JP2024086277A - Fixed type constant velocity universal joint - Google Patents

Fixed type constant velocity universal joint Download PDF

Info

Publication number
JP2024086277A
JP2024086277A JP2022201322A JP2022201322A JP2024086277A JP 2024086277 A JP2024086277 A JP 2024086277A JP 2022201322 A JP2022201322 A JP 2022201322A JP 2022201322 A JP2022201322 A JP 2022201322A JP 2024086277 A JP2024086277 A JP 2024086277A
Authority
JP
Japan
Prior art keywords
center
ball
joint member
joint
cage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022201322A
Other languages
Japanese (ja)
Inventor
智茂 小林
Tomoshige Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2022201322A priority Critical patent/JP2024086277A/en
Priority to CN202311648087.9A priority patent/CN118208501A/en
Publication of JP2024086277A publication Critical patent/JP2024086277A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/2237Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts where the grooves are composed of radii and adjoining straight lines, i.e. undercut free [UF] type joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22303Details of ball cages

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a fixed type constant velocity universal joint of an undercut free type with 6 balls compact and light, and achieve strength, a load capacity, durability and low transmission torque cross equal to or more than a conventional one.
SOLUTION: A curvature center Oto of a ball center locus of a circular arc part 22a of an outer ring track groove 22, and a curvature center Oti of a ball center locus L2 of a circular arc part 32b of an inner ring track groove 32 are offset from a joint center O by an equal distance on opposite axial sides. A curvature center Oco of an outer spherical periphery 52 of a cage 5, and a curvature center Oci of an inner spherical periphery 53 are offset from the joint center O by an equal distance on opposite sides. An offset angle η is 7°-7.1°, and a ratio f2/F of a cage offset amount f2 to a total offset amount F is 0.143-0.145.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、固定式等速自在継手に関する。 The present invention relates to a fixed constant velocity universal joint.

50°以上の高作動角に対応可能な固定式等速自在継手として、トラック溝のボール中心軌跡が円弧部とストレート部を有するアンダーカットフリー型の固定式等速自在継手(以下、「UJ型等速自在継手」と言う。)が知られている。UJ型等速自在継手としては、6個のボールを有するものが使用されることが多いが、ボールの個数を8個にすると共に、各ボールを小径化することにより、軽量化及びコンパクト化を図ったものも知られている(例えば、下記の特許文献1参照)。 As a fixed constant velocity universal joint capable of handling high operating angles of 50° or more, an undercut-free type fixed constant velocity universal joint (hereinafter referred to as a "UJ type constant velocity universal joint") is known, in which the ball center locus of the track groove has an arc portion and a straight portion. UJ type constant velocity universal joints that have six balls are often used, but there are also known joints that have eight balls and each ball has a small diameter, thereby achieving lighter weight and compactness (see, for example, Patent Document 1 below).

特開2003-004062号公報JP 2003-004062 A

6個ボールの等速自在継手は、8個ボールの等速自在継手に対して、トラック溝及びケージポケットの加工費が削減されるため、コスト低減になる。また、ボールの個数が減ることで、ボールの周方向間隔、すなわち、ケージのポケット間の柱部の周方向幅が大きくなるため、ケージ柱部の周方向幅を維持しながら、等速自在継手を小径化することが可能になる。 Compared to an eight-ball constant velocity universal joint, a six-ball constant velocity universal joint reduces costs by reducing the machining costs of the track grooves and cage pockets. In addition, by reducing the number of balls, the circumferential spacing between the balls, i.e., the circumferential width of the pillars between the cage pockets, increases, making it possible to reduce the diameter of the constant velocity universal joint while maintaining the circumferential width of the cage pillars.

本発明では、低コストに製作できる6個ボールのUJ型等速自在継手において、コンパクト化及び軽量化を図ると共に、従来品と同等以上の強度、負荷容量、耐久性、及び低伝達トルクロスを達成することを目的とする。 The objective of this invention is to provide a six-ball UJ type constant velocity universal joint that can be manufactured at low cost, while being compact and lightweight, and achieving strength, load capacity, durability, and low transmission torque loss equal to or greater than those of conventional products.

6個ボールのUJ型等速自在継手において、ボールを小径化すると共に、ボールピッチ円を小径化すれば、軽量化及びコンパクト化が図られる。しかし、ボールを小径化したりボールピッチ円を小径化したりすると、各部品の強度低下が懸念される。そのため、例えばケージの強化が必要となるが、ケージの強度を高めるためには、肉厚を増大させる必要がある。この場合、内側継手部材のトラック溝(以下、「内輪トラック溝」と言う。)及び外側継手部材のトラック溝(以下、「外輪トラック溝」と言う。)が浅くなるため、トラック溝のエッジ部へのボールの乗り上げが生じやすくなる。 In a six-ball UJ-type constant velocity universal joint, reducing the diameter of the balls and the ball pitch circle can reduce weight and size. However, reducing the diameter of the balls and ball pitch circle raises concerns that the strength of each component may decrease. This makes it necessary to strengthen the cage, for example, but to increase the cage strength, it is necessary to increase the wall thickness. In this case, the track grooves of the inner joint member (hereinafter referred to as the "inner ring track groove") and the track grooves of the outer joint member (hereinafter referred to as the "outer ring track groove") become shallower, making it easier for the balls to ride up onto the edges of the track grooves.

上記のような、ケージの肉厚増大に伴うボールの乗り上げを防止する対策として、ボールとトラック溝との接触角α(図3参照)を小さくすることが有効である。また、外輪トラック溝の曲率中心の継手中心に対する軸方向オフセット量(=内輪トラック溝の曲率中心の継手中心に対する軸方向オフセット量。以下、「トラックオフセット量」と言う。)を小さくすれば、外輪トラック溝の端部における深さを深くすることができるため、高角時の外輪トラック溝エッジ部へのボールの乗り上げを防止できる。 As a measure to prevent the balls from riding up due to the increase in cage thickness as described above, it is effective to reduce the contact angle α between the ball and the track groove (see Figure 3). In addition, by reducing the axial offset of the center of curvature of the outer track groove from the joint center (= the axial offset of the center of curvature of the inner track groove from the joint center; hereafter referred to as the "track offset"), the depth of the outer track groove at the end can be increased, preventing the balls from riding up on the edge of the outer track groove at high angles.

しかし、接触角αを小さくすると、ボールとトラック溝との接触部の面圧が高くなるため、耐久性が低下する。一方、上記のようにトラックオフセット量を小さくすることで、内輪トラック溝とボールとの接触点軌跡の長さと外輪トラック溝とボールとの接触点軌跡の長さとの差が小さくなる(図4で、L1-L2<L1’-L2’)。そのため、外輪トラック溝とボールとの間の滑り量が減少し、金属表面の疲労が低減されて耐久性が高められる。この効果が、上記のようにボールとトラック溝との接触角を小さくすることによる面圧上昇に伴う耐久性の低下と相殺されることで、耐久性が維持される。 However, reducing the contact angle α increases the surface pressure at the contact point between the ball and the track groove, reducing durability. On the other hand, reducing the track offset amount as described above reduces the difference between the length of the contact point locus between the inner track groove and the ball and the length of the contact point locus between the outer track groove and the ball (L1-L2<L1'-L2' in Figure 4). This reduces the amount of slippage between the outer track groove and the ball, reducing fatigue on the metal surface and improving durability. This effect offsets the decrease in durability that accompanies the increase in surface pressure caused by reducing the contact angle between the ball and the track groove as described above, thereby maintaining durability.

