terminal portion 4 of the cylindrical lithium ion secondary battery body 1 is electrically connected to the bottom wall portion 3B of the cylindrical vacuum heat insulating container 3. In the present embodiment, since the cylindrical vacuum heat insulating container 3 has conductivity, it electrically constitutes the other terminal electrode of the battery.
 この円筒形リチウムイオン二次電池を用いて、終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。 Using this cylindrical lithium ion secondary battery, a charge / discharge test was conducted with a termination condition of 4.2 V, a constant current constant voltage charge for 5 hours, and a constant current discharge of a termination condition of 3.0 V.
<実施例2>
 実施例1と同様に円筒型リチウムイオン二次電池本体1を作製した(図2(a))。リチウムイオン二次電池本体1の主要部を、図2(a)に示す円筒形熱媒体循環容器5に収容した(図2(b))。
<Example 2>
A cylindrical lithium ion secondary battery main body 1 was produced in the same manner as in Example 1 (FIG. 2A). The main part of the lithium ion secondary battery body 1 was accommodated in the cylindrical heat medium circulation container 5 shown in FIG. 2A (FIG. 2B).
 円筒形熱媒体循環容器5は、筒状の周壁部5Aと周壁部5Aの一端を塞ぐ底壁部5Bとを有している。周壁部5A及び5Bは、ステンレス製の二重壁構造からなり、二重壁の間にそれぞれ熱媒体循環空間5Cを形成している。周壁部5Aの開口部側の端部には、熱媒体の入口ポートが設けられており、入口ポートには熱媒体導入ホース7が接続されている。また周壁部5Aの底壁部5B側の端部には、熱媒体の出口ポートが設けられており、出口ポートには熱媒体排出ホース9が接続されている。本実施例では、熱媒体循環空間5Cが、熱媒体が循環可能な循環路を構成している。図示していないが、熱媒体循環容器5の内部には、リチウムイオン二次電池本体1の電池缶1Aと接触して、電池缶1Aの温度を測定することにより、間接的に電解液の温度を測定する温度センサが配置されている。 The cylindrical heat medium circulation container 5 has a cylindrical peripheral wall portion 5A and a bottom wall portion 5B that closes one end of the peripheral wall portion 5A. The peripheral wall portions 5A and 5B have a double wall structure made of stainless steel, and each form a heat medium circulation space 5C between the double walls. A heat medium inlet port is provided at the end of the peripheral wall 5A on the opening side, and the heat medium introduction hose 7 is connected to the inlet port. A heat medium outlet port is provided at the end of the peripheral wall 5A on the bottom wall 5B side, and a heat medium discharge hose 9 is connected to the outlet port. In the present embodiment, the heat medium circulation space 5C constitutes a circulation path through which the heat medium can be circulated. Although not shown, the temperature of the electrolyte solution is indirectly measured by contacting the battery can 1A of the lithium ion secondary battery main body 1 and measuring the temperature of the battery can 1A inside the heat medium circulation vessel 5. A temperature sensor for measuring is disposed.
 熱媒体は、水またはシリコーンオイルにより構成されており、図示しない外部熱源により50~70℃に加熱されて、熱媒体導入ホース7から熱媒体循環容器5の内部に導入されて、熱媒体循環容器5内を循環し、熱媒体排出ホース9から排出される。 The heat medium is composed of water or silicone oil, and is heated to 50 to 70 ° C. by an external heat source (not shown) and introduced from the heat medium introduction hose 7 into the heat medium circulation container 5, so that the heat medium circulation container 5 is circulated through the heat medium discharge hose 9.
 円筒形熱媒体循環容器5により、収容した円筒形リチウムイオン二次電池本体1の温度が50℃以上になるように熱媒体を循環させて、実施例1と同様に、終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。 The heat medium was circulated by the cylindrical heat medium circulation container 5 so that the temperature of the accommodated cylindrical lithium ion secondary battery body 1 was 50 ° C. or higher, and the end condition of 4.2 V, as in Example 1, A charge / discharge test was conducted by constant current constant voltage charge for 5 hours and constant current discharge at a termination condition of 3.0 V.
<実施例3>
 実施例1と同様に円筒型リチウムイオン二次電池本体1を作製した(図3(a))。リチウムイオン二次電池本体1の電池缶1Aの外壁面に、加熱手段としてシート状のヒーター11を巻き付けた。ヒーター11を巻き付けたリチウムイオン二次電池本体1を、実施例1と同様にステンレス製の円筒形真空断熱容器3に収容して、断熱性を高めた円筒形リチウムイオン二次電池とした。なおヒータ-5の電源は、リチウムイオン二次電池本体1そのものを利用することができる。なお図3には、ヒーター11と電池本体1との電気的接続は図示を省略してある。
<Example 3>
A cylindrical lithium ion secondary battery main body 1 was produced in the same manner as in Example 1 (FIG. 3A). A sheet-like heater 11 was wound around the outer wall surface of the battery can 1A of the lithium ion secondary battery body 1 as a heating means. The lithium ion secondary battery body 1 around which the heater 11 was wound was housed in a stainless steel cylindrical vacuum insulation container 3 in the same manner as in Example 1 to obtain a cylindrical lithium ion secondary battery with improved heat insulation. The power source of the heater 5 can utilize the lithium ion secondary battery body 1 itself. In FIG. 3, the electrical connection between the heater 11 and the battery body 1 is not shown.
 この円筒形リチウムイオン二次電池を用いて、実施例1と同様に終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。 Using this cylindrical lithium ion secondary battery, a charge / discharge test was conducted in the same manner as in Example 1 by a termination condition of 4.2 V, a constant current constant voltage charge for 5 hours, and a constant current discharge of a termination condition of 3.0 V.
<比較例1>
 実施例1と同様に作成した円筒型リチウムイオン二次電池本体1を、保温性を持たせることなく、実施例1と同様に終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。
<Comparative Example 1>
Cylindrical lithium ion secondary battery main body 1 produced in the same manner as in Example 1 has a termination condition of 4.2 V, a constant current and a constant voltage charge for 5 hours, and a termination condition as in Example 1, without imparting heat retention. A charge / discharge test using a constant current discharge of 3.0 V was performed.
 次に角型リチウムイオン二次電池について比較実験を行った。 Next, a comparative experiment was conducted on a prismatic lithium ion secondary battery.
<実施例4>
 実施例1と同様の材料で作製した複数枚の正極板、複数枚の負極板を、実施例1で用いたセパレータと同じ材質のセパレータを介して交互に積層して積層型の極板群とした。この極板群を、ステンレスからなる図示しない角型の電池缶本体に収納した。
<Example 4>
A plurality of positive electrode plates and a plurality of negative electrode plates made of the same material as in Example 1 are alternately stacked via separators of the same material as the separator used in Example 1, did. This electrode plate group was housed in a rectangular battery can body (not shown) made of stainless steel.
