JP2024081072A - Battery holder - Google Patents

Battery holder Download PDF

Info

Publication number
JP2024081072A
JP2024081072A JP2022194524A JP2022194524A JP2024081072A JP 2024081072 A JP2024081072 A JP 2024081072A JP 2022194524 A JP2022194524 A JP 2022194524A JP 2022194524 A JP2022194524 A JP 2022194524A JP 2024081072 A JP2024081072 A JP 2024081072A
Authority
JP
Japan
Prior art keywords
battery
battery holder
resin
foam
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022194524A
Other languages
Japanese (ja)
Inventor
辰昌 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2022194524A priority Critical patent/JP2024081072A/en
Priority to CN202311628913.3A priority patent/CN118156705A/en
Priority to DE102023133873.0A priority patent/DE102023133873A1/en
Publication of JP2024081072A publication Critical patent/JP2024081072A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/236Hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/278Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2471/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2471/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

【課題】本発明の目的は、外部からの衝撃から電池を保護する耐衝撃性を備え、電池間の短絡を防止できる、電池ホルダーを提供することにある。【解決手段】本発明の電池ホルダーは、複数の円筒型の電池を収納するための電池ホルダーであって、樹脂を含む原料からなり、前記円筒型の電池の側面の少なくとも一部が前記電池ホルダーで囲まれており、前記円筒型の電池の側面の全面積100%に対する、前記電池ホルダーに囲まれている前記側面の面積の割合R1が10%以上である、ことを特徴としている。【選択図】図1[Problem] The object of the present invention is to provide a battery holder that has impact resistance to protect the batteries from external shocks and prevents short circuits between batteries. [Solution] The battery holder of the present invention is for storing multiple cylindrical batteries, and is characterized in that it is made from a material that contains resin, at least a portion of the side surface of the cylindrical batteries is surrounded by the battery holder, and the ratio R1 of the area of the side surface surrounded by the battery holder to the total area of the cylindrical battery's side surface (100%) is 10% or greater. [Selected Figure] Figure 1

Description

本発明は、電池ホルダーに関する。 The present invention relates to a battery holder.

自動車の動力源等に二次電池が用いられることがある。二次電池は複数の電池を一つのモジュール内に搭載し、一つのパックとして使用されることがある。
複数の電池を一つのモジュール搭載する際、電池ホルダーが使用される。電池ホルダーは、電池製造時の搬送時及び組み立て時のトレイとしても使用でき、電池製造時の補助用品から電池パック中の一部品まで、幅広く使用される。
Secondary batteries are sometimes used as a power source for automobiles, etc. A secondary battery may be used as a pack by mounting multiple batteries in a single module.
Battery holders are used when mounting multiple batteries in a single module. Battery holders can also be used as trays for transporting and assembling batteries during battery manufacturing, and are used widely from auxiliary items during battery manufacturing to parts in battery packs.

電池ホルダーとしては、例えば、特許文献1に記載のものが知られている。 An example of a battery holder is described in Patent Document 1.

特開2005-197192号公報JP 2005-197192 A

リチウムイオン電池等の二次電池は、短絡等による火災のリスクが高い。特許文献1に記載の電池ホルダーは、樹脂からなるものではなく、絶縁性が十分ではなかった。また、電池ホルダーは、電池を保護するための耐衝撃性が一層求められている。 Secondary batteries such as lithium-ion batteries have a high risk of fire due to short circuits, etc. The battery holder described in Patent Document 1 is not made of resin and does not have sufficient insulation properties. In addition, battery holders are required to have even greater impact resistance to protect the batteries.

従って、本発明の目的は、外部からの衝撃から電池を保護する耐衝撃性を備え、電池間の短絡を防止できる、電池ホルダーを提供することにある。 Therefore, the object of the present invention is to provide a battery holder that is shock-resistant to protect the battery from external shocks and prevents short circuits between batteries.

すなわち、本発明は以下の通りである。
[1]
複数の円筒型の電池を収納するための電池ホルダーであって、
樹脂を含む原料からなり、
前記円筒型の電池の側面の少なくとも一部が前記電池ホルダーで囲まれており、前記円筒型の電池の側面の全面積100%に対する、前記電池ホルダーに囲まれている前記側面の面積の割合R1が10%以上である、
ことを特徴とする電池ホルダー。
[2]
前記電池ホルダーの前記円筒型の電池を収納する部分の形状が、前記円筒型の電池の側面の形状と略相似形である、[1]に記載の電池ホルダー。
[3]
前記円筒型の電池の側面の全面積100%に対する、前記側面と前記電池ホルダーとが接触する部分の面積の割合R2が10%以上である、[1]又は[2]に記載の電池ホルダー。
[4]
圧縮強度SSカーブから算出される面積1mmあたりのひずみ比率0~0.75の範囲における圧縮強度の積分値J75が0.1~50N/mmである、[1]~[3]のいずれかに記載の電池ホルダー。
[5]
複数の円筒形の前記電池を収納した電池ホルダーを、前記電池を収納する方向に対して垂直方向である落下方向に落下させる試験において、下記の式(1)の関係を満たす、[1]~[4]のいずれかに記載の電池ホルダー。
J5×A1×d1/1000<W×g×h<J75×A1×d1/1000 ・・・(1)
(上記式(1)において、J5は圧縮強度SSカーブから算出される面積1mmあたりのひずみ比率0~0.05の範囲における電池ホルダーの圧縮強度の積分値(N/mm)、J75は圧縮強度SSカーブから算出される面積1mmあたりのひずみ比率0~0.75の範囲における電池ホルダーの圧縮強度の積分値(N/mm)、A1は「(落下方向に最も鉛直下側に位置する電池を落下方向に光投影したときの該電池の投影面積)×(該電池の側面の全面積100%に対する電池ホルダーに囲まれている前記側面の面積割合R1)/100」(mm)、d1は落下方向に最も鉛直下側に位置する電池から電池ホルダー端部までの落下方向の距離(mm)、Wは落下方向に最も鉛直下側に位置する電池の落下方向に垂直な断面のうち最も大きな面積となる最大断面で電池ホルダーを落下方向に切り取った範囲に含まれる電池の総重量(kg)、gは重力加速度(m/s)、hは落下高さ(m)、を表す)
[6]
前記電池ホルダーの電池を収納する部分間の最薄部の厚みが0mm超10mm以下である、[1]~[5]のいずれかに記載の電池ホルダー。
[7]
前記電池ホルダーの難燃性がV-2以上である、[1]~[6]のいずれかに記載の電池ホルダー。
[8]
前記電池ホルダーの荷重たわみ温度が90℃以上である、[1]~[7]のいずれかに記載の電池ホルダー。
[9]
発泡体からなる、[1]~[8]のいずれかに記載の電池ホルダー。
[10]
ビーズ発泡体からなる、[1]~[9]のいずれかに記載の電池ホルダー。
[11]
更に、少なくとも1つの電池を収納する部分の上端面及び/又は下端面の少なくとも一部を囲む蓋を含み、
前記蓋が樹脂を含む発泡体である、[1]~[10]のいずれかに記載の電池ホルダー。
[12]
前記発泡体がビーズ発泡体である、[11]に記載の電池ホルダー。
[13]
前記蓋の圧縮強度SSカーブから算出される面積1mmあたりのひずみ比率0~0.75の範囲における圧縮強度の積分値J75が0.1~50N/mmである、[11]に記載の電池ホルダー。
[14]
前記蓋の厚みが0mm超5mm以下である、[11]に記載の電池ホルダー。
That is, the present invention is as follows.
[1]
1. A battery holder for storing a plurality of cylindrical batteries, comprising:
Made from raw materials including resin,
at least a portion of the side surface of the cylindrical battery is surrounded by the battery holder, and a ratio R1 of the area of the side surface surrounded by the battery holder to the total area of the cylindrical battery's side surface (100%) is 10% or greater;
A battery holder characterized by:
[2]
The battery holder according to [1], wherein the shape of the portion of the battery holder that houses the cylindrical battery is approximately similar to the shape of the side surface of the cylindrical battery.
[3]
The battery holder according to [1] or [2], wherein the ratio R2 of the area of the portion where the cylindrical battery contacts the side surface with the battery holder to the total area (100%) of the side surface of the cylindrical battery is 10% or greater.
[4]
The battery holder according to any one of [1] to [3], wherein the integral value J75 of the compressive strength within a strain ratio range of 0 to 0.75 per mm2 area calculated from the compressive strength SS curve is 0.1 to 50 N/ mm2 .
[5]
The battery holder according to any of [1] to [4], wherein the battery holder satisfies the relationship of formula (1) below in a test in which a battery holder housing a multiple cylindrical batteries is dropped in a direction perpendicular to the direction in which the batteries are housed:
J5×A1×d1/1000<W×g×h<J75×A1×d1/1000 ・・・(1)
(In the above formula (1), J5 is the integral value (N/mm 2 ) of the compressive strength of the battery holder when the strain ratio per mm 2 ranges from 0 to 0.05 as calculated from the compressive strength SS curve; J75 is the integral value (N/mm 2 ) of the compressive strength of the battery holder when the strain ratio per mm 2 ranges from 0 to 0.75 as calculated from the compressive strength SS curve; A1 is "(projected area of the battery when the battery located at the lowest point in the vertical direction is projected with light in the direction of fall) x (ratio of the area of the side surface of the battery surrounded by the battery holder to 100% of the total area of the side surfaces of the battery R1)/100" (mm 2 ); d1 is the distance in the direction of fall from the battery located at the lowest point in the vertical direction to the end of the battery holder (mm); W is the total weight (kg) of batteries included in the area obtained by cutting the battery holder in the direction of fall at the largest cross section that has the largest area among the cross sections perpendicular to the fall direction of the battery located at the lowest point in the vertical direction; g is the acceleration of gravity (m/s 2 ); and h is the fall height (m).)
[6]
The battery holder according to any one of [1] to [5], wherein the thickness of the thinnest part between the portions that house the batteries in the battery holder is greater than 0 mm and not greater than 10 mm.
[7]
The battery holder according to any one of [1] to [6], wherein the flame retardancy of the battery holder is V-2 or higher.
[8]
The battery holder according to any one of [1] to [7], wherein the battery holder has a deflection temperature under load of 90° C. or higher.
[9]
The battery holder according to any one of [1] to [8], which is made of a foam.
[10]
The battery holder according to any one of [1] to [9], which is made of a bead foam.
[11]
Further, the battery case includes a cover that surrounds at least a portion of an upper end surface and/or a lower end surface of the portion that houses the at least one battery,
The battery holder according to any one of [1] to [10], wherein the lid is made of a foam containing resin.
[12]
The battery holder according to [11], wherein the foam is a bead foam.
[13]
The battery holder according to [11], wherein the lid has an integral value J75 of compressive strength within a strain ratio range of 0 to 0.75 per mm2 area calculated from a compressive strength SS curve of 0.1 to 50 N/ mm2 .
[14]
The battery holder according to [11], wherein the thickness of the lid is greater than 0 mm and not greater than 5 mm.

本発明の電池ホルダーは、上記構成を有するため、外部からの衝撃から電池を保護できる耐衝撃性を備え、電池間の短絡を防止できる。 The battery holder of the present invention has the above-mentioned configuration, and therefore has impact resistance that can protect the battery from external impacts and can prevent short circuits between batteries.

本実施形態の電池ホルダーの一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of a battery holder according to the present embodiment. (A)は電池ホルダーの上面及び底面に蓋を付けた場合の電池ホルダーの斜視図である。(B)は収納部に電池が収納された、上蓋を除いた電池ホルダーの斜視図である。(C)は、上蓋つきの電池ホルダーを(B)のX-Xで切断した断面図である。(A) is a perspective view of the battery holder with covers attached to the top and bottom, (B) is a perspective view of the battery holder without the top cover and with a battery stored in the storage compartment, and (C) is a cross-sectional view of the battery holder with the top cover taken along line X-X in (B). (A)は収納する電池の模式図である。(B)は実施例の落下試験を説明する図である。1A is a schematic diagram of a battery to be housed, and FIG. 1B is a diagram for explaining a drop test of an embodiment. 図3(B)と落下方向が異なる落下試験を説明する図である。FIG. 4 is a diagram illustrating a drop test in which the drop direction is different from that in FIG. 圧縮強度SSカーブ、及び圧縮強度SSカーブから圧縮強度の積分値J5及びJ75を算出する説明図である。FIG. 11 is an explanatory diagram showing a compressive strength SS curve and calculation of compressive strength integral values J5 and J75 from the compressive strength SS curve. 実施例1で作製した電池ホルダーの斜視図である。FIG. 2 is a perspective view of the battery holder produced in Example 1. 実施例2で作製した電池ホルダーの斜視図である。FIG. 11 is a perspective view of the battery holder produced in Example 2. 実施例3等で作製した電池ホルダーの斜視図である。FIG. 13 is a perspective view of the battery holder produced in Example 3 etc. 実施例4で作製した電池ホルダーの斜視図である。FIG. 11 is a perspective view of the battery holder produced in Example 4. 実施例5で作製した電池ホルダーの斜視図である。FIG. 13 is a perspective view of the battery holder produced in Example 5. 実施例6で作製した電池ホルダーの斜視図である。FIG. 13 is a perspective view of the battery holder produced in Example 6. 実施例7で作製した電池ホルダーの斜視図である。FIG. 13 is a perspective view of the battery holder produced in Example 7. 実施例8で作製した電池ホルダーの斜視図である。FIG. 13 is a perspective view of the battery holder produced in Example 8. 実施例9で作製した電池ホルダーの斜視図である。FIG. 13 is a perspective view of the battery holder produced in Example 9. 実施例10で作製した電池ホルダーの斜視図である。FIG. 13 is a perspective view of the battery holder produced in Example 10. 実施例11で作製した電池ホルダーの斜視図である。FIG. 13 is a perspective view of the battery holder produced in Example 11. 実施例14等で作製した電池ホルダーの斜視図である。FIG. 13 is a perspective view of the battery holder produced in Example 14, etc. 比較例1等で作製した電池ホルダーの斜視図である。FIG. 2 is a perspective view of the battery holder produced in Comparative Example 1 etc.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。本発明は、以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。 The following describes in detail the form for carrying out the present invention (hereinafter referred to as the "present embodiment"). The present invention is not limited to the following description, and can be carried out in various modifications within the scope of the gist of the invention.

〔電池ホルダー〕
本実施形態の電池ホルダーは、複数の円筒型の電池を収納するための電池ホルダーであって、樹脂を含む原料からなり、上記円筒型の電池の側面の少なくとも一部が上記電池ホルダーで囲まれており、上記円筒型の電池の側面の全面積100%に対する、上記電池ホルダーに囲まれている上記側面の面積の割合R1が10%以上である。上記割合R1は20%以上であることが好ましい。
上記円筒型の電池を収納する部分である収納部のうち、少なくとも一つの収納部で上記割合R1を満たしていてもよいし、全ての収納部で上記割合R1を満たしていてもよい。
[Battery holder]
The battery holder of this embodiment is a battery holder for storing multiple cylindrical batteries, is made of a material containing resin, at least a portion of the side surface of the cylindrical batteries is surrounded by the battery holder, and the ratio R1 of the area of the side surface surrounded by the battery holder to the total area of the cylindrical battery side surface (100%) is 10% or greater. It is preferable that ratio R1 be 20% or greater.
Of the storage sections which are portions for storing the cylindrical batteries, at least one storage section may satisfy the ratio R1, or all storage sections may satisfy the ratio R1.

上記電池ホルダーは、円筒型の電池の側面の少なくとも一部を囲む収納部を含む「本体」と、上記収納部の上面(天面、上端面)及び/又は下面(底面、下端面)の少なくとも一部を囲む「蓋」とを有していてよい。上記電池ホルダーは、本体のみであってもよいし、本体と蓋とからなっていてもよい。また、本体、蓋以外の他の部材を含んでいてもよい。
上記本体は一つの部材からなっていてもよいし、複数の部材からなっていてもよい。
上記本体と上記蓋とは、連結していてもよいし独立していてもよい。
なお、本明細書において、側面とは円筒型を展開したときの長方形状に相当する面をいい、上面及び下面は円筒型を展開したときの円形状に相当する面をいう。
The battery holder may have a "main body" including a storage section that surrounds at least a portion of the side surface of a cylindrical battery, and a "lid" that surrounds at least a portion of the upper surface (top surface, upper end surface) and/or lower surface (bottom surface, lower end surface) of the storage section. The battery holder may consist of only the main body, or may consist of the main body and the lid. It may also include other members in addition to the main body and the lid.
The body may be made of one member or may be made of multiple members.
The body and the lid may be connected or independent.
In this specification, the side surface refers to the surface that corresponds to a rectangle when the cylinder is unfolded, and the top surface and bottom surface refer to the surfaces that correspond to a circle when the cylinder is unfolded.

上記電池ホルダーに、円筒型の複数の電池は同じ方向に収納されることが好ましい。例えば、電池を収納する方向(すなわち、上記収納部の深さ方向)は、円筒型の電池の高さ方向としてよい(図1)。また、電池を収納する方向は、電池ホルダーの本体が略直方体である場合、厚さ方向としてよい(図1)。 It is preferable that the multiple cylindrical batteries are stored in the same direction in the battery holder. For example, the direction in which the batteries are stored (i.e., the depth direction of the storage section) may be the height direction of the cylindrical batteries (Figure 1). Also, if the main body of the battery holder is a roughly rectangular parallelepiped, the direction in which the batteries are stored may be the thickness direction (Figure 1).

<本体>
上記本体は、上記原料からなることが好ましく、上記原料からなる発泡体を含むことがより好ましい。上記本体は、上記原料のみからなる上記発泡体のみからなることが好ましい。
<Main unit>
The main body is preferably made of the raw material, more preferably includes a foam made of the raw material, and is preferably made of only the foam made of the raw material.

(原料)
上記原料は、樹脂を含み、さらに他の成分を含んでいてもよい。
(material)
The raw material includes a resin and may further include other components.

-樹脂-
上記樹脂は、結晶性樹脂であってもよいし、非晶性樹脂であってもよいし、これらの混合物であってもよい。また、上記樹脂は、一種を単独で用いてもよいし、複数種の混合物であってもよい。
-resin-
The resin may be a crystalline resin, an amorphous resin, or a mixture thereof. The resin may be used alone or in the form of a mixture of two or more kinds.

--非晶性樹脂--
上記非晶性樹脂としては、非晶性を有する樹脂であれば特に限定されず、例えば、ポリフェニレンエーテル(PPE)樹脂、ポリフェニレンエーテル樹脂/ポリスチレン樹脂アロイ、ポリフェニレンエーテル樹脂/ハイインパクト-ポリスチレン樹脂アロイ、ポリフェニレンエーテル樹脂/ポリスチレン樹脂/ハイインパクト-ポリスチレン樹脂アロイ、ポリフェニレンエーテル樹脂/ポリプロピレン樹脂アロイ等のポリフェニレンエーテル(PPE)系樹脂;ポリスチレン樹脂、ゴム補強のポリスチレン樹脂(ハイインパクト-ポリスチレン樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)等のポリスチレン系樹脂;ポリカーボネート樹脂、ポリカーボネート樹脂/ABS樹脂アロイ、ポリカーボネート樹脂/ポリブチレンテレフタレート樹脂アロイ等のポリカーボネート系樹脂;ポリ塩化ビニル;アクリル系樹脂;ポリメチルメタクリレート;ポリエーテルスルホン、ポリエーテルイミド;ポリアミドイミド;等が挙げられる。
中でも、耐熱性、寸法安定性、成形容易性の観点から、ポリフェニレンエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂であることが好ましく、より好ましくはポリフェニレンエーテル系樹脂、ポリスチレン系樹脂である。
--Amorphous resin--
The amorphous resin is not particularly limited as long as it is a resin having amorphous properties, and examples thereof include polyphenylene ether (PPE)-based resins such as polyphenylene ether (PPE) resin, polyphenylene ether resin/polystyrene resin alloy, polyphenylene ether resin/high impact polystyrene resin alloy, polyphenylene ether resin/polystyrene resin/high impact polystyrene resin alloy, and polyphenylene ether resin/polypropylene resin alloy; polystyrene resins such as polystyrene resin, rubber-reinforced polystyrene resin (high impact polystyrene resin), and acrylonitrile-butadiene-styrene copolymer (ABS resin); polycarbonate resins such as polycarbonate resin, polycarbonate resin/ABS resin alloy, and polycarbonate resin/polybutylene terephthalate resin alloy; polyvinyl chloride; acrylic resins; polymethyl methacrylate; polyethersulfone, polyetherimide; polyamideimide; and the like.
Among these, from the viewpoints of heat resistance, dimensional stability, and ease of molding, polyphenylene ether resins, polystyrene resins, acrylic resins, and polycarbonate resins are preferred, and polyphenylene ether resins and polystyrene resins are more preferred.