しかし、トルクオフセット量を小さくすると、ボールを両継手部材の二等分面上に制御するための力となるポケット荷重(ケージのポケットがボールに作用する荷重)が小さくなり、トルク入力が無い条件で継手の角度を取る場合に折り曲げトルクが増大し、引っ掛かりが発生することが経験上分かっている。この場合、トラックオフセットに加えて、ケージの外球面の曲率中心と内球面の曲率中心とを継手中心に対して軸方向反対側にオフセットさせること(以下、「ケージオフセット」と言う。)で、上記のポケット荷重を補完して、折り曲げ時の引っ掛かりを回避することができる。しかし、ケージオフセットを付与した場合、ケージに偏肉が生じる、トラック荷重等の内部力が増加する、といったデメリットがある。従って、トラックオフセット及びケージオフセットの双方を付与する場合は、これらを合わせた総オフセットとして等速自在継手に影響する。 However, it has been found from experience that if the torque offset is reduced, the pocket load (the load that the cage pocket exerts on the ball), which is the force for controlling the ball on the bisecting plane of both joint components, is reduced, and when the joint angle is taken under conditions of no torque input, the bending torque increases and sticking occurs. In this case, in addition to the track offset, the center of curvature of the outer spherical surface of the cage and the center of curvature of the inner spherical surface are offset axially opposite the joint center (hereinafter referred to as "cage offset") to complement the pocket load and avoid sticking during bending. However, adding a cage offset has disadvantages, such as uneven thickness of the cage and increased internal forces such as track load. Therefore, when both track offset and cage offset are added, the total offset of these affects the constant velocity universal joint.

総オフセット量が小さいほど、ケージと各継手部材との間の球面力(球面同士が押し付け合う力)が小さくなるため、トルク損失率が小さくなる。しかし、総オフセット量を小さくしすぎると、上述のように、継手の作動の引っかかりが生じる。従って、これまで、総オフセット量は、継手を折り曲げる際に引っ掛かりが発生しない範囲で、なるべく小さく設定することが通例であった。 The smaller the total offset, the smaller the spherical force (the force that presses the spherical surfaces together) between the cage and each joint component, and therefore the smaller the torque loss rate. However, if the total offset is made too small, as mentioned above, the joint will jam when in operation. Therefore, until now, it has been customary to set the total offset as small as possible without causing jamming when bending the joint.

本発明者は、総オフセット量の異なる複数種のUJ型等速自在継手(TYPE1~5)において、作動角とトルク損失率との関係を調べた。その結果を図5に示す。尚、TYPE1~5は、この順で総オフセット量が大きくなっている。その結果、図5に示すように、作動角が7.5°以下では、総オフセット量が小さいほどトルク損失率が小さいが、作動角が7.5より大きいと、総オフセット量が大きい方がトルク損失率が小さかった。通常、UJ型等速自在継手の常用角は5~8°程度であるため、7.5°を超える常用角で使用される場合にもトルク損失をある程度抑える必要がある。そのため、総オフセット量は、折り曲げ時の引っ掛かりが生じない範囲であっても、小さいほどよいわけではなく、ある程度大きい値であることが好ましい。 The inventors investigated the relationship between the operating angle and the torque loss rate for several types of UJ type constant velocity universal joints (TYPES 1 to 5) with different total offset amounts. The results are shown in Figure 5. The total offset amount increases in the order of TYPES 1 to 5. As a result, as shown in Figure 5, when the operating angle is 7.5° or less, the torque loss rate is smaller as the total offset amount is smaller, but when the operating angle is greater than 7.5°, the torque loss rate is smaller as the total offset amount is larger. Since the normal angle of a UJ type constant velocity universal joint is usually about 5 to 8°, it is necessary to suppress the torque loss to some extent even when it is used at a normal angle exceeding 7.5°. Therefore, the total offset amount is not necessarily the smaller the better, even if it is within a range where no snagging occurs when bending, and it is preferable that it is a somewhat large value.

以上の知見から、UJ型等速自在継手において、オフセット角を7°程度とし、且つ、総オフセット量に対するケージオフセット量の比率を従来品よりも高めに設定することで、軽量化及びコンパクト化を図った場合でも、従来品と同等以上の強度、負荷容量、耐久性、及び低伝達トルクロスを達成できることが明らかになった。 Based on the above findings, it has become clear that by setting the offset angle to about 7° and the ratio of the cage offset to the total offset in a UJ type constant velocity joint higher than in conventional products, it is possible to achieve strength, load capacity, durability, and low transmission torque loss equal to or greater than that of conventional products, even when aiming for weight reduction and compactness.