 正極板をアルミニウムの図示しない正極集電体に溶接し、この正極集電体を正極極柱に超音波溶接した。また負極板をアルミニウムの図示しない負極集電体に溶接し、この負極集電体を負極極柱に超音波溶接した。正極極柱及び負極極注を電池蓋13Aに設けられた2つの開口部にそれぞれ通した後、正極極柱の端部を正極端子となる正極六角ナット14Aで固定した。また負極極柱の端部を負極端子となる負極六角ナット14Bで固定した。 The positive electrode plate was welded to a positive electrode current collector (not shown) made of aluminum, and this positive electrode current collector was ultrasonically welded to the positive electrode pole column. The negative electrode plate was welded to a negative electrode current collector (not shown) of aluminum, and this negative electrode current collector was ultrasonically welded to the negative electrode pole column. After passing the positive electrode pole column and the negative electrode pole injection through two openings provided in the battery lid 13A, the end of the positive electrode column was fixed with a positive hexagon nut 14A serving as a positive electrode terminal. Moreover, the edge part of the negative electrode pole column was fixed with the negative electrode hexagon nut 14B used as a negative electrode terminal.
 電池蓋13Aを電池缶の開口部に超音波溶接した後、電池蓋13Aに設けられた図示しない注液口から、実施例1で使用したイオン液体のリチウム塩溶液を注液し、注液口をネジ留めして、電池容量40Ahの角型リチウムイオン二次電池本体13を得た。 After ultrasonically welding the battery lid 13A to the opening of the battery can, the lithium salt solution of the ionic liquid used in Example 1 was poured from a liquid inlet (not shown) provided in the battery lid 13A. Were screwed to obtain a prismatic lithium ion secondary battery body 13 having a battery capacity of 40 Ah.
 この角型リチウムイオン二次電池本体13の底面及び側面に断熱材15をそれぞれ貼り合わせて、図4に示す断熱性を高めた角型リチウムイオン二次電池とした。本実施例では、断熱材15は、グラスウールの積層体からなる芯材と、この芯材を収納して内部を真空排気してなる熱融着層と、ガスバリア膜を成膜したフィルムを2層以上組み合わせてなるガスバリヤ層を有するラミネートフィルムからなる二重壁構造の外装材とから構成される真空断熱材である。 The prismatic lithium ion secondary battery with improved heat insulation properties shown in FIG. 4 was obtained by pasting the heat insulating material 15 on the bottom and side surfaces of the prismatic lithium ion secondary battery body 13. In this embodiment, the heat insulating material 15 is composed of a core material composed of a laminated body of glass wool, a heat-sealing layer containing the core material and evacuating the inside, and a film formed with a gas barrier film. It is a vacuum heat insulating material comprised from the exterior material of the double wall structure which consists of a laminate film which has the gas barrier layer combined above.
 この角型リチウムイオン二次電池を用いて、終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。 Using this prismatic lithium ion secondary battery, a charge / discharge test was conducted by a termination condition of 4.2 V, a constant current constant voltage charge for 5 hours, and a constant current discharge of a termination condition of 3.0 V.
<実施例5>
 実施例4と同様に角型リチウムイオン二次電池本体13を作製した(図5)。角型リチウムイオン二次電池本体13の主要部を、図5に示す角型熱媒体循環容器17に収容した。
<Example 5>
A square lithium ion secondary battery main body 13 was produced in the same manner as in Example 4 (FIG. 5). The main part of the prismatic lithium ion secondary battery body 13 was accommodated in a prismatic heat medium circulation container 17 shown in FIG.
 角型熱媒体循環容器17は、角型リチウムイオン二次電池本体13の側壁部と対向する筒状の周壁部17Aと、角型リチウムイオン二次電池本体13の底壁部と対向する底壁部17Bとを有している。周壁部17A及び底壁部17Bは、それぞれ間に熱媒体循環路17を形成するように間隔を空けて対向するステンレス製の二重壁構造を有している。周壁部17A内の熱媒体循環路と底壁部17Bの熱媒体循環路とは連通している。そして周壁部17Aには、熱媒体の入口ポートと出口ポートとが設けられており、入口ポートには熱媒体導入ホース7が接続され、出口ポートには熱媒体排出ホース9が接続されている。 The rectangular heat medium circulation container 17 includes a cylindrical peripheral wall portion 17 </ b> A that faces the side wall portion of the square lithium ion secondary battery body 13, and a bottom wall that faces the bottom wall portion of the square lithium ion secondary battery body 13. Part 17B. The peripheral wall portion 17A and the bottom wall portion 17B have a stainless steel double wall structure facing each other with an interval so as to form the heat medium circulation path 17 therebetween. The heat medium circuit in the peripheral wall portion 17A and the heat medium circuit in the bottom wall portion 17B communicate with each other. The peripheral wall portion 17A is provided with a heat medium inlet port and an outlet port. The heat medium introduction hose 7 is connected to the inlet port, and the heat medium discharge hose 9 is connected to the outlet port.
 熱媒体は、水またはシリコーンオイルにより構成されており、外部熱源により50~70℃に加熱されて、熱媒体導入ホース7から角型熱媒体循環容器17の内部の熱媒体循環路に導入されて、角型熱媒体循環容器17内を循環し、熱媒体排出ホース9から排出される。また本実施の形態でも、電池缶の温度を測定するための温度センサを角型熱媒体循環容器17内に配置してある。 The heat medium is composed of water or silicone oil, heated to 50 to 70 ° C. by an external heat source, and introduced from the heat medium introduction hose 7 into the heat medium circulation path inside the square heat medium circulation container 17. Then, it circulates in the square heat medium circulation container 17 and is discharged from the heat medium discharge hose 9. Also in the present embodiment, a temperature sensor for measuring the temperature of the battery can is disposed in the square heat medium circulation container 17.
 角型熱媒体循環容器17により、収容した角型リチウムイオン二次電池本体13の温度が50℃以上になるように熱媒体を循環させて、実施例4と同様に、終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。 The heat medium is circulated by the square heat medium circulation container 17 so that the temperature of the accommodated prismatic lithium ion secondary battery main body 13 is 50 ° C. or higher, and the end condition of 4.2 V, as in Example 4, A charge / discharge test was conducted by constant current constant voltage charge for 5 hours and constant current discharge at a termination condition of 3.0 V.
<実施例6>
 実施例4と同様に角型リチウムイオン二次電池本体13を作製した(図6)。本実施例では、角型リチウムイオン二次電池本体13の外壁面に加熱手段としてシート状のヒーター11を巻き付けた。ヒーター11を巻き付けた角型リチウムイオン二次電池本体13の底面及び側面に、実施例4で使用した断熱材15と同じ構造の断熱材15′を貼り合わせて、図6に示す断熱性を高めた角型リチウムイオン二次電池とした。この角型リチウムイオン二次電池を用いて、実施例4と同様に終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。
<Example 6>
A prismatic lithium ion secondary battery body 13 was produced in the same manner as in Example 4 (FIG. 6). In this example, a sheet-like heater 11 was wound around the outer wall surface of the prismatic lithium ion secondary battery body 13 as a heating means. A heat insulating material 15 'having the same structure as that of the heat insulating material 15 used in Example 4 is bonded to the bottom and side surfaces of the prismatic lithium ion secondary battery body 13 around which the heater 11 is wound to enhance the heat insulating property shown in FIG. A rectangular lithium ion secondary battery was obtained. Using this prismatic lithium ion secondary battery, a charge / discharge test was conducted in the same manner as in Example 4 by a termination condition of 4.2 V, a constant current constant voltage charge of 5 hours, and a constant current discharge of a termination condition of 3.0 V.
<比較例2>
 実施例4と同様に作成した角型リチウムイオン二次電池本体13を、保温性を持たせることなく、実施例1と同様に終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。
<Comparative example 2>
The prismatic lithium ion secondary battery body 13 produced in the same manner as in Example 4 was subjected to a termination condition of 4.2 V, 5 hours of constant current and constant voltage and termination conditions as in Example 1 without imparting heat retention. A charge / discharge test using a constant current discharge of 3.0 V was performed.
