JP2024083702A - Crystal Oscillator - Google Patents

Crystal Oscillator Download PDF

Info

Publication number
JP2024083702A
JP2024083702A JP2022197655A JP2022197655A JP2024083702A JP 2024083702 A JP2024083702 A JP 2024083702A JP 2022197655 A JP2022197655 A JP 2022197655A JP 2022197655 A JP2022197655 A JP 2022197655A JP 2024083702 A JP2024083702 A JP 2024083702A
Authority
JP
Japan
Prior art keywords
circuit
voltage
oven
terminal
crystal oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022197655A
Other languages
Japanese (ja)
Inventor
博之 見留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2022197655A priority Critical patent/JP2024083702A/en
Publication of JP2024083702A publication Critical patent/JP2024083702A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

【課題】電圧可変型の容量素子を用いた恒温槽付き水晶発振器であって、右肩下がりの周波数温度特性を簡易な手段によってフラットに補正できる水晶発振器とその製造方法を提供する。【解決手段】定電圧回路と、定電圧回路に接続されたオーブン回路及び電圧可変型の容量素子を有する発振回路と、少なくとも前記オーブン回路及び発振回路を内包している槽と、オーブン回路及び発振回路に接続されたグランドラインと、を備える水晶発振器において、オーブン回路及び発振回路のグランドライン側の端子である二次側の端子とグランドラインとの間に補正抵抗を備え、補正抵抗は、オーブン回路に流れる電流値に応じて当該補正抵抗の二次側の端子の電位が変動することによって、電圧可変型の容量素子の二次側の端子の電位を、電圧可変型の容量素子の端子間電圧を所定電圧に補正できる電位に補正する抵抗であることを特徴とする。【選択図】図1[Problem] To provide an oven-controlled crystal oscillator using a voltage-variable capacitance element, capable of correcting the downward sloping frequency-temperature characteristic to a flat one by simple means, and a method for manufacturing the same. [Solution] The crystal oscillator includes a constant voltage circuit, an oscillation circuit having an oven circuit and a voltage-variable capacitance element connected to the constant voltage circuit, a bath containing at least the oven circuit and the oscillation circuit, and a ground line connected to the oven circuit and the oscillation circuit, and is characterized in that a compensation resistor is provided between the ground line and a secondary terminal which is the terminal on the ground line side of the oven circuit and the oscillation circuit, and the compensation resistor is a resistor which compensates the potential of the secondary terminal of the voltage-variable capacitance element to a potential which can compensate the inter-terminal voltage of the voltage-variable capacitance element to a predetermined voltage by varying the potential of the secondary terminal of the compensation resistor in accordance with the value of the current flowing through the oven circuit. [Selected Figure] Figure 1

Description

本発明は、周波数温度特性の補正が可能な恒温槽付き水晶発振器に関する。 The present invention relates to an oven-controlled crystal oscillator that can correct the frequency-temperature characteristics.

近年、5Gの普及が進んでいる。その中で、5Gの弱点である電波の到達距離が短いことをカバーする点で、小型基地局が注目されている。小型基地局には、内部温度の上昇や厳しい環境変化にも耐え得るよう、恒温槽付き水晶発振器(以下、OCXO;Oven Controlled Crystal Oscillatorと言う。)が使用されている。
特許文献1には、周波数を調整するためにバリキャップダイオードを使用したOCXOが記載されている(特許文献1の段落0011)。図8は、このOCXOの構成を簡単に示したブロック図である。このOCXO20は、定電圧回路と、前記定電圧回路に接続されたオーブン回路と、前記定電圧回路に接続され電圧可変型の容量素子を有する発振回路と、少なくとも前記オーブン回路及び発振回路を内包している槽と、前記オーブン回路及び前記発振回路に接続されたグランドラインと、を備える。このOCXOでは、制御電圧により、バリキャップダイオード14aの容量値を変化、即ち水晶振動子の負荷容量を可変させることにより、発振周波数を調整している(特許文献1の段落0023)。
また、水晶振動子を含む発振回路、恒温槽内の水晶振動子を一定温度に保つためのオーブン回路及びバリキャップダイオード各々のグランドラインを共通にすることで、熱結合を密にし、周波数温度特性を向上させている(特許文献1の段落0021)。
In recent years, 5G has become more widespread. Among them, small base stations have been attracting attention because they overcome the short reach of radio waves, which is a weakness of 5G. Small base stations use oven-controlled crystal oscillators (OCXOs) to withstand rising internal temperatures and severe environmental changes.
Patent Document 1 describes an OCXO that uses a varicap diode to adjust the frequency (paragraph 0011 of Patent Document 1). Figure 8 is a block diagram that shows a simple configuration of this OCXO. This OCXO 20 includes a constant voltage circuit, an oven circuit connected to the constant voltage circuit, an oscillation circuit connected to the constant voltage circuit and having a voltage-variable capacitance element, a tank that contains at least the oven circuit and the oscillation circuit, and a ground line connected to the oven circuit and the oscillation circuit. In this OCXO, the capacitance value of the varicap diode 14a is changed by a control voltage, that is, the load capacitance of the crystal resonator is changed, thereby adjusting the oscillation frequency (paragraph 0023 of Patent Document 1).
In addition, by sharing a common ground line for the oscillator circuit including the quartz crystal oscillator, the oven circuit for keeping the quartz crystal oscillator in the thermostatic chamber at a constant temperature, and the varicap diode, the thermal coupling is strengthened and the frequency-temperature characteristics are improved (paragraph 0021 of Patent Document 1).