具体的に、本発明に係る固定式等速自在継手は、球面状の内周面に6本のトラック溝が円周方向等間隔に形成された外側継手部材と、球面状の外周面に6本のトラック溝が円周方向等間隔に形成された内側継手部材と、前記外側継手部材のトラック溝と前記内側継手部材のトラック溝の間に配された6個のボールと、前記外側継手部材の球面状の内周面と嵌合する球面状の外周面、前記内側継手部材の球面状の外周面と嵌合する球面状の内周面、前記6個のボールを保持する6個のポケットを有するケージとを備え、
前記外側継手部材及び前記内側継手部材のトラック溝が円弧部及びストレート部を有するアンダーカットフリー型の固定式等速自在継手において、
前記外側継手部材のトラック溝の円弧部のボール中心軌跡の曲率中心Otoと、前記内側継手部材のトラック溝の円弧部のボール中心軌跡の曲率中心Otiとが、継手中心Oに対して軸方向反対側に等距離だけオフセットし、
前記ケージの球面状の外周面の曲率中心Ocoと球面状の内周面の曲率中心Ociとが、継手中心Oに対して反対側に等距離だけオフセットし、
前記外側継手部材のトラック溝の円弧部のボール中心軌跡の曲率中心Otoと前記ボールの中心とを結ぶ直線と、継手中心を通り軸線と直交する平面Pとが成す角度をオフセット角ηとしたとき、オフセット角ηが7°~7.1°であり、
前記ケージの球面状の外周面の曲率中心Ocoと前記継手中心Oとの軸方向距離をケージオフセット量f2とし、前記外側継手部材のトラック溝の円弧部のボール中心軌跡の曲率中心Otoと前記継手中心Oとの軸方向距離を総オフセット量Fとしたとき、
ケージオフセット量f2と総オフセット量Fとの比f2/Fが0.143~0.145であることを特徴とする。
Specifically, the fixed type constant velocity universal joint according to the present invention comprises an outer joint member having six track grooves formed at equal intervals in the circumferential direction on its spherical inner peripheral surface, an inner joint member having six track grooves formed at equal intervals in the circumferential direction on its spherical outer peripheral surface, six balls arranged between the track grooves of the outer joint member and the track grooves of the inner joint member, a spherical outer peripheral surface that fits with the spherical inner peripheral surface of the outer joint member, a spherical inner peripheral surface that fits with the spherical outer peripheral surface of the inner joint member, and a cage having six pockets for holding the six balls,
In an undercut-free type fixed constant velocity universal joint, track grooves of the outer joint member and the inner joint member have arc portions and straight portions,
a center of curvature Oto of a ball center locus of a circular arc portion of the track groove of the outer joint member and a center of curvature Oti of a ball center locus of a circular arc portion of the track groove of the inner joint member are offset by an equal distance on opposite sides in the axial direction with respect to a joint center O,
The center of curvature Oco of the spherical outer peripheral surface of the cage and the center of curvature Oci of the spherical inner peripheral surface are offset by an equal distance on opposite sides with respect to the joint center O,
when an angle formed by a straight line connecting a center of curvature Oto of a ball center locus of an arc portion of a track groove of the outer joint member and the center of the ball, and a plane P that passes through a joint center and is perpendicular to an axis, is defined as an offset angle η, the offset angle η is 7° to 7.1°,
When the axial distance between the center of curvature Oco of the spherical outer peripheral surface of the cage and the joint center O is defined as a cage offset amount f2, and the axial distance between the center of curvature Oto of the ball center locus of the arc portion of the track groove of the outer joint member and the joint center O is defined as a total offset amount F,
The ratio f2/F of the cage offset amount f2 to the total offset amount F is 0.143 to 0.145.

上記の固定式等速自在継手(UJ型等速自在継手)が、内側継手部材にトルク伝達可能に連結されたシャフトを有する場合、このシャフトの最小径部の直径Dsを基準として、各部の寸法を以下のように設定することができる。
・外側継手部材の外径Doとシャフトの最小径部の直径Dsとの比Do/Dsが3.76~3.80である。
・ボールの直径Dbと前記シャフトの最小径部の直径Dsとの比Db/Dsが0.748~0.752である。
・ボールのピッチ円径PCD(BALL)とシャフトの最小径部の直径Dsとの比PCD(BALL)/Dsが2.47~2.51である。
・ケージの半径方向の肉厚Tcとシャフトの最小径部の直径Dsとの比Tc/Dsが0.209~0.214である。
When the above-mentioned fixed type constant velocity universal joint (UJ type constant velocity universal joint) has a shaft connected to the inner joint member in a manner capable of transmitting torque, the dimensions of each part can be set as follows, based on the diameter Ds of the smallest diameter part of this shaft.
The ratio Do/Ds of the outer diameter Do of the outer joint member to the diameter Ds of the minimum diameter portion of the shaft is 3.76 to 3.80.
The ratio Db/Ds of the diameter Db of the ball to the diameter Ds of the minimum diameter portion of the shaft is 0.748 to 0.752.
The ratio PCD(BALL)/Ds of the pitch circle diameter PCD(BALL) of the ball to the diameter Ds of the smallest diameter part of the shaft is 2.47 to 2.51.
The ratio Tc/Ds of the radial thickness Tc of the cage to the diameter Ds of the minimum diameter portion of the shaft is 0.209 to 0.214.

以上のように、本発明に係る6個ボールのUJ型等速自在継手によれば、コンパクト化及び軽量化を図ると共に、従来品と同等以上の強度、負荷容量、耐久性、及び低伝達トルクロスを達成することができる。 As described above, the six-ball UJ type constant velocity universal joint of the present invention is compact and lightweight, while achieving strength, load capacity, durability, and low transmission torque loss equal to or greater than those of conventional products.

本発明の一実施形態に係る固定式等速自在継手の軸方向断面図である。1 is an axial cross-sectional view of a fixed type constant velocity universal joint according to one embodiment of the present invention. 上記固定式等速自在継手を軸方向から見た正面図である。FIG. 2 is a front view of the fixed type constant velocity universal joint as viewed from the axial direction. 上記固定式等速自在継手のボールとトラック溝との接触点における、軸線と直交する方向の断面図である。3 is a cross-sectional view taken in a direction perpendicular to the axis at a contact point between a ball and a track groove of the fixed type constant velocity universal joint. FIG. 上半分は、上記固定式等速自在継手の軸方向断面図であり、下半分は、従来の固定式等速自在継手の軸方向断面図である。The upper half is an axial cross-sectional view of the above-mentioned fixed type constant velocity universal joint, and the lower half is an axial cross-sectional view of a conventional fixed type constant velocity universal joint. 固定式等速自在継手の作動角とトルク損失率との関係を示すグラフである。4 is a graph showing the relationship between the operating angle and the torque loss rate of a fixed type constant velocity universal joint. 固定式等速自在継手の作動角と球面力との関係を示すグラフである。4 is a graph showing the relationship between the operating angle and spherical force of a fixed type constant velocity universal joint. 本発明品及び従来品に係る固定式等速自在継手の作動角と球面力との関係を示すグラフである。4 is a graph showing the relationship between the operating angle and the spherical force of a fixed type constant velocity universal joint according to the present invention and a conventional product.

以下、本発明の実施の形態を、図面に基づいて説明する。 The following describes an embodiment of the present invention with reference to the drawings.

図1及び図2は、本発明の一実施形態に係る固定式等速自在継手であるアンダーカットフリータイプの固定式等速自在継手(UJ型等速自在継手1)を示している。このUJ型等速自在継手1は、外側継手部材2と、内側継手部材3と、6個のボール4と、ケージ5とを備える。内側継手部材3にはシャフト10が連結されており、このシャフト10が外側継手部材2から軸方向一方側(図1の右側)に突出している。このUJ型等速自在継手1は、例えば、自動車のドライブシャフトのアウトボード側端部に設けられるものであり、シャフト10(中間シャフト)の反対側の端部(インボード側端部)には摺動式等速自在継手が取り付けられる。以下では、UJ型等速自在継手1の軸線方向で、外側継手部材2からシャフト10が突出した側(図1の右側)を「継手開口側」と言い、その反対側(図1の左側)を「継手奥側」と言う。 1 and 2 show an undercut-free type fixed constant velocity universal joint (UJ type constant velocity universal joint 1) which is a fixed constant velocity universal joint according to one embodiment of the present invention. This UJ type constant velocity universal joint 1 includes an outer joint member 2, an inner joint member 3, six balls 4, and a cage 5. A shaft 10 is connected to the inner joint member 3, and this shaft 10 protrudes from the outer joint member 2 to one axial side (the right side in FIG. 1). This UJ type constant velocity universal joint 1 is provided, for example, at the outboard end of an automobile drive shaft, and a sliding type constant velocity universal joint is attached to the opposite end (the inboard end) of the shaft 10 (intermediate shaft). Hereinafter, in the axial direction of the UJ type constant velocity universal joint 1, the side where the shaft 10 protrudes from the outer joint member 2 (the right side in FIG. 1) is referred to as the "joint opening side", and the opposite side (the left side in FIG. 1) is referred to as the "joint inner side".