 次にラミネート型リチウムイオン二次電池について比較実験を行った。 Next, a comparative experiment was conducted on a laminated lithium ion secondary battery.
<実施例7>
 実施例1と同様の材料で作製した複数枚の正極板、複数枚の負極板を、実施例1で用いたセパレータと同じ材料のセパレータを介して交互に積層して、正極板の集電部に正極端子となるアルミまたはアルミ合金からなる金属板を、負極板の集電部に負極端子となる銅または銅合金からなる金属板を超音波溶接することで、極板群とした。この極板群を、アルミと接着部分である樹脂シートからなるアルミラミネートフィルムからなる包装材19で覆い、包装材19の内部に実施例1で使用したイオン液体のリチウム塩溶液を注液した。包装材19で極板群を包装する際には、正極板の耳部20A及び負極板の耳部20Bを包装材19の外に露出させる。その後、包装材19内を真空減圧して高温でシールし、40Ahのラミネート型リチウムイオン二次電池本体21を得た。
<Example 7>
A plurality of positive electrode plates and a plurality of negative electrode plates made of the same material as in Example 1 are alternately stacked via separators of the same material as the separator used in Example 1, and the current collector of the positive electrode plate A metal plate made of aluminum or an aluminum alloy serving as a positive electrode terminal and a metal plate made of copper or a copper alloy serving as a negative electrode terminal were ultrasonically welded to a current collecting portion of the negative electrode plate to form an electrode plate group. This electrode plate group was covered with a packaging material 19 made of an aluminum laminate film made of a resin sheet which is an adhesive portion with aluminum, and the lithium salt solution of the ionic liquid used in Example 1 was injected into the packaging material 19. When packaging the electrode plate group with the packaging material 19, the ear portion 20 </ b> A of the positive electrode plate and the ear portion 20 </ b> B of the negative electrode plate are exposed to the outside of the packaging material 19. Thereafter, the inside of the packaging material 19 was vacuum depressurized and sealed at a high temperature to obtain a 40 Ah laminated lithium ion secondary battery body 21.
 このラミネート型リチウムイオン二次電池本体21の底面及び側面に、実施例4と同様に、断熱材15を貼り合わせて、図7に示す断熱性を高めたラミネート型リチウムイオン二次電池とした。このラミネート型リチウムイオン二次電池を用いて、終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。 In the same manner as in Example 4, the heat insulating material 15 was bonded to the bottom and side surfaces of the laminate type lithium ion secondary battery main body 21 to obtain a laminate type lithium ion secondary battery having improved heat insulation properties as shown in FIG. Using this laminate type lithium ion secondary battery, a charge / discharge test was conducted by a constant current and constant voltage charge at a termination condition of 4.2 V, a constant current of 5 hours, and a constant current discharge at a termination condition of 3.0 V.
<実施例8>
 実施例7と同様にラミネート型リチウムイオン二次電池本体21を作製した(図8)。ラミネート型リチウムイオン二次電池本体21の主要部を、実施例5に示した角型の熱媒体循環容器17に収容し、断熱性を高めたラミネート型リチウムイオン二次電池とした。このラミネート型リチウムイオン二次電池を使用して、実施例7と同様に、終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。
<Example 8>
A laminated lithium ion secondary battery main body 21 was produced in the same manner as in Example 7 (FIG. 8). The main part of the laminate-type lithium ion secondary battery main body 21 is housed in the square-shaped heat medium circulation container 17 shown in Example 5 to obtain a laminate-type lithium ion secondary battery with improved heat insulation. Using this laminate type lithium ion secondary battery, in the same manner as in Example 7, a charge / discharge test was conducted with a termination condition of 4.2 V, a constant current constant voltage charge of 5 hours, and a constant current discharge of a termination condition of 3.0 V. It was.
<実施例9>
 実施例7と同様にラミネート型リチウムイオン二次電池本体21を作製した(図9)。ラミネート型リチウムイオン二次電池本体21の外壁面にシート状のヒーター11を巻き付けた。ヒーター11を巻き付けたラミネート型リチウムイオン二次電池本体21の底面及び側面に、実施例7と同様に断熱材15を貼り合わせて、断熱性を高めた角型リチウムイオン二次電池とした。この角型リチウムイオン二次電池を用いて、実施例7と同様に終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。
<Example 9>
A laminate type lithium ion secondary battery main body 21 was produced in the same manner as in Example 7 (FIG. 9). A sheet-like heater 11 was wound around the outer wall surface of the laminate type lithium ion secondary battery main body 21. A heat insulating material 15 was bonded to the bottom and side surfaces of the laminated lithium ion secondary battery main body 21 around which the heater 11 was wound in the same manner as in Example 7 to obtain a square lithium ion secondary battery with improved heat insulation. Using this prismatic lithium ion secondary battery, a charge / discharge test was conducted in the same manner as in Example 7 by a termination condition of 4.2 V, a constant current constant voltage charge of 5 hours, and a constant current discharge of a termination condition of 3.0 V.
<比較例3>
 実施例7と同様に作成したラミネート型リチウムイオン二次電池本体21を、保温性を持たせることなく、実施例7と同様に終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。
<Comparative Example 3>
The laminated lithium ion secondary battery main body 21 produced in the same manner as in Example 7 was subjected to a termination condition of 4.2 V, 5 hours of constant current and constant voltage and termination conditions as in Example 7 without imparting heat retention. A charge / discharge test using a constant current discharge of 3.0 V was performed.
 実施例1~9及び比較例1~3の設計容量に対する放電容量の実験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the experimental results of the discharge capacity with respect to the design capacities of Examples 1 to 9 and Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、円筒形、角型、ラミネート型の全てのリチウムイオン二次電池において、断熱効果を持たせない場合に比べて、放電容量が7倍以上となった。また、積極的に加熱をした場合には、放電容量が8倍以上となった。また、加熱及び断熱を併用した場合には、加熱のみの場合または断熱のみの場合よりも放電容量比が大きくなった。また、表1からわかるようにラミネート型リチウムイオン二次電池で、特に放電容量比を改善することができた。 As shown in Table 1, the discharge capacity of all of the cylindrical, square, and laminate type lithium ion secondary batteries was 7 times or more compared to the case where no heat insulating effect was given. Moreover, when it heated positively, discharge capacity became 8 times or more. Moreover, when heating and heat insulation were used in combination, the discharge capacity ratio was larger than when heating alone or heat insulation alone. Further, as can be seen from Table 1, the discharge capacity ratio was particularly improved in the laminated lithium ion secondary battery.
 次に円筒型リチウムイオン二次電池を組電池としたリチウムイオン二次電池モジュールについて比較実験を行った。 Next, a comparative experiment was conducted on a lithium ion secondary battery module using a cylindrical lithium ion secondary battery as an assembled battery.