ポリフェニレンエーテル系樹脂としては、例えば、上述のように、ポリフェニレンエーテル樹脂、ポリフェニレンエーテル樹脂/ポリスチレン樹脂アロイ、ポリフェニレンエーテル樹脂/ハイインパクト-ポリスチレン樹脂アロイ、又はポリフェニレンエーテル樹脂/ポリスチレン樹脂/ハイインパクト-ポリスチレン樹脂アロイ等が挙げられる。例えば、上記アロイは、ポリフェニレンエーテル樹脂を50質量%超含んでいてよい。
これらは一種単独で用いても、二種以上を組み合わせて用いてもよい。
As the polyphenylene ether-based resin, for example, as described above, there can be mentioned polyphenylene ether resin, polyphenylene ether resin/polystyrene resin alloy, polyphenylene ether resin/high impact polystyrene resin alloy, polyphenylene ether resin/polystyrene resin/high impact polystyrene resin alloy, etc. For example, the alloy may contain more than 50 mass% of polyphenylene ether resin.
These may be used alone or in combination of two or more.

ポリフェニレンエーテル系樹脂のポリフェニレンエーテル樹脂は、下記式(I)で表される繰り返し単位(構造ユニット)を含む重合体をいい、例えば、下記式(I)で表される繰り返し単位のみからなる単独重合体、下記一般式(I)で表される繰り返し単位を含む共重合体等が挙げられる。上記共重合体とは、下記式(I)で表される繰り返し単位を主たる繰返し単位とする共重合体(例えば、共重合体100質量%に対して、下記式(I)で表される繰り返し単位の質量割合が50質量%超(好ましくは70質量%以上)である共重合体)である。上記ポリフェニレンエーテル樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。

Figure 2024081072000002
一般式(I)中、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、アルコキシ基、フェニル基、又はハロゲン原子と一般式(I)中のベンゼン環との間に少なくとも2個の炭素原子を有するハロアルキル基若しくはハロアルコキシ基で第3α-炭素原子を含まないもの、を示す。また、一般式(I)中、nは、重合度を表す整数である。上記アルキル基、アルコキシ基中の炭素数としては、1~7個であってよい。 The polyphenylene ether resin of the polyphenylene ether-based resin refers to a polymer containing a repeating unit (structural unit) represented by the following formula (I), and examples thereof include a homopolymer consisting only of a repeating unit represented by the following formula (I), and a copolymer containing a repeating unit represented by the following general formula (I). The above copolymer is a copolymer having a repeating unit represented by the following formula (I) as a main repeating unit (for example, a copolymer in which the mass ratio of the repeating unit represented by the following formula (I) is more than 50 mass% (preferably 70 mass% or more) relative to 100 mass% of the copolymer). The above polyphenylene ether resin may be used alone or in combination of two or more types.
Figure 2024081072000002
In general formula (I), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a phenyl group, or a haloalkyl group or a haloalkoxy group having at least two carbon atoms between the halogen atom and the benzene ring in general formula (I) and not including a tertiary α-carbon atom. In addition, in general formula (I), n is an integer representing the degree of polymerization. The number of carbon atoms in the alkyl group or alkoxy group may be 1 to 7.

ポリフェニレンエーテル樹脂の具体例としては、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジプロピル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジブチル-1,4-フェニレン)エーテル、ポリ(2,6-ジラウリル-1,4-フェニレン)エーテル、ポリ(2,6-ジフェニル-1,4-ジフェニレン)エーテル、ポリ(2,6-ジメトキシ-1,4-フェニレン)エーテル、ポリ(2,6-ジエトキシ-1,4-フェニレン)エーテル、ポリ(2-メトキシ-6-エトキシ-1,4-フェニレン)エーテル、ポリ(2-エチル-6-ステアリルオキシ-1,4-フェニレン)エーテル、ポリ(2,6-ジクロロ-1,4-フェニレン)エーテル、ポリ(2-メチル-6-フェニル-1,4-フェニレン)エーテル、ポリ(2,6-ジベンジル-1,4-フェニレン)エーテル、ポリ(2-エトキシ-1,4-フェニレン)エーテル、ポリ(2-クロロ-1,4-フェニレン)エーテル、ポリ(2,6-ジブロモ-1,4-フェニレン)エーテル等が挙げられるが、これらに限定されるものではない。この中でも特に、一般式(I)においてR及びRが炭素数1~4のアルキル基であり、R及びRが水素又は炭素数1~4のアルキル基である繰り返し単位を含む樹脂が好ましく、該繰り返し単位のみからなる単独重合体がより好ましい。 Specific examples of polyphenylene ether resins include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, poly(2-methyl-6-propyl-1,4-phenylene) ether, poly(2,6-dipropyl-1,4-phenylene) ether, poly(2-ethyl-6-propyl-1,4-phenylene) ether, poly(2,6-dibutyl-1,4-phenylene) ether, poly(2,6-dilauryl-1,4-phenylene) ether, poly(2,6-diphenyl-1,4-diphenylene) ether, poly(2,6-dimethoxy-1 ,4-phenylene) ether, poly(2,6-diethoxy-1,4-phenylene) ether, poly(2-methoxy-6-ethoxy-1,4-phenylene) ether, poly(2-ethyl-6-stearyloxy-1,4-phenylene) ether, poly(2,6-dichloro-1,4-phenylene) ether, poly(2-methyl-6-phenyl-1,4-phenylene) ether, poly(2,6-dibenzyl-1,4-phenylene) ether, poly(2-ethoxy-1,4-phenylene) ether, poly(2-chloro-1,4-phenylene) ether, poly(2,6-dibromo-1,4-phenylene) ether and the like, but are not limited thereto. Among these, a resin containing a repeating unit in which R1 and R2 are alkyl groups having 1 to 4 carbon atoms, and R3 and R4 are hydrogen or an alkyl group having 1 to 4 carbon atoms in general formula (I) is particularly preferred, and a homopolymer consisting of only such repeating units is more preferred.

上記ポリフェニレンエーテル樹脂は、特に限定されるものではなく、公知の方法により製造することができ、例えば、米国特許第3306874号明細書に記載のHayによる第一銅塩とアミンのコンプレックスを触媒として用い、例えば、2,6-キシレノールを酸化重合することにより容易に製造できる。その他にも米国特許第3306875号明細書、米国特許第3257357号明細書、米国特許第3257358号明細書、特公昭52-17880号公報、特開昭50-51197号公報、及び特開昭63-152628号公報等に記載された方法が挙げられる。 The polyphenylene ether resin is not particularly limited and can be produced by known methods. For example, it can be easily produced by oxidatively polymerizing 2,6-xylenol using a complex of cuprous salt and amine by Hay described in U.S. Pat. No. 3,306,874 as a catalyst. Other examples include methods described in U.S. Pat. Nos. 3,306,875, 3,257,357, 3,257,358, JP-B-52-17880, JP-A-50-51197, and JP-A-63-152628.

上記ポリフェニレンエーテル系樹脂として、ポリフェニレンエーテル樹脂を構成する繰り返し単位の一部又は全部が不飽和若しくは飽和カルボン酸又はその誘導体で変性された変性ポリフェニレンエーテル樹脂を用いることができる。
上記変性ポリフェニレンエーテル樹脂としては、特開平2-276823号公報(米国特許第5159027号明細書、米国再発行特許発明第35695号明細書)、特開昭63-108059号公報(米国特許第5214109号明細書、第5216089号明細書)、特開昭59-59724号公報等に記載されているものが挙げられる。
変性ポリフェニレンエーテル樹脂は、例えば、ラジカル開始剤の存在下又は非存在下において、ポリフェニレンエーテル樹脂に不飽和若しくは飽和カルボン酸又はその誘導体を溶融混練して反応させることによって製造される。あるいは、ポリフェニレンエーテル樹脂と、不飽和若しくは飽和カルボン酸又はその誘導体とをラジカル開始剤存在下又は非存在下で有機溶剤に溶かし、溶液下で反応させることによって製造される。
The polyphenylene ether resin may be a modified polyphenylene ether resin in which some or all of the repeating units constituting the polyphenylene ether resin are modified with an unsaturated or saturated carboxylic acid or a derivative thereof.
Examples of the modified polyphenylene ether resin include those described in JP-A-2-276823 (U.S. Pat. No. 5,159,027, U.S. Reissue Patent No. 35,695), JP-A-63-108059 (U.S. Pat. Nos. 5,214,109, 5,216,089), JP-A-59,724, and the like.
The modified polyphenylene ether resin is produced, for example, by melt-kneading and reacting the polyphenylene ether resin with an unsaturated or saturated carboxylic acid or a derivative thereof in the presence or absence of a radical initiator, or by dissolving the polyphenylene ether resin and the unsaturated or saturated carboxylic acid or a derivative thereof in an organic solvent in the presence or absence of a radical initiator and reacting them in the solution.

不飽和カルボン酸又はその誘導体としては、例えば、マレイン酸、フマル酸、イタコン酸、ハロゲン化マレイン酸、シス-4-シクロヘキセン1,2-ジカルボン酸、エンド-シス-ビシクロ(2,2,1)-5-ヘプテン-2,3-ジカルボン酸等や、これらジカルボン酸の酸無水物、エステル、アミド、イミド等、さらにはアクリル酸、メタクリル酸等や、これらモノカルボン酸のエステル、アミド等が挙げられる。 Examples of unsaturated carboxylic acids or derivatives thereof include maleic acid, fumaric acid, itaconic acid, halogenated maleic acid, cis-4-cyclohexene 1,2-dicarboxylic acid, endo-cis-bicyclo(2,2,1)-5-heptene-2,3-dicarboxylic acid, and the like, as well as the acid anhydrides, esters, amides, imides, and the like of these dicarboxylic acids, as well as acrylic acid, methacrylic acid, and the like, as well as the esters and amides, and the like of these monocarboxylic acids.

また、飽和カルボン酸又はその誘導体としては、例えば、変性ポリフェニレンエーテル樹脂を製造する際の反応温度でそれ自身が熱分解し、変性ポリフェニレンエーテル樹脂の誘導体となり得る化合物が挙げられる。具体的には、リンゴ酸、クエン酸等が挙げられる。 Furthermore, examples of saturated carboxylic acids or derivatives thereof include compounds that can be thermally decomposed at the reaction temperature during the production of modified polyphenylene ether resin and become derivatives of modified polyphenylene ether resin. Specific examples include malic acid and citric acid.

ポリフェニレンエーテル系樹脂のポリマーアロイに用いることができるポリスチレン系樹脂としては、スチレン系化合物の単独重合体、2種以上のスチレン系化合物の共重合体、スチレン系化合物の重合体よりなるマトリックス中にゴム状重合体が粒子状に分散してなるゴム変性スチレン樹脂(ハイインパクト-ポリスチレン樹脂)等が挙げられる。これら重合体をもたらすスチレン系化合物としては、例えばスチレン、o-メチルスチレン、p-メチルスチレン、m-メチルスチレン、α-メチルスチレン、エチルスチレン、α-メチル-p-メチルスチレン、2,4-ジメチルスチレン、モノクロルスチレン、p-tert-ブチルスチレン等が挙げられる。 Examples of polystyrene resins that can be used in the polymer alloy of polyphenylene ether resin include homopolymers of styrene compounds, copolymers of two or more styrene compounds, and rubber-modified styrene resins (high impact polystyrene resins) in which rubber-like polymers are dispersed in particulate form in a matrix of styrene compound polymers. Examples of styrene compounds that produce these polymers include styrene, o-methylstyrene, p-methylstyrene, m-methylstyrene, α-methylstyrene, ethylstyrene, α-methyl-p-methylstyrene, 2,4-dimethylstyrene, monochlorostyrene, and p-tert-butylstyrene.

ポリフェニレンエーテル系樹脂として上述のようなポリマーアロイを用いる場合、ポリフェニレンエーテル樹脂に含有させるポリスチレン系樹脂は、2種以上のスチレン系化合物を併用して得られる共重合体やハイインパクト-ポリスチレン樹脂でもよい。 When using a polymer alloy as described above as the polyphenylene ether resin, the polystyrene resin contained in the polyphenylene ether resin may be a copolymer obtained by combining two or more types of styrene compounds or a high impact polystyrene resin.

ポリフェニレンエーテル系樹脂の重量平均分子量(Mw)としては、20000~60000であることが好ましい。
なお、重量平均分子量(Mw)は、樹脂についてゲルパーミュエーションクロマトグラフィー(GPC)による測定を行い、クロマトグラムのピークの分子量を、市販の標準ポリスチレンについての測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)を使用して求めた重量平均分子量をいう。
The weight average molecular weight (Mw) of the polyphenylene ether resin is preferably 20,000 to 60,000.
The weight average molecular weight (Mw) refers to the weight average molecular weight obtained by measuring the resin by gel permeation chromatography (GPC) and calculating the molecular weight of the peak in the chromatogram using a calibration curve (created using the peak molecular weight of the standard polystyrene) obtained from measurements of commercially available standard polystyrene.

ポリフェニレンエーテル系樹脂の含有量は、基材樹脂100質量%に対して、20~80質量%であることが好ましく、より好ましくは30~70質量%であり、更に好ましくは35~60質量%である。PPE系樹脂の含有量が20質量%以上の場合、優れた耐熱性及び難燃性を得やすくなる。また、PPE系樹脂の含有量が80質量%以下の場合、優れた加工性を得やすくなる。
本明細書において基材樹脂とは、発泡剤を除く電池ホルダーの原料をいう。上記原料100質量%に対する上記基材樹脂の質量割合は、95質量%以上であってよく、99質量%以上であってもよい。
The content of the polyphenylene ether resin is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and even more preferably 35 to 60% by mass, based on 100% by mass of the base resin. When the content of the PPE resin is 20% by mass or more, excellent heat resistance and flame retardancy are easily obtained. Also, when the content of the PPE resin is 80% by mass or less, excellent processability is easily obtained.
In this specification, the base resin refers to the raw materials of the battery holder excluding the foaming agent. The mass ratio of the base resin to 100 mass% of the raw materials may be 95 mass% or more, or may be 99 mass% or more.

ポリスチレン系樹脂とは、スチレン及びスチレン誘導体の単独重合体、スチレン及びスチレン誘導体を主成分(ポリスチレン系樹脂中に50質量%以上含まれる成分)とする共重合体をいう。
スチレン誘導体としては、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン、α-メチルスチレン、β-メチルスチレン、ジフェニルエチレン、クロロスチレン、ブロモスチレン等が挙げられる。
The polystyrene-based resin refers to homopolymers of styrene and styrene derivatives, and copolymers containing styrene and styrene derivatives as main components (components contained in the polystyrene-based resin at 50% by mass or more).
Examples of the styrene derivatives include o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene, α-methylstyrene, β-methylstyrene, diphenylethylene, chlorostyrene, and bromostyrene.

単独重合体のポリスチレン系樹脂としては、例えば、ポリスチレン、ポリα-メチルスチレン、ポリクロロスチレン等が挙げられる。
共重合体のポリスチレン系樹脂としては、スチレン-ブタジエン共重合体、スチレン-アクリロニトリル共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、スチレン-マレイミド共重合体、スチレン-N-フェニルマレイミド共重合体、スチレン-N-アルキルマレイミド共重合体、スチレン-N-アルキル置換フェニルマレイミド共重合体、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メチルアクリレート共重合体、スチレン-メチルメタクリレート共重合体、スチレン-n-アルキルアクリレート共重合体、スチレン-n-アルキルメタクリレート共重合体、エチルビニルベンゼン-ジビニルベンゼン共重合体等の二元共重合体;ABS、ブタジエン-アクリロニトリル-α-メチルベンゼン共重合体等の三元共重合体;スチレングラフトポリエチレン、スチレングラフトエチレン-酢酸ビニル共重合体、(スチレン-アクリル酸)グラフトポリエチレン、スチレングラフトポリアミド等のグラフト共重合体;等が挙げられる。
これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
Examples of the homopolymer polystyrene resin include polystyrene, poly-α-methylstyrene, and polychlorostyrene.
Examples of the polystyrene-based copolymer resin include binary copolymers such as styrene-butadiene copolymer, styrene-acrylonitrile copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, styrene-maleimide copolymer, styrene-N-phenylmaleimide copolymer, styrene-N-alkylmaleimide copolymer, styrene-N-alkyl-substituted phenylmaleimide copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methyl acrylate copolymer, styrene-methyl methacrylate copolymer, styrene-n-alkyl acrylate copolymer, styrene-n-alkyl methacrylate copolymer, and ethylvinylbenzene-divinylbenzene copolymer; ternary copolymers such as ABS and butadiene-acrylonitrile-α-methylbenzene copolymer; graft copolymers such as styrene-grafted polyethylene, styrene-grafted ethylene-vinyl acetate copolymer, (styrene-acrylic acid) grafted polyethylene, and styrene-grafted polyamide; and the like.
These may be used alone or in combination of two or more.

ポリスチレン系樹脂は、従来公知のいかなる製造方法によって製造されたものでもよい。 The polystyrene resin may be produced by any conventionally known production method.

ポリカーボネート系樹脂としては、例えば、ポリカーボネート樹脂、ポリカーボネート樹脂/ABS樹脂アロイ、ポリカーボネート樹脂/ポリブチレンテレフタレート樹脂アロイ等が挙げられる。例えば、上記アロイは、ポリカーボネート樹脂を50質量%超含んでいてよい。
これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
Examples of polycarbonate-based resins include polycarbonate resins, polycarbonate resin/ABS resin alloys, polycarbonate resin/polybutylene terephthalate resin alloys, etc. For example, the alloys may contain more than 50% by mass of polycarbonate resin.
These may be used alone or in combination of two or more.

ポリカーボネート樹脂は、ビスフェノールAを用いて重合された、ビスフェノールA型ポリカーボネートや、他の二価フェノール系化合物を用いて重合された、高耐熱性又は低吸水率の各種のポリカーボネートであってもよい。
上記他の二価フェノール系化合物としては、例えば、ハイドロキノン、4,4’-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシフェニル)エーテルや、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン等のハロゲン化ビスフェノール等が挙げられる。
The polycarbonate resin may be a bisphenol A-type polycarbonate polymerized using bisphenol A, or any of various polycarbonates having high heat resistance or low water absorption rate polymerized using other dihydric phenol compounds.
Examples of the other dihydric phenol compounds include hydroquinone, 4,4'-dihydroxydiphenyl, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, bis(4-hydroxyphenyl)sulfide, bis(4-hydroxyphenyl)sulfone, bis(4-hydroxyphenyl)sulfoxide, bis(4-hydroxyphenyl)ketone, bis(4-hydroxyphenyl)ether, and halogenated bisphenols such as 2,2-bis(3,5-dibromo-4-hydroxyphenyl)propane.

また、ポリカーボネート系樹脂は、線状ポリカーボネートの他に、3官能フェノール類を重合させた分岐ポリーボネートであってもよく、更に脂肪族ジカルボン酸、芳香族ジカルボン酸、又は二価の脂肪族もしくは脂環族アルコールを共重合させた共重合ポリカーボネートであってもよい。 In addition to linear polycarbonates, the polycarbonate resins may be branched polycarbonates polymerized with trifunctional phenols, or copolymer polycarbonates copolymerized with aliphatic dicarboxylic acids, aromatic dicarboxylic acids, or divalent aliphatic or alicyclic alcohols.

ポリカーボネート系樹脂は、従来公知のいかなる製造方法によって製造されたものでもよい。 The polycarbonate resin may be produced by any conventional method.