外側継手部材2は、球面状の内周面21に6本のトラック溝22が形成されたカップ部23と、カップ部23の底壁から突設される軸部(図示省略)とを一体に有する。内側継手部材3の球面状の外周面31には、外側継手部材2のトラック溝22と対をなす6本のトラック溝32が形成される。外輪トラック溝22と内輪トラック溝32との間に、ボール4が1個ずつ配される。ケージ5には6個のポケット51が設けられ、各ポケット51にボール4が1個ずつ収容される。 The outer joint member 2 integrally comprises a cup portion 23 having six track grooves 22 formed on a spherical inner peripheral surface 21, and a shaft portion (not shown) protruding from the bottom wall of the cup portion 23. Six track grooves 32 that form pairs with the track grooves 22 of the outer joint member 2 are formed on the spherical outer peripheral surface 31 of the inner joint member 3. One ball 4 is disposed between each of the outer ring track grooves 22 and the inner ring track grooves 32. Six pockets 51 are provided in the cage 5, and one ball 4 is accommodated in each of the pockets 51.

図2に示すように、外輪トラック溝22及び内輪トラック溝32がそれぞれ、周方向に沿って所定ピッチ(この場合、60°ピッチ)で形成されている。このため、トルク伝達部材としての6個のボール4は、周方向に沿って等ピッチ(60°ピッチ)で配設されている。 As shown in FIG. 2, the outer ring track grooves 22 and the inner ring track grooves 32 are each formed at a predetermined pitch (60° pitch in this case) along the circumferential direction. Therefore, the six balls 4 as torque transmission members are arranged at an equal pitch (60° pitch) along the circumferential direction.

内側継手部材3は、雌スプライン部33が形成された内孔を有する(図1参照)。シャフト10の端部が内側継手部材3の内孔に嵌入され、シャフト10の端部に形成された雄スプライン部11が内側継手部材3の雌スプライン部33に嵌合することで、両者がトルク伝達可能に連結される。シャフト10の端部には周方向溝12が形成され、この周方向溝12に装着された止め輪6により、シャフト10と内側継手部材3との軸方向の抜け止めが行われる。 The inner joint member 3 has an inner hole in which a female spline portion 33 is formed (see FIG. 1). The end of the shaft 10 is fitted into the inner hole of the inner joint member 3, and the male spline portion 11 formed on the end of the shaft 10 fits into the female spline portion 33 of the inner joint member 3, connecting the two so as to transmit torque. A circumferential groove 12 is formed on the end of the shaft 10, and a retaining ring 6 attached to this circumferential groove 12 prevents the shaft 10 and the inner joint member 3 from coming loose in the axial direction.

外輪トラック溝22は、継手奥側に設けられた円弧部22aと、継手開口側に設けられた直線部22bとを有する。内輪トラック溝32は、継手奥側に設けられた直線部32aと、継手開口側に設けられた円弧部32bとを有する。各トラック溝22、32の円弧部22a、32bのボール中心軌跡は円弧状を成し、各トラック溝22、32の直線部22b、32aのボール中心軌跡は直線状を成す。尚、ボール中心軌跡とは、トラック溝22、32に沿ってボールを動かしたときにボール4の中心が通る軌跡である。 The outer ring track groove 22 has an arc portion 22a provided on the rear side of the joint and a straight portion 22b provided on the joint opening side. The inner ring track groove 32 has a straight portion 32a provided on the rear side of the joint and an arc portion 32b provided on the joint opening side. The ball center trajectories of the arc portions 22a, 32b of each track groove 22, 32 form an arc shape, and the ball center trajectories of the straight portions 22b, 32a of each track groove 22, 32 form a straight line. The ball center trajectory is the trajectory that the center of the ball 4 passes through when the ball is moved along the track grooves 22, 32.

外輪トラック溝22の円弧部22aのボール中心軌跡の曲率中心Otoと、内輪トラック溝32の円弧部32bのボール中心軌跡の曲率中心Otiは、継手中心Oに対して等距離F、Fだけ軸方向反対側にオフセットされている。図示例では、外輪トラック溝22の円弧部22aのボール中心軌跡の曲率中心Otoが継手中心Oに対して継手開口側にオフセットされ、内輪トラック溝32の円弧部32bのボール中心軌跡の曲率中心Otiが継手中心Oに対して継手奥側にオフセットされている。外輪トラック溝22の直線部22bは、円弧部22aの継手開口側の端部から接線方向に延び、図示例では軸方向と平行とされる。内輪トラック溝32の直線部32aは、円弧部32bの継手奥側の端部から接線方向に延び、図示例では軸方向と平行とされる。 The center of curvature Oto of the ball center locus of the arc portion 22a of the outer ring track groove 22 and the center of curvature Oti of the ball center locus of the arc portion 32b of the inner ring track groove 32 are offset in the axial direction by equal distances F, F from the joint center O. In the illustrated example, the center of curvature Oto of the ball center locus of the arc portion 22a of the outer ring track groove 22 is offset toward the joint opening side from the joint center O, and the center of curvature Oti of the ball center locus of the arc portion 32b of the inner ring track groove 32 is offset toward the joint rear side from the joint center O. The straight portion 22b of the outer ring track groove 22 extends in the tangential direction from the end of the arc portion 22a on the joint opening side, and in the illustrated example, is parallel to the axial direction. The straight portion 32a of the inner ring track groove 32 extends in the tangential direction from the end of the arc portion 32b on the joint rear side, and in the illustrated example, is parallel to the axial direction.