特許第6208472号公報Japanese Patent No. 6208472

OCXOは周波数安定度が高く、ppb(1×10-9)オーダーの周波数温度特性を有している。OCXOにおいて、周波数温度特性は0ppbに近いものほど、すなわち温度によって変化しないフラットなものほど、良いとされている。OCXOの周波数温度特性は、水晶振動子の周波数温度特性と、発振回路の周波数温度特性と、その他、経年劣化や再現性等の各因子が複雑に影響し合うことで生じる。そのため、製造後のOCXOは、図9(A)~(C)に示す、温度に対しほぼフラットな温度特性を示すもの、発生率は少ないが温度上昇に対しやや右肩下がりの温度特性を示すもの、やや右肩上りの温度特性を示すものが生じる。温度に対し右肩上がりや右肩下がりの温度特性を示すOCXOのいずれか一方の温度特性を、何らかの手段によってフラットなものに補正することができれば、好ましい。 OCXOs have high frequency stability and frequency-temperature characteristics on the order of ppb (1x10-9). The closer the frequency-temperature characteristic of an OCXO is to 0 ppb, that is, the flatter it is with respect to temperature, the better it is. The frequency-temperature characteristic of an OCXO is generated by the complex interactions of the frequency-temperature characteristic of the crystal unit, the frequency-temperature characteristic of the oscillator circuit, and other factors such as aging and reproducibility. As a result, after manufacture, there are OCXOs that exhibit an almost flat temperature characteristic with respect to temperature, as shown in Figures 9 (A) to (C), those that exhibit a temperature characteristic that declines slightly with increasing temperature (although this occurs less frequently), and those that exhibit a temperature characteristic that rises slightly with respect to temperature. It would be preferable if one of the temperature characteristics of an OCXO that exhibits a temperature characteristic that rises or falls with respect to temperature could be corrected to a flat one by some means.

本発明は上記の点に鑑みなされたものであり、従ってこの出願の目的は、電圧可変型の容量素子を用いた恒温槽付き水晶発振器であって、右肩下がりの周波数温度特性を簡易な手段によってフラットに補正できる水晶発振器とその製造方法を提供することにある。 The present invention has been made in consideration of the above points, and the purpose of this application is to provide a crystal oscillator with a thermostatic oven that uses a voltage-variable capacitance element and that can correct the downward-sloping frequency-temperature characteristic to a flat one using simple means, and a method for manufacturing the same.

この目的の達成を図るため、この出願に係る発明者は鋭意検討を進めた結果、電圧可変型の容量素子を有した恒温槽付きの水晶発振器において、電圧可変型の容量素子を積極的に利用することによって、上記目的を達成できるのではないかと考えた。
従って、この発明の水晶発振器によれば、定電圧回路と、前記定電圧回路に接続されたオーブン回路と、前記定電圧回路に接続され電圧可変型の容量素子を有する発振回路と、少なくとも前記オーブン回路及び発振回路を内包している槽と、前記オーブン回路及び前記発振回路に接続されたグランドラインと、を備える水晶発振器において、
前記オーブン回路及び前記発振回路の前記グランドライン側の端子である二次側の端子と、前記グランドラインとの間に補正抵抗を備え、
前記補正抵抗は、前記オーブン回路に流れる電流値に応じて当該補正抵抗の前記二次側の端子の電位が変動することによって、前記電圧可変型の容量素子の前記二次側の端子の電位を、前記電圧可変型の容量素子の端子間電圧を所定電圧に補正できる電位に補正する抵抗であることを特徴とする。
この発明を実施するに当たり、前記補正抵抗は、固定抵抗又は可変抵抗いずれでも良い。ただし、前記補正抵抗を可変抵抗とする方が、前記電圧可変型の容量素子の前記二次側端子の電位を、水晶発振器毎に調製できるので、好ましい。
In order to achieve this objective, the inventor of this application has conducted intensive research and has come to the conclusion that the above objective may be achieved by actively utilizing a voltage-variable capacitance element in a thermostatic oven-equipped crystal oscillator having a voltage-variable capacitance element.
Therefore, according to the crystal oscillator of the present invention, in a crystal oscillator including a constant voltage circuit, an oven circuit connected to the constant voltage circuit, an oscillation circuit connected to the constant voltage circuit and having a voltage variable type capacitance element, a vessel containing at least the oven circuit and the oscillation circuit, and a ground line connected to the oven circuit and the oscillation circuit,
a compensation resistor is provided between the ground line and a secondary side terminal which is a terminal on the ground line side of the oven circuit and the oscillation circuit,
The compensation resistor is characterized in that the potential of the secondary terminal of the voltage-variable capacitance element is compensated to a potential that can compensate the inter-terminal voltage of the voltage-variable capacitance element to a predetermined voltage by varying the potential of the secondary terminal of the compensation resistor in accordance with the value of the current flowing through the oven circuit.
In carrying out the present invention, the compensation resistor may be either a fixed resistor or a variable resistor, however, it is preferable to use a variable resistor as the compensation resistor, since the potential of the secondary terminal of the voltage variable type capacitance element can be adjusted for each crystal oscillator.