アクリル系樹脂としては、以下の(a)~(d)からなる群から選ばれる1種又は2種以上の重合体及びこれらの混合物が適用できる。
(a)メタクリル酸単量体、アクリル酸単量体、メタクリル酸エステル単量体、アクリル酸エステル単量体単独重合体又は共重合体、及びこれらの混合物。
(b)メタクリル酸単量体、アクリル酸単量体、メタクリル酸エステル単量体、アクリル酸エステル単量体と、スチレン系単量体、イソプロペニル芳香族単量体の1種又は2種以上との共重合体、及びこれらの混合物。
(c)メタクリル酸単量体、アクリル酸単量体、メタクリル酸エステル単量体、アクリル酸エステル単量体と、スチレン系単量体、イソプロペニル芳香族単量体、及び/又は無水マレイン酸との共重合体、並びにこれらの混合物。
(d)メタクリル酸単量体、アクリル酸単量体、メタクリル酸エステル単量体、アクリル酸エステル単量体と、スチレン系単量体、イソプロペニル芳香族単量体、及び/又は無水マレイン酸、及び/又はこれら以外の共重合可能な単量体との共重合体、並びにこれらの混合物。
上記メタクリル酸エステル単量体の具体例としては、メタクリル酸ブチル、メタクリル酸エチル、メタクリル酸メチル、メタクリル酸プロピル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸2-エチルヘキシル、メタクリル酸t-ブチルシクロヘキシル、メタクリル酸ベンジル、メタクリル酸2,2,2-トリフルオロエチル等が挙げられ、メタクリル酸メチルが好ましい。
上記アクリル酸エステル単量体の具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸イソプロピル、アクリル酸2-エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸フェニル等が挙げられる。
上記メタクリル酸エステル単量体、上記アクリル酸エステル単量体、上記メタクリル酸単量体、上記アクリル酸単量体は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
上記スチレン系単量体とは、その構造中にスチレン骨格を有する単量体であり、具体例としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,4-ジメチルスチレン、3,5-ジメチルスチレン、p-エチルスチレン、m-エチルスチレン、o-エチルスチレン、p-tert-ブチルスチレン等のアルキル置換スチレン類、1,1-ジフェニルエチレン等が挙げられ、スチレンが好ましい。
これらのスチレン系単量体は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
イソプロペニル芳香族単量体の具体例としては、α-メチルスチレン、イソプロペニルトルエン、イソプロペニルエチルベンゼン、イソプロペニルプロピルベンゼン、イソプロペニルブチルベンゼン、イソプロペニルペンチルベンゼン、イソプロペニルヘキシルベンゼン、イソプロペニルオクチルベンゼン等のアルキル置換イソプロペニルベンゼン類が挙げられ、α-メチルスチレンが好ましい。
これらのイソプロペニル芳香族単量体は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
メタクリル酸単量体、アクリル酸単量体、メタクリル酸エステル単量体、アクリル酸エステル単量体と共重合可能な、上記以外の単量体の具体例としては、アクリロニトリル、メタクリルニトリル等のシアン化ビニル単量体、N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド単量体、イタコン酸、マレイン酸、フマル酸等の不飽和カルボン酸単量体、イタコン酸、エチルマレイン酸、メチルイタコン酸、クロルマレイン酸等の酸無水物である不飽和ジカルボン酸無水物単量体、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン単量体が挙げられる。これらの単量体は2種以上付加して共重合してもよい。
上記のうち、より好ましいアクリル系樹脂としては、経済性、機械物性、透明性、耐候性の観点から、メタクリル酸メチル単独重合体、及びメタクリル酸メチルとアクリル酸エステルとの共重合体が挙げられる。
As the acrylic resin, one or more polymers selected from the group consisting of the following (a) to (d) and mixtures thereof can be used.
(a) Homopolymers or copolymers of methacrylic acid monomers, acrylic acid monomers, methacrylic acid ester monomers, acrylic acid ester monomers, and mixtures thereof.
(b) Copolymers of a methacrylic acid monomer, an acrylic acid monomer, a methacrylic acid ester monomer, an acrylic acid ester monomer, and one or more of a styrene-based monomer and an isopropenyl aromatic monomer, and mixtures thereof.
(c) Copolymers of methacrylic acid monomers, acrylic acid monomers, methacrylic acid ester monomers, acrylic acid ester monomers with styrene-based monomers, isopropenyl aromatic monomers, and/or maleic anhydride, and mixtures thereof.
(d) Copolymers of methacrylic acid monomers, acrylic acid monomers, methacrylic acid ester monomers, acrylic acid ester monomers with styrene-based monomers, isopropenyl aromatic monomers, and/or maleic anhydride, and/or other copolymerizable monomers, and mixtures thereof.
Specific examples of the methacrylic acid ester monomer include butyl methacrylate, ethyl methacrylate, methyl methacrylate, propyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, 2-ethylhexyl methacrylate, t-butylcyclohexyl methacrylate, benzyl methacrylate, and 2,2,2-trifluoroethyl methacrylate, with methyl methacrylate being preferred.
Specific examples of the acrylic ester monomer include methyl acrylate, ethyl acrylate, butyl acrylate, isopropyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, and phenyl acrylate.
The methacrylic acid ester monomers, the acrylic acid ester monomers, the methacrylic acid monomers, and the acrylic acid monomers may be used alone or in combination of two or more kinds.
The styrene-based monomer is a monomer having a styrene skeleton in its structure. Specific examples thereof include alkyl-substituted styrenes such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,4-dimethylstyrene, 3,5-dimethylstyrene, p-ethylstyrene, m-ethylstyrene, o-ethylstyrene, and p-tert-butylstyrene, and 1,1-diphenylethylene, with styrene being preferred.
These styrene monomers may be used alone or in combination of two or more.
Specific examples of isopropenyl aromatic monomers include alkyl-substituted isopropenylbenzenes such as α-methylstyrene, isopropenyltoluene, isopropenylethylbenzene, isopropenylpropylbenzene, isopropenylbutylbenzene, isopropenylpentylbenzene, isopropenylhexylbenzene, and isopropenyloctylbenzene, with α-methylstyrene being preferred.
These isopropenyl aromatic monomers may be used alone or in combination of two or more.
Specific examples of monomers other than those mentioned above that are copolymerizable with the methacrylic acid monomer, acrylic acid monomer, methacrylic acid ester monomer, and acrylic acid ester monomer include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, maleimide monomers such as N-phenylmaleimide and N-cyclohexylmaleimide, unsaturated carboxylic acid monomers such as itaconic acid, maleic acid, and fumaric acid, unsaturated dicarboxylic acid anhydride monomers such as itaconic acid, ethylmaleic acid, methylitaconic acid, and chloromaleic acid, and conjugated diene monomers such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and 1,3-hexadiene. Two or more of these monomers may be added and copolymerized.
Among the above, more preferred acrylic resins include methyl methacrylate homopolymers and copolymers of methyl methacrylate and acrylic esters from the viewpoints of economy, mechanical properties, transparency, and weather resistance.

--結晶性樹脂--
上記結晶性樹脂としては、結晶性を有する樹脂であれば特に限定されず、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニリデン樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、液晶ポリマー、ポリテトラフルオロエチレン樹脂、等が挙げられる。中でも、耐熱性、成形性、緩衝性の観点から、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、が好ましい。
--Crystalline resin--
The crystalline resin is not particularly limited as long as it is a resin having crystallinity, and examples thereof include polyethylene resin, polypropylene resin, polyvinylidene chloride resin, polyamide resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal polymer, polytetrafluoroethylene resin, etc. Among them, from the viewpoints of heat resistance, moldability, and cushioning properties, polyethylene resin, polypropylene resin, and polyamide resin are preferred.

ポリエチレン樹脂としては、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレンとα-オレフィンとの共重合体、プロピレン-エチレン共重合体等の樹脂が挙げられる。
これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
また、これらのポリエチレン系樹脂は架橋剤等により適宜架橋構造を有していても良い。
Examples of the polyethylene resin include high density polyethylene, low density polyethylene, linear low density polyethylene, copolymers of ethylene and α-olefins, and propylene-ethylene copolymers.
These may be used alone or in combination of two or more.
Furthermore, these polyethylene resins may have a crosslinked structure by using a crosslinking agent or the like.

ポリアミド樹脂としては、例えば、ポリアミド、ポリアミド共重合体、これらの混合物が挙げられる。ポリアミド樹脂には、アミノカルボン酸の自己縮合、ラクタムの開環重合、ジアミンとジカルボン酸との重縮合により得られる重合体を含んでよい。
ポリアミドとしては、ジアミンとジカルボン酸との重縮合により得られる、ナイロン66、ナイロン610、ナイロン612、ナイロン46、ナイロン1212等、ラクタムの開環重合により得られるナイロン6、ナイロン12等が挙げられる。
ポリアミド共重合体としては、例えば、ナイロン6/66、ナイロン66/6、ナイロン66/610、ナイロン66/612、ナイロン66/6T(Tは、テレフタル酸成分を表す)、ナイロン66/6I(Iは、イソフタル酸成分を表す)、ナイロン6T/6I等が挙げられる。
これらの混合物としては、例えば、ナイロン66とナイロン6との混合物、ナイロン66とナイロン612との混合物、ナイロン66とナイロン610との混合物、ナイロン66とナイロン6Iとの混合物、ナイロン66とナイロン6Tとの混合物等が挙げられる。
これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
Examples of the polyamide resin include polyamides, polyamide copolymers, and mixtures thereof. The polyamide resin may include a polymer obtained by self-condensation of an aminocarboxylic acid, ring-opening polymerization of a lactam, or polycondensation of a diamine and a dicarboxylic acid.
Examples of polyamides include nylon 66, nylon 610, nylon 612, nylon 46, nylon 1212, etc., which are obtained by polycondensation of diamine and dicarboxylic acid, and nylon 6 and nylon 12, etc., which are obtained by ring-opening polymerization of lactam.
Examples of polyamide copolymers include nylon 6/66, nylon 66/6, nylon 66/610, nylon 66/612, nylon 66/6T (T represents a terephthalic acid component), nylon 66/6I (I represents an isophthalic acid component), nylon 6T/6I, and the like.
Examples of such mixtures include mixtures of nylon 66 and nylon 6, mixtures of nylon 66 and nylon 612, mixtures of nylon 66 and nylon 610, mixtures of nylon 66 and nylon 6I, and mixtures of nylon 66 and nylon 6T.
These may be used alone or in combination of two or more.

上記原料100質量%に対する上記樹脂の質量割合は、70質量%以上であることが好ましく、より好ましくは80質量%以上である。上記基材樹脂100質量%に対する上記樹脂の質量割合は、70質量%以上であることが好ましく、より好ましくは80質量%以上である。 The mass ratio of the resin to 100% by mass of the raw material is preferably 70% by mass or more, and more preferably 80% by mass or more. The mass ratio of the resin to 100% by mass of the base resin is preferably 70% by mass or more, and more preferably 80% by mass or more.

-他の成分-
上記他の成分としては、難燃剤、難燃助剤、熱安定剤、酸化防止剤、帯電防止剤、無機充填剤、滴下防止剤、紫外線吸収剤、光吸収剤、可塑剤、離型剤、染顔料、ゴム成分、発泡剤等が挙げられ、本発明の効果を損なわない範囲で添加することができる。上記他の成分は、樹脂以外の成分であってよい。
-Other ingredients-
The other components include flame retardants, flame retardant assistants, heat stabilizers, antioxidants, antistatic agents, inorganic fillers, anti-dripping agents, ultraviolet absorbers, light absorbers, plasticizers, release agents, dyes and pigments, rubber components, foaming agents, etc., and may be added within a range that does not impair the effects of the present invention. The other components may be components other than resins.

上記原料中の上記他の成分の質量割合としては、耐熱性や加工性を維持する観点から、上記樹脂を100質量部に対して、0~40質量部であることが好ましく、より好ましくは0~30質量部、さらに好ましくは0質量部超20質量部以下である。 From the viewpoint of maintaining heat resistance and processability, the mass ratio of the other components in the raw materials is preferably 0 to 40 parts by mass, more preferably 0 to 30 parts by mass, and even more preferably more than 0 parts by mass and not more than 20 parts by mass, per 100 parts by mass of the resin.

上記難燃剤としては、有機系難燃剤、無機系難燃剤が挙げられる。
有機系難燃剤としては、臭素化合物に代表されるハロゲン系化合物、リン系化合物、及びシリコーン系化合物に代表される非ハロゲン系化合物等が挙げられる。
無機系難燃剤としては、水酸化アルミニウム、水酸化マグネシウムに代表される金属水酸化物、三酸化アンチモン、五酸化アンチモンに代表されるアンチモン系化合物等が挙げられる。
これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
The flame retardant includes organic flame retardants and inorganic flame retardants.
Examples of organic flame retardants include halogen-based compounds such as bromine compounds, phosphorus-based compounds, and non-halogen-based compounds such as silicone-based compounds.
Examples of inorganic flame retardants include metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and antimony compounds such as antimony trioxide and antimony pentoxide.
These may be used alone or in combination of two or more.

上記難燃剤の中でも、樹脂との相溶性の観点、環境への影響を小さくする観点、発泡体とする場合の発泡性の観点から、有機系難燃剤の非ハロゲン系難燃剤が好ましく、リン系の難燃剤、シリコーン系の難燃剤がより好ましく、リン系の難燃剤がより好ましい。 Among the above flame retardants, from the viewpoints of compatibility with resins, minimizing the impact on the environment, and foaming properties when made into a foam, non-halogenated organic flame retardants are preferred, phosphorus-based flame retardants and silicone-based flame retardants are more preferred, and phosphorus-based flame retardants are even more preferred.

リン系の難燃剤には、リン又はリン化合物を含むものを用いることができる。リンとしては赤リンが挙げられる。また、リン化合物として、リン酸エステル、リン原子と窒素原子の結合を主鎖に有するホスファゼン化合物、トリアルキルホスフィンオキシド、トリフェニルホスフィンオキシド、等が挙げられる。
リン酸エステルとしては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、トリブチルホスフェート、トリペンチルホスフェート、トリヘキシルホスフェート、トリシクロヘキシルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、ジクレジルフェニルホスフェート、ジメチルエチルホスフェート、メチルジブチルホスフェート、エチルジプロピルホスフェート、ヒドロキシフェニルジフェニルホスフェート、レゾルシノールビスジフェニルホスフェート等が挙げられ、また、これらを各種の置換基で変性したタイプのリン酸エステル化合物、各種の縮合タイプのリン酸エステル化合物、環状構造を有するリン酸エステル化合物も挙げられる。
この中でも、耐熱性、難燃性、発泡性、経済性の観点から、ホスファゼン化合物、ビスフェノールAビスホスフェート等のトリフェニルホスフェート、及び縮合タイプのリン酸エステル化合物、環状構造を有するリン酸エステル化合物が好ましい。
これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
The phosphorus-based flame retardant may contain phosphorus or a phosphorus compound. Examples of phosphorus include red phosphorus. Examples of phosphorus compounds include phosphate esters, phosphazene compounds having a bond between a phosphorus atom and a nitrogen atom in the main chain, trialkylphosphine oxides, triphenylphosphine oxides, and the like.
Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, tripentyl phosphate, trihexyl phosphate, tricyclohexyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, dicresyl phenyl phosphate, dimethyl ethyl phosphate, methyl dibutyl phosphate, ethyl dipropyl phosphate, hydroxyphenyl diphenyl phosphate, resorcinol bisdiphenyl phosphate, and the like. Further examples include phosphate ester compounds of the above types modified with various substituents, various condensation type phosphate ester compounds, and phosphate ester compounds having a cyclic structure.
Among these, from the viewpoints of heat resistance, flame retardancy, foaming property, and economic efficiency, phosphazene compounds, triphenyl phosphates such as bisphenol A bisphosphate, condensation type phosphate ester compounds, and phosphate ester compounds having a cyclic structure are preferred.
These may be used alone or in combination of two or more.

また、シリコーン系難燃剤としては、(モノ又はポリ)オルガノシロキサンが挙げられる。
(モノ又はポリ)オルガノシロキサンとしては、例えば、ジメチルシロキサン、フェニルメチルシロキサン等のモノオルガノシロキサン;これらを重合して得られるポリジメチルシロキサン、ポリフェニルメチルシロキサン;これらの共重合体等のオルガノポリシロキサン等が挙げられる。
オルガノポリシロキサンの場合、主鎖及び分岐した側鎖の結合基は、水素、アルキル基、フェニル基であり、好ましくはフェニル基、メチル基、エチル基、プロピル基であるが、これに限定されない。末端結合基は、水酸基、アルコキシ基、アルキル基、フェニル基であってよい。シリコーン類の形状にも特に制限はなく、オイル状、ガム状、ワニス状、粉体状、ペレット状等の任意のものが利用可能である。
これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
Furthermore, examples of silicone-based flame retardants include (mono- or poly)organosiloxanes.
Examples of the (mono- or poly)organosiloxane include monoorganosiloxanes such as dimethylsiloxane and phenylmethylsiloxane; polydimethylsiloxanes and polyphenylmethylsiloxanes obtained by polymerizing these; and organopolysiloxanes such as copolymers of these.
In the case of organopolysiloxane, the bonding groups of the main chain and the branched side chains are hydrogen, alkyl groups, and phenyl groups, preferably phenyl groups, methyl groups, ethyl groups, and propyl groups, but are not limited thereto. The terminal bonding groups may be hydroxyl groups, alkoxy groups, alkyl groups, and phenyl groups. There is no particular limitation on the shape of the silicones, and any shape such as oil, gum, varnish, powder, and pellets can be used.
These may be used alone or in combination of two or more.

上記原料100質量%中の上記難燃剤の質量割合は、耐熱性への影響を小さくしながら難燃性を向上の観点から、上記樹脂100質量部に対して0~30質量部であることが好ましく、より好ましくは5~25質量部である。 The mass ratio of the flame retardant in 100% by mass of the raw materials is preferably 0 to 30 parts by mass, and more preferably 5 to 25 parts by mass, per 100 parts by mass of the resin, from the viewpoint of improving flame retardancy while minimizing the effect on heat resistance.

上記無機充填剤としては、例えば、ガラス繊維、チタン酸カリウム繊維、石膏繊維、黄銅繊維、ステンレス繊維、スチール繊維、セラミックス繊維、及びボロンウィスカ繊維等の繊維状無機フィラー;マイカ、タルク、カオリン、焼成カオリン、ガラスフレーク等の板状無機フィラー;酸化チタン、アパタイト、ガラスビーズ、シリカ、炭酸カルシウム、カーボンブラック等の粒状無機フィラー;ウォラストナイト、ゾノトライト等の針状無機フィラー;等が挙げられる。 Examples of the inorganic fillers include fibrous inorganic fillers such as glass fibers, potassium titanate fibers, gypsum fibers, brass fibers, stainless steel fibers, steel fibers, ceramic fibers, and boron whisker fibers; plate-like inorganic fillers such as mica, talc, kaolin, calcined kaolin, and glass flakes; granular inorganic fillers such as titanium oxide, apatite, glass beads, silica, calcium carbonate, and carbon black; and needle-like inorganic fillers such as wollastonite and xonotlite.

また、ゴム成分としては、例えば、ブタジエン、イソプレン、1,3-ペンタジエン等が挙げられるが、これに限定されるものではない。これらは、ポリスチレン系樹脂からなる連続相中に粒子状に分散しているものが好ましい。これらゴム成分を添加する方法として、ゴム成分そのものを加えてもよく、スチレン系エラストマー及びスチレン-ブタジエン共重合体等の樹脂をゴム成分供給源として用いてもよい。
ゴム成分を添加する場合、ゴム成分の含有量は、添加剤の含有量の範囲内としてよいところ、樹脂を100質量部として、0.3~15質量部が好ましく、0.5~8質量部がより好ましく、1~5質量部が更に好ましい。0.3質量部以上であると、特に後述の発泡体の基材樹脂として使用する場合において、樹脂の柔軟性、伸びに優れ、発泡時に発泡セル膜が破膜しにくく、成形加工性及び機械強度に優れる発泡体が得られやすい。
Examples of the rubber component include, but are not limited to, butadiene, isoprene, and 1,3-pentadiene. These are preferably dispersed in the form of particles in a continuous phase made of a polystyrene-based resin. As a method for adding these rubber components, the rubber components themselves may be added, or resins such as styrene-based elastomers and styrene-butadiene copolymers may be used as a rubber component supply source.
When a rubber component is added, the content of the rubber component may be within the range of the content of the additive, and is preferably 0.3 to 15 parts by mass, more preferably 0.5 to 8 parts by mass, and even more preferably 1 to 5 parts by mass, based on 100 parts by mass of the resin. When the content is 0.3 parts by mass or more, particularly when used as a base resin for a foam described later, the resin has excellent flexibility and elongation, the foam cell membrane is less likely to break during foaming, and a foam having excellent moldability and mechanical strength is easily obtained.

(製造方法)
上記本体は、発泡体であることが好ましく、上記原料を用いた発泡体であることがより好ましい。
上記発泡体の製造方法は、特に限定されないが、例えば、押出発泡法、射出発泡法、ビーズ発泡法(型内発泡法)、延伸発泡法、溶剤抽出発泡法等が挙げられる。
押出発泡法は、押出機を用いて溶融状態の樹脂に有機又は無機発泡剤を圧入し、押出機出口で圧力を開放することによって、一定の断面形状を有する、板状、シート状、又は柱状の発泡体を得る方法である。
射出発泡法は、発泡性を備える樹脂を射出成形し、金型内にて発泡させることによって、空孔を有する発泡体を得る方法である。
ビーズ発泡法(型内発泡法)は、発泡粒子を型内に充填し、水蒸気等で加熱して発泡粒子を膨張させると同時に発泡粒子同士を熱融着させることによって、発泡体を得る方法である。
延伸発泡法は、予めフィラー等の添加剤を樹脂中に混錬させておき、樹脂を延伸させることでマイクロボイドを発生させて発泡体を作る方法である。
溶剤抽出発泡法は、樹脂中に所定の溶剤に溶解する添加剤を添加しておき、成形品を所定の溶剤に浸して添加剤を抽出させて発泡体を作る方法である。
(Production method)
The main body is preferably a foam, and more preferably a foam made from the above-mentioned raw materials.
The method for producing the foam is not particularly limited, but examples thereof include an extrusion foaming method, an injection foaming method, a bead foaming method (in-mold foaming method), a stretch foaming method, and a solvent extraction foaming method.
The extrusion foaming method is a method in which an organic or inorganic foaming agent is forced into a molten resin using an extruder, and the pressure is released at the extruder outlet to obtain a plate-, sheet-, or columnar-shaped foam having a specific cross-sectional shape.
The injection foaming method is a method in which a foamable resin is injection molded and foamed in a mold to obtain a foam having voids.
The bead expansion method (in-mold expansion method) is a method for obtaining a foam by filling a mold with foam beads and heating the beads with steam or the like to expand the beads and simultaneously heat-fuse the beads together.
The stretch foaming method is a method in which additives such as fillers are mixed into a resin in advance, and the resin is stretched to generate microvoids and create a foam.
The solvent extraction foaming method is a method in which an additive that dissolves in a specific solvent is added to a resin, and a molded product is then immersed in the specific solvent to extract the additive and create a foam.