ケージ5の球面状の外周面52は外側継手部材2の球面状の内周面21と嵌合し、ケージ5の球面状の内周面53は内側継手部材3の球面状の外周面31と嵌合している。ケージ5の外周面52の直径は外側継手部材2の内周面21の直径と略等しく、ケージ5の内周面53の直径は内側継手部材3の外周面31の直径と略等しい。ケージ5の外周面52の曲率中心Oco(すなわち、外側継手部材2の内周面21の曲率中心)と、ケージ5の内周面53の曲率中心Oci(すなわち、内側継手部材3の外周面31の曲率中心)は、継手中心Oに対して等距離f2だけ軸方向反対側にオフセットされている。図示例では、ケージ5の外周面52の曲率中心Ocoが継手中心Oに対して継手開口側にオフセットされ、ケージ5の内周面53の曲率中心Ociが継手中心Oに対して継手奥側にオフセットされている。 The spherical outer peripheral surface 52 of the cage 5 is engaged with the spherical inner peripheral surface 21 of the outer joint member 2, and the spherical inner peripheral surface 53 of the cage 5 is engaged with the spherical outer peripheral surface 31 of the inner joint member 3. The diameter of the outer peripheral surface 52 of the cage 5 is approximately equal to the diameter of the inner peripheral surface 21 of the outer joint member 2, and the diameter of the inner peripheral surface 53 of the cage 5 is approximately equal to the diameter of the outer peripheral surface 31 of the inner joint member 3. The center of curvature Oco of the outer peripheral surface 52 of the cage 5 (i.e., the center of curvature of the inner peripheral surface 21 of the outer joint member 2) and the center of curvature Oci of the inner peripheral surface 53 of the cage 5 (i.e., the center of curvature of the outer peripheral surface 31 of the inner joint member 3) are offset in the axial opposite direction by an equal distance f2 from the joint center O. In the illustrated example, the center of curvature Oco of the outer peripheral surface 52 of the cage 5 is offset toward the joint opening side relative to the joint center O, and the center of curvature Oci of the inner peripheral surface 53 of the cage 5 is offset toward the back side of the joint relative to the joint center O.

ここで、外輪トラック溝22の円弧部22aのボール中心軌跡の曲率中心Otoと継手中心Oとの軸方向距離(=内輪トラック溝32の円弧部32bのボール中心軌跡の曲率中心Otiと継手中心Oとの軸方向距離)が総オフセット量Fである。また、ケージ5の外周面52の曲率中心Ocoと継手中心Oとの軸方向距離(=ケージ5の内周面53の曲率中心Ociと継手中心Oとの軸方向距離)がケージオフセット量f2である。また、総オフセット量Fとケージオフセット量f2との差がトラックオフセット量f1である。 Here, the axial distance between the center of curvature Oto of the ball center locus of the arc portion 22a of the outer ring track groove 22 and the joint center O (= the axial distance between the center of curvature Oti of the ball center locus of the arc portion 32b of the inner ring track groove 32 and the joint center O) is the total offset amount F. Also, the axial distance between the center of curvature Oco of the outer peripheral surface 52 of the cage 5 and the joint center O (= the axial distance between the center of curvature Oci of the inner peripheral surface 53 of the cage 5 and the joint center O) is the cage offset amount f2. Also, the difference between the total offset amount F and the cage offset amount f2 is the track offset amount f1.

図3は、ボール4とトラック溝22、32の接触点における横断面図(軸直交方向断面図)である。外側継手部材2のトラック溝22および内側継手部材3のトラック溝32の横断面形状は楕円形状やゴシックアーチ形状を有する。ボール4は、外側継手部材2のトラック溝22と2点C1、C2でアンギュラコンタクトし、内側継手部材3のトラック溝32と2点C3、C4でアンギュラコンタクトしている。 Figure 3 is a cross-sectional view (cross-sectional view perpendicular to the axis) at the contact point between the ball 4 and the track grooves 22, 32. The cross-sectional shapes of the track groove 22 of the outer joint member 2 and the track groove 32 of the inner joint member 3 are elliptical or gothic arch shapes. The ball 4 is in angular contact with the track groove 22 of the outer joint member 2 at two points C1, C2, and with the track groove 32 of the inner joint member 3 at two points C3, C4.

以上のUJ型等速自在継手1の各部の寸法は、下記の表2に示す通りである。尚、表2の「従来品」は、従来のUJ型等速自在継手であり、本実施形態のUJ型等速自在継手と基準シャフト径が同じである。 The dimensions of each part of the above UJ type constant velocity universal joint 1 are as shown in Table 2 below. Note that the "conventional product" in Table 2 is a conventional UJ type constant velocity universal joint, which has the same reference shaft diameter as the UJ type constant velocity universal joint of this embodiment.

Figure 2024086277000002
Figure 2024086277000002

上記表1の各項目の定義は、以下の通りである。 The definition of each item in Table 1 above is as follows:

・オフセット角η
図1に示す軸方向断面において、作動角0°の状態で、継手中心Oを通り軸線と直交する平面Pと、ボール4の中心と内輪トラック溝32の円弧部32bのボール中心軌跡の曲率中心Otiとを結ぶ直線との間の角度(=平面Pと、ボール4の中心と外輪トラック溝22の円弧部22aのボール中心軌跡の曲率中心Otoとを結ぶ直線との間の角度)を、オフセット角ηとする。
・Offset angle η
In the axial cross section shown in FIG. 1, when the operating angle is 0°, the angle between a plane P that passes through the joint center O and is perpendicular to the axis and a straight line connecting the center of the ball 4 and the center of curvature Oti of the ball center locus of the arc portion 32b of the inner ring track groove 32 (= the angle between the plane P and the straight line connecting the center of the ball 4 and the center of curvature Oto of the ball center locus of the arc portion 22a of the outer ring track groove 22) is defined as the offset angle η.

・接触角α
図3に示す横断面において、ボール4の中心と、ボール4とトラック溝22、32との各接触点C1、C2、C3、C4を通る直線と、継手中心Oを通り軸線と直交する平面Pとがなす角度を接触角αとする。
Contact angle α
In the cross section shown in Figure 3, the angle formed by a straight line passing through the center of the ball 4 and each of the contact points C1, C2, C3, and C4 between the ball 4 and the track grooves 22 and 32, and a plane P that passes through the joint center O and is perpendicular to the axis, is defined as a contact angle α.

・基準シャフト径Ds
シャフト10のうち、トルク負荷領域(軸方向両端に形成された雄スプライン部の軸方向間領域)の最小径部13の外径を基準シャフト径とする。
Reference shaft diameter Ds
The outer diameter of a minimum diameter portion 13 of the shaft 10 in a torque load region (an axial region between the male spline portions formed on both axial ends) is defined as a reference shaft diameter.

・ボールのピッチ円径PCD(BALL)
外輪トラック溝22の円弧部22aのボール中心軌跡の曲率中心Otoとボール中心との距離(=内輪トラック溝32の円弧部32bのボール中心軌跡の曲率中心Otiとボール中心との距離)がPCR(図1参照)であり、PCRの2倍の値がボールのピッチ円径PCD(BALL)である。
・Ball pitch circle diameter PCD (BALL)
The distance between the center of curvature Oto of the ball center locus of the arc portion 22a of the outer ring track groove 22 and the center of the ball (= the distance between the center of curvature Oti of the ball center locus of the arc portion 32b of the inner ring track groove 32 and the center of the ball) is PCR (see Figure 1), and twice the PCR is the pitch circle diameter PCD (BALL) of the ball.

・ケージ肉厚Tc
作動角0°の状態で、ケージ5のうち、継手中心Oを通り軸線と直交する平面Pにおける半径方向の肉厚を、ケージ肉厚Tcとする(図1参照)。
・Cage thickness Tc
When the operating angle is 0°, the radial thickness of the cage 5 on a plane P that passes through the joint center O and is perpendicular to the axis is defined as a cage thickness Tc (see FIG. 1).