また、この出願の水晶発振器の製造方法の発明によれば、定電圧回路と、前記定電圧回路に接続されたオーブン回路と、前記定電圧回路に接続され電圧可変型の容量素子を有する発振回路と、少なくとも前記オーブン回路及び発振回路を内包している槽と、前記オーブン回路及び前記発振回路に接続されたグランドラインと、を備える水晶発振器を製造するに当たり、
当該水晶発振器の周波数温度特性を測定する工程と、
前記測定において周波数温度特性が、温度上昇に対し右肩下がりになる水晶発振器を選択する工程と
前記選択した水晶発振器の前記オーブン回路、前記電圧可変型の容量素子及び前記発振回路の前記グランドライン側の端子である二次側の端子と前記グランドラインとの間に、補正抵抗であって、前記オーブン回路に流れる電流値に応じて当該補正抵抗の前記二次側の端子の電位が変動することによって、前記電圧可変型の容量素子の前記二次側の端子の電位を、前記電圧可変型の容量素子の端子間電圧を所定電圧に補正できる電位に補正する抵抗を挿入する工程と、
を含むことを特徴とする。
According to the invention of the method for manufacturing a crystal oscillator of this application, when manufacturing a crystal oscillator including a constant voltage circuit, an oven circuit connected to the constant voltage circuit, an oscillation circuit connected to the constant voltage circuit and having a voltage variable type capacitance element, a vessel containing at least the oven circuit and the oscillation circuit, and a ground line connected to the oven circuit and the oscillation circuit,
measuring the frequency temperature characteristics of the crystal oscillator;
selecting a crystal oscillator whose frequency-temperature characteristic in the measurement shows a right-sloping trend with respect to temperature rise; inserting a compensation resistor between the oven circuit, the voltage-variable capacitance element, and a secondary terminal of the oscillation circuit, which is the terminal on the ground line side of the selected crystal oscillator, and the ground line, the compensation resistor fluctuating the potential of the secondary terminal of the compensation resistor in response to the value of the current flowing through the oven circuit, thereby compensating the potential of the secondary terminal of the voltage-variable capacitance element to a potential that can compensate the inter-terminal voltage of the voltage-variable capacitance element to a predetermined voltage;
The present invention is characterized by comprising:

この発明の水晶発振器によれば、オーブン回路に流れる電流に応じて、補正抵抗の前記二次側の端子の電位が変動する。ここで、オーブン回路の電流は、その目的上、水晶発振器がおかれる環境が低温ほど大きくなり、高温に向かうに従い小さくなる。従って、補正抵抗に流れる電流も、水晶発振器がおかれる環境が低温ほど大きく、高温に向かうに従い小さくなるので、補正抵抗の前記二次側の端子の電位、すなわち電圧可変型の容量素子の前記二次側の端子の電位は、水晶発振器がおかれる環境が低温ほど高く、高温に向かうに従い低くなる。そのため、電圧可変型の容量素子の容量が変化するので、水晶発振器の発振周波数は、上記の右肩下がりの温度特性を補正する方向に変化する。よって、右肩下がりの周波数温度特性を示していた水晶発振器を、補正抵抗を設けるという簡易な手段によって、温度に対しフラットな周波数温度特性を示す水晶発振器を実現できる。
また、この出願の水晶発振器の製造方法によれば所定の工程を実施し、かつ、その中で適正な補正抵抗を追加するので、右肩下がりの周波数温度特性を示していた水晶発振器を、温度に対しフラットな周波数温度特性を示す水晶発振器に修正できる。
According to the crystal oscillator of the present invention, the potential of the secondary terminal of the compensation resistor varies according to the current flowing through the oven circuit. Here, the current of the oven circuit, for the purpose of this invention, increases as the environment in which the crystal oscillator is placed becomes lower, and decreases as the temperature increases. Therefore, the current flowing through the compensation resistor also increases as the environment in which the crystal oscillator is placed becomes lower, and decreases as the temperature increases, so the potential of the secondary terminal of the compensation resistor, i.e., the potential of the secondary terminal of the voltage-variable capacitance element, increases as the environment in which the crystal oscillator is placed becomes lower, and decreases as the temperature increases. Therefore, the capacitance of the voltage-variable capacitance element changes, and the oscillation frequency of the crystal oscillator changes in a direction that compensates for the above-mentioned right-sloping temperature characteristic. Therefore, a crystal oscillator that previously showed a right-sloping frequency-temperature characteristic can be realized as a crystal oscillator that shows a flat frequency-temperature characteristic with respect to temperature by a simple means of providing a compensation resistor.
Furthermore, according to the manufacturing method of the crystal oscillator of this application, a predetermined process is carried out and an appropriate compensation resistor is added during the process, so that a crystal oscillator that exhibits a downward sloping frequency-temperature characteristic can be corrected to a crystal oscillator that exhibits a flat frequency-temperature characteristic with respect to temperature.