<実施例10>
 実施例1で作成した円筒形リチウムイオン二次電池本体1と、円筒形真空断熱容器3とからなる断熱性を高めた円筒型リチウムイオン二次電池を、3列4行に並べて12本の円筒型リチウムイオン二次電池からなるリチウムイオン二次電池モジュールとした(図10)。12本の円筒型リチウムイオン二次電池は、図示しない締め付けバンドで外側から締結する。モジュール上部には、放熱を防止するため難燃性樹脂からなる図示しない保護カバーを備える。このリチウムイオン二次電池モジュールを用いて、終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。
<Example 10>
The cylindrical lithium ion secondary battery with improved heat insulation composed of the cylindrical lithium ion secondary battery main body 1 and the cylindrical vacuum heat insulating container 3 created in Example 1 is arranged in 12 rows by 3 rows and 4 rows. Type lithium ion secondary battery module (FIG. 10). The twelve cylindrical lithium ion secondary batteries are fastened from the outside with a fastening band (not shown). A protective cover (not shown) made of a flame retardant resin is provided on the top of the module to prevent heat dissipation. Using this lithium ion secondary battery module, a charge / discharge test was conducted by a constant current and constant voltage charge at a termination condition of 4.2 V, a constant current of 5 hours and a constant current discharge at a termination condition of 3.0 V.
<実施例11>
 実施例1で作成した円筒形リチウムイオン二次電池本体1を、モジュール用熱媒体循環容器23(図11)に12本収容してリチウムイオン二次電池モジュールとした。モジュール用熱媒体循環容器23は、3列4行の12個の円筒形の収容部24を有しており、この収容部に円筒形リチウムイオン二次電池本体1の主要部がそれぞれ収容される。モジュール用熱媒体循環容器23は、実施例2の円筒形熱媒体循環容器5と同様にステンレスにより構成してもよいが、樹脂成形品により形成してもよい。いずれにしてもモジュール用熱媒体循環容器23の内部には、熱媒体が循環可能な循環路が形成されている。モジュール用熱媒体循環容器23の周壁部には、入口ポート及び出口ポートが形成されており、入口ポートには熱媒体導入ホース7が接続され、出口ポートには熱媒体排出ホース9が接続されている。また図示していないが、収容部24に収容された円筒形リチウムイオン二次電池本体1の電池缶の温度を測定する温度センサが収容部24内に配置されている。モジュール上部には、放熱を防止するため難燃性樹脂からなる図示しない保護カバーを備える。
<Example 11>
Twelve cylindrical lithium ion secondary battery bodies 1 created in Example 1 were accommodated in a module heat medium circulation container 23 (FIG. 11) to form a lithium ion secondary battery module. The module heat medium circulation container 23 has 12 cylindrical storage portions 24 in 3 columns and 4 rows, and the main portions of the cylindrical lithium ion secondary battery main body 1 are respectively stored in the storage portions. . The module heat medium circulation container 23 may be made of stainless steel like the cylindrical heat medium circulation container 5 of the second embodiment, but may be formed of a resin molded product. In any case, a circulation path through which the heat medium can be circulated is formed inside the module heat medium circulation container 23. An inlet port and an outlet port are formed on the peripheral wall portion of the module heat medium circulation container 23, the heat medium introduction hose 7 is connected to the inlet port, and the heat medium discharge hose 9 is connected to the outlet port. Yes. Although not shown, a temperature sensor for measuring the temperature of the battery can of the cylindrical lithium ion secondary battery main body 1 accommodated in the accommodating portion 24 is disposed in the accommodating portion 24. A protective cover (not shown) made of a flame retardant resin is provided on the top of the module to prevent heat dissipation.
 また、実施例2と同じように、熱媒体は、水またはシリコーンオイルにより構成されており、外部熱源により50~70℃に加熱されて、熱媒体導入ホース7からモジュール用熱媒体循環容器23の内部に導入されて、モジュール用熱媒体循環容器23内を循環し、熱媒体排出ホース9から排出される。 Further, as in the second embodiment, the heat medium is made of water or silicone oil, and is heated to 50 to 70 ° C. by an external heat source, so that the heat medium introduction hose 7 supplies the module heat medium circulation container 23. It is introduced inside, circulates in the module heat medium circulation container 23, and is discharged from the heat medium discharge hose 9.
 モジュール用熱媒体循環容器23により、収容した12本の円筒形リチウムイオン二次電池本体1の温度が50℃以上になるように熱媒体を循環させて、実施例10と同様に、終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。 The heat medium is circulated by the module heat medium circulation container 23 so that the temperature of the accommodated 12 cylindrical lithium ion secondary battery main bodies 1 is 50 ° C. or higher. A charge / discharge test was conducted by constant current and constant voltage charge at 2 V for 5 hours and constant current discharge at a termination condition of 3.0 V.
<実施例12>
 実施例3と同様に、実施例1で作成した円筒形リチウムイオン二次電池本体1の外壁面にシート状のヒーター11を巻き付けてステンレス製の円筒形真空断熱容器3に収容した円筒形リチウムイオン二次電池を、3列4行に並べて、収納ケース14内に収納して12本の円筒型リチウムイオン二次電池からなるリチウムイオン二次電池モジュールとした(図12)。なお収納ケース14は、ステンレス製である。モジュール上部には、放熱を防止するため難燃性樹脂からなる図示しない保護カバーを備える。このリチウムイオン二次電池モジュールを用いて実施例10と同様に、終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。
<Example 12>
In the same manner as in Example 3, cylindrical lithium ion housed in a stainless steel cylindrical vacuum insulation container 3 by winding a sheet-like heater 11 around the outer wall surface of the cylindrical lithium ion secondary battery body 1 prepared in Example 1 The secondary batteries were arranged in 3 columns and 4 rows and housed in a housing case 14 to form a lithium ion secondary battery module comprising 12 cylindrical lithium ion secondary batteries (FIG. 12). The storage case 14 is made of stainless steel. A protective cover (not shown) made of a flame retardant resin is provided on the top of the module to prevent heat dissipation. Using this lithium ion secondary battery module, a charge / discharge test was conducted in the same manner as in Example 10 by a termination condition of 4.2 V, a constant current constant voltage charge for 5 hours, and a constant current discharge of a termination condition of 3.0 V.
<比較例4>
 実施例1で作成した円筒形リチウムイオン二次電池本体1を3列4行に並べて、12本の円筒型リチウムイオン二次電池からなる保温性をも持たないリチウムイオン二次電池モジュールとした。このリチウムイオン二次電池モジュールを用いて実施例10と同様に、終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。
<Comparative Example 4>
The cylindrical lithium ion secondary battery main bodies 1 created in Example 1 were arranged in 3 columns and 4 rows to form a lithium ion secondary battery module having no heat retaining property composed of 12 cylindrical lithium ion secondary batteries. Using this lithium ion secondary battery module, a charge / discharge test was conducted in the same manner as in Example 10 by a termination condition of 4.2 V, a constant current constant voltage charge for 5 hours, and a constant current discharge of a termination condition of 3.0 V.
 次に角型リチウムイオン二次電池を組電池としたリチウムイオン二次電池モジュールについて比較実験を行った。 Next, a comparative experiment was conducted on a lithium ion secondary battery module using a prismatic lithium ion secondary battery as an assembled battery.