以下、上記のように各部の寸法を設定した理由を説明する。 Below we explain why the dimensions of each part were set as above.

本発明品では、従来品よりも、ボール4の直径Db、ボールのピッチ円径PCD(BALL)、及び外側継手部材2の外径Doを小径化した{表1の(3)(4)(5)参照}。これにより、UJ型等速自在継手1の軽量化及びコンパクト化が図られる。 In the product of the present invention, the diameter Db of the ball 4, the pitch circle diameter PCD (BALL), and the outer diameter Do of the outer joint member 2 are smaller than those of the conventional product (see (3), (4), and (5) in Table 1). This makes the UJ type constant velocity universal joint 1 lighter and more compact.

上記のようにボールを小径化したりボールピッチ円を小径化したりすると、各部品の強度低下が懸念される。そこで、本発明品では、ケージ肉厚Tcを、従来品よりも大きくした{表1の(6)参照}。 As mentioned above, if the diameter of the balls or the ball pitch circle is reduced, there is a concern that the strength of each part will decrease. Therefore, in the product of the present invention, the cage thickness Tc is made larger than that of the conventional product (see (6) in Table 1).

上記のようにケージ肉厚Tcを大きくすると、外側継手部材2及び内側継手部材3のトラック溝22、32が浅くなるため、トラック溝22、32のエッジ部へのボール4の乗り上げが生じやすくなる。そこで、本発明品では、ボール4とトラック溝22、32との接触角α(図3参照)を従来品よりも小さくしている{表1の(2)参照}。また、本発明品では、オフセット角ηを従来品よりも小さくし{表1の(1)参照}、且つ、総オフセット量Fに対するケージオフセット量f2の割合を従来品よりも大きくしている{表1の(7)参照}。すなわち、トラックオフセット量f1が、従来品よりも小さくなっている。これにより、外側継手部材2のトラック溝22の継手奥側端部における深さを深くすることができる。以上のように、接触角αを小さくすると共に、トラック溝22を深くすることで、高角時のトラック溝22のエッジ部へのボール4の乗り上げを防止できる。 When the cage thickness Tc is increased as described above, the track grooves 22, 32 of the outer joint member 2 and the inner joint member 3 become shallow, so that the ball 4 is more likely to ride up on the edge of the track groove 22, 32. Therefore, in the product of the present invention, the contact angle α (see FIG. 3) between the ball 4 and the track groove 22, 32 is made smaller than that of the conventional product (see (2) in Table 1). In addition, in the product of the present invention, the offset angle η is made smaller than that of the conventional product (see (1) in Table 1), and the ratio of the cage offset amount f2 to the total offset amount F is made larger than that of the conventional product (see (7) in Table 1). In other words, the track offset amount f1 is smaller than that of the conventional product. This makes it possible to deepen the depth of the track groove 22 of the outer joint member 2 at the joint inner end. As described above, by reducing the contact angle α and deepening the track groove 22, it is possible to prevent the ball 4 from riding up on the edge of the track groove 22 at a high angle.

上記のように接触角αを小さくすると、ボール4とトラック溝22、32との接触部の面圧が高くなるため、耐久性が低下する。そこで、上記のようにトラックオフセット量f1を小さくすることで、内輪トラック溝32とボール4との接触点軌跡L1の長さと、外輪トラック溝22とボール4との接触点軌跡L2の長さとの差が小さくなる。すなわち、図4の上半分に示す本発明品の内輪トラック溝32とボール4との接触点軌跡L1の長さと外輪トラック溝22とボール4との接触点軌跡L2の長さとの差ΔL(=L1-L2)が、図4の下半分に示す従来品の内輪トラック溝32’とボール4’との接触点軌跡L1’の長さと外輪トラック溝22’とボール4’との接触点軌跡L2’の長さとの差ΔL’(=L1’-L2’)よりも小さくなる。これにより、外輪トラック溝22とボール4との間の滑り量が減少し、金属表面の疲労が低減されて耐久性が高められる。この効果が、上記のようにボール4とトラック溝22、32との接触角αを小さくすることによる面圧上昇による耐久性の低下と相殺されることで、耐久性が維持される。 When the contact angle α is reduced as described above, the surface pressure of the contact portion between the ball 4 and the track grooves 22, 32 increases, and durability decreases. Therefore, by reducing the track offset amount f1 as described above, the difference between the length of the contact point locus L1 between the inner ring track groove 32 and the ball 4 and the length of the contact point locus L2 between the outer ring track groove 22 and the ball 4 is reduced. That is, the difference ΔL (= L1-L2) between the length of the contact point locus L1 between the inner ring track groove 32 and the ball 4 of the product of the present invention shown in the upper half of FIG. 4 and the length of the contact point locus L2 between the outer ring track groove 22 and the ball 4 is smaller than the difference ΔL' (= L1'-L2') between the length of the contact point locus L1' between the inner ring track groove 32' and the ball 4' of the conventional product shown in the lower half of FIG. 4. This reduces the amount of slip between the outer ring track groove 22 and the ball 4, reducing fatigue of the metal surface and improving durability. This effect offsets the decrease in durability caused by the increased surface pressure resulting from reducing the contact angle α between the ball 4 and the track grooves 22, 32 as described above, thereby maintaining durability.

上記のようにトルクオフセット量f1を小さくすると、ボール4を両継手部材2、3の二等分面上に制御するための力となるポケット荷重(ケージ5のポケット51がボール4に作用する荷重)が小さくなり、トルク入力が無い条件で継手の角度を取る場合に折り曲げトルクが増大し、引っ掛かりが発生することが経験上分かっている。そこで、上記のように、トラックオフセットf1に加えて、ケージオフセットf2を設け、総オフセット量Fを確保することで、上記のポケット荷重を補完することができ、継手の折り曲げ作動性を維持することができる。 It has been found from experience that if the torque offset amount f1 is reduced as described above, the pocket load (the load that the pocket 51 of the cage 5 exerts on the ball 4), which is the force for controlling the ball 4 on the bisecting plane of both joint members 2 and 3, is reduced, and the bending torque increases and sticking occurs when the joint is angled under conditions of no torque input. Therefore, by providing a cage offset f2 in addition to the track offset f1 as described above and ensuring the total offset amount F, it is possible to complement the pocket load and maintain the bending operability of the joint.

一方、総オフセット量Fが小さいほど、ケージ5と各継手部材2、3との間の球面力(ケージ5の球面状外周面52と外側継手部材2の球面状内周面21、あるいは、ケージ5の球面状内周面53と内側継手部材3の球面状外周面31とが押し付け合う力)が小さくなるため、トルク損失率が小さくなる。従って、これまで、総オフセット量は、折り曲げ時の引っ掛かりが発生しない範囲で、なるべく小さく設定することが通例であった。 On the other hand, the smaller the total offset amount F, the smaller the spherical force between the cage 5 and each joint member 2, 3 (the force pressing against each other between the spherical outer peripheral surface 52 of the cage 5 and the spherical inner peripheral surface 21 of the outer joint member 2, or between the spherical inner peripheral surface 53 of the cage 5 and the spherical outer peripheral surface 31 of the inner joint member 3), and therefore the smaller the torque loss rate. Therefore, until now, it has been customary to set the total offset amount as small as possible within a range that does not cause snagging when bending.