本発明の実施形態のOCXO10のブロック図。FIG. 2 is a block diagram of an OCXO 10 according to an embodiment of the present invention. バリキャップダイオードの容量値のグラフ。A graph of the capacitance value of a varicap diode. 本発明のOCXOの温度におけるオーブン回路電流のグラフ。4 is a graph of oven circuit current at temperature for an OCXO of the present invention. 本発明のOCXOの二次側の端子の電位変化のグラフ。4 is a graph showing the change in potential at the secondary terminal of the OCXO of the present invention. 本発明のOCXOのバリキャップダイオードの端子間電圧のグラフ。4 is a graph showing the voltage across the terminals of the varicap diode of the OCXO of the present invention. 本発明のOCXOのバリキャップダイオードの端子間容量のグラフ。4 is a graph showing the inter-terminal capacitance of a varicap diode of the OCXO of the present invention. 補正抵抗を設ける前後のOCXOの周波数温度特性のグラフ。13 is a graph showing the frequency temperature characteristics of an OCXO before and after a compensation resistor is provided. 従来技術のOCXO20のブロック図。FIG. 2 is a block diagram of a prior art OCXO 20. OCXOの周波数温度特性例。An example of the frequency temperature characteristics of an OCXO.

以下、図面を参照してこの発明の水晶発振器及びその製造方法の実施形態についてそれぞれ説明する。
なお、説明に用いる各図はこれらの発明を理解できる程度に概略的に示してあるにすぎない。また、説明に用いる各図において、同様な構成成分については同一の番号を付して示し、その説明を省略する場合もある。また、以下の説明で述べる形状、材質等はこの発明の範囲内の好適例に過ぎない。従って、本発明は以下の実施形態のみに限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of a crystal oscillator and a method for manufacturing the same according to the present invention will be described with reference to the drawings.
The drawings used in the description are merely schematic illustrations to the extent that these inventions can be understood. In addition, in the drawings used in the description, similar components are indicated by the same numbers, and their explanation may be omitted. Furthermore, the shapes, materials, etc. described in the following description are merely preferred examples within the scope of this invention. Therefore, the present invention is not limited to the following embodiments.

1.水晶発振器の実施形態
図1は、本発明の実施形態であるOCXO10のブロック図である。OCXO10は、定電圧回路11と、オーブン回路12と、発振回路14と、恒温槽13と、補正抵抗16と、グランドライン17と、を備えている。オーブン回路12と発振回路14は、恒温槽13内に含まれている。
1 is a block diagram of an OCXO 10 according to an embodiment of the present invention. The OCXO 10 includes a constant voltage circuit 11, an oven circuit 12, an oscillation circuit 14, a thermostatic chamber 13, a compensation resistor 16, and a ground line 17. The oven circuit 12 and the oscillation circuit 14 are included in the thermostatic chamber 13.

定電圧回路11は、外部から供給される電源電圧Vccを定電圧化し、オーブン回路12及び発振回路14へ一定電圧を供給する。 The constant voltage circuit 11 converts the power supply voltage Vcc supplied from an external source into a constant voltage and supplies the constant voltage to the oven circuit 12 and the oscillator circuit 14.

オーブン回路12は、感温素子と、発熱素子と、温度制御回路等のその他部品と、により構成されている。感温素子で恒温槽13内の温度を計測し、発熱素子により恒温槽13内の発振素子(後述する)が所定の温度で保たれるように制御している。感温素子は、例えばサーミスタや白金抵抗を用いることができる。発熱素子は、例えばパワートランジスタや抵抗を用いることができる。温度制御回路は、例えばオペアンプを用いて構成できる。 The oven circuit 12 is composed of a temperature sensor, a heating element, and other components such as a temperature control circuit. The temperature sensor measures the temperature inside the thermostatic chamber 13, and the heating element controls the oscillation element (described below) inside the thermostatic chamber 13 so that it is kept at a predetermined temperature. The temperature sensor may be, for example, a thermistor or a platinum resistor. The heating element may be, for example, a power transistor or a resistor. The temperature control circuit may be composed of, for example, an operational amplifier.

発振回路14は、電圧可変型の容量素子14aと発振素子14b、その他部品により構成されている。本発明において電圧可変型の容量素子14aは、バリキャップダイオードを用いる。発振素子14bは、例えば、水晶振動子を用いることができる。 The oscillator circuit 14 is composed of a voltage-variable capacitance element 14a, an oscillation element 14b, and other components. In the present invention, the voltage-variable capacitance element 14a is a varicap diode. The oscillation element 14b can be, for example, a quartz crystal oscillator.