<実施例13>
 実施例4で作成した角型リチウムイオン二次電池本体13を6個横に並べて、組電池を作り、この組電池をリチウムイオン二次電池モジュール本体とした。この組電池からなるリチウムイオン二次電池モジュール本体の底面及び側面に、実施例4と同様に、断熱材15を貼り合わせて、角型リチウムイオン二次電池からなるリチウムイオン二次電池モジュールとした(図13)。このモジュールでも、正極六角ナット14A及び負極六角ナット14Bを露出させている。
<Example 13>
Six prismatic lithium ion secondary battery bodies 13 prepared in Example 4 were arranged side by side to form an assembled battery, and this assembled battery was used as a lithium ion secondary battery module body. In the same manner as in Example 4, the heat insulating material 15 was bonded to the bottom and side surfaces of the lithium ion secondary battery module main body made of this assembled battery to form a lithium ion secondary battery module made of a square lithium ion secondary battery. (FIG. 13). Also in this module, the positive hex nut 14A and the negative hex nut 14B are exposed.
 このリチウムイオン二次電池モジュールを用いて終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。 Using this lithium ion secondary battery module, a charge / discharge test was conducted with a termination condition of 4.2 V, a constant current constant voltage charge for 5 hours, and a constant current discharge of a termination condition of 3.0 V.
<実施例14>
 実施例13で作成した組電池からなるリチウムイオン二次電池モジュール本体を、モジュール用熱媒体循環容器25に収容してリチウムイオン二次電池モジュールとした(図14)。モジュール用熱媒体循環容器25は、リチウムイオン二次電池モジュール本体の側壁部と対向する筒状の周壁部25Aと、リチウムイオン二次電池モジュール本体の底壁部と対向する底壁部25Bとを有している。周壁部25A及び底壁部25Bは、それぞれ内部に熱媒体循環路を形成するように対向する二重壁によって構成されており、周壁部25A内の熱媒体循環路及び底壁部25B内の熱媒体循環路は連通している。その結果、モジュール用熱媒体循環容器25の内部には、熱媒体が循環可能な循環路が形成されている。またモジュール用熱媒体循環容器25の内部には、図示しない温度センサが収納されている。モジュール上部には、放熱を防止するため難燃性樹脂からなる図示しない保護カバーを備える。なおモジュール用熱媒体循環容器25は、ステンレスにより形成してもよいし、樹脂材料により成形してもよい。また、実施例5と同じように、熱媒体は、水またはシリコーンオイルにより構成されており、外部熱源により50~70℃に加熱されて、熱媒体導入ホース7からモジュール用熱媒体循環容器25の内部に導入されて、モジュール用熱媒体循環容器25内を循環し、熱媒体排出ホース9から排出される。
<Example 14>
The lithium ion secondary battery module body made of the assembled battery prepared in Example 13 was housed in the module heat medium circulation container 25 to form a lithium ion secondary battery module (FIG. 14). The module heat medium circulation container 25 includes a cylindrical peripheral wall portion 25A facing the side wall portion of the lithium ion secondary battery module main body, and a bottom wall portion 25B facing the bottom wall portion of the lithium ion secondary battery module main body. Have. The peripheral wall portion 25A and the bottom wall portion 25B are configured by double walls facing each other so as to form a heat medium circulation path therein, and the heat medium circulation path in the peripheral wall portion 25A and the heat in the bottom wall portion 25B. The medium circuit is in communication. As a result, a circulation path through which the heat medium can be circulated is formed inside the module heat medium circulation container 25. Further, a temperature sensor (not shown) is accommodated inside the module heat medium circulation container 25. A protective cover (not shown) made of a flame retardant resin is provided on the top of the module to prevent heat dissipation. The module heat medium circulation container 25 may be formed of stainless steel or a resin material. Further, as in the fifth embodiment, the heat medium is made of water or silicone oil, and is heated to 50 to 70 ° C. by an external heat source, so that the heat medium introduction hose 7 supplies the module heat medium circulation container 25. It is introduced inside, circulates in the module heat medium circulation container 25, and is discharged from the heat medium discharge hose 9.
 モジュール用熱媒体循環容器25により、収容したリチウムイオン二次電池モジュール本体の温度が50℃以上になるように熱媒体を循環させて、実施例13と同様に、終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。 The heat medium is circulated by the module heat medium circulation container 25 so that the temperature of the accommodated lithium ion secondary battery module main body is 50 ° C. or higher, and the end condition is 4.2 V for 5 hours as in Example 13. The charge / discharge test was conducted by constant current constant voltage charge and constant current discharge at a termination condition of 3.0V.
<実施例15>
 実施例6と同様に、外壁面にシート状のヒーター11を巻き付けた角型リチウムイオン二次電池本体13を6個横に並べて組電池を構成して、この組電池をリチウムイオン二次電池モジュール本体とした。このリチウムイオン二次電池モジュール本体の底面及び側面に、断熱材15を貼り合わせて、角型リチウムイオン二次電池からなるリチウムイオン二次電池モジュールとした(図15)。この例でも各角型リチウムイオン二次電池本体13の正極六角ナット14A及び負極六角ナット14Bを露出させている。モジュール上部には、放熱を防止するため難燃性樹脂からなる図示しない保護カバーを備える。
<Example 15>
As in Example 6, six prismatic lithium ion secondary battery bodies 13 each having a sheet-like heater 11 wound around an outer wall surface are arranged side by side to form an assembled battery, and this assembled battery is made into a lithium ion secondary battery module. The main body. A heat insulating material 15 was bonded to the bottom and side surfaces of the lithium ion secondary battery module main body to obtain a lithium ion secondary battery module made of a square lithium ion secondary battery (FIG. 15). Also in this example, the positive hexagon nut 14A and the negative hexagon nut 14B of each square lithium ion secondary battery body 13 are exposed. A protective cover (not shown) made of a flame retardant resin is provided on the top of the module to prevent heat dissipation.
 このリチウムイオン二次電池モジュールを用いて終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。 Using this lithium ion secondary battery module, a charge / discharge test was conducted with a termination condition of 4.2 V, a constant current constant voltage charge for 5 hours, and a constant current discharge of a termination condition of 3.0 V.
<比較例5>
 実施例4で作成した角型リチウムイオン二次電池本体13を複数個並べて、保温性を持たせないリチウムイオン二次電池モジュールとした。このリチウムイオン二次電池モジュールを用いて終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。
<Comparative Example 5>
A plurality of prismatic lithium ion secondary battery bodies 13 created in Example 4 were arranged to form a lithium ion secondary battery module that did not have heat retention. Using this lithium ion secondary battery module, a charge / discharge test was conducted by a constant current and constant voltage charge at a termination condition of 4.2 V for 5 hours and a constant current discharge at a termination condition of 3.0 V.
 次にラミネート型リチウムイオン二次電池を組電池としたリチウムイオン二次電池モジュールについて比較実験を行った。 Next, a comparative experiment was conducted on a lithium ion secondary battery module using a laminated lithium ion secondary battery as an assembled battery.
<実施例16>
 実施例7で作成したラミネート型リチウムイオン二次電池本体21を5個並べて組電池を作り、この組電池をリチウムイオン二次電池モジュール本体とした。この組電池からなるリチウムイオン二次電池モジュール本体の底面及び側面に、実施例13と同様に、断熱材15を貼り合わせて、ラミネート型リチウムイオン二次電池からなるリチウムイオン二次電池モジュールとした(図16)。このモジュールでも、ラミネート型リチウムイオン二次電池本体21端子を構成する耳部20A及び20Bは、断熱材15に覆われることなく露出している。
<Example 16>
Five laminated lithium ion secondary battery bodies 21 prepared in Example 7 were arranged to make an assembled battery, and this assembled battery was used as a lithium ion secondary battery module body. In the same manner as in Example 13, the heat insulating material 15 was bonded to the bottom and side surfaces of the lithium ion secondary battery module body made of this assembled battery to form a lithium ion secondary battery module made of a laminated lithium ion secondary battery. (FIG. 16). Even in this module, the ears 20 </ b> A and 20 </ b> B constituting the terminal of the laminated lithium ion secondary battery main body 21 are exposed without being covered with the heat insulating material 15.