そこで、本発明者は、オフセット角が異なる複数種のUJ型等速自在継手について、作動角とトルク損失率との関係を調べた。ここで用いた各サンプルのトラックオフセット量(オフセット角)を、下記の表2に示す。 The inventors therefore investigated the relationship between the operating angle and the torque loss rate for several types of UJ-type constant velocity universal joints with different offset angles. The track offset amount (offset angle) of each sample used here is shown in Table 2 below.

Figure 2024086277000003
Figure 2024086277000003

その結果、図5に示すように、作動角7.5°以下では、オフセット角が小さいほどトルク損失率が小さい。一方、作動角7.5°以上では、オフセット角が相対的に小さいTYPE1やTYPE2が、オフセット角が相対的に大きいTYPE3~5よりもトルク損失が大きい。UJ型等速自在継手の常用角は、通常5~8°程度であるため、常用角が7.5°以下の場合だけでなく、常用角が7.5°を超える場合にもトルク損失をある程度抑える必要がある。そのため、オフセット角は小さいほど良いわけではなく、作動角が7.5°を超える場合でもトルク損失がある程度抑えられているTYPE3(オフセット角約7°)が最も好ましい。 As a result, as shown in Figure 5, at operating angles of 7.5° or less, the smaller the offset angle, the smaller the torque loss rate. On the other hand, at operating angles of 7.5° or more, TYPE 1 and TYPE 2, which have relatively small offset angles, have greater torque loss than TYPE 3 to 5, which have relatively large offset angles. Since the normal angle of a UJ type constant velocity joint is usually around 5 to 8°, it is necessary to suppress torque loss to some extent not only when the normal angle is 7.5° or less, but also when the normal angle exceeds 7.5°. Therefore, the smaller the offset angle, the better, and TYPE 3 (offset angle of approximately 7°), which suppresses torque loss to some extent even when the operating angle exceeds 7.5°, is most preferable.

以上の知見から、本実施形態のUJ型等速自在継手では、オフセット角を7°程度とし{表1の(1)参照}、且つ、総オフセット量に対するケージオフセット量の比率を従来品よりも高めに設定した{表1の(7)参照}。以上により、UJ型等速自在継手の軽量化及びコンパクト化を図った場合でも、従来品と同等以上の強度、負荷容量、耐久性、及び低伝達トルクロスを達成できることが明らかになった。 Based on the above findings, in the UJ type constant velocity universal joint of this embodiment, the offset angle is set to about 7° {see (1) in Table 1}, and the ratio of the cage offset amount to the total offset amount is set higher than in conventional products {see (7) in Table 1}. From the above, it has become clear that even when the UJ type constant velocity universal joint is made lighter and more compact, it is possible to achieve strength, load capacity, durability, and low transmission torque loss equal to or greater than those of conventional products.

ところで、上述のように、オフセット角η(総オフセット量F)が小さいと、折り曲げ時に引っ掛かりが発生するが、このような引っ掛かりが発生する要因は明らかではなく、トラックオフセット量と引っ掛かりとの相関は明らかではなかった。 However, as mentioned above, if the offset angle η (total offset amount F) is small, snagging occurs when bending, but the cause of this snagging is unclear, and the correlation between the track offset amount and snagging is unclear.

そこで、本発明者は、UJ型等速自在継手の作動角と球面力との関係を調べた。その結果、図6に示すように、作動角10°付近で、球面力に変動が生じていた。実機で発生する折り曲げ時の引っ掛かりは、作動角10°前後から発生するため、球面力の変動が引っ掛かりに影響していると予想される。 The inventor therefore investigated the relationship between the operating angle and spherical force of a UJ-type constant velocity universal joint. As a result, as shown in Figure 6, fluctuations in the spherical force occurred at an operating angle of approximately 10°. Since the catching that occurs when bending in an actual machine occurs at an operating angle of approximately 10°, it is expected that the fluctuations in the spherical force affect the catching.

本発明品と従来品の作動角と球面力との関係を図7に示す。この図から、本発明品の球面力の変動幅は、従来品と同等以下であるため、トルク入力が無い場合の折り曲げトルクも従来品と同等以下であると考えられる。 The relationship between the operating angle and spherical force for the product of the present invention and the conventional product is shown in Figure 7. From this figure, it can be seen that the fluctuation range of the spherical force of the product of the present invention is equal to or less than that of the conventional product, and therefore the bending torque when there is no torque input is also equal to or less than that of the conventional product.

1 固定式等速自在継手(UJ型等速自在継手)
2 外側継手部材
21 内周面
22 トラック溝
22a 円弧部
22b 直線部
3 内側継手部材
31 外周面
32 トラック溝
32a 直線部
32b 円弧部
4 ボール
5 ケージ
10 シャフト
13 最小径部
Db ボール直径
Do 外側継手部材の外径
Ds 基準シャフト径
F 総オフセット量
f1 トラックオフセット量
f2 ケージオフセット量
O 継手中心
Oti 内輪トラック溝の円弧部のボール中心軌跡の曲率中心
Oto 外輪トラック溝の円弧部のボール中心軌跡の曲率中心
Oci ケージ内周面の曲率中心
Oco ケージ外周面の曲率中心
PCD(BALL) ボールピッチ円径
Tc ケージ肉厚
α 接触角
η オフセット角
1. Fixed constant velocity universal joint (UJ type constant velocity universal joint)
2 Outer joint member 21 Inner peripheral surface 22 Track groove 22a Arc portion 22b Straight portion 3 Inner joint member 31 Outer peripheral surface 32 Track groove 32a Straight portion 32b Arc portion 4 Ball 5 Cage 10 Shaft 13 Minimum diameter portion Db Ball diameter Do Outer diameter Ds of outer joint member Reference shaft diameter F Total offset amount f1 Track offset amount f2 Cage offset amount O Joint center Oti Center of curvature Oto of ball center locus of arc portion of inner ring track groove Center of curvature Oci of ball center locus of arc portion of outer ring track groove Center of curvature Oco of cage inner peripheral surface Center of curvature PCD (BALL) of cage outer peripheral surface Ball pitch circle diameter Tc Cage wall thickness α Contact angle η Offset angle

Claims (2)