また、本発明の特徴として、オーブン回路12及び発振回路14の少なくとも電圧可変型の容量素子14aのグランドライン17側の端子である二次側の端子15とグランドライン17との間に、補正抵抗16を設けてある。
補正抵抗16は、設計内容により予め検討しておいた定数のものを用いる(詳細は後述する)。補正抵抗16の二次側の端子15側の端子の電位は、オーブン回路12に流れる電流の大小に応じて変化する。これを利用して電圧可変型の容量素子14aの二次側の端子15側の電位を変動させて、電圧可変型の容量素子14aに加わる逆方向電圧を変動させることができる。右肩下がりの周波数温度特性を、補正抵抗16の電位変動を利用してフラットになるように補正する。以下、この点について具体例によって説明する。
As a feature of the present invention, a compensation resistor 16 is provided between the secondary side terminal 15, which is the terminal on the ground line 17 side of at least the voltage variable type capacitance element 14a of the oven circuit 12 and the oscillator circuit 14, and the ground line 17.
The compensation resistor 16 has a constant that is determined in advance based on the design content (details will be described later). The potential of the terminal on the secondary side 15 side of the compensation resistor 16 changes depending on the magnitude of the current flowing through the oven circuit 12. By utilizing this, the potential on the secondary side 15 side of the voltage-variable capacitance element 14a can be varied to vary the reverse voltage applied to the voltage-variable capacitance element 14a. The downward sloping frequency temperature characteristic is corrected to become flat by utilizing the potential variation of the compensation resistor 16. This point will be described below using a specific example.

実施形態のOCXO10において、電源電圧Vccを2.8V、電圧可変型の容量素子14aとしてバリキャップダイオード、補正抵抗0.1Ωを使用した場合の、本発明の作用・効果を、以下説明する。
今回使用するバリキャップダイオードの端子間電圧に対する容量変化のグラフを図2に示す。端子間電圧が大きくなると容量値が減っていくという、反比例のグラフになっている。また、この曲線の3次近似式もグラフ上に記載してある。
The operation and effect of the present invention will be described below when the power supply voltage Vcc is 2.8 V, a varicap diode is used as the voltage variable capacitance element 14a, and a compensation resistor is 0.1 Ω in the OCXO 10 of the embodiment.
Figure 2 shows the capacitance change versus terminal voltage for the varicap diode we will be using. The capacitance decreases as the terminal voltage increases, which is an inverse proportional relationship. The cubic approximation of this curve is also shown on the graph.