押出発泡の場合、得られる発泡体は板状、シート状等となり、これを加工するには所望の形状に切断する抜き工程、切り取ったパーツを貼り合わせる熱貼り工程等が必要になる。
一方、ビーズ発泡法の場合、所望の形状の型を作製し、そこに発泡粒子を充填させて成形するため、より微細な形状や複雑な形状に発泡体を成形しやすい。
射出発泡法の場合でも、発泡体を複雑な形状に成形することは可能であるが、ビーズ発泡の場合には、発泡体の発泡倍率を高めやすく、断熱性に加えて柔軟性を発現しやすい。
In the case of extrusion foaming, the obtained foam is in the form of a plate, sheet, etc., and processing of this requires a punching step to cut it into the desired shape and a heat lamination step to laminate the cut parts together.
On the other hand, in the case of the bead expansion method, a mold of the desired shape is prepared and expanded beads are filled therein for molding, so that it is easy to mold the foam into a finer or more complex shape.
Even with the injection foaming method, it is possible to mold the foam into a complex shape, but with bead foaming, it is easier to increase the expansion ratio of the foam and it is easier to develop flexibility in addition to heat insulation properties.

発泡剤としては、特には限定されず、一般的に用いられているガスを使用することができる。
その例として、空気、炭酸ガス、窒素ガス、酸素ガス、アンモニアガス、水素ガス、アルゴンガス、ヘリウムガス、ネオンガス等の無機ガス;トリクロロフルオロメタン(R11)、ジクロロジフルオロメタン(R12)、クロロジフルオロメタン(R22)、テトラクロロジフルオロエタン(R112)ジクロロフルオロエタン(R141b)クロロジフルオロエタン(R142b)、ジフルオロエタン(R152a)、HFC-245fa、HFC-236ea、HFC-245ca、HFC-225ca等のフルオロカーボン;プロパン、n-ブタン、i-ブタン、n-ペンタン、i-ペンタン、ネオペンタン等の飽和炭化水素;ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n-ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2-メチルフラン、テトラヒドロフラン、テトラヒドロピラン等のエーテル類;ジメチルケトン、メチルエチルケトン、ジエチルケトン、メチルn-プロピルケトン、メチルn-ブチルケトン、メチルi-ブチルケトン、メチルn-アミルケトン、メチルn-ヘキシルケトン、エチルn-プロピルケトン、エチルn-ブチルケトン等のケトン類;メタノール、エタノール、プロピルアルコール、i-プロピルアルコール、ブチルアルコール、i-ブチルアルコール、t-ブチルアルコール等のアルコール類;蟻酸メチルエステル、蟻酸エチルエステル、蟻酸プロピルエステル、蟻酸ブチルエステル、蟻酸アミルエステル、プロピオン酸メチルエステル、プロピオン酸エチルエステル等のカルボン酸エステル類;塩化メチル、塩化エチル等の塩素化炭化水素類;等が挙げられる。
これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
The foaming agent is not particularly limited, and any commonly used gas can be used.
Examples of such fluorocarbons include air, carbon dioxide, nitrogen gas, oxygen gas, ammonia gas, hydrogen gas, argon gas, helium gas, and neon gas; trichlorofluoromethane (R11), dichlorodifluoromethane (R12), chlorodifluoromethane (R22), tetrachlorodifluoroethane (R112), dichlorofluoroethane (R141b), chlorodifluoroethane (R142b), difluoroethane (R152a), HFC-245fa, HFC-236ea, HFC-245ca, and HFC-225ca; saturated hydrocarbons such as propane, n-butane, i-butane, n-pentane, i-pentane, and neopentane; dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n-butyl ether, diisopropyl ether, furan, furan, and the like. ethers such as fural, 2-methylfuran, tetrahydrofuran, and tetrahydropyran; ketones such as dimethyl ketone, methyl ethyl ketone, diethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, methyl i-butyl ketone, methyl n-amyl ketone, methyl n-hexyl ketone, ethyl n-propyl ketone, and ethyl n-butyl ketone; alcohols such as methanol, ethanol, propyl alcohol, i-propyl alcohol, butyl alcohol, i-butyl alcohol, and t-butyl alcohol; carboxylates such as methyl formate, ethyl formate, propyl formate, butyl formate, amyl formate, methyl propionate, and ethyl propionate; and chlorinated hydrocarbons such as methyl chloride and ethyl chloride.
These may be used alone or in combination of two or more.

難燃性の観点から、発泡剤は可燃性及び支燃性がないか又は少ないことが好ましく、ガスの安全性の観点から、無機ガスがより好ましい。また、無機ガスは炭化水素等の有機ガスに比べて樹脂に溶けにくく、発泡工程又は成形工程の後に樹脂からガスが抜けやすいので、成形後の発泡体の経時での寸法安定性がより優れる利点もある。更に、無機ガスを用いた場合、残存ガスによる樹脂の可塑化も起こりにくく、熟成等の工程を経ずに、より早い段階から優れた耐熱性を発現しやすいメリットもある。無機ガスの中でも、樹脂への溶解性、取り扱いの容易さの観点から、炭酸ガスが好ましい。また、炭化水素系の有機ガスは一般に可燃性が高く、発泡体中に残存した場合に難燃性が悪化する傾向にある。 From the viewpoint of flame retardancy, it is preferable that the foaming agent has no or little flammability and flame-supporting properties, and from the viewpoint of gas safety, inorganic gases are more preferable. In addition, inorganic gases are less soluble in resins than organic gases such as hydrocarbons, and gases are easily released from the resin after the foaming process or molding process, so there is also the advantage that the dimensional stability of the foamed body after molding is better over time. Furthermore, when inorganic gases are used, the resin is less likely to be plasticized by the remaining gas, and there is also the advantage that excellent heat resistance is easily exhibited at an earlier stage without going through a process such as aging. Among inorganic gases, carbon dioxide gas is preferable from the viewpoint of solubility in resins and ease of handling. In addition, hydrocarbon-based organic gases are generally highly flammable, and tend to deteriorate in flame retardancy if they remain in the foam.

上記発泡体は、上述のビーズ発泡法により製造されることが好ましく、発泡粒子からなることが好ましい。
ビーズ発泡法を用いて成形を行うことによって、電池ホルダーの賦形性を向上させることができる。
The foam is preferably produced by the bead expansion method described above and is preferably made of expanded beads.
By using the bead expansion method for molding, the shapeability of the battery holder can be improved.

上記ビーズ発泡体とは、上記ビーズ発泡法によって製造され、樹脂発泡粒子を融合成形して得られる発泡成形体である。
上記樹脂発泡粒子は、例えば、上記基材樹脂に発泡剤を含浸させて、発泡させて得ることができる。
The bead foam is an expansion molded product produced by the bead expansion method and obtained by fusion molding of resin foam particles.
The expanded resin particles can be obtained, for example, by impregnating the base resin with a foaming agent and expanding the same.

上記発泡剤としては、一般的に用いられているガスを使用することができる。
上記発泡剤としては、上述のものが挙げられる。
これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。
上記発泡剤としては、難燃性を向上させる観点から、無機ガスが好ましい。なお、発泡剤に限らず、化学発泡剤等も使用することができる。
As the foaming agent, any gas that is commonly used can be used.
The foaming agent includes those mentioned above.
These may be used alone or in combination of two or more.
The foaming agent is preferably an inorganic gas from the viewpoint of improving flame retardancy. However, the foaming agent is not limited to the above, and chemical foaming agents may also be used.

上記樹脂発泡粒子は、上記基材樹脂に発泡剤を含有(含浸)させて、発泡させるビーズ発泡工程を経て製造することができる。
ビーズ発泡工程において、上記基材樹脂に発泡剤を含有(含浸)させて、発泡させる方法としては、例えば、特開平4-372630号公報の実施例1に記載の方法に準じ、原料(ペレット状、ビーズ状等)を耐圧容器に収容し、容器内の気体を乾燥空気で置換した後、発泡剤(ガス)を圧入して基材樹脂に発泡剤(ガス)を含浸させた後、圧力を開放して圧力容器から発泡炉に原料ペレットを移送し、原料ペレットを発泡炉内で攪拌羽を回転させながら加圧水蒸気により加温して発泡させることにより、樹脂発泡粒子を製造する方法が挙げられる。
The resin foam particles can be produced through a bead expansion process in which the base resin is impregnated with a foaming agent and expanded.
In the bead expansion step, an example of a method for containing (impregnating) the base resin with a blowing agent and expanding the base resin is a method similar to that described in Example 1 of JP-A-4-372630, in which a raw material (pellet-shaped, bead-shaped, etc.) is placed in a pressure-resistant container, the gas in the container is replaced with dry air, and then a blowing agent (gas) is pressed in to impregnate the base resin with the blowing agent (gas), and the pressure is released to transfer the raw material pellets from the pressure container to a foaming furnace, and the raw material pellets are heated with pressurized steam while rotating an agitating blade in the foaming furnace to expand, thereby producing expanded resin particles.

基材樹脂に発泡剤を含有させる方法としては、一般的に行われている方法が適用でき、例えば、水等の懸濁系を利用して水性媒体で行う方法(懸濁含浸)や、重炭素水素ナトリウム等の熱分解型発泡剤を用いる方法(発泡剤分解法)、ガスを臨界圧力以上の雰囲気にし、液相状態にして基材樹脂に接触させる方法(液相含浸)、ガスを臨界圧力未満の高圧雰囲気下で気相状態で基材樹脂に接触させる方法(気相含浸)等が挙げられる。
この中でも特に、ガスを臨界圧力未満の高圧雰囲気下で気相含浸させる方法が好ましい。
気相含浸させる方法は、高温条件下で実施される懸濁含浸に比べてガスの樹脂への溶解度がより良好で、発泡剤の含有量を高くしやすい。そのため、高発泡倍率を達成しやすく、気泡サイズも均一になりやすい。発泡剤分解法は高温条件下で実施されるだけでなく、加えた熱分解型発泡剤全てがガスになる訳ではないため、ガス発生量が相対的に少なくなりやすい。そのため、気相含浸の方がより発泡剤含有量を高くしやすい利点がある。また、気相含浸は、液相含浸と比べると、耐圧装置や冷却装置等の設備がよりコンパクトになりやすく、設備費が低く抑えやすくなる。
As a method for incorporating a blowing agent into the base resin, a commonly used method can be applied, and examples thereof include a method in which a suspension system such as water is used in an aqueous medium (suspension impregnation), a method using a thermally decomposable blowing agent such as sodium bicarbonate (blowing agent decomposition method), a method in which a gas is brought into an atmosphere of not less than the critical pressure and brought into liquid phase contact with the base resin (liquid phase impregnation), and a method in which a gas is brought into contact with the base resin in a gas phase in a high pressure atmosphere below the critical pressure (gas phase impregnation).
Among these, the method of gas-phase impregnation under a high pressure atmosphere below the critical pressure is particularly preferred.
The gas phase impregnation method has better solubility of gas in resin than suspension impregnation, which is carried out under high temperature conditions, and the content of the blowing agent can be increased. Therefore, it is easy to achieve a high expansion ratio and uniform bubble size. The blowing agent decomposition method is not only carried out under high temperature conditions, but also the amount of gas generated tends to be relatively small because not all of the added thermal decomposition type blowing agent becomes gas. Therefore, gas phase impregnation has the advantage that the content of the blowing agent can be increased more easily. In addition, gas phase impregnation is easier to use equipment such as pressure-resistant equipment and cooling equipment in a more compact manner than liquid phase impregnation, making it easier to keep equipment costs low.

気相含浸条件における雰囲気圧力としては、0.5~10MPaが好ましく、0.5~5MPaがより好ましい。また、雰囲気温度は-30~100℃が好ましく、-20~80℃がより好ましい。また、含浸時間は、0.1~72時間が好ましく、1~24時間がより好ましい。雰囲気圧力、雰囲気温度、含浸時間が上記範囲であると、より効率的に基材樹脂へのガス溶解が進行しやすくなる。特に、雰囲気温度は低ければ含浸量が増えるが含浸速度は遅くなり、雰囲気温度が高ければ含浸量は減るが含浸速度は速くなる傾向であり、その兼ね合いから効率的に基材樹脂へのガス溶解を進行するために上記の雰囲気温度を設定するのが好ましい。また、生産性を向上させる観点では雰囲気温度が高いほど好ましく、また一般に非晶性樹脂は含浸速度と含浸量を高めやすい。 The atmospheric pressure under the gas phase impregnation conditions is preferably 0.5 to 10 MPa, more preferably 0.5 to 5 MPa. The atmospheric temperature is preferably -30 to 100°C, more preferably -20 to 80°C. The impregnation time is preferably 0.1 to 72 hours, more preferably 1 to 24 hours. When the atmospheric pressure, atmospheric temperature, and impregnation time are within the above ranges, gas dissolution into the base resin proceeds more efficiently. In particular, if the atmospheric temperature is low, the amount of impregnation increases but the impregnation speed slows, and if the atmospheric temperature is high, the amount of impregnation decreases but the impregnation speed tends to increase. In order to efficiently proceed with gas dissolution into the base resin, it is preferable to set the above atmospheric temperature in consideration of the balance. In addition, from the viewpoint of improving productivity, the higher the atmospheric temperature, the more preferable it is, and in general, it is easy to increase the impregnation speed and amount of impregnation with amorphous resins.

発泡剤の含浸量としては、原料に含まれる上記樹脂に対して0.13~20質量%あることが好ましく、より好ましくは0.5~10質量%である。
発泡剤(例えば炭酸ガス)の含浸量が0.13質量%以上であると、より高い発泡倍率を達成しやすくなる上、気泡サイズのばらつきが少なくなり、発泡倍率のばらつきを抑えやすくなる。また、20質量%以下であると、気泡サイズが適度な大きさとなり、過発泡による独立気泡率の低下を抑制しやすくなる。
The amount of the foaming agent impregnated is preferably 0.13 to 20% by mass, more preferably 0.5 to 10% by mass, based on the resin contained in the raw material.
When the amount of the foaming agent (e.g., carbon dioxide gas) is 0.13% by mass or more, a higher expansion ratio is easily achieved, and the variation in the bubble size is reduced, making it easier to suppress the variation in the expansion ratio. When the amount is 20% by mass or less, the bubble size becomes appropriate, making it easier to suppress the decrease in the closed cell ratio due to over-foaming.

ビーズ発泡工程における原料の発泡方法は特に限定されないが、例えば、高圧条件下から一気に低圧雰囲気下に開放し、樹脂内に溶解している発泡剤(例えばガス)を膨張させる方法や、圧力蒸気や熱風等により加熱し、樹脂内に溶解した発泡剤(例えばガス)を膨張させる方法、等が挙げられる。この中でも特に、加熱発泡させる方法が好ましい。これは、高圧条件下から一気に低圧雰囲気下に開放する方法に比べると、樹脂内部の気泡サイズが均一になりやすいからである。また、発泡倍率の制御、特に低発泡倍率の制御が行いやすい利点がある。
さらに、高圧条件下から一気に低圧雰囲気下に開放した場合、全箇所から同時に発泡が始まる為、スキン層が形成されにくいという欠点がある。一方、加熱発泡では、樹脂が発泡開始温度まで加熱される間に、原料の表層から発泡ガスが散逸する為、スキン層を形成しやすい。また、加熱速度や加熱温度を調整する事により、スキン層の厚みを調整できる利点があり、加熱速度が速いほど、また、加熱温度が高いほど、スキン層の厚みは薄くなる傾向にある。
The method of foaming the raw material in the bead foaming process is not particularly limited, but examples include a method of suddenly releasing from a high-pressure condition to a low-pressure atmosphere to expand the foaming agent (e.g., gas) dissolved in the resin, and a method of heating with pressurized steam or hot air to expand the foaming agent (e.g., gas) dissolved in the resin. Among these, the method of foaming by heating is particularly preferred. This is because the size of the bubbles inside the resin is more likely to be uniform than the method of suddenly releasing from a high-pressure condition to a low-pressure atmosphere. In addition, this method has the advantage that it is easier to control the foaming ratio, especially the low foaming ratio.
Furthermore, when the resin is suddenly released from a high-pressure condition to a low-pressure atmosphere, foaming starts simultaneously from all points, which makes it difficult to form a skin layer. On the other hand, when foaming by heating, the foaming gas dissipates from the surface layer of the raw material while the resin is heated to the foaming start temperature, making it easy to form a skin layer. Another advantage is that the thickness of the skin layer can be adjusted by adjusting the heating rate and heating temperature, and the faster the heating rate and the higher the heating temperature, the thinner the skin layer tends to be.

樹脂発泡粒子を所望の発泡倍率まで発泡させる際、一段階で所望の発泡倍率まで発泡させてもよいし、二次発泡、三次発泡等の多段階で所望の発泡倍率まで発泡させてもよい。また、各段階での発泡前に予備ビーズ(最終段階の発泡を行っていないビーズ等をいう)に無機ガス等で加圧処理を行うことが好ましい。 When expanding the resin foam particles to the desired expansion ratio, the resin foam particles may be expanded to the desired expansion ratio in one stage, or may be expanded to the desired expansion ratio in multiple stages such as secondary expansion and tertiary expansion. In addition, it is preferable to apply pressure treatment with inorganic gas to preliminary beads (beads that have not been expanded in the final stage) before expansion in each stage.

上記樹脂発泡粒子を融合成形する発泡体成形工程を経て、発泡成形体(例えば、本実施形態の本体)を製造することできる。
上記発泡体成形工程は、例えば、樹脂発泡粒子を型内に充填し、水蒸気等で加熱して樹脂発泡粒子を膨張させると同時に樹脂発泡粒子同士を熱融着させること等によって、発泡成形体を得ることができる。
ビーズ発泡法は、所望の形状の型を作製し、そこに樹脂発泡粒子を充填させて成形するため、発泡成形体をより微細な形状や複雑な形状に成形しやすい。また、ビーズ発泡法は、発泡成形体の発泡倍率を高めやすく、得られた発泡成形体は断熱性に加えて柔軟性を発現しやすい。
A foamed molded article (for example, the main body of the present embodiment) can be produced through a foam molding step in which the resin foam particles are fusion molded.
In the foam molding process, for example, resin foam particles are filled into a mold, and the resin foam particles are heated with water vapor or the like to expand the resin foam particles, while at the same time thermally fusing the resin foam particles together to obtain a foam molded body.
In the bead expansion method, a mold of a desired shape is prepared and resin foam particles are filled therein to form a foamed molded article, so that the foamed molded article can be easily formed into a finer or more complex shape. In addition, the bead expansion method can easily increase the expansion ratio of the foamed molded article, and the obtained foamed molded article can easily exhibit flexibility in addition to heat insulation.

ビーズ発泡工程で得られた樹脂発泡粒子は、連続して発泡体成形工程に用いてもよいし、間隔をあけて発泡体成形工程に用いてもよい。 The resin foam particles obtained in the bead expansion process may be used in the foam molding process either continuously or at intervals.

樹脂発泡粒子の充填方法は、例えば、充填時に金型を多少開いた状態で充填するクラッキング法や、金型を閉じたままの状態で加圧して圧縮したビーズを充填する圧縮法、圧縮ビーズを充填後にクラッキングを行う圧縮クラッキング法等が挙げられる。 Methods for filling the resin foam particles include, for example, the cracking method, in which the mold is slightly open when filling, the compression method, in which compressed beads are filled by applying pressure while the mold is closed, and the compression cracking method, in which compressed beads are filled and then cracked.