球面状の内周面に6本のトラック溝が円周方向等間隔に形成された外側継手部材と、球面状の外周面に6本のトラック溝が円周方向等間隔に形成された内側継手部材と、前記外側継手部材のトラック溝と前記内側継手部材のトラック溝の間に配された6個のボールと、前記外側継手部材の球面状の内周面と嵌合する球面状の外周面、前記内側継手部材の球面状の外周面と嵌合する球面状の内周面、前記6個のボールを保持する6個のポケットを有するケージとを備え、
前記外側継手部材及び前記内側継手部材のトラック溝が円弧部及びストレート部を有するアンダーカットフリー型の固定式等速自在継手において、
前記外側継手部材のトラック溝の円弧部のボール中心軌跡の曲率中心Otoと、前記内側継手部材のトラック溝の円弧部のボール中心軌跡の曲率中心Otiとが、継手中心Oに対して軸方向反対側に等距離だけオフセットし、
前記ケージの球面状の外周面の曲率中心Ocoと球面状の内周面の曲率中心Ociとが、継手中心Oに対して反対側に等距離だけオフセットし、
前記外側継手部材のトラック溝の円弧部のボール中心軌跡の曲率中心Otoと前記ボールの中心とを結ぶ直線と、継手中心を通り軸線と直交する平面Pとが成す角度をオフセット角ηとしたとき、オフセット角ηが7°~7.1°であり、
前記ケージの球面状の外周面の曲率中心Ocoと前記継手中心Oとの軸方向距離をケージオフセット量f2とし、前記外側継手部材のトラック溝の円弧部のボール中心軌跡の曲率中心Otoと前記継手中心Oとの軸方向距離を総オフセット量Fとしたとき、ケージオフセット量f2と総オフセット量Fとの比f2/Fが0.143~0.145である固定式等速自在継手。
an outer joint member having six track grooves formed at equal intervals in the circumferential direction on its spherical inner peripheral surface; an inner joint member having six track grooves formed at equal intervals in the circumferential direction on its spherical outer peripheral surface; six balls disposed between the track grooves of the outer joint member and the track grooves of the inner joint member; and a cage having a spherical outer peripheral surface that fits with the spherical inner peripheral surface of the outer joint member, a spherical inner peripheral surface that fits with the spherical outer peripheral surface of the inner joint member, and six pockets that hold the six balls,
In an undercut-free type fixed constant velocity universal joint, track grooves of the outer joint member and the inner joint member have arc portions and straight portions,
a center of curvature Oto of a ball center locus of a circular arc portion of the track groove of the outer joint member and a center of curvature Oti of a ball center locus of a circular arc portion of the track groove of the inner joint member are offset by an equal distance on opposite sides in the axial direction with respect to a joint center O,
The center of curvature Oco of the spherical outer peripheral surface of the cage and the center of curvature Oci of the spherical inner peripheral surface are offset by an equal distance on opposite sides with respect to the joint center O,
when an angle formed by a straight line connecting a center of curvature Oto of a ball center locus of an arc portion of a track groove of the outer joint member and the center of the ball, and a plane P that passes through a joint center and is perpendicular to an axis, is defined as an offset angle η, the offset angle η is 7° to 7.1°,
a cage offset amount f2 being the axial distance between the center of curvature Oco of the spherical outer peripheral surface of the cage and the joint center O, and a total offset amount F being the axial distance between the center of curvature Oto of the ball center locus of the arc portion of the track groove of the outer joint member and the joint center O, a ratio f2/F of the cage offset amount f2 to the total offset amount F being 0.143 to 0.145.
前記内側継手部材にトルク伝達可能に連結されたシャフトを有し、
前記外側継手部材の外径Doと前記シャフトの最小径部の直径Dsとの比Do/Dsが3.76~3.80であり、
前記ボールの直径Dbと前記シャフトの最小径部の直径Dsとの比Db/Dsが0.748~0.752であり、
前記ボールのピッチ円径PCD(BALL)と前記シャフトの最小径部の直径Dsとの比PCD(BALL)/Dsが2.47~2.51であり、
前記ケージの半径方向の肉厚Tcと前記シャフトの最小径部の直径Dsとの比Tc/Dsが0.209~0.214である請求項1に記載の固定式等速自在継手。
a shaft connected to the inner joint member so as to be capable of transmitting torque;
a ratio Do/Ds of an outer diameter Do of the outer joint member to a diameter Ds of a minimum diameter portion of the shaft is 3.76 to 3.80,
a ratio Db/Ds of a diameter Db of the ball to a diameter Ds of a minimum diameter portion of the shaft is 0.748 to 0.752;
a ratio PCD(BALL)/Ds of a pitch circle diameter PCD(BALL) of the ball to a diameter Ds of a minimum diameter portion of the shaft is 2.47 to 2.51;
2. A fixed type constant velocity universal joint according to claim 1, wherein a ratio Tc/Ds of a radial thickness Tc of said cage to a diameter Ds of a minimum diameter portion of said shaft is 0.209 to 0.214.
JP2022201322A 2022-12-16 2022-12-16 Fixed type constant velocity universal joint Pending JP2024086277A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022201322A JP2024086277A (en) 2022-12-16 2022-12-16 Fixed type constant velocity universal joint
CN202311648087.9A CN118208501A (en) 2022-12-16 2023-12-04 Fixed constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022201322A JP2024086277A (en) 2022-12-16 2022-12-16 Fixed type constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2024086277A true JP2024086277A (en) 2024-06-27

Family

ID=91447991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022201322A Pending JP2024086277A (en) 2022-12-16 2022-12-16 Fixed type constant velocity universal joint

Country Status (2)

Country Link
JP (1) JP2024086277A (en)
CN (1) CN118208501A (en)

Also Published As

Publication number Publication date
CN118208501A (en) 2024-06-18

Similar Documents

Publication Publication Date Title
US8808097B2 (en) Fixed type constant velocity universal joint
EP1705395B1 (en) Fixed-type constant-velocity universal joint
US7097567B2 (en) Constant velocity universal joint
US8506202B2 (en) Constant velocity universal joint
US8545337B2 (en) Fixed uniform-motion universal joint
US20090136287A1 (en) Slide-Type Constant Velocity Universal Joint
US7258616B2 (en) Fixed type constant velocity universal joint
JP2010043667A (en) Fixed-type constant velocity universal joint
US7651400B2 (en) Constant velocity universal joint and inner member thereof
US6910970B2 (en) Constant velocity universal joint
US8388456B2 (en) Fixed-type, constant-velocity universal joint
US8403764B2 (en) Constant velocity universal joint
JPH08128454A (en) Constant velocity joint
US8342971B2 (en) Fixed type constant velocity universal joint
JP2024086277A (en) Fixed type constant velocity universal joint
JP2005147367A (en) Power transmission shaft
JP7166859B2 (en) Tripod type constant velocity universal joint
JP5340548B2 (en) Fixed constant velocity universal joint
WO2024127915A1 (en) Fixed-type universal joint
WO2023026826A1 (en) Sliding constant-velocity universal joint
JP2012077857A (en) Double offset type constant velocity joint
JP2007162874A (en) Constant velocity universal joint and its internal member
JP2007016899A (en) Fixed-type constant-velocity universal joint
JP2009127638A (en) Constant velocity universal joint
JP5220480B2 (en) Fixed type constant velocity universal joint