OCXOの中には、周波数温度特性が温度上昇に対し右肩下がりの特性を持ったものが確認されることがある。例えば、この出願に係る発明者の測定したOCXOの中には図7(A)に示す周波数温度特性を持つものがある。具体的には、横軸に温度、縦軸に周波数変動率(ppb)をとって示した図のように低温側で約16ppb程度、高温側で約-15ppb程度というように、温度上昇に対して、右肩下がりの特性を持つものがある。
一方、実施形態で示したOCXO10の場合、環境温度の変化があっても恒温槽13の内部温度(水晶振動子14bの温度)を所定温度、例えば85℃に制御する必要がある。そのため、実施形態のOCXO10の場合、恒温槽13の内部温度を一定に制御するため、環境温度の変化に対しオーブン回路12に流れる電流は、図3に示すように、低温側で600mA程度まで大きくなり、高温側で50mA程度まで小さくなるというような電流挙動を示す。なお、図3では、横軸に温度をとり、縦軸にオーブン回路に流れる電流をとって示してある。従って、本発明の特徴である補正抵抗16にも、上記したオーブン回路の電流挙動に応じた電流が流れるため、補正抵抗16の二次側の端子15側の電位は、図4に示したように、補正抵抗16の抵抗値0.1Ωと補正抵抗16に流れる電流とで決まる電位になる。すなわち、図4に示したように、低温側で0.06V程度、高温側で5mV程度まで小さくなるという電位変動を示す。なお、図4では、横軸に温度をとり、縦軸に補正抵抗16の二次側の端子15側の電位をとって示してある。
補正抵抗16で生じる上記した電位変動は、上記した右肩下がりの周波数温度特性の補正に使用できる。すなわち、補正抵抗16で生じる上記した電位変動は、バリキャップダイオード14aの二次側の端子15の電位変動となるから、この実施形態では、バリキャップダイオード14aの容量素子間に印加している2.8Vという端子間電圧の変動を生じさせる。この様子を、図5に横軸に温度を取り、縦軸にバリキャップダイオード14aの端子間電圧をとって示す。図5から、補正抵抗16を設けると、補正抵抗16での図4に示した電位変動の影響でバリキャップダイオード14aの端子間電圧は、低温側で2.74V程度、高温側で2.795V程度になり、温度に対し線形に変化することが分かる。
この図5に示したバリキャップダイオード14aの端子間電圧の変動は、そのままバリキャップダイオード14aの端子間容量を変動させる。この容量変動を、図6に、横軸に温度をとり、縦軸にバリキャップダイオード14aの端子間容量をとって示す。図6から、補正抵抗16を設けると、補正抵抗16での図5に示した電位変動の影響でバリキャップダイオード14aの端子間容量は、低温側で7.6pF程度、高温側で7.45pF程度になり、温度に対し線形に変化することが分かる。
バリキャップダイオード14aの端子間容量の、図6のような変動は、発振回路14の負荷容量変動に相当するので、発振回路14から出力される周波数は、変動する。
Some OCXOs have a frequency-temperature characteristic that declines with increasing temperature. For example, some OCXOs measured by the inventor of this application have the frequency-temperature characteristic shown in FIG. 7A. Specifically, as shown in the figure with temperature on the horizontal axis and frequency fluctuation rate (ppb) on the vertical axis, some OCXOs have a frequency-temperature characteristic that declines with increasing temperature, with a frequency fluctuation rate of about 16 ppb on the low temperature side and about -15 ppb on the high temperature side.
On the other hand, in the case of the OCXO 10 shown in the embodiment, even if the environmental temperature changes, it is necessary to control the internal temperature of the thermostatic chamber 13 (the temperature of the crystal unit 14b) to a predetermined temperature, for example, 85° C. For this reason, in the case of the OCXO 10 of the embodiment, in order to control the internal temperature of the thermostatic chamber 13 to be constant, the current flowing through the oven circuit 12 with respect to the change in the environmental temperature exhibits a current behavior in which, as shown in FIG. 3, the current increases to about 600 mA on the low temperature side and decreases to about 50 mA on the high temperature side. In FIG. 3, the horizontal axis represents temperature and the vertical axis represents the current flowing through the oven circuit. Therefore, since a current according to the current behavior of the oven circuit described above also flows through the compensation resistor 16, which is a feature of the present invention, the potential on the secondary side terminal 15 side of the compensation resistor 16 becomes a potential determined by the resistance value 0.1Ω of the compensation resistor 16 and the current flowing through the compensation resistor 16, as shown in FIG. 4. That is, as shown in FIG. 4, the potential fluctuation is about 0.06 V on the low temperature side and decreases to about 5 mV on the high temperature side. In FIG. 4, the horizontal axis represents temperature, and the vertical axis represents the potential on the secondary terminal 15 side of the compensation resistor 16 .
The above-mentioned potential fluctuation occurring in the compensation resistor 16 can be used to compensate for the above-mentioned downward sloping frequency temperature characteristic. That is, the above-mentioned potential fluctuation occurring in the compensation resistor 16 becomes a potential fluctuation at the terminal 15 on the secondary side of the varicap diode 14a, and in this embodiment, it causes a fluctuation in the terminal voltage of 2.8 V applied between the capacitance elements of the varicap diode 14a. This state is shown in Fig. 5, with the horizontal axis representing temperature and the vertical axis representing the terminal voltage of the varicap diode 14a. From Fig. 5, it can be seen that when the compensation resistor 16 is provided, the terminal voltage of the varicap diode 14a changes linearly with temperature due to the influence of the potential fluctuation at the compensation resistor 16 shown in Fig. 4, becoming approximately 2.74 V on the low temperature side and approximately 2.795 V on the high temperature side.
The variation in the terminal voltage of the varicap diode 14a shown in Fig. 5 directly varies the terminal capacitance of the varicap diode 14a. This variation in capacitance is shown in Fig. 6, with temperature on the horizontal axis and the terminal capacitance of the varicap diode 14a on the vertical axis. It can be seen from Fig. 6 that when the compensation resistor 16 is provided, the terminal capacitance of the varicap diode 14a varies linearly with temperature due to the influence of the potential variation at the compensation resistor 16 shown in Fig. 5, becoming approximately 7.6 pF on the low temperature side and approximately 7.45 pF on the high temperature side.
The variation in the capacitance between the terminals of the varicap diode 14a as shown in FIG. 6 corresponds to the variation in the load capacitance of the oscillator circuit 14, so that the frequency output from the oscillator circuit 14 varies.

補正抵抗16を設けたことで生じた、図4~図6で示した二次側の端子15の電位、バリキャップダイオード14aの端子間電圧及びバリキャップダイオード14aの端子間容量の変化により、図7(A)に示す温度上昇に対し右肩下がりの周波数温度特性を、図7(B)に示すような、温度に対しほぼフラットな周波数温度特性へ補正することができる。
これに対し、補正抵抗16を設けていない図8に示した従来のOCXO20の場合は、そもそも補正抵抗16起因の電位変動は生じないので、バリキャップダイオード14aの端子間電圧を変動させることができないから、周波数温度特性を補正できない。
The provision of the compensation resistor 16 causes changes in the potential of the secondary side terminal 15, the terminal voltage of the varicap diode 14a, and the terminal capacitance of the varicap diode 14a shown in FIGS. 4 to 6, making it possible to compensate the frequency-temperature characteristic that declines to the right with increasing temperature shown in FIG. 7(A) into a nearly flat frequency-temperature characteristic with respect to temperature as shown in FIG. 7(B).
In contrast, in the case of the conventional OCXO 20 shown in FIG. 8 which does not include the correction resistor 16, potential fluctuations due to the correction resistor 16 do not occur in the first place, so the voltage between the terminals of the varicap diode 14a cannot be varied, and therefore the frequency-temperature characteristics cannot be corrected.