上記発泡体成形工程で樹脂発泡粒子を成形する方法として、例えば、従来の樹脂発泡粒子を型内成形する一対の成形型を用い、加圧大気圧下又は減圧下に樹脂発泡粒子を成形型キャビティー内に充填し、型閉めして成形型キャビティー体積を0~70%減少するように圧縮し、次いで型内にスチーム等の熱媒を供給して加熱を行い、樹脂発泡粒子を加熱融着させる減圧成形法(例えば、特公昭46-38359号公報)、樹脂発泡粒子を加圧気体により予め加圧処理して樹脂発泡粒子内の圧力を高めることにより樹脂発泡粒子の二次発泡性を高め、二次発泡性を維持しつつ大気圧下又は減圧下に樹脂発泡粒子を成形型キャビティー内に充填して型閉めし、次いで型内にスチーム等の熱媒を供給して加熱を行い、樹脂発泡粒子を加熱融着させる加圧成形法(例えば、特公昭51-22951号公報)等が挙げられる。
また、圧縮ガスにより大気圧以上に加圧したキャビティー内に、当該圧力以上に加圧した樹脂発泡粒子を充填した後、キャビティー内にスチーム等の熱媒を供給して加熱を行い、樹脂発泡粒子を加熱融着させる圧縮充填成形法(特公平4-46217号公報)により成形することもできる。その他に、特殊な条件にて樹脂発泡粒子の二次発泡力を高め、大気圧下又は減圧下の一対の成形型のキャビティー内に該樹脂発泡粒子を充填した後、スチーム等の熱媒を供給して加熱を行い、樹脂発泡粒子を加熱融着させる常圧充填成形法(特公平6-49795号公報)又は上記の方法を組み合わせた方法(特公平6-22919号公報)等によっても成形することができる。
Examples of the method for molding the resin foam particles in the foam molding step include a reduced pressure molding method (e.g., JP-B-46-38359) in which a pair of molds for molding the conventional resin foam particles in-mold is used, the resin foam particles are filled into the mold cavity under pressurized atmospheric pressure or reduced pressure, the molds are closed to compress the mold cavity volume by reducing the volume by 0 to 70%, and then a heat medium such as steam is supplied into the mold to heat and fuse the resin foam particles; and a pressure molding method (e.g., JP-B-51-22951) in which the resin foam particles are pressurized in advance with a pressurized gas to increase the pressure inside the resin foam particles, thereby increasing the secondary foamability of the resin foam particles, and the resin foam particles are filled into the mold cavity under atmospheric pressure or reduced pressure while maintaining the secondary foamability, the molds are closed, and then a heat medium such as steam is supplied into the mold to heat and fuse the resin foam particles.
Molding can also be performed by a compression filling molding method (JP-B-46217) in which a cavity pressurized to atmospheric pressure or higher by a compressed gas is filled with resin foam particles pressurized to the said pressure or higher, and then a heat medium such as steam is supplied into the cavity to heat and fuse the resin foam particles. Molding can also be performed by a normal pressure filling molding method (JP-B-649795) in which the secondary expansion power of the resin foam particles is increased under special conditions, the resin foam particles are filled into a pair of mold cavities under atmospheric pressure or reduced pressure, and then a heat medium such as steam is supplied to heat and fuse the resin foam particles, or a combination of the above methods (JP-B-622919).

発泡体成形工程において、型内(発泡炉内)の加圧水蒸気の最大蒸気圧は、所望の倍率を得やすく外観を良化する観点から、30~700kPa・Gであることが好ましい。 In the foam molding process, the maximum steam pressure of the pressurized steam inside the mold (inside the foaming furnace) is preferably 30 to 700 kPa·G from the viewpoint of easily obtaining the desired expansion ratio and improving the appearance.

上記発泡体を目的の形状に加工する方法としては、特には限定されないが、発泡粒子又は溶融樹脂を金型に充填し成形する方法、鋸刃及び型ぬき刃等の刃物により切断する方法、ミルにより切削する方法、複数の発泡体を熱又は粘着剤・接着剤により接着させる方法等が挙げられる。 Methods for processing the foam into the desired shape include, but are not limited to, filling a mold with foam particles or molten resin and molding it, cutting with a blade such as a saw blade or a punch blade, cutting with a mill, and bonding multiple foam pieces with heat or a pressure sensitive adhesive or glue.

(形状)
上記本体の形状について説明する。
(shape)
The shape of the main body will now be described.

上記本体の形状としては、立方体、直方体、略円柱、略多角柱等が挙げられる。 The shape of the main body may be a cube, a rectangular parallelepiped, an approximately circular cylinder, an approximately polygonal prism, etc.

上記本体は、1個の円筒型の電池を収納できる収納部を複数有する。上記収納部の数は、電池ホルダーに収納される電池の数以上であればよく、収納部の数と収納される電池の数はと同じであってもよい。
上記本体の各格納部の形状は同じであってもよいし異なっていてもよい。
The main body has a plurality of storage sections each capable of storing a single cylindrical battery. The number of storage sections only needs to be equal to or greater than the number of batteries stored in the battery holder, and the number of storage sections may be the same as the number of stored batteries.
The shapes of the storage sections of the main body may be the same or different.

上記本体は、上記円筒型の電池の側面の少なくとも一部を囲むことができる。本明細書において、囲むとは、以下をいう。
円筒型の電池を収納した電池ホルダーにおいて、円筒型の電池の側面表面上の1点を通り、円筒型の電池の上面から下面に向かう方向に対して垂直な断面を作成する。電池の中心を始点とし、円筒型の電池の側面表面上の上記1点を通る直線上に、電池ホルダー(例えば、上記本体)が存在するとき、上記1点は電池ホルダーに囲まれている。ここで、上記1点と電池ホルダーとは離れていてもよいし、接していてもよい。このうち、上記1点と電池ホルダーとが接している時、円筒型の電池と電池ホルダーとは、上記1点で接触している。上記1点と電池ホルダーとの距離は、30mm以下であることが好ましく、より好ましくは20mm以下、さらに好ましくは10mm以下、特に好ましくは5mm以下である。
円筒型の電池の上面又は下面についても同様である。円筒型の電池の上面又は下面の表面上の1点を通り、円筒型の電池の上面から下面に向かう方向の断面を作成する。電池の中心を始点とし、円筒型の電池の上面又は下面の表面上の上記1点を通る直線上に、電池ホルダー(例えば、上記蓋)が存在するとき、上記1点は電池ホルダーに囲まれている。上記1点と電池ホルダー(例えば蓋)との距離は、30mm以下であることが好ましく、より好ましくは20mm以下、さらに好ましくは10mm以下、特に好ましくは5mm以下である。また、上記1点と電池ホルダーとが接している時、円筒型の電池と電池ホルダーとは、上記1点で接触している。
The main body can surround at least a part of the side surface of the cylindrical battery.
A cross section is created of a battery holder housing a cylindrical battery, passing through a point on the side surface of the cylindrical battery and perpendicular to the direction from the top to the bottom of the cylindrical battery. When the battery holder (e.g., the main body) is on a line that starts at the center of the battery and passes through the point on the side surface of the cylindrical battery, the point is surrounded by the battery holder. Here, the point may be separated from the battery holder or may be in contact. When the point is in contact with the battery holder, the cylindrical battery and the battery holder are in contact at the point. The distance between the point and the battery holder is preferably 30 mm or less, more preferably 20 mm or less, even more preferably 10 mm or less, and particularly preferably 5 mm or less.
The same applies to the top or bottom surface of a cylindrical battery. A cross section is created passing through a point on the top or bottom surface of a cylindrical battery in the direction from the top to the bottom of the cylindrical battery. When the battery holder (e.g., the lid) is present on a line that starts at the center of the battery and passes through the point on the top or bottom surface of the cylindrical battery, the point is surrounded by the battery holder. The distance between the point and the battery holder (e.g., the lid) is preferably 30 mm or less, more preferably 20 mm or less, even more preferably 10 mm or less, and particularly preferably 5 mm or less. When the point and the battery holder are in contact, the cylindrical battery and the battery holder are in contact at the point.

上記電池ホルダー(例えば、上記本体)は、円筒型の電池を収納した際に、円筒型の電池の側面全面を囲んでいてもよいし、一部を囲んでいてもよい。例えば、収納部の側面に、略円、略多角形等の形状の穴が空いていてもよい。
上記円筒型の電池の側面全面積100%に対して、上記電池が電池ホルダーに囲まれている面積の割合R1は、接触面積を増やして強固に保持する観点、落下や衝撃に対する緩衝性を持たせる観点から、10%以上であることが好ましく、より好ましくは20~100%、さらに好ましくは50~100%である。
上記数値範囲は、各収納部で同じであってもよいし異なっていてもよい。なお、各収納部で面積の割合R1が異なる場合、電池を収納する全ての収納部の面積の割合R1が上記範囲内であることが好ましい。また、電池を収納する全ての収納部の面積の割合R1の平均が上記範囲内であることが好ましい。
上記割合R1は、収納部の形状と略相似形であって、収納部の体積に対して70体積%以上(好ましくは80体積%以上、より好ましくは90体積%以上、さらに好ましくは95体積%以上、特に好ましくは99体積%以上)である円筒型の電池を収納した場合の値であってよい。
When a cylindrical battery is stored in the battery holder (e.g., the main body), the battery holder may completely or partially surround the side surface of the cylindrical battery. For example, the side surface of the storage section may have a hole having a shape such as a circle or a polygon.
The ratio R1 of the area of the battery surrounded by the battery holder to the total side surface area of the cylindrical battery (100%) is preferably 10% or more, more preferably 20 to 100%, and even more preferably 50 to 100%, from the viewpoints of increasing the contact area to hold the battery firmly and providing cushioning against drops and shocks.
The above numerical range may be the same or different for each storage section. When the area ratio R1 differs for each storage section, it is preferable that the area ratio R1 of all storage sections that store batteries is within the above range. It is also preferable that the average area ratio R1 of all storage sections that store batteries is within the above range.
The above ratio R1 may be a value when a cylindrical battery that is roughly similar in shape to the storage section and accounts for 70 volume % or more (preferably 80 volume % or more, more preferably 90 volume % or more, even more preferably 95 volume % or more, and particularly preferably 99 volume % or more) of the volume of the storage section is stored.

上記電池ホルダー(例えば、上記本体)は、円筒型の電池を収納した際に、円筒型の電池の側面の一部と接触していてもよいし、側面全面と接触していてもよい。
上記円筒型の電池の側面全面積100%に対して、上記電池と電池ホルダー(例えば、上記収納部の内面)とが接触する面積の割合R2は、強固に保持する観点、緩衝特性を適切に発現させる観点から、10%以上であることが好ましく、より好ましくは20~100%、さらに好ましくは50~100%である。
また、適切なクリアランスを保つことでメンテナンス性や組み立てやすさを向上させる観点から、100%未満であってもよい。
上記数値範囲は、各収納部で同じであってもよいし異なっていてもよい。なお、各収納部で面積の割合R2が異なる場合、電池を収納する全ての収納部の面積の割合R2が上記範囲内であることが好ましい。また、電池を収納する全ての収納部の面積の割合R2の平均が上記範囲内であることが好ましい。
上記割合R2は、上記割合R1以下であることが好ましく、上記割合R1と同じであってもよいし上記割合R1より5%以上低くてもよい。
上記割合R2は、収納部の形状と略相似形であって、収納部の体積に対して70体積%以上(好ましくは80体積%以上、より好ましくは90体積%以上、さらに好ましくは95体積%以上、特に好ましくは99体積%以上)である円筒型の電池を収納した場合の値であってよい。
When a cylindrical battery is stored in the battery holder (eg, the main body), the battery holder may be in contact with a portion of the side surface of the cylindrical battery, or may be in contact with the entire side surface.
The ratio R2 of the area of contact between the battery and the battery holder (e.g., the inner surface of the storage section) to the total side surface area of the cylindrical battery (100%) is preferably 10% or more, more preferably 20 to 100%, and even more preferably 50 to 100%, from the standpoint of firmly holding the battery and appropriately exhibiting cushioning properties.
Moreover, from the viewpoint of improving maintainability and ease of assembly by maintaining an appropriate clearance, it may be less than 100%.
The above numerical range may be the same or different for each storage section. When the area ratio R2 differs for each storage section, it is preferable that the area ratio R2 of all storage sections that store batteries is within the above range. It is also preferable that the average area ratio R2 of all storage sections that store batteries is within the above range.
The ratio R2 is preferably equal to or less than the ratio R1, and may be the same as the ratio R1 or may be 5% or more lower than the ratio R1.
The above ratio R2 may be a value when a cylindrical battery that is roughly similar in shape to the storage section and accounts for 70 volume % or more (preferably 80 volume % or more, more preferably 90 volume % or more, even more preferably 95 volume % or more, and particularly preferably 99 volume % or more) of the volume of the storage section is stored.

上記収納部の、収納される上記円筒型の電池の上面から下面に向かう方向(上下方向)に対して垂直な断面の形状は、略円、略多角形(例えば、略四角形、略五角形、略六角形等)、これらの外周の一部が欠けた形状であってよく、収納される上記円筒型の電池の形状と略相似形であることが好ましく、上記上下方向に対して垂直な断面の形状が略相似であってよい。
略相似形とは、例えば、形状が同じであって半径が異なる図形及びそれらの類似形をいう。類似形とは、上下方向に対して垂直な断面の形状の外周の一部を曲線・波線・折れ線等に変えた形状、上下方向に対して垂直な対応する二つの断面形状の重心から外周上の全ての各点までの距離の比の値が、該比の平均値に対して0.8~1.2倍(好ましくは0.9~1.1倍)の範囲内となる図形(例えば、楕円であれば、対応する2つの図形の外周上の点と重心との距離の比を該図形の外周上の全ての点で求め、外周上の全ての点における比の値がその平均値に対して0.8~1.2等の範囲内となる略楕円)、これらの組み合わせ、が挙げられ、略円筒であってよい。例えば、電池と電池ホルダーの収納部とが接触している場合、円筒型の電池の略相似形は略円筒が挙げられる。また、電池ホルダーの収納部に穴があいている場合、略円の外周の一部が欠けた形状となる。
The cross-sectional shape of the storage section perpendicular to the direction from the top to the bottom of the cylindrical battery to be stored (up-down direction) may be approximately circular, approximately polygonal (e.g., approximately rectangular, approximately pentagonal, approximately hexagonal, etc.), or a shape with part of the outer periphery missing, and it is preferable that the cross-sectional shape of the storage section perpendicular to the up-down direction be approximately similar to the shape of the cylindrical battery to be stored.
The term "approximately similar shapes" refers to shapes that have the same shape but different radii and shapes similar to them. Examples of similar shapes include shapes in which part of the periphery of a cross-sectional shape perpendicular to the vertical direction is changed to a curve, wavy line, broken line, or the like, shapes in which the ratio of the distance from the center of gravity of two corresponding cross-sectional shapes perpendicular to the vertical direction to all points on the periphery is within a range of 0.8 to 1.2 (preferably 0.9 to 1.1) times the average value of the ratio (for example, in the case of an ellipse, the ratio of the distance between the center of gravity of the corresponding two shapes on the periphery and the points on the periphery is calculated at all points on the periphery of the shapes, and the ratio at all points on the periphery is within a range of 0.8 to 1.2, etc.)), and combinations of these shapes, and may be approximately cylindrical. For example, when the battery and the storage section of the battery holder are in contact with each other, an approximately similar shape of a cylindrical battery may be approximately cylindrical. Also, when a hole is made in the storage section of the battery holder, the shape is an approximately circular shape with part of the periphery missing.

上記収納部の上下方向に対して垂直な断面の形状は、収納される電池の上面から下面にわたって同じであってもよいし異なっていてもよい。 The cross-sectional shape of the storage section perpendicular to the vertical direction may be the same or different from the top to the bottom of the stored battery.

上記電池ホルダーの収納部間の最薄部の厚み(図3(B)、図4)は、収納効率を高める観点、成形容易性を適切に保つ観点の観点から、0mm超10mm以下であることが好ましく、より好ましくは0.5mm超10mm以下、さらに好ましくは1.0~5.0mm、特に好ましくは1.0~3.0mmである。
上記最薄部は、隣り合う上記収納部間の最も薄い箇所であってよい。
各収納部間の最薄部の厚みは、同じであってもよいし異なっていてもよい。
From the standpoint of increasing storage efficiency and maintaining appropriate ease of molding, the thickness of the thinnest part between the storage sections of the battery holder (FIGS. 3(B) and 4) is preferably more than 0 mm and not more than 10 mm, more preferably more than 0.5 mm and not more than 10 mm, even more preferably 1.0 to 5.0 mm, and particularly preferably 1.0 to 3.0 mm.
The thinnest portion may be the thinnest location between adjacent storage portions.
The thickness of the thinnest part between each storage section may be the same or different.

上記本体の密度は、適切な緩衝性を保持する観点、軽量性を向上させる観点、から、0.5~0.01g/cmであることが好ましく、より好ましくは0.35~0.02g/cm、さらに好ましくは0.35~0.05g/cmである。なお、発泡体における発泡倍率は密度の逆数で定義される。 From the viewpoints of maintaining appropriate cushioning properties and improving light weight, the density of the main body is preferably 0.5 to 0.01 g/cm 3 , more preferably 0.35 to 0.02 g/cm 3 , and even more preferably 0.35 to 0.05 g/cm 3. The expansion ratio of the foam is defined as the reciprocal of the density.

(物性)
以下、本実施形態の電池ホルダー(例えば、上記本体や、後述の蓋)の物性について説明する。
(Physical Properties)
The physical properties of the battery holder of this embodiment (for example, the main body and the lid described below) will be described below.

上記電池ホルダーに収納される円筒型の電池の総質量100%に対する上記電池ホルダー(例えば、上記本体)の質量の割合は、適切な緩衝性を保持する観点、軽量性を向上させる観点から、25%以下であることが好ましく、より好ましくは0.5~20%、さらに好ましくは1.0~15%である。
ここで、電池ホルダーの質量は、本体とは別のパーツとして上蓋や底蓋を備えている場合にはそれらを含めても良い。
From the standpoint of maintaining appropriate cushioning properties and improving lightweight properties, the ratio of the mass of the battery holder (e.g., the main body) to the total mass of the cylindrical batteries housed in the battery holder (100%) is preferably 25% or less, more preferably 0.5 to 20%, and even more preferably 1.0 to 15%.
Here, the mass of the battery holder may include a top cover and bottom cover if they are separate parts from the main body.

上記電池ホルダー(例えば、上記本体)の、ひずみ比率((圧縮前の初期厚み(mm)-圧縮後の厚み(mm))/圧縮前の初期厚み(mm))と圧縮強度(MPa=N/mm)の関係より作成される圧縮強度SSカーブから算出される面積1mmあたりのひずみ比率0~0.75の範囲における圧縮強度の積分値J75(図5)は、適切な緩衝性を保持する観点から、0.1~50N/mmであることが好ましく、より好ましくは0.1~30N/mm、さらに好ましくは0.5~20N/mmである。なお、J75は後述の実施例に記載の方法で測定することができる。
同様に、上記電池ホルダー(例えば、上記本体)の、ひずみ比率((圧縮前の初期厚み(mm)-圧縮後の厚み(mm))/圧縮前の初期厚み(mm))と圧縮強度(MPa=N/mm)の関係より作成される圧縮強度SSカーブから算出される面積1mmあたりのひずみ比率0~0.05の範囲における圧縮強度の積分値J5(図5)は、適切な緩衝性を保持する観点から、0.001~1.0N/mmであることが好ましく、より好ましくは0.01~1N/mm、さらに好ましくは0.05~0.5N/mmである。
なお、J5は後述の実施例に記載の方法で測定することができる。
上記J5及びJ75はそれぞれ1mmあたりに5%、75%のひずみを与えるのに必要なエネルギー量をしめす。これらのひずみを発生させることで衝撃のエネルギーを吸収し内容物を保護する。
The integral value J75 (FIG. 5) of the compressive strength in the range of strain ratio 0 to 0.75 per mm2 area calculated from the compressive strength SS curve created from the relationship between the strain ratio ((initial thickness before compression (mm)-thickness after compression (mm))/initial thickness before compression (mm)) and compressive strength (MPa=N/ mm2 ) of the battery holder (e.g., the main body) is preferably 0.1 to 50 N/ mm2 , more preferably 0.1 to 30 N/ mm2 , and even more preferably 0.5 to 20 N/ mm2 , from the viewpoint of maintaining appropriate cushioning properties. J75 can be measured by the method described in the Examples below.
Similarly, the integral value J5 (FIG. 5) of the compressive strength in the range of strain ratio 0 to 0.05 per mm2 area calculated from the compressive strength SS curve created from the relationship between the strain ratio ((initial thickness before compression (mm) - thickness after compression (mm))/initial thickness before compression (mm)) and the compressive strength (MPa = N/ mm2 ) of the battery holder (e.g., the main body) is preferably 0.001 to 1.0 N/ mm2 , more preferably 0.01 to 1 N/ mm2 , and even more preferably 0.05 to 0.5 N/ mm2 , from the viewpoint of maintaining appropriate cushioning properties.
J5 can be measured by the method described in the Examples below.
The above J5 and J75 indicate the amount of energy required to give a 5% and 75% strain per 1 mm2, respectively. By generating these strains, the energy of the impact is absorbed and the contents are protected.