 このリチウムイオン二次電池モジュールを用いて終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。 Using this lithium ion secondary battery module, a charge / discharge test was conducted with a termination condition of 4.2 V, a constant current constant voltage charge for 5 hours, and a constant current discharge of a termination condition of 3.0 V.
<実施例17>
 実施例16で作成した組電池からなるラミネート型のリチウムイオン二次電池モジュール本体を、実施例14のモジュール用熱媒体循環容器25に収容してリチウムイオン二次電池モジュールとした(図17)。モジュール上部には、放熱を防止するため難燃性樹脂からなる図示しない保護カバーを備える。
<Example 17>
The laminate-type lithium ion secondary battery module body made of the assembled battery prepared in Example 16 was accommodated in the module heat medium circulation container 25 of Example 14 to obtain a lithium ion secondary battery module (FIG. 17). A protective cover (not shown) made of a flame retardant resin is provided on the top of the module to prevent heat dissipation.
 モジュール用熱媒体循環容器25により、収容したリチウムイオン二次電池モジュール本体の温度が50℃以上になるように熱媒体を循環させて、実施例16と同様に、終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。 The heat medium is circulated by the module heat medium circulation container 25 so that the temperature of the accommodated lithium ion secondary battery module main body is 50 ° C. or higher, and the end condition is 4.2 V for 5 hours as in Example 16. The charge / discharge test was conducted by constant current constant voltage charge and constant current discharge at a termination condition of 3.0V.
<実施例18>
 実施例9と同様に、包装材19の外周面にシート状のヒーター11を巻き付けたラミネート型リチウムイオン二次電池本体21を5個横に並べて、リチウムイオン二次電池モジュール本体とした。このリチウムイオン二次電池モジュール本体の底面及び側面に、断熱材15を貼り合わせて、ラミネート型リチウムイオン二次電池からなるリチウムイオン二次電池モジュールとした(図18)。モジュール上部には、放熱を防止するため難燃性樹脂からなる図示しない保護カバーを備える。このリチウムイオン二次電池モジュールを用いて終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。
<Example 18>
Similarly to Example 9, five laminated lithium ion secondary battery bodies 21 each having a sheet-like heater 11 wound around the outer peripheral surface of the packaging material 19 were arranged side by side to form a lithium ion secondary battery module body. A heat insulating material 15 was bonded to the bottom and side surfaces of the lithium ion secondary battery module main body to obtain a lithium ion secondary battery module made of a laminated lithium ion secondary battery (FIG. 18). A protective cover (not shown) made of a flame retardant resin is provided on the top of the module to prevent heat dissipation. Using this lithium ion secondary battery module, a charge / discharge test was conducted by a constant current and constant voltage charge at a termination condition of 4.2 V for 5 hours and a constant current discharge at a termination condition of 3.0 V.
<比較例6>
 実施例7で作成したラミネート型リチウムイオン二次電池本体21を複数個並べて、保温性を持たせないリチウムイオン二次電池モジュールとした。このリチウムイオン二次電池モジュールを用いて終止条件4.2V、5時間の定電流定電圧充電および終止条件3.0Vの定電流放電による充放電試験を行った。
Figure JPOXMLDOC01-appb-T000002
<Comparative Example 6>
A plurality of laminated lithium ion secondary battery bodies 21 prepared in Example 7 were arranged to form a lithium ion secondary battery module that did not have heat retention. Using this lithium ion secondary battery module, a charge / discharge test was conducted by a constant current and constant voltage charge at a termination condition of 4.2 V for 5 hours and a constant current discharge at a termination condition of 3.0 V.
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、円筒形、角型、ラミネート型の全てのリチウムイオン二次電池モジュールにおいて、断熱効果を持たせない場合に比べて、放電容量が4倍以上となった。また、積極的に加熱をした場合には、放電容量が5倍以上となった。また、加熱及び断熱を併用した場合には、加熱のみの場合または断熱のみの場合よりも放電容量比が大きくなった。特に、円筒型及び角型では、ほぼ設計容量通りの出力を得ることができた。また、表2からわかるようにラミネート型リチウムイオン二次電池で、特に放電容量比を改善することができた。 As shown in Table 2, in all of the cylindrical, square, and laminate type lithium ion secondary battery modules, the discharge capacity was 4 times or more compared to the case where the heat insulating effect was not given. Moreover, when it heated positively, the discharge capacity became 5 times or more. Moreover, when heating and heat insulation were used in combination, the discharge capacity ratio was larger than when heating alone or heat insulation alone. In particular, in the cylindrical type and the square type, it was possible to obtain an output almost as designed capacity. Further, as can be seen from Table 2, in the laminated lithium ion secondary battery, the discharge capacity ratio was particularly improved.
 本発明によれば、電解液としてイオン液体が電池ケースの内部に注入されたリチウムイオン電池本体と、保温手段とからリチウムイオン二次電池を構成している。そのため、保温手段がイオン液体である電解液を所定の温度に保温することができるので、イオン液体の粘度が低下し、イオン液体を用いたリチウムイオン二次電池の出力をより高くすることができる。  According to the present invention, a lithium ion secondary battery is constituted by a lithium ion battery main body in which an ionic liquid is injected into the battery case as an electrolytic solution, and the heat retaining means. Therefore, since the heat retaining means can keep the electrolytic solution, which is an ionic liquid, at a predetermined temperature, the viscosity of the ionic liquid is lowered, and the output of the lithium ion secondary battery using the ionic liquid can be further increased. . *
 1 円筒形リチウムイオン二次電池本体
 2 一方の端子部
 3 円筒形真空断熱容器
 3A 周壁部
 3B 底壁部
 4 他方の端子部
 5 円筒形熱媒体循環容器
 5A 周壁部
 5B 底壁部
 5C 熱媒体循環空間
 7 熱媒体導入ホース
 9 熱媒体排出ホース
 11 ヒーター
 13 角型リチウムイオン二次電池本体
 13A 電池蓋
 14A 正極六角ナット
 14B 負極六角ナット
 15 断熱材
 17 角型熱媒体循環容器
 19 ラミネート
 20A 正極端子
 20B 負極端子
 21 ラミネート型リチウムイオン二次電池本体
 23 モジュール用熱媒体循環容器
DESCRIPTION OF SYMBOLS 1 Cylindrical lithium ion secondary battery main body 2 One terminal part 3 Cylindrical vacuum heat insulation container 3A Circumferential wall part 3B Bottom wall part 4 Other terminal part 5 Cylindrical heat medium circulation container 5A Perimeter wall part 5B Bottom wall part 5C Heat medium circulation Space 7 Heat medium introduction hose 9 Heat medium discharge hose 11 Heater 13 Square lithium ion secondary battery body 13A Battery cover 14A Positive hexagon nut 14B Negative hexagon nut 15 Heat insulating material 17 Square heat medium circulation container 19 Laminate 20A Positive electrode terminal 20B Negative electrode Terminal 21 Laminated lithium ion secondary battery body 23 Heat medium circulation container for module

Claims (14)

  1.  電解液としてイオン液体が電池ケースの内部に注入されたリチウムイオン電池本体と、
     前記電解液を所定の温度に保温する保温手段とを有することを特徴とするイオン液体を用いたリチウムイオン二次電池。
    A lithium ion battery body in which an ionic liquid is injected as an electrolyte into the battery case;
    A lithium ion secondary battery using an ionic liquid, comprising: a heat retaining means for retaining the electrolytic solution at a predetermined temperature.