2.水晶発振器の製造方法
封止前の状態の水晶発振器を複数準備し、水晶発振器の周波数温度特性、必要に応じて位相雑音特性や短期周波数安定度等の、特性を検査する。特性の検査後、水晶発振器の仕様を各特性が満たしているか確認をする。その中で、周波数温度特性において、高温側で右肩下がりになり、仕様を満たしていない水晶発振器を選択する。選択した水晶発振器の周波数温度特性と仕様とのズレから、そのズレを補正するための補正抵抗16(図1参照)の定数を検討する。検討した抵抗の定数の補正抵抗16を、二次側の端子15とグランドライン17の間に挿入する。補正抵抗16を挿入後、再度、周波数温度特性を測定し、発振器の仕様の温度内において、周波数温度特性がほぼフラットな状態に補正されているのを確認する。次に、抵抗溶接をして封止をする。
2. Manufacturing method of crystal oscillators A number of crystal oscillators before sealing are prepared, and the characteristics of the crystal oscillators, such as the frequency temperature characteristic, and, if necessary, the phase noise characteristic and short-term frequency stability, are inspected. After the characteristic inspection, it is confirmed whether each characteristic meets the specifications of the crystal oscillator. Among them, crystal oscillators whose frequency temperature characteristic shows a right-leaning trend at high temperatures and does not meet the specifications are selected. From the deviation between the frequency temperature characteristic of the selected crystal oscillator and the specifications, the constant of the compensation resistor 16 (see FIG. 1) to correct the deviation is considered. The compensation resistor 16 with the considered resistance constant is inserted between the secondary terminal 15 and the ground line 17. After inserting the compensation resistor 16, the frequency temperature characteristic is measured again, and it is confirmed that the frequency temperature characteristic has been corrected to an almost flat state within the temperature range of the oscillator specifications. Next, the oscillator is resistance-welded and sealed.

補正抵抗16は、可変抵抗としてもよい。可変抵抗の場合、補正抵抗16を挿入後、周波数温度特性を測定した時に、予想通りの補正がなされていなければ、再度抵抗値を調整し、補正を実施し、温度に対しフラットな周波数温度特性を得ることができる。 The compensation resistor 16 may be a variable resistor. In the case of a variable resistor, if the compensation resistor 16 is inserted and the frequency-temperature characteristic is measured and the compensation is not as expected, the resistance value is adjusted again and compensation is performed, so that a flat frequency-temperature characteristic with respect to temperature can be obtained.

ppbオーダーの周波数温度特性が要求されるOCXOにおいて、補正抵抗を設けるという簡易な手段により、温度に対しフラットな周波数温度特性を持つ水晶発振器を製造することができる。また、仕様とのズレは水晶発振器個々で異なるため、1つ1つの水晶発振器に合わせた補正が可能な水晶発振器を製造することができる。 In OCXOs, which require frequency-temperature characteristics on the order of ppb, it is possible to manufacture crystal oscillators with flat frequency-temperature characteristics over temperature by the simple measure of providing a compensation resistor. In addition, since the deviation from the specifications differs for each crystal oscillator, it is possible to manufacture crystal oscillators that can be compensated for to suit each individual crystal oscillator.

10:本発明のOCXO 20:従来技術のOCXO
11:定電圧回路 12:オーブン回路
13:恒温槽 14:発振回路
14a:電圧可変型の容量素子 14b:発振素子
15:二次側の端子 16:補正抵抗
17:グランドライン





10: OCXO of the present invention 20: Prior art OCXO
11: constant voltage circuit 12: oven circuit 13: thermostatic chamber 14: oscillation circuit 14a: voltage variable capacitance element 14b: oscillation element 15: secondary side terminal 16: compensation resistor 17: ground line





Claims (3)