上記電池ホルダー(例えば、上記本体)と収納される円筒型の電池とが囲まれている箇所において落下衝撃に対して適切な緩衝性を発現させやすい観点から、全ての収納箇所に電池が収納された電池ホルダーを、上記電池を収納する方向に対して垂直方向に落下させる試験において、上記円筒型の電池に囲まれている部分は以下の関係(1)を満たすことが好ましい。電池ホルダーが落下衝撃から内容物を保護する機能を有すると、電池の運搬時、バッテリーパックやモジュールの組立て時、バッテリーパック内へホルダーを収納した状態で使用する時、等において、内容物(電池等)を適切に保護しやすい。
J5×A1×d1/1000<W×g×h<J75×A1×d1/1000 ・・・(1)
ここで、Wは、上記電池ホルダーに収納される落下鉛直方向に存在する円筒型の電池の総質量(kg)を表す。具体的には、Wは、落下方向に最も鉛直下側に位置する電池の落下方向に垂直な断面のうち最も大きな面積となる最大断面で電池ホルダーを落下方向に切り取った範囲に含まれる電池の総重量をいう(図3(B)、図4)。
gは、重力加速度(m/s)を表す。
hは、落下高さ(m)を示す。hは任意の値を採用できるが、一般に想定される落下衝撃に対する設計に対しては、たとえば1.2mの値を採用しても良い。落下高さは、落下面から、落下試験時の電池ホルダーの落下方向最下の端部までの高さとしてよい。
A1は電池の落下衝撃を受ける面積(mm)を示す。A1は、「(落下方向に最も鉛直下側に位置する電池に、落下方向の光を投影したときの投影面積)×(該電池の側面の全面積100%に対する電池ホルダーに囲まれている上記側面の面積割合R1)/100」としてよい。例えば、落下方向に最も鉛直下側に位置する上記電池側面が電池ホルダーで100%囲まれているとき、円筒型の電池の半径方向に落下させる場合においては、上記A1は円筒型の電池の直径×高さ×100/100で計算される。
d1は上記落下試験時に電池ホルダーが衝撃を受ける部分の厚み(mm)を示す。一般に落下や衝突において、衝突物に最初にあたる部分と、その直上に存在する内容物との間の部分が、当該ホルダーにおける衝撃を最も受ける部分となる。例えば円筒型の電池の半径方向に落下させる上記落下試験においては、d1は、落下方向に最も鉛直下側に位置する電池から、落下方向に最も鉛直下側の電池ホルダー端部までの落下方向の距離(mm)としてよい(図3(B)、図4)。
From the viewpoint of easily achieving appropriate cushioning against a drop impact in the area surrounding the battery holder (e.g., the main body) and the stored cylindrical batteries, in a test in which a battery holder with batteries stored in all storage locations is dropped in a direction perpendicular to the direction in which the batteries are stored, it is preferable that the area surrounded by the cylindrical batteries satisfy the following relationship (1): If the battery holder has the function of protecting the contents from the drop impact, it is easier to adequately protect the contents (batteries, etc.) when transporting the batteries, when assembling a battery pack or module, when using the holder stored in a battery pack, etc.
J5×A1×d1/1000<W×g×h<J75×A1×d1/1000 ・・・(1)
Here, W represents the total mass (kg) of cylindrical batteries housed in the battery holder in the vertical direction of the drop. Specifically, W refers to the total weight of batteries contained in the area obtained by cutting the battery holder in the direction of drop at the largest cross section perpendicular to the drop direction of the battery located at the lowest vertical position in the direction of drop (Figures 3(B) and 4).
g represents the acceleration due to gravity (m/s 2 ).
h indicates the drop height (m). Any value can be used for h, but for designs that are generally expected to withstand drop impacts, a value of 1.2 m, for example, may be used. The drop height may be the height from the drop surface to the bottom end of the battery holder in the direction of drop during the drop test.
A1 indicates the area ( mm2 ) of the battery that receives the impact of being dropped. A1 may be calculated as "(projected area when light is projected in the direction of the drop onto the battery located at the lowest vertical position in the direction of the drop) x (area ratio R1 of the side surface surrounded by the battery holder to the total area of the side surface of the battery, which is 100%)/100." For example, when the side surface of the battery located at the lowest vertical position in the direction of the drop is 100% surrounded by the battery holder, in the case where the battery is dropped in the radial direction of the cylindrical battery, A1 is calculated as the diameter x height x 100/100 of the cylindrical battery.
d1 indicates the thickness (mm) of the part of the battery holder that receives impact during the drop test. In general, in the case of a drop or collision, the part of the battery holder that receives the most impact is the part between the part that is first struck by the impact object and the contents located directly above it. For example, in the drop test in which a cylindrical battery is dropped in the radial direction, d1 may be the distance (mm) in the drop direction from the battery located at the lowest vertical position in the drop direction to the end of the battery holder that is lowest vertically in the drop direction (Figures 3(B) and 4).

緩衝特性とは落下や衝突時において発生する衝撃を緩和させ、内部部品や製品への影響をどの程度低減できるかを示し、緩衝性を考える場合には2つの観点が必要である。
一つ目は発生する衝撃のエネルギーを吸収できるか否かであり、例えば本実施形態における電池ホルダーが内容物(電池)を収納した状態で落下した際に発生するエネルギーをホルダーによって吸収できるかが重要となる。この場合、落下した際に発生する衝撃のエネルギーが、材料自体の特性(J5やJ75)と内容物の重量や衝撃を受ける部分の面積を考慮して計算される電池ホルダーが吸収可能なエネルギーJ5’(J5×A1×d1/1000)からJ75’(J75×A1×d1/1000)の範囲内に入る場合、ホルダーが衝撃を受ける部分の初期厚みに対して5%~75%程度の変形を発生させることで衝撃エネルギーを全て吸収できることを意味する。この範囲でエネルギーを吸収できると、電池ホルダーが適切に変形しながらエネルギーを吸収できるが、ひずみが小さすぎる場合には衝撃が加わった際に十分に変形できないため後述の加速度が大きくなりすぎ、また大きすぎる場合には衝撃が加わった際に変形しきってしまってエネルギーを吸収しきれなくなる。
二つ目の観点としては、実際に衝撃が加わる際の内容物の加速度をいかに低減するかである。内容物に発生する力はニュートンの法則よりF=ma(F:力、m:質量、a:加速度)の関係式が成り立つが、すなわち加速度を小さくなると内容物への衝撃力を小さくすることができる。衝突により発生するエネルギーが上述のJ5’からJ75’の範囲内に入っていたとしても加速度が大きければ加わる力も大きくなり内容物の破損につながる。一般には、内容物によって許容G値が決まっており(G値:何らかの衝撃を受けた場合に内容物に対して発生する加速度が重力加速度の何倍かを示す値)、衝撃が発生した場合の内容物の加速度が、その許容G値より小さくなければならない。このため、例えば本実施形態におけるホルダーにおいては、落下や衝突等による衝撃を受けやすい部分(ホルダーの外周部や電池の上面/底面部分を保護する部分等)を適切な厚みに設計することが好ましい。具体的には、地面に衝突する直前の速度と、内容物の許容G値より、衝撃吸収に必要な時間が計算されるため、衝突速度から速度が完全に0になる(停止する)までの速度変化が分かれば、衝突速度と許容G値から計算される衝撃吸収に必要な時間で変形する変位が計算でき、そこから衝撃吸収に必要な厚みを算出することができる。衝突速度から速度が完全に0になる(停止する)までの速度変化は、衝突速度から0m/sまで線形に速度が変化すると仮定すると、大まかな必要厚みを算出することもできる。
Cushioning properties indicate the degree to which a product can absorb the shock generated when dropped or hit, and reduce the impact on internal parts and products. When considering cushioning properties, two perspectives are required.
The first is whether the energy of the impact can be absorbed. For example, it is important whether the battery holder in this embodiment can absorb the energy generated when it is dropped with the contents (batteries) stored inside. In this case, if the energy of the impact generated when dropped is within the range of the energy that the battery holder can absorb, calculated taking into account the characteristics of the material itself (J5 or J75), the weight of the contents, and the area of the part that receives the impact, J5' (J5 x A1 x d1/1000) to J75' (J75 x A1 x d1/1000), this means that the holder can absorb all of the impact energy by generating a deformation of about 5% to 75% of the initial thickness of the part that receives the impact. If the energy can be absorbed within this range, the battery holder can absorb the energy while appropriately deforming, but if the distortion is too small, the battery holder cannot deform sufficiently when an impact is applied, so the acceleration described below becomes too large, and if the distortion is too large, the battery holder will deform completely when an impact is applied and will not be able to absorb all of the energy.
The second point of view is how to reduce the acceleration of the contents when an impact is actually applied. The force generated on the contents is related to F=ma (F: force, m: mass, a: acceleration) according to Newton's law, that is, the impact force on the contents can be reduced by reducing the acceleration. Even if the energy generated by the collision is within the range of J5' to J75' described above, if the acceleration is large, the force applied will be large and lead to damage to the contents. In general, the allowable G value is determined depending on the contents (G value: a value indicating how many times the acceleration of gravity the acceleration generated on the contents when some kind of impact is received), and the acceleration of the contents when an impact occurs must be smaller than the allowable G value. For this reason, for example, in the holder in this embodiment, it is preferable to design the parts that are easily affected by impacts due to drops, collisions, etc. (such as the outer periphery of the holder and the parts that protect the top/bottom parts of the battery) to an appropriate thickness. Specifically, the time required for shock absorption is calculated from the speed immediately before impact with the ground and the allowable G value of the contents, so if the speed change from the impact speed until the speed becomes completely 0 (stops) is known, the deformation in the time required for shock absorption calculated from the impact speed and the allowable G value can be calculated, and the thickness required for shock absorption can be calculated from that. If it is assumed that the speed change from the impact speed until the speed becomes completely 0 (stops) changes linearly from the impact speed to 0 m/s, it is also possible to roughly calculate the required thickness.

上記電池ホルダー(例えば、上記本体)の難燃性は、安全性を向上させる観点から、UL94 V燃焼試験において、V-2以上であることが好ましく、より好ましくはV-1以上、さらに好ましくはV-0である。とくに電池がリチウムイオン二次電池であって、それらを収納した状態で電池ホルダーを使用する場合、一般にリチウムイオン二次電池は異常が発生した際に爆発・発火する危険性があるため、電池ホルダーが難燃性であることが好ましい。
上記難燃性は、後述の実施例に記載の方法で測定することができる。
From the viewpoint of improving safety, the flame retardancy of the battery holder (e.g., the main body) is preferably V-2 or higher in the UL94 V flammability test, more preferably V-1 or higher, and even more preferably V-0. In particular, when the batteries are lithium ion secondary batteries and the battery holder is used with them stored therein, lithium ion secondary batteries generally pose a risk of explosion or fire in the event of an abnormality, so it is preferable for the battery holder to be flame retardant.
The flame retardancy can be measured by the method described in the Examples below.

上記電池ホルダー(例えば、上記本体)の荷重たわみ温度は、高温環境下にさらされても内容物を保持する観点から、90℃以上であることが好ましく、より好ましくは100℃以上である。
上記荷重たわみ温度は、後述の実施例に記載の方法で測定することができる。
The deflection temperature under load of the battery holder (eg, the main body) is preferably 90° C. or higher, and more preferably 100° C. or higher, from the standpoint of retaining the contents even when exposed to a high-temperature environment.
The deflection temperature under load can be measured by the method described in the Examples section below.

<蓋>
上記蓋は、上記原料からなることが好ましく、上記原料からなる発泡体のみからなることがより好ましい。中でも、ビーズ発泡体であることがより好ましい。
上記蓋は樹脂を含むことが好ましい。
上記蓋は、上記本体と同じ組成であってもよいし、異なる組成であってもよい。
上記蓋は、上記本体と同様の方法で製造することができる。
<Cover>
The lid is preferably made of the above-mentioned raw materials, more preferably made of only a foam made of the above-mentioned raw materials, and more preferably made of a bead foam.
The lid preferably comprises a resin.
The lid may be of the same composition as the body or of a different composition.
The lid can be manufactured in a similar manner as the body.

上記蓋は、少なくとも1つの上記円筒型の電池の上面及び/又は下面の全面を囲んでいてもよいし、少なくとも一部を囲んでいてもよい。
上記円筒型の電池の上面又は下面の全面積100%に対して、上記電池が蓋に囲まれている面積の割合は、衝撃に対して適切な緩衝性を保持する観点から、10~100%であることが好ましく、より好ましくは30~100%、さらに好ましくは50~100%である。
上記蓋は、収納部の収納する方向の上端面及び/又は下端面の全面を囲んでいてもよいし、少なくとも一部を囲んでいてもよい。上記上端面又は下端面の全面積100%に対して、上記蓋に囲まれている面積の割合は、衝撃に対して適切な緩衝性を保持する観点から、10%以上であることが好ましく、より好ましくは30~100%、さらに好ましくは50~100%である。「囲む」とは、収納部内の任意の1点から収納する方向に対して平行にひいた直線上に、蓋が存在するとき、該直線を通る収納部の端面上の点は蓋で囲まれている、とする。
また、衝撃に対して適切な緩衝性を保持する観点から、100%(すなわち、円筒型の電池の上面又は下面の全面が電池ホルダーで囲まれていること)であってもよい。上記蓋は、電池の端子と外部配線とを接続させるため等の穴が設けられていてよい。
上記数値範囲は、収納部の各蓋で同じであってもよいし異なっていてもよい。また、上面と下面とで同じであってもよいし異なっていてもよい。
The lid may completely surround or at least partially surround the upper and/or lower surface of at least one of the cylindrical batteries.
The ratio of the area of the cylindrical battery surrounded by the lid to the total area (100%) of the upper or lower surfaces of the battery is preferably 10 to 100%, more preferably 30 to 100%, and even more preferably 50 to 100%, from the viewpoint of maintaining appropriate cushioning against impact.
The lid may surround the entire upper end face and/or the lower end face in the storing direction of the storage section, or may surround at least a part of the upper end face and/or the lower end face. From the viewpoint of maintaining appropriate cushioning against impact, the ratio of the area surrounded by the lid to the total area (100%) of the upper end face or the lower end face is preferably 10% or more, more preferably 30 to 100%, and even more preferably 50 to 100%. "Surrounding" means that when the lid is present on a line drawn parallel to the storing direction from any one point in the storage section, a point on the end face of the storage section that passes through the line is surrounded by the lid.
From the viewpoint of maintaining appropriate shock-absorbing properties, the battery holder may be 100% enclosed (i.e., the entire upper or lower surface of the cylindrical battery is enclosed by the battery holder). The lid may be provided with holes for connecting the battery terminals to external wiring, etc.
The above numerical ranges may be the same or different for each lid of the storage section, and may be the same or different for the upper and lower surfaces.

上記蓋は、円筒型の電池の上面及び/又は下面の一部と接触していてもよいし、全面と接触していてもよい。
上記円筒型の電池の上面又は下面の全面積100%に対して、上記電池と上記蓋とが接触する面積の割合は、電池を強固に保持する観点、衝撃に対して適切な緩衝性を保持する観点から、10%以上であることが好ましく、より好ましくは20~100%、さらに好ましくは30~100%である。
The lid may be in contact with a part of the upper surface and/or the lower surface of the cylindrical battery, or may be in contact with the entire surface.
The ratio of the area of contact between the battery and the lid to the total area (100%) of the upper or lower surface of the cylindrical battery is preferably 10% or more, more preferably 20 to 100%, and even more preferably 30 to 100%, from the viewpoint of firmly holding the battery and maintaining appropriate cushioning against impact.

上記蓋の厚みは、電池を強固に保持する観点、衝撃に対して適切な緩衝性を保持する観点から、0mm超50mm以下であることが好ましく、より好ましくは1~30mm、さらに好ましくは1~10mm、特に好ましくは1~5mmである。例えば、0mm超5mm以下であってよい。
上記厚みは、収納部の各蓋で同じであってもよいし異なっていてもよい。また、上面と下面とで同じであってもよいし異なっていてもよい。
From the viewpoint of firmly holding the battery and maintaining appropriate cushioning against impact, the thickness of the lid is preferably more than 0 mm and not more than 50 mm, more preferably 1 to 30 mm, even more preferably 1 to 10 mm, and particularly preferably 1 to 5 mm. For example, it may be more than 0 mm and not more than 5 mm.
The thickness may be the same or different for each lid of the storage section, and may be the same or different for the upper and lower surfaces.

上記蓋の、ひずみ比率((圧縮前の初期厚み(mm)-圧縮後の厚み(mm))/圧縮前の初期厚み(mm))と圧縮強度(MPa=N/mm)の関係より作成される圧縮強度SSカーブから算出される面積1mmあたりのひずみ比率0~0.75の範囲における圧縮強度の積分値J75(図5)は、適切な緩衝性を保持する観点から、0.1~50N/mmであることが好ましく、より好ましくは0.1~30N/mm、さらに好ましくは0.5~20N/mmである。
上記蓋と上記電池の上面及び/又は下面の接触する部分で、エネルギーJ75が上記範囲を満たすことが好ましい。
同様に、上記蓋の、ひずみ比率((圧縮前の初期厚み(mm)-圧縮後の厚み(mm))/圧縮前の初期厚み(mm))と圧縮強度(MPa=N/mm)の関係より作成される圧縮強度SSカーブから算出される面積1mmあたりのひずみ比率0~0.05の範囲における圧縮強度の積分値J5(図5)、適切な緩衝性を保持する観点から、0.001~1.0N/mmであることが好ましく、より好ましくは0.01~1N/mm、さらに好ましくは0.05~0.5N/mmである。上記蓋と上記電池の上面及び/又は下面の接触する部分で、エネルギーJ5が上記範囲を満たすことが好ましい。
The integral value J75 (FIG. 5 ) of the compressive strength in the range of strain ratio 0 to 0.75 per mm2 area calculated from the compressive strength SS curve created from the relationship between the strain ratio ((initial thickness before compression (mm) - thickness after compression (mm)) / initial thickness before compression (mm)) and the compressive strength (MPa = N/mm2) of the above lid is preferably 0.1 to 50 N/ mm2 , more preferably 0.1 to 30 N/ mm2 , and even more preferably 0.5 to 20 N/ mm2 , from the viewpoint of maintaining appropriate cushioning properties.
It is preferable that the energy J75 satisfies the above range at the portion where the lid contacts the upper surface and/or the lower surface of the battery.
Similarly, the integral value J5 (FIG. 5 ) of the compressive strength in the range of strain ratio 0 to 0.05 per mm2 area calculated from the compressive strength SS curve created from the relationship between the strain ratio ((initial thickness before compression (mm)-thickness after compression (mm))/initial thickness before compression (mm)) and the compressive strength (MPa=N/ mm2 ) of the lid is preferably 0.001 to 1.0 N/ mm2 , more preferably 0.01 to 1 N/ mm2 , and even more preferably 0.05 to 0.5 N/ mm2 from the viewpoint of maintaining appropriate cushioning properties. It is preferable that the energy J5 satisfies the above range at the contact portion between the lid and the upper and/or lower surface of the battery.

上記本体と上記蓋とは、連結していてもよいし、独立していてもよい。
例えば、電池製造時は電池ホルダーから電池の出し入れがしやすいように上記本体のみとし、製造後に独立した上記蓋をかぶせてもよい。
The main body and the lid may be connected or may be independent.
For example, during battery manufacturing, only the main body may be provided to facilitate easy insertion and removal of the battery from the battery holder, and the independent lid may be placed over the battery after manufacturing.

<電池>
本実施形態の電池ホルダーに収納される円筒型の電池は、略円筒であってよい。
本実施形態の電池ホルダーに収納される電池の数は、2~1000個であってよい。とくに、落下衝撃を考えた際、鉛直方向に対して並ぶ電池の数は2~50個であっても良い。
上記電池は、二次電池であることが好ましく、リチウムイオン電池であってよい。
上記円筒型の電池は、本実施形態の電池ホルダーの収納部の形状と略相似形であることが好ましい。また、上記円筒型の電池は、本実施形態の電池ホルダーの収納部の体積100%に対して70体積%以上の体積を有することが好ましく、より好ましくは80体積%以上、さらに好ましくは90体積%以上、さらに好ましくは95体積%以上、特に好ましくは99体積%以上の体積を有することがより好ましい。なお、100体積%である例としては、上記R2が100%である場合等が挙げられる。
<Batteries>
The cylindrical battery stored in the battery holder of this embodiment may be substantially cylindrical.
The number of batteries stored in the battery holder of this embodiment may be between 2 and 1000. In particular, when considering the impact of a drop, the number of batteries aligned vertically may be between 2 and 50.
The battery is preferably a secondary battery, and may be a lithium ion battery.
The cylindrical battery is preferably approximately similar in shape to the shape of the storage section of the battery holder of this embodiment. The cylindrical battery preferably has a volume of 70% or more, more preferably 80% or more, even more preferably 90% or more, still more preferably 95% or more, and particularly preferably 99% or more, of the 100% volume of the storage section of the battery holder of this embodiment. An example of 100% by volume is when R2 is 100%.