  2.  前記保温手段は、前記電池本体の前記電池ケースの全部または主要部を覆う断熱材により構成されているである請求項1に記載のイオン液体を用いたリチウムイオン二次電池。 The lithium ion secondary battery using an ionic liquid according to claim 1, wherein the heat retaining means is constituted by a heat insulating material covering all or a main part of the battery case of the battery body.
  3.  前記保温手段は、前記電解液を直接または間接に加熱する加熱手段をさらに備える請求項2に記載のイオン液体を用いたリチウムイオン二次電池。 The lithium ion secondary battery using an ionic liquid according to claim 2, wherein the heat retaining means further includes a heating means for directly or indirectly heating the electrolytic solution.
  4.  前記保温手段は、前記電池本体の全部または主要部を収容する収容部と、前記収容部の内部または前記収容部を囲む壁部の内部に配置されて、前記収容部に収容された前記電池ケースを加熱するように、外部熱源で加熱された熱媒体が循環する循環路とを備えてなる熱媒体循環容器である請求項1に記載のイオン液体を用いたリチウムイオン二次電池。 The heat retaining means is disposed in a housing part that houses all or a main part of the battery main body, and in a wall part that surrounds the housing part or in the housing part, and is housed in the housing part. The lithium ion secondary battery using the ionic liquid according to claim 1, which is a heat medium circulation container including a circulation path through which a heat medium heated by an external heat source circulates so as to heat the battery.
  5.  電解液としてイオン液体が電池ケースの内部に注入された複数のリチウムイオン二次電池からなる組電池と、
     前記複数のリチウムイオン二次電池内の前記電解液をそれぞれ所定の温度に保温する保温手段とを有することを特徴とするイオン液体を用いたリチウムイオン二次電池モジュール。
    An assembled battery comprising a plurality of lithium ion secondary batteries in which an ionic liquid is injected into the battery case as an electrolyte;
    A lithium ion secondary battery module using an ionic liquid, comprising: a heat retaining means for keeping the electrolyte solution in the plurality of lithium ion secondary batteries at a predetermined temperature.
  6.  前記保温手段は、前記組電池の少なくとも一部を覆う断熱材により構成されている請求項5に記載のイオン液体を用いたリチウムイオン二次電池モジュール。 The lithium ion secondary battery module using an ionic liquid according to claim 5, wherein the heat retaining means is configured by a heat insulating material that covers at least a part of the assembled battery.
  7.  前記保温手段は、前記複数のリチウムイオン二次電池の前記電池ケースをそれぞれ加熱する複数の加熱手段をさらに備える請求項6に記載のイオン液体を用いたリチウムイオン二次電池モジュール。 The lithium ion secondary battery module using an ionic liquid according to claim 6, wherein the heat retaining means further includes a plurality of heating means for respectively heating the battery cases of the plurality of lithium ion secondary batteries.
  8.  前記保温手段は、
     前記組電池の全部または主要部を収容する収容部と、前記収容部の内部または前記収容部を囲む壁部の内部に配置されて、前記収容部に収容された前記組電池を加熱するように、外部熱源で加熱された熱媒体が循環する循環路とを備えてなる熱媒体循環容器である請求項6に記載のイオン液体を用いたリチウムイオン二次電池モジュール。
    The heat retaining means includes
    A housing part that accommodates all or a main part of the assembled battery, and a battery that is disposed in the housing part or in a wall portion surrounding the housing part, so as to heat the assembled battery housed in the housing part. A lithium ion secondary battery module using an ionic liquid according to claim 6, which is a heat medium circulation container comprising a circulation path through which a heat medium heated by an external heat source circulates.
  9.  電解液としてイオン液体が電池ケースの内部に注入されたリチウムイオン二次電池の保温装置であって、
     前記保温装置は、前記電池ケースの全部または主要部を覆う断熱材により構成されていることを特徴とするイオン液体を用いたリチウムイオン二次電池の保温装置。
    A lithium ion secondary battery thermal insulation device in which an ionic liquid is injected into the battery case as an electrolyte,
    The said heat retention apparatus is comprised with the heat insulating material which covers all or the principal part of the said battery case, The heat retention apparatus of the lithium ion secondary battery using the ionic liquid characterized by the above-mentioned.
  10.  前記保温装置は、前記リチウムイオン二次電池の電池ケースの外壁面に貼り付けられて前記電池ケースを加熱するヒーターをさらに備える請求項10に記載のリチウムイオン二次電池の保温装置。 The said heat retention apparatus is a heat retention apparatus of the lithium ion secondary battery of Claim 10 further equipped with the heater affixed on the outer wall surface of the battery case of the said lithium ion secondary battery, and heating the said battery case.
  11.  電解液としてイオン液体が電池ケースの内部に注入されたリチウムイオン二次電池の保温装置であって、
     前記保温装置は、前記電池本体の全部または主要部を収容する収容部と、前記収容部の内部または前記収容部を囲む壁部の内部に配置されて、前記収容部に収容された前記電池ケースを加熱するように、外部熱源で加熱された熱媒体が循環する循環路とを備えてなる熱媒体循環容器であることを特徴とするリチウムイオン二次電池の保温装置。
    A lithium ion secondary battery thermal insulation device in which an ionic liquid is injected into the battery case as an electrolyte,
    The heat retaining device is disposed in a housing part that accommodates all or a main part of the battery main body, and in a wall part that surrounds the housing part or in the housing part, and is housed in the housing part. A heat medium circulating container comprising a circulation path through which a heat medium heated by an external heat source circulates so as to heat the lithium ion secondary battery.
  12.  電解液としてイオン液体が電池ケースの内部に注入された複数のリチウムイオン二次電池からなる組電池をするリチウムイオン二次電池モジュールの保温装置であって、
     前記保温装置は、前記組電池の少なくとも一部を覆う断熱材により構成されているであることを特徴とするリチウムイオン二次電池モジュールの保温装置。
    A heat retention device for a lithium ion secondary battery module that forms an assembled battery composed of a plurality of lithium ion secondary batteries in which an ionic liquid is injected into the battery case as an electrolyte,
    The said heat retention apparatus is comprised with the heat insulating material which covers at least one part of the said assembled battery, The heat retention apparatus of the lithium ion secondary battery module characterized by the above-mentioned.
  13.  前記保温装置は、前記リチウムイオン二次電池の外壁面にそれぞれ貼り付けられて前記リチウムイオン二次電池を加熱することができる複数のヒーターをさらに備える請求項12に記載のリチウムイオン二次電池モジュールの保温装置。 The lithium ion secondary battery module according to claim 12, wherein the heat retaining device further includes a plurality of heaters that are each attached to an outer wall surface of the lithium ion secondary battery to heat the lithium ion secondary battery. Insulation device.