定電圧回路と、前記定電圧回路に接続されたオーブン回路と、前記定電圧回路に接続され電圧可変型の容量素子を有する発振回路と、少なくとも前記オーブン回路及び発振回路を内包している槽と、前記オーブン回路及び前記発振回路に接続されたグランドラインと、を備える水晶発振器において、
前記オーブン回路及び前記発振回路の前記グランドライン側の端子である二次側の端子と、前記グランドラインとの間に補正抵抗を備え、
前記補正抵抗は、
前記オーブン回路に流れる電流値に応じて当該補正抵抗の前記二次側の端子の電位が変動することによって、前記電圧可変型の容量素子の前記二次側の端子の電位を、前記電圧可変型の容量素子の端子間電圧を所定電圧に補正できる電位に補正する抵抗であること
を特徴とする水晶発振器。
A crystal oscillator comprising: a constant voltage circuit; an oven circuit connected to the constant voltage circuit; an oscillation circuit connected to the constant voltage circuit and having a voltage variable type capacitance element; a vessel containing at least the oven circuit and the oscillation circuit; and a ground line connected to the oven circuit and the oscillation circuit,
a compensation resistor is provided between the ground line and a secondary side terminal which is a terminal on the ground line side of the oven circuit and the oscillation circuit,
The compensation resistor is
A crystal oscillator comprising: a resistor that corrects the potential of the secondary terminal of the voltage-variable capacitance element to a potential that can correct the inter-terminal voltage of the voltage-variable capacitance element to a predetermined voltage by fluctuating the potential of the secondary terminal of the compensation resistor in accordance with the value of the current flowing through the oven circuit.
前記補正抵抗は、可変抵抗であることを特徴とする請求項1に記載の水晶発振器。 The crystal oscillator according to claim 1, characterized in that the compensation resistor is a variable resistor. 定電圧回路と、前記定電圧回路に接続されたオーブン回路と、前記定電圧回路に接続され電圧可変型の容量素子を有する発振回路と、少なくとも前記オーブン回路及び発振回路を内包している槽と、前記オーブン回路及び前記発振回路に接続されたグランドラインと、を備える水晶発振器を製造するに当たり、
当該水晶発振器の周波数温度特性を測定する工程と、
前記測定において周波数温度特性が、温度上昇に対し右肩下がりになる水晶発振器を選択する工程と、
前記選択した水晶発振器の前記オーブン回路、前記電圧可変型の容量素子及び前記発振回路の前記グランドライン側の端子である二次側の端子と前記グランドラインとの間に、補正抵抗であって、前記オーブン回路に流れる電流値に応じて当該補正抵抗の前記二次側の端子の電位が変動することによって、前記電圧可変型の容量素子の前記二次側の端子の電位を、前記電圧可変型の容量素子の端子間電圧を所定電圧に補正できる電位に補正する抵抗を挿入する工程と、
を含むことを特徴とする水晶発振器の製造方法。
In manufacturing a crystal oscillator including a constant voltage circuit, an oven circuit connected to the constant voltage circuit, an oscillation circuit connected to the constant voltage circuit and having a voltage variable type capacitance element, a vessel containing at least the oven circuit and the oscillation circuit, and a ground line connected to the oven circuit and the oscillation circuit,
measuring the frequency temperature characteristics of the crystal oscillator;
selecting a crystal oscillator whose frequency-temperature characteristic shows a right-sloping slope with respect to an increase in temperature in the measurement;
a step of inserting a compensation resistor between a secondary terminal, which is a terminal on the ground line side of the oven circuit, the voltage variable capacitance element, and the oscillation circuit of the selected crystal oscillator, and the ground line, the compensation resistor varying a potential of the secondary terminal of the voltage variable capacitance element in response to a current value flowing through the oven circuit, thereby compensating the potential of the secondary terminal of the voltage variable capacitance element to a potential that can compensate the inter-terminal voltage of the voltage variable capacitance element to a predetermined voltage;
A method for manufacturing a crystal oscillator comprising the steps of:
JP2022197655A 2022-12-12 2022-12-12 Crystal Oscillator Pending JP2024083702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022197655A JP2024083702A (en) 2022-12-12 2022-12-12 Crystal Oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022197655A JP2024083702A (en) 2022-12-12 2022-12-12 Crystal Oscillator

Publications (1)

Publication Number Publication Date
JP2024083702A true JP2024083702A (en) 2024-06-24

Family

ID=91586343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022197655A Pending JP2024083702A (en) 2022-12-12 2022-12-12 Crystal Oscillator

Country Status (1)

Country Link
JP (1) JP2024083702A (en)

Similar Documents

Publication Publication Date Title
JP4738409B2 (en) Temperature compensated thermostatic chamber controlled crystal oscillator
US7482889B2 (en) Apparatus and method of temperature compensating an ovenized oscillator
EP2062361B1 (en) Apparatus and method for temperature compensation of crystal oscillators
US8653420B2 (en) Temperature control circuit of oven controlled crystal oscillator
JP2003309432A (en) Highly stable piezoelectric oscillator
JP6060011B2 (en) Oscillator
JP2024083702A (en) Crystal Oscillator
CA2369434C (en) Crystal oscillator and a signal oscillation method thereof
US20120146738A1 (en) Piezoelectric oscillator
JP2005117093A (en) Temperature control circuit and high stability crystal oscillator employing the same
CN114826252A (en) Temperature control circuit for constant temperature crystal oscillator and constant temperature crystal oscillator
US9256235B2 (en) Temperature control circuit and oven controlled crystal oscillator
JP2002135051A (en) Piezoelectric oscillator
JP2009182881A (en) Temperature compensated crystal oscillator
JP2009246648A (en) Adjusting method of temperature compensated piezoelectric oscillator and temperature compensated piezoelectric oscillator adjusted with the same method
JP2011198209A (en) Temperature control circuit, and constant-temperature piezoelectric oscillator
JP2021122094A (en) Constant temperature bath type crystal oscillator
JPH1141032A (en) Temperature controller for crystal oscillator
CN115800958A (en) Relaxation oscillator circuit
JP2019176217A (en) Crystal-controlled oscillator with constant temperature bath
JP2005236798A (en) Temperature compensated piezoelectric rezonator
CN116719368A (en) Constant temperature point temperature compensation device, method and equipment of precise temperature control circuit
JPH03113902A (en) Temperature compensation type crystal oscillator
JP2010062747A (en) Temperature compensation-type wide-range variable voltage controlled oscillation circuit
JP2010171576A (en) Temperature-compensated oscillation circuit