<用途>
本実施形態の電池ホルダーは、複数の円筒型の電池を収納することができる。例えば、エージング、充電、その他の電池組み立て中の各工程等の電池製造から搬送工程の間に使用されるホルダー;電池の組み立て、使用中の各電池の位置保持のための電池の位置決め用のホルダー;等に用いることができる。
本実施形態の電池は、円筒型の電池の側面の少なくとも一部を電池ホルダーで囲み、該円筒型の電池の側面の全面積に対する電池ホルダーに囲まれている側面の面積の割合R1が10%以上となるように用いる用途に使用することができる。さらに、円筒型の電池の側面の全面積100%に対する、電池の側面と電池ホルダーとが接触する部分の面積の割合R2が10%以上となるように用いる用途に使用することができる。
<Applications>
The battery holder of this embodiment can store multiple cylindrical batteries and can be used, for example, as a holder used from battery production through to transportation, such as for aging, charging, and other steps in battery assembly, as a battery positioning holder for maintaining the position of each battery during battery assembly and use, etc.
The battery of this embodiment can be used in applications where at least a portion of the side surface of the cylindrical battery is surrounded by a battery holder, so that the ratio R1 of the area of the side surface surrounded by the battery holder to the total area of the cylindrical battery's side surface is 10% or more.Furthermore, the battery can be used in applications where the ratio R2 of the area of the part where the battery side surface and the battery holder contact each other to the total area of the cylindrical battery's side surface (100%) is 10% or more.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

実施例、比較例で用いた測定・評価方法について以下に説明する。 The measurement and evaluation methods used in the examples and comparative examples are described below.

(1)電池ホルダーの密度と発泡倍率
実施例及び比較例で得られた電池ホルダーの作製方法と同様にして、30mm角、10mm厚さのサンプルを作製し、当該サンプルの質量[g]を測定し、サンプル体積[cm]で除して密度(g/cm)を算出した。
(1) Density and Expansion Ratio of Battery Holder Samples measuring 30 mm square and 10 mm thick were prepared in the same manner as in the battery holders obtained in the Examples and Comparative Examples, and the mass [g] of each sample was measured and divided by the sample volume [ cm3 ] to calculate the density (g/ cm3 ).

(2)電池ホルダーの難燃性
実施例及び比較例で得られた電池ホルダーについて、米国UL規格のUL-94垂直法(20mm垂直燃焼試験)に準拠した試験を行い、難燃性の評価を行った。
以下に測定方法の詳細を示す。
各実施例及び各比較例と同じ材料を準備し、長さ:125mm、幅:13mm、厚さ:発泡体は10.0mmの試験片を5本準備して用いた。試験片をクランプに垂直に取付け、20mm炎による10秒間接炎を2回行い、その燃焼挙動によりV-0、V-1、V-2の判定を行った。なお、比較例2に記載の未発泡の材料を測定する場合には、サンプルの厚みを1.5mmに変更して測定した。
V-0:1回目、2回目ともに有炎燃焼持続時間は10秒以内、更に2回目の有炎燃焼持続時間と無炎燃焼時間の合計が30秒以内、更に5本の試験片の有炎燃焼時間の合計が50秒以内、固定用クランプの位置まで燃焼する試料がない、燃焼落下物による綿着火なし。
V-1:1回目、2回目ともに有炎燃焼持続時間は30秒以内、更に2回目の有炎燃焼持続時間と無炎燃焼時間の合計が60秒以内、更に5本の試験片の有炎燃焼時間の合計が250秒以内、固定用クランプの位置まで燃焼する試料がない、燃焼落下物による綿着火なし。
V-2:1回目、2回目ともに有炎燃焼持続時間は30秒以内、更に2回目の有炎燃焼持続時間と無炎燃焼時間の合計が60秒以内、更に5本の試験片の有炎燃焼時間の合計が250秒以内、固定用クランプの位置まで燃焼する試料がない、燃焼落下物による綿着火有り。
なお、上記V-0、V-1、V-2のいずれにも該当しないものは不適合(×)とした。
(2) Flame Retardancy of Battery Holder The battery holders obtained in the examples and comparative examples were subjected to a test in accordance with the UL-94 vertical method (20 mm vertical flame test) of the US UL standard to evaluate their flame retardancy.
The details of the measurement method are shown below.
The same material as in each Example and Comparative Example was prepared, and five test pieces with a length of 125 mm, width of 13 mm, and foam thickness of 10.0 mm were prepared and used. The test pieces were attached vertically to a clamp and exposed to a 20 mm flame for 10 seconds twice, and the burning behavior was judged as V-0, V-1, or V-2. When measuring the unfoamed material described in Comparative Example 2, the thickness of the sample was changed to 1.5 mm and the measurement was performed.
V-0: The duration of flaming combustion was within 10 seconds for both the first and second tests, the total of the duration of flaming combustion and the flameless combustion time for the second test was within 30 seconds, the total of the flaming combustion times for the five test pieces was within 50 seconds, no samples burned up to the position of the fixing clamps, and no cotton was ignited by burning falling debris.
V-1: The duration of flaming combustion was within 30 seconds for both the first and second tests, the sum of the duration of flaming combustion and the flameless combustion time for the second test was within 60 seconds, the total flaming combustion time for the five test pieces was within 250 seconds, no samples burned up to the position of the fixing clamps, and no cotton was ignited by burning falling debris.
V-2: The duration of flaming combustion for both the first and second tests was within 30 seconds, the sum of the duration of flaming combustion and the flameless combustion time for the second test was within 60 seconds, the total flaming combustion time for the five test pieces was within 250 seconds, no samples burned up to the position of the fixing clamps, and cotton was ignited by burning falling debris.
Anything not falling under any of the above V-0, V-1, or V-2 was deemed non-compliant (x).

(3)電池ホルダーの荷重たわみ温度(HDT)
後述の各実施例及び各比較例の電池ホルダーと同じ材料を準備し、ISO75-1、75-2に準拠して、以下に記載のとおり荷重たわみ温度を測定した。
まず、後述の各実施例及び各比較例の電池ホルダーと同じ材料で長さ80mm×幅13mm×厚み10mmのサンプルを準備した。得られたサンプルを株式会社東洋精機製作所製のHDT試験装置マシンテスト(型式3M-2)に支点間距離が64mmとなるようにセットした。セットしたサンプルの中央部分に対して、押し込み治具をセットし、0.45MPaの力を加えた状態でオイルバス中に浸漬させた。その後、温度を120℃/時間の速度で上昇させながら、曲げ閾値0.34mmとなるまで押し込み治具が移動した時点でのサンプル温度を荷重たわみ温度(℃)とした。なお、比較例2に記載の未発泡の材料は、ASTM D648に準拠して測定した。
(3) Battery holder deflection temperature under load (HDT)
The same materials as the battery holders in each of the Examples and Comparative Examples described below were prepared, and the deflection temperature under load was measured in accordance with ISO 75-1 and 75-2 as described below.
First, a sample of 80 mm long x 13 mm wide x 10 mm thick was prepared using the same material as the battery holder of each of the examples and comparative examples described below. The obtained sample was set in a HDT tester machine test (model 3M-2) manufactured by Toyo Seiki Seisakusho Co., Ltd. so that the distance between the supports was 64 mm. A pressing tool was set on the center part of the set sample, and the sample was immersed in an oil bath with a force of 0.45 MPa applied. Thereafter, the temperature was increased at a rate of 120 ° C./hour, and the sample temperature at the time when the pressing tool moved until the bending threshold value of 0.34 mm was reached was taken as the load deflection temperature (° C.). The unfoamed material described in Comparative Example 2 was measured in accordance with ASTM D648.

(4)電池ホルダーの圧縮強度の測定
まず、後述の各実施例及び各比較例の電池ホルダーと同じ材料で幅20mm×長さ200mm×厚み30mmのサンプルを準備した。続いて、オートグラフ(島津製作所社製、AG-X plus シリーズAG-50kNPlus)を用いて、室温環境下においてひずみ速度1(/s)にて圧縮試験を行った。なお、圧縮強度測定時のひずみ速度は後述する衝撃性を検討するうえではできるだけ実際の衝撃速度に近いひずみ速度に設定することが好ましいが、ひずみ速度が大きく異なる場合でも参考値として活用してもよい。
ひずみ比率((圧縮前の初期厚み(mm)-圧縮後の厚み(mm))/圧縮前の初期厚み(30mm))と圧縮強度(MPa)のグラフを作成し、圧縮強度SSカーブを作成した。
ひずみ比率0~0.75の範囲の積分値J75(N/mm)及びひずみ比率0~0.05の範囲の積分値J5(N/mm)を算出した。
(4) Measurement of the compressive strength of the battery holder First, a sample of 20 mm wide x 200 mm long x 30 mm thick was prepared using the same material as the battery holder in each of the examples and comparative examples described below. Next, a compression test was performed at a strain rate of 1 (/s) in a room temperature environment using an autograph (AG-X plus series AG-50kNPlus, manufactured by Shimadzu Corporation). In addition, it is preferable to set the strain rate during the compression strength measurement to a strain rate as close as possible to the actual impact rate in considering the impact properties described later, but it may be used as a reference value even if the strain rate is significantly different.
A graph was prepared of the strain ratio ((initial thickness before compression (mm) - thickness after compression (mm))/initial thickness before compression (30 mm)) versus compressive strength (MPa), and a compressive strength SS curve was prepared.
The integral value J75 (N/mm 2 ) in the strain ratio range of 0 to 0.75 and the integral value J5 (N/mm 2 ) in the strain ratio range of 0 to 0.05 were calculated.

実施例、比較例に用いた原料について以下に説明する。 The raw materials used in the examples and comparative examples are described below.

(1)発泡体5(発泡倍率5.0cm/g)
ポリフェニレンエーテル系樹脂(PPE)としてS201A(旭化成株式会社製)を60質量%と、非ハロゲン系難燃剤としてビスフェノールA-ビス(ジフェニルホスフェート)(BBP)を15質量%と、ゴム濃度が6質量%の耐衝撃性ポリスチレン樹脂(HIPS)を10質量%と、汎用ポリスチレン樹脂(PS)としてGP685(PSジャパン(株)製)を15質量%とを加え、押出機にて加熱溶融混練の後に押出し、基材樹脂ペレットを作製した。
特開平4-372630号公報の実施例1に記載の方法に準じ、基材樹脂ペレットを耐圧容器に収容し、容器内の気体を乾燥空気で置換した後、発泡剤として二酸化炭素(気体)を注入し、圧力3.0MPa、温度10℃の条件下で3時間かけて基材樹脂ペレットに対して二酸化炭素を含浸させた後、圧力容器から取り出してすぐに基材樹脂ペレットを移送し、基材樹脂ペレットを発泡炉内で攪拌羽を77rpmにて回転させながら最大260kPa・Gの加圧水蒸気により発泡し、発泡粒子を得た。
なお、上記発泡粒子の発泡工程において、圧力容器から取り出して加圧水蒸気により加熱を開始するまでの時間は10秒であった。また、発泡粒子の炭化水素ガスの含有量を発泡直後にガスクロマトグラフィーにより測定したが、検出限界(0.01質量%)以下であった。
その後、この発泡粒子を容器内に入れ、加圧空気を導入(0.4MPaまで4時間かけて昇圧し、その後0.4MPaで16時間保持)することで、加圧処理を施した。これを、水蒸気孔を有する型内成形金型内に充填し、水蒸気で加熱して発泡粒子を相互に膨張・融着させた後、冷却し、成形金型より取り出して、発泡粒子からなる発泡体5.0(発泡倍率5.0cm/g)を得た。
(1) Foam 5 (foaming ratio 5.0 cm 3 /g)
60% by mass of S201A (manufactured by Asahi Kasei Corporation) as a polyphenylene ether resin (PPE), 15% by mass of bisphenol A bis(diphenyl phosphate) (BBP) as a non-halogen flame retardant, 10% by mass of high impact polystyrene resin (HIPS) with a rubber concentration of 6% by mass, and 15% by mass of GP685 (manufactured by PS Japan Co., Ltd.) as a general-purpose polystyrene resin (PS) were added, and the mixture was heated, melted, kneaded in an extruder and then extruded to prepare base resin pellets.
In accordance with the method described in Example 1 of JP-A-4-372630, the base resin pellets were placed in a pressure vessel, the gas in the vessel was replaced with dry air, and then carbon dioxide (gas) was injected as a foaming agent. The base resin pellets were impregnated with carbon dioxide over a period of 3 hours under conditions of a pressure of 3.0 MPa and a temperature of 10° C., and the base resin pellets were immediately transported after being removed from the pressure vessel. The base resin pellets were foamed in a foaming furnace with pressurized steam of up to 260 kPa·G while rotating an agitating blade at 77 rpm, to obtain foamed particles.
In the foaming step, the time from removal from the pressure vessel to the start of heating with pressurized steam was 10 seconds. The content of hydrocarbon gas in the foamed beads was measured by gas chromatography immediately after foaming, and was below the detection limit (0.01% by mass).
The expanded beads were then placed in a container and pressurized by introducing pressurized air (pressure was increased to 0.4 MPa over 4 hours, and then maintained at 0.4 MPa for 16 hours). The resulting mixture was filled into an in-mold molding die having a steam hole, heated with steam to expand and fuse the expanded beads to each other, cooled, and removed from the molding die to obtain a foam 5.0 (expansion ratio 5.0 cm3 /g) made of expanded beads.

(2)発泡体10(発泡倍率10cm/g)
二酸化炭素を含浸させた後の加熱工程において、加圧水蒸気の圧力を330kPa・Gとした以外は発泡体5と同様にして、発泡粒子からなる発泡体10(発泡倍率10cm/g)を得た。
(2) Foam 10 (foaming ratio 10 cm 3 /g)
Foam 10 (expansion ratio 10 cm 3 /g) made of foamed beads was obtained in the same manner as Foam 5, except that in the heating step after impregnation with carbon dioxide, the pressure of the pressurized steam was set to 330 kPa·G.

(3)発泡体5H
基材樹脂ペレットを以下の通り変更したこと以外は、実施例2と同様にして、発泡粒子からなる発泡体5H(発泡倍率5.0cm/g)を得た。
基材樹脂ペレット:
ポリスチレン系樹脂(PS)としてGP685(PSジャパン株式会社製)を60質量%と、ポリフェニレンエーテル系樹脂(PPE)としてS201A(旭化成株式会社製)を40質量%とを、押出機にて加熱溶融混練の後に押出し、基材樹脂ペレットを作製した。
(3) Foam 5H
A foam 5H (expansion ratio 5.0 cm 3 /g) made of expanded beads was obtained in the same manner as in Example 2, except that the base resin pellets were changed as follows.
Base resin pellets:
60% by mass of GP685 (manufactured by PS Japan Co., Ltd.) as a polystyrene-based resin (PS) and 40% by mass of S201A (manufactured by Asahi Kasei Corporation) as a polyphenylene ether-based resin (PPE) were heated, melted, kneaded in an extruder, and then extruded to prepare base resin pellets.

(4)発泡体EE15
特開平4-372630号公報の実施例3記載の内容を参考に発泡温度を調整することで、最終的に得られる発泡体の倍率が15.0cm/gとなるように、2次発泡粒子の製造工程における発泡粒子の内圧を調整し、得られた2次発泡粒子を用いて発泡体2.5の製造方法を参考にして成形し、発泡体EE15(発泡倍率15cm/g)を得た。得られた発泡粒子(2次発泡粒子)の炭化水素ガスの含有量を発泡直後に測定したが、検出限界(0.01質量%)以下であった。
(4) Foam EE15
The internal pressure of the expanded beads in the production process of the secondary expanded beads was adjusted by adjusting the expansion temperature with reference to the contents of Example 3 of JP-A-4-372630 so that the expansion ratio of the final foam would be 15.0 cm3 /g, and the obtained secondary expanded beads were used for molding with reference to the production method of Foam 2.5 to obtain Foam EE15 (expansion ratio 15 cm3 /g). The content of hydrocarbon gas in the obtained expanded beads (secondary expanded beads) was measured immediately after foaming, and was below the detection limit (0.01% by mass).

(5)発泡体XE15
特開2006-077218号公報を参考に、以下の手順で発泡体を作製した。
まず、150mmのバレル内径を有するスクリュー型押出機の供給領域に、900kg/時間の速度で、低密度ポリエチレン(PE)(密度922kg/m、MI=7.0g/10分)を、この樹脂100質量部に対し気泡核形成剤として1.2質量部のタルク粉末(粒径8.0μm)と0.8質量部のガス透過調整剤(ステアリン酸モノグリセリド)とともに供給した。押出機のバレル温度を190~210℃に調整し、押出機の先端に取り付けた発泡剤注入口からn-ブタン100質量%からなる発泡剤をこの樹脂100質量部に対し3質量部を圧入し、当該溶融樹脂組成物と混合して発泡性溶融混合物とした。
この発泡性溶融混合物を押出機の出口に取り付けた冷却装置で108℃まで冷却した後、約4.0mmの平均厚みと約226mm幅の開口部形状を有するオリフィスプレートより、常温、大気圧下の雰囲気中に連続的に押し出して発泡させ、樹脂発泡体の引き取り速度を調整しながら成形して、厚み52mm、幅560mm、長さ1000mm、発泡倍率15(cm/g)の板状発泡体を得た。この樹脂発泡体中に含まれる炭化水素ガスの含有量は、2.4質量%であった。40℃環境下で3か月保管し、炭化水素ガスの含有量が検出下限以下(0.01質量%)となったことを確認した後に、発泡体XE15(発泡倍率15(cm/g))を得た。なお、得られた発泡体は板状押出発泡体であったため、切削、接着等の2次加工を行うことにより、電池ホルダーの作製に用いた。
(5) Foam XE15
With reference to JP 2006-077218 A, a foam was produced in the following manner.
First, low-density polyethylene (PE) (density 922 kg/m 3 , MI=7.0 g/10 min) was fed at a rate of 900 kg/hr into the feed region of a screw-type extruder having a barrel inner diameter of 150 mm, together with 1.2 parts by mass of talc powder (particle size 8.0 μm) as a bubble nucleating agent and 0.8 parts by mass of a gas permeability regulator (stearic acid monoglyceride) per 100 parts by mass of the resin. The barrel temperature of the extruder was adjusted to 190-210° C., and a foaming agent consisting of 100% by mass of n-butane was injected from a foaming agent injection port attached to the tip of the extruder in an amount of 3 parts by mass per 100 parts by mass of the resin, and mixed with the molten resin composition to obtain a foamable molten mixture.
This foamable molten mixture was cooled to 108°C by a cooling device attached to the outlet of the extruder, and then continuously extruded and foamed through an orifice plate having an average thickness of about 4.0 mm and an opening shape of about 226 mm in width into an atmosphere at room temperature and atmospheric pressure. The resin foam was molded while adjusting the take-up speed to obtain a plate-shaped foam with a thickness of 52 mm, a width of 560 mm, a length of 1000 mm, and an expansion ratio of 15 ( cm3 /g). The content of hydrocarbon gas contained in this resin foam was 2.4% by mass. After storing for 3 months in a 40°C environment and confirming that the content of hydrocarbon gas was below the detection limit (0.01% by mass), foam XE15 (expansion ratio 15 ( cm3 /g)) was obtained. Note that the obtained foam was a plate-shaped extruded foam, so it was used to manufacture a battery holder by performing secondary processing such as cutting and bonding.

(6)発泡体EP15(発泡倍率15cm/g)
エペランPP(カネカ社製、発泡倍率15cm/g)を用い、発泡体5の成形方法と同様にして発泡体の成形を行い、発泡体EP15(発泡倍率15cm/g)を得た。
(6) Foam EP15 (foaming ratio 15 cm3 /g)
A foam was molded in the same manner as for Foam 5 using Eperan PP (manufactured by Kaneka Corporation, expansion ratio 15 cm 3 /g) to obtain Foam EP15 (expansion ratio 15 cm 3 /g).

(7)PC(密度1.19g/cm
ポリカーボネート(サビック社製レキサンEXL9330)を用いて、射出成形により電池ホルダーを作製した。
(7) PC (density 1.19 g/cm 3 )
A battery holder was made by injection molding using polycarbonate (LEXAN EXL9330 manufactured by Savic Corporation).