  14.  電解液としてイオン液体が電池ケースの内部に注入された複数のリチウムイオン二次電池からなる組電池をするリチウムイオン二次電池モジュールの保温装置であって、
     前記組電池の全部または主要部を収容する収容部と、前記収容部の内部または前記収容部を囲む壁部の内部に配置されて、前記収容部に収容された前記組電池を加熱するように、外部熱源で加熱された熱媒体が循環する循環路とを備えてなる熱媒体循環容器であることを特徴とするリチウムイオン二次電池モジュールの保温装置。
    A heat retention device for a lithium ion secondary battery module that forms an assembled battery composed of a plurality of lithium ion secondary batteries in which an ionic liquid is injected into the battery case as an electrolyte,
    A housing part that accommodates all or a main part of the assembled battery, and a battery that is disposed in the housing part or in a wall portion surrounding the housing part, so as to heat the assembled battery housed in the housing part. And a heat medium circulating container comprising a circulation path through which a heat medium heated by an external heat source circulates, and a heat retaining device for a lithium ion secondary battery module.
PCT/JP2013/057826 2012-03-21 2013-03-19 Lithium ion secondary battery using ionic liquid, lithium ion secondary battery module, and heat retention device for lithium ion secondary battery using ionic liquid or for lithium ion secondary battery module WO2013141242A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-064224 2012-03-21
JP2012064224 2012-03-21

Publications (1)

Publication Number Publication Date
WO2013141242A1 true WO2013141242A1 (en) 2013-09-26

Family

ID=49222699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057826 WO2013141242A1 (en) 2012-03-21 2013-03-19 Lithium ion secondary battery using ionic liquid, lithium ion secondary battery module, and heat retention device for lithium ion secondary battery using ionic liquid or for lithium ion secondary battery module

Country Status (2)

Country Link
JP (1) JPWO2013141242A1 (en)
WO (1) WO2013141242A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037749A (en) * 2015-08-07 2017-02-16 住友電気工業株式会社 Secondary battery system
JP2017195104A (en) * 2016-04-21 2017-10-26 株式会社デンソー Power storage device
JP2019032982A (en) * 2017-08-07 2019-02-28 株式会社半導体エネルギー研究所 Power storage device and vehicle
JP2019147357A (en) * 2018-02-28 2019-09-05 リンテック株式会社 Flame retardant heat insulation sheet and electricity storage module
US20190288355A1 (en) * 2016-09-13 2019-09-19 Lg Chem, Ltd. Battery pack
CN110957500A (en) * 2019-11-04 2020-04-03 上海空间电源研究所 Novel external heat insulation device for thermal battery
JP2021522656A (en) * 2018-04-25 2021-08-30 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト How to operate lithium-ion batteries, lithium-ion batteries and automobiles
JP2022050459A (en) * 2016-03-10 2022-03-30 オキシオン リミテッド High voltage supercapacitor
US20220115631A1 (en) * 2020-10-08 2022-04-14 Shanghai Autoflight Co., Ltd. Unmanned aerial vehicle battery transport box
WO2023097911A1 (en) * 2021-11-30 2023-06-08 苏州中科瑞龙科技有限公司 Low-temperature-resistant stainless steel lithium battery casing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047371A (en) * 2006-08-11 2008-02-28 Toshiba Corp Battery pack and charge and discharge method of battery pack
WO2011132557A1 (en) * 2010-04-22 2011-10-27 住友電気工業株式会社 Molten salt battery device and temperature control method for molten salt battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047371A (en) * 2006-08-11 2008-02-28 Toshiba Corp Battery pack and charge and discharge method of battery pack
WO2011132557A1 (en) * 2010-04-22 2011-10-27 住友電気工業株式会社 Molten salt battery device and temperature control method for molten salt battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037749A (en) * 2015-08-07 2017-02-16 住友電気工業株式会社 Secondary battery system
JP2022050459A (en) * 2016-03-10 2022-03-30 オキシオン リミテッド High voltage supercapacitor
JP2017195104A (en) * 2016-04-21 2017-10-26 株式会社デンソー Power storage device
US20190288355A1 (en) * 2016-09-13 2019-09-19 Lg Chem, Ltd. Battery pack
US11881573B2 (en) * 2016-09-13 2024-01-23 Lg Energy Solution, Ltd. Battery pack
JP2019032982A (en) * 2017-08-07 2019-02-28 株式会社半導体エネルギー研究所 Power storage device and vehicle
JP6999324B2 (en) 2017-08-07 2022-01-18 株式会社半導体エネルギー研究所 Power storage device and vehicle
JP2019147357A (en) * 2018-02-28 2019-09-05 リンテック株式会社 Flame retardant heat insulation sheet and electricity storage module
JP2021522656A (en) * 2018-04-25 2021-08-30 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト How to operate lithium-ion batteries, lithium-ion batteries and automobiles
CN110957500A (en) * 2019-11-04 2020-04-03 上海空间电源研究所 Novel external heat insulation device for thermal battery
US20220115631A1 (en) * 2020-10-08 2022-04-14 Shanghai Autoflight Co., Ltd. Unmanned aerial vehicle battery transport box
US11673677B2 (en) * 2020-10-08 2023-06-13 Shanghai Autoflight Co., Ltd. Unmanned aerial vehicle battery transport box
US20230264825A1 (en) * 2020-10-08 2023-08-24 Shanghai Autoflight Co., Ltd. Method of transporting a battery for an unmanned aerial vehicle
US11851199B2 (en) * 2020-10-08 2023-12-26 Shanghai Autoflight Co., Ltd. Method of transporting a battery for an unmanned aerial vehicle
WO2023097911A1 (en) * 2021-11-30 2023-06-08 苏州中科瑞龙科技有限公司 Low-temperature-resistant stainless steel lithium battery casing

Also Published As

Publication number Publication date
JPWO2013141242A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
WO2013141242A1 (en) Lithium ion secondary battery using ionic liquid, lithium ion secondary battery module, and heat retention device for lithium ion secondary battery using ionic liquid or for lithium ion secondary battery module
CA3139843C (en) Rechargeable battery cell
US9742045B2 (en) Lithium electrochemical storage battery having a casing providing improved thermal dissipation, associated battery pack and production processes
EP3134930B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
US20170250388A1 (en) Prismatic secondary battery
KR101804707B1 (en) Battery module, battery pack and vehicle
JP6086240B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
KR20100067688A (en) Battery pack, and battery-mounting device
JP6139194B2 (en) Nonaqueous electrolyte secondary battery
JP2008300692A (en) Power storage device
CN103119764A (en) Battery comprising cuboid cells which contain a bipolar electrode
CN112117416B (en) Ceramic coated separator for lithium-containing electrochemical cells and method of making same
TW201212337A (en) Electric storage device
RU2660491C1 (en) Sealant storage battery
KR20140023255A (en) Lithium ion secondary battery
JP2003288863A (en) Electrochemical device
US10044023B2 (en) Molten salt battery
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
JP6403644B2 (en) Secondary battery
KR20150138433A (en) Secondary battery
KR102297666B1 (en) Secondary battery and manufacturing method thereof
JP2017033707A (en) Secondary battery
WO2015040685A1 (en) Lithium-ion secondary battery separator, lithium-ion secondary battery using lithium-ion secondary battery separator, and lithium-ion secondary battery module
JP6895079B2 (en) Non-aqueous electrolyte secondary battery
JP2011249152A (en) Lithium battery electrode active material composition and lithium battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764168

Country of ref document: EP

Kind code of ref document: A1