(8)発泡体PA2.8(発泡倍率2.8cm/g)
ポリアミド系樹脂としてナイロン666(ナイロン66/6)(商品名:Novamid 2430A、(株)DSM製)を、熱安定剤としてヨウ化銅とヨウ化カリウムを、核剤としてタルクを、ポリアミド系樹脂100質量部に対してタルク0.8質量部、ヨウ化銅は0.03質量部、ヨウ化カリウムは0.29質量部で混合し、次いで、二軸押出機にて加熱条件下で溶融混練し、その後ストランド状に押出し、冷水槽で水冷し、カッティングを行い、ペレット形状のポリアミド系樹脂発泡粒子用ペレットを作製した。得られたポリアミド系樹脂発泡粒子用ペレットの平均ペレット長は1300μm、平均ペレット径は900μmであった。
得られたポリアミド系樹脂発泡粒子用ペレットを50℃の水の中に1時間浸漬させたのち、市販の洗濯機で脱水を行い、14質量%の水を含有させたペレット形状の吸水ポリアミド系樹脂発泡粒子用ペレットを得た。
得られた水を含有させた吸水ポリアミド系樹脂発泡粒子用ペレットを、10℃の圧力釜に投入し、4MPaの炭酸ガスを吹き込み12時間吸収させ、吸水ポリアミド系樹脂発泡粒子用ペレットに発泡剤としての炭酸ガスを1.6質量%含有させた。そして、炭酸ガスを含めた発泡剤含浸ポリアミド系樹脂発泡粒子用ペレットを発泡装置に移し、175℃の空気を20秒吹き込むことでポリアミド系樹脂発泡粒子を得た。
得られたポリアミド系樹脂発泡粒子を通水性の不織布の袋に入れ、50℃に加温された恒温水槽に30分浸漬したのち、含水ポリアミド系樹脂発泡粒子を得た。この含水ポリアミド系樹脂発泡粒子の吸水率は12%であった。
こうして得られた含水ポリアミド系樹脂発泡粒子を、オートクレーブ内に封入し、オートクレーブの圧力が0.95MPaとなるまで、圧縮空気を1時間かけて導入し、その後圧力を0.95MPa、温度を70℃で24時間保持することで、ポリアミド系樹脂発泡粒子に加圧処理を施した。
加圧処理を行ったポリアミド系樹脂発泡粒子を、水蒸気孔を有する型内成形金型内に充填し、水蒸気で加熱して発泡粒子を相互に膨張・融着させた後、冷却し、成形金型より取り出して、発泡粒子からなる発泡体PA2.8(発泡倍率2.8cm/g)を得た。
(8) PA2.8 foam (foaming ratio 2.8 cm3 /g)
Nylon 666 (nylon 66/6) (trade name: Novamid 2430A, manufactured by DSM Co., Ltd.) was used as a polyamide resin, copper iodide and potassium iodide were used as heat stabilizers, and talc was used as a nucleating agent. The mixture was mixed at 0.8 parts by mass of talc, 0.03 parts by mass of copper iodide, and 0.29 parts by mass of potassium iodide per 100 parts by mass of polyamide resin, melt-kneaded under heating conditions in a twin-screw extruder, extruded into a strand shape, cooled in a cold water tank, and cut to produce pellets for polyamide resin expanded particles in the form of pellets. The average pellet length of the obtained pellets for polyamide resin expanded particles was 1300 μm, and the average pellet diameter was 900 μm.
The obtained pellets for polyamide-based resin expanded particles were immersed in water at 50°C for 1 hour, and then dehydrated in a commercially available washing machine to obtain pellets for water-absorbing polyamide-based resin expanded particles in the form of pellets containing 14% by mass of water.
The obtained water-containing pellets for water-absorbing polyamide-based resin expanded particles were placed in a pressure cooker at 10°C, and carbon dioxide gas of 4 MPa was blown in and absorbed for 12 hours, so that the pellets for water-absorbing polyamide-based resin expanded particles contained 1.6 mass% of carbon dioxide gas as a foaming agent. The foaming agent-impregnated pellets for polyamide-based resin expanded particles containing carbon dioxide gas were then transferred to a foaming device, and 175°C air was blown in for 20 seconds to obtain polyamide-based resin expanded particles.
The obtained expanded polyamide resin particles were placed in a water-permeable nonwoven bag and immersed in a thermostatic water bath heated to 50° C. for 30 minutes to obtain expanded hydrous polyamide resin particles. The expanded hydrous polyamide resin particles had a water absorption rate of 12%.
The thus obtained hydrous polyamide-based resin expanded particles were placed in an autoclave, and compressed air was introduced into the autoclave over one hour until the pressure therein reached 0.95 MPa. Thereafter, the pressure was maintained at 0.95 MPa and the temperature at 70°C for 24 hours, thereby subjecting the polyamide-based resin expanded particles to a pressure treatment.
The pressurized polyamide resin foamed beads were filled into an internal molding die having a steam hole, heated with steam to expand and fuse the foamed beads to each other, and then cooled and removed from the molding die to obtain a PA2.8 foamed bead (expansion ratio 2.8 cm3 /g).

(実施例1)
表1に記載の材料について、図6の形状の成形品を作製し、電池ホルダーとした。すなわち、長手方向411mm、短手方向260mm、高さ80mmの本体中に、電池ホルダーの高さ方向に延びる直径46mmの円柱収納部を28個有する電池ホルダーを作製した。また、収納部間の最薄部の厚みは9mmであった。得られた電池ホルダーに対して、表1に記載のリチウムイオン電池を準備し、収納した。また、ホルダー及び電池の諸特性を測定し、表1に結果を記載した。すべての収納部には、直径46mm、高さ80mm、重さ358gの円柱の電池を収納した(図3(A))。
更に、図3(B)のように電池ホルダーの長手方向に高さ1.2mから電池を収納した状態で落下する試験を行い、落下方向に存在する電池ホルダー及び電池の個数・形状に着目して緩衝特性を検討した(表1)。落下直前に電池を収納したホルダーが有する位置エネルギー(W×g×h)が、J5’より大きく且つJ75’より小さかった。上記落下試験は、電池を収納する方向を水平方向とし、電池を収納する方向に対して垂直方向を落下方向とした(図3(B))。なお、図3(B)は落下試験を説明する模式図であるため、本実施形態の電池ホルダーである図6と収納部の数が異なる。また、図3(B)において、落下方向に最も鉛直下側に位置する電池を落下方向に光投影したときの該電池の投影面の一辺7は、落下方向に最も鉛直下側に位置する電池の落下方向に垂直な断面のうち最も大きな面積となる最大断面における一辺と等しい。
落下試験の結果、落下衝撃により発生する衝撃エネルギーを電池ホルダーが適切に変形することで吸収でき、電池ホルダーで吸収可能なエネルギーが小さすぎて電池ホルダーが破壊されたり、落下衝撃が発生した際に電池ホルダーの変形が小さすぎて電池への衝撃力が多きくなりすぎたりすることが無かったため、エネルギー吸収性が良好と判定した。
Example 1
A molded product having the shape shown in FIG. 6 was produced from the materials shown in Table 1, and used as a battery holder. That is, a battery holder was produced having 28 cylindrical storage sections each having a diameter of 46 mm extending in the height direction of the battery holder in a main body having a length of 411 mm, a width of 260 mm, and a height of 80 mm. The thickness of the thinnest part between the storage sections was 9 mm. The lithium ion batteries shown in Table 1 were prepared and stored in the obtained battery holder. The characteristics of the holder and the battery were also measured, and the results are shown in Table 1. Cylindrical batteries having a diameter of 46 mm, a height of 80 mm, and a weight of 358 g were stored in all storage sections (FIG. 3(A)).
Furthermore, a test was conducted in which the battery holder was dropped from a height of 1.2 m in the longitudinal direction with batteries stored therein, as shown in Fig. 3(B), and the shock-absorbing properties were examined with a focus on the number and shape of the battery holder and batteries present in the direction of the drop (Table 1). The potential energy (W x g x h) of the holder containing the batteries immediately before the drop was greater than J5' and smaller than J75'. In the above drop test, the direction in which the batteries were stored was the horizontal direction, and the direction of drop was the direction perpendicular to the direction in which the batteries were stored (Fig. 3(B)). Note that Fig. 3(B) is a schematic diagram for explaining the drop test, and therefore has a different number of storage sections from Fig. 6, which shows the battery holder of this embodiment. In Fig. 3(B), when the battery located at the bottommost vertically in the direction of drop is projected with light in the direction of drop, one side 7 of the projection surface of the battery is equal to one side of the largest cross section with the largest area among the cross sections perpendicular to the direction of drop of the battery located at the bottommost vertically in the direction of drop.
The drop test results showed that the battery holder was able to absorb the impact energy generated by the drop impact by appropriately deforming. The energy that the battery holder could absorb was not so small that it would be destroyed, and there was no risk of the battery holder deforming too little when a drop impact occurred, resulting in too great an impact force on the batteries. Therefore, it was determined that the battery holder had good energy absorption properties.

(実施例2~17)
表1に記載の変更を加えたこと、表1に記載の通り図7~図17に示すように電池ホルダーの形状を変更したこと、収納する電池の大きさを変更したこと以外は実施例1と同様にして、電池ホルダーを製造した。
また、実施例1と同様の電池を全ての収納部に収納し、同様の落下試験を行った。
なお、実施例9~11は、電池ホルダーの長手方向又は短手方向に貫通する穴を設けたため、割合R1が100%未満である。
実施例2~17は、いずれも落下衝撃により発生する衝撃エネルギーを電池ホルダーが適切に変形することで吸収でき、電池ホルダーで吸収可能なエネルギーが小さすぎて電池ホルダーが破壊されたり、落下衝撃が発生した際に電池ホルダーの変形が小さすぎて電池への衝撃力が多きくなりすぎたりすることが無かったため、エネルギー吸収性が良好と判定した。
(Examples 2 to 17)
Battery holders were manufactured in the same manner as in Example 1, except for the changes noted in Table 1, the change in the shape of the battery holder as shown in Figures 7 to 17 as noted in Table 1, and the change in the size of the batteries to be stored.
Moreover, the same batteries as in Example 1 were placed in all the storage compartments, and the same drop test was carried out.
In Examples 9 to 11, because holes were provided that penetrated the battery holder in the longitudinal or lateral direction, the ratio R1 was less than 100%.
In all of Examples 2 to 17, the impact energy generated by the drop impact was absorbed by the battery holder through appropriate deformation. The energy that the battery holder could absorb was not too small to cause the battery holder to be destroyed, nor was the deformation of the battery holder too small when a drop impact occurred to result in an excessively large impact force on the batteries. Therefore, energy absorption was determined to be good.

(比較例1~2)
表1に記載の変更を加えた以外は実施例1と同様にして、電池ホルダーを製造した。
また、実施例1と同様の電池を全ての収納部に収納し、同様の落下試験を行った。
なお、電離ホルダーの長手方向又は短手方向に貫通する穴を設けたため、割合R1が5%である。
比較例1、2は、電池側面の面積に対して電池ホルダーで囲まれている部分の割合が小さく、落下衝撃により発生する衝撃エネルギーを吸収できず、電池ホルダーが破壊されてしまったため、エネルギー吸収性が不良と判定した。一方で、比較例2はホルダーを構成する材料が未発泡の樹脂であり、落下試験時の圧縮による変形がほとんど発生しないため電池への衝撃力が極めて大きくなった。
なお、比較例2は未発泡の樹脂からなるため圧縮強度が測定できなかった。
(Comparative Examples 1 to 2)
A battery holder was manufactured in the same manner as in Example 1 except for the changes shown in Table 1.
Moreover, the same batteries as in Example 1 were placed in all the storage compartments, and the same drop test was carried out.
In addition, since a hole was provided penetrating the ionization holder in the longitudinal or lateral direction, the ratio R1 was 5%.
In Comparative Examples 1 and 2, the proportion of the area of the battery side surface surrounded by the battery holder was small, so the impact energy generated by the drop impact could not be absorbed and the battery holder was destroyed, and therefore energy absorption was judged to be poor.On the other hand, in Comparative Example 2, the holder was made of an unfoamed resin, and almost no deformation due to compression during the drop test occurred, resulting in an extremely large impact force on the battery.
In addition, since Comparative Example 2 was made of unfoamed resin, the compressive strength could not be measured.

図7~18の各電池ホルダーの寸法は以下のとおりである。
図7:長手方向361mm、短手方向260mm、高さ80mmの直方体。収納部は、直径46mm、高さ80mm。
図8:長手方向777mm、短手方向260mm、高さ80mmの直方体。収納部は、直径46mm、高さ80mm。
図9:長手方向1092mm、短手方向254mm、高さ80mmの直方体。収納部は、直径46mm、高さ80mm。
図10:長手方向304mm、短手方向214mm、高さ80mmの直方体。収納部は、直径46mm、高さ80mm。
図11:長手方向1128mm、短手方向114mm、高さ65mmの直方体。収納部は、直径18mm、高さ65mm。
図12:長手方向588mm、短手方向114mm、高さ65mmの直方体。収納部は、直径18mm、高さ65mm。
図13:長手方向375mm、短手方向120mm、高さ65mmの直方体。収納部は、直径18mm、高さ65mm。
図14:長手方向777mm、短手方向260mm、高さ4mmの2つの直方体からなるホルダー。収納する電池の上端面と下端面とが各部材の上端面又は下端面とそろうようにした(図14)。収納部は、直径46mm、高さ80mm。
図15:長手方向777mm、短手方向260mm、高さ16mmの2つの直方体からなるホルダー。収納する電池の上端面と下端面とが各部材の上端面又は下端面とそろうようにした(図15)。収納部は、直径46mm、高さ80mm。
図16:長手方向777mm、短手方向260mm、高さ32mmの2つの直方体からなるホルダー。収納する電池の上端面と下端面とが各部材の上端面又は下端面とそろうようにした(図16)。収納部は、直径46mm、高さ80mm。
図17:長手方向238mm、短手方向168mm、高さ80mmの直方体。収納部は、直径46mm、高さ80mm。
図18:長手方向777mm、短手方向260mm、高さ2mmの2つの直方体からなるホルダー。収納する電池の上端面と下端面とが各部材の上端面又は下端面とそろうようにした(図18)。収納部は、直径46mm、高さ80mm。
The dimensions of each battery holder in Figures 7 to 18 are as follows:
Figure 7: A rectangular parallelepiped with a length of 361 mm, a width of 260 mm, and a height of 80 mm. The storage section has a diameter of 46 mm and a height of 80 mm.
Figure 8: A rectangular parallelepiped with a length of 777 mm, a width of 260 mm, and a height of 80 mm. The storage section has a diameter of 46 mm and a height of 80 mm.
Figure 9: A rectangular parallelepiped with a length of 1092 mm, a width of 254 mm, and a height of 80 mm. The storage section has a diameter of 46 mm and a height of 80 mm.
Figure 10: A rectangular parallelepiped with a length of 304 mm, a width of 214 mm, and a height of 80 mm. The storage section has a diameter of 46 mm and a height of 80 mm.
Figure 11: A rectangular parallelepiped with a length of 1128 mm, a width of 114 mm, and a height of 65 mm. The storage section has a diameter of 18 mm and a height of 65 mm.
Figure 12: A rectangular parallelepiped with a length of 588 mm, a width of 114 mm, and a height of 65 mm. The storage section has a diameter of 18 mm and a height of 65 mm.
Figure 13: A rectangular parallelepiped with a length of 375 mm, a width of 120 mm, and a height of 65 mm. The storage section has a diameter of 18 mm and a height of 65 mm.
Figure 14: A holder consisting of two rectangular parallelepipeds, 777 mm long, 260 mm short, and 4 mm high. The upper and lower end faces of the stored batteries are aligned with the upper and lower end faces of each component (Figure 14). The storage section is 46 mm in diameter and 80 mm high.
Figure 15: A holder consisting of two rectangular parallelepipeds, 777 mm long, 260 mm short, and 16 mm high. The upper and lower end faces of the stored batteries are aligned with the upper and lower end faces of each component (Figure 15). The storage section is 46 mm in diameter and 80 mm high.
Figure 16: A holder consisting of two rectangular parallelepipeds, 777 mm long, 260 mm short, and 32 mm high. The upper and lower end faces of the stored batteries are aligned with the upper and lower end faces of each component (Figure 16). The storage section is 46 mm in diameter and 80 mm high.
Figure 17: A rectangular parallelepiped with a length of 238 mm, a width of 168 mm, and a height of 80 mm. The storage section has a diameter of 46 mm and a height of 80 mm.
Figure 18: A holder consisting of two rectangular parallelepipeds, 777 mm long, 260 mm short, and 2 mm high. The upper and lower end faces of the stored batteries are aligned with the upper and lower end faces of each component (Figure 18). The storage section is 46 mm in diameter and 80 mm high.

Figure 2024081072000003
Figure 2024081072000003

1 電池ホルダー(本体)
2 円筒型の電池
3 収納部
4 上蓋
5 電池ホルダー(本体と上蓋)
6 落下方向に最も鉛直下側に位置する電池の落下方向に垂直な断面のうち最も大きな面積となる最大断面で電池ホルダーを落下方向に切り取った範囲
7 落下方向に最も鉛直下側に位置する電池を落下方向に光投影したときの該電池の投影面の一辺
d1 落下方向に最も鉛直下側に位置する電池から電池ホルダー端部までの落下方向の距離
d2 収納部間の最薄部の厚み
J5 圧縮強度SSカーブから算出されるひずみ比率0~0.05の範囲における圧縮強度の積分値
J75 圧縮強度SSカーブから算出されるひずみ比率0~0.75の範囲における圧縮強度の積分値
1 Battery holder (main unit)
2 Cylindrical battery 3 Storage compartment 4 Top cover 5 Battery holder (main body and top cover)
6 Area when the battery holder is cut in the falling direction at the largest cross section that has the largest area among cross sections perpendicular to the falling direction of the battery located at the lowest vertical position in the falling direction 7 Side d1 of the projection surface of the battery located at the lowest vertical position in the falling direction when the battery is projected with light in the falling direction d2 Distance in the falling direction from the battery located at the lowest vertical position in the falling direction to the edge of the battery holder J5 Thickness of the thinnest part between the storage sections J75 Integrated value of compressive strength in the strain ratio range of 0 to 0.05 calculated from the compressive strength SS curve J75 Integrated value of compressive strength in the strain ratio range of 0 to 0.75 calculated from the compressive strength SS curve

Claims (14)

複数の円筒型の電池を収納するための電池ホルダーであって、
樹脂を含む原料からなり、
前記円筒型の電池の側面の少なくとも一部が前記電池ホルダーで囲まれており、前記円筒型の電池の側面の全面積100%に対する、前記電池ホルダーに囲まれている前記側面の面積の割合R1が10%以上である、
ことを特徴とする電池ホルダー。
1. A battery holder for storing a plurality of cylindrical batteries, comprising:
Made from raw materials including resin,
at least a portion of the side surface of the cylindrical battery is surrounded by the battery holder, and a ratio R1 of the area of the side surface surrounded by the battery holder to the total area of the cylindrical battery's side surface (100%) is 10% or greater;
A battery holder characterized by:
前記電池ホルダーの前記円筒型の電池を収納する部分の形状が、前記円筒型の電池の側面の形状と略相似形である、請求項1に記載の電池ホルダー。 The battery holder according to claim 1, wherein the shape of the portion of the battery holder that houses the cylindrical battery is approximately similar to the shape of the side of the cylindrical battery. 前記円筒型の電池の側面の全面積100%に対する、前記側面と前記電池ホルダーとが接触する部分の面積の割合R2が10%以上である、請求項1又は2に記載の電池ホルダー。 The battery holder according to claim 1 or 2, in which the ratio R2 of the area of the portion where the side surface of the cylindrical battery contacts the battery holder to the total area (100%) of the side surface of the cylindrical battery is 10% or more. 圧縮強度SSカーブから算出される面積1mmあたりのひずみ比率0~0.75の範囲における圧縮強度の積分値J75が0.1~50N/mmである、請求項1又は2に記載の電池ホルダー。 3. The battery holder according to claim 1, wherein the integral value J75 of compressive strength within a strain ratio range of 0 to 0.75 per mm2 area calculated from a compressive strength SS curve is 0.1 to 50 N/ mm2 . 複数の円筒形の前記電池を収納した電池ホルダーを、前記電池を収納する方向に対して垂直方向である落下方向に落下させる試験において、下記の式(1)の関係を満たす、請求項1又は2に記載の電池ホルダー。
J5×A1×d1/1000<W×g×h<J75×A1×d1/1000 ・・・(1)
(上記式(1)において、J5は圧縮強度SSカーブから算出される面積1mmあたりのひずみ比率0~0.05の範囲における電池ホルダーの圧縮強度の積分値(N/mm)、J75は圧縮強度SSカーブから算出される面積1mmあたりのひずみ比率0~0.75の範囲における電池ホルダーの圧縮強度の積分値(N/mm)、A1は「(落下方向に最も鉛直下側に位置する電池を落下方向に光投影したときの該電池の投影面積)×(該電池の側面の全面積100%に対する電池ホルダーに囲まれている前記側面の面積割合R1)/100」(mm)、d1は落下方向に最も鉛直下側に位置する電池から電池ホルダー端部までの落下方向の距離(mm)、Wは落下方向に最も鉛直下側に位置する電池の落下方向に垂直な断面のうち最も大きな面積となる最大断面で電池ホルダーを落下方向に切り取った範囲に含まれる電池の総重量(kg)、gは重力加速度(m/s)、hは落下高さ(m)、を表す)
3. The battery holder of claim 1 or 2, wherein the battery holder contains multiple cylindrical batteries, and in a test in which the battery holder is dropped in a direction perpendicular to the direction in which the batteries are contained, satisfies the relationship of the following formula (1):
J5×A1×d1/1000<W×g×h<J75×A1×d1/1000 ・・・(1)
(In the above formula (1), J5 is the integral value (N/mm 2 ) of the compressive strength of the battery holder when the strain ratio per mm 2 ranges from 0 to 0.05 as calculated from the compressive strength SS curve; J75 is the integral value (N/mm 2 ) of the compressive strength of the battery holder when the strain ratio per mm 2 ranges from 0 to 0.75 as calculated from the compressive strength SS curve; A1 is "(projected area of the battery when the battery located at the lowest point in the vertical direction is projected with light in the direction of fall) x (ratio of the area of the side surface of the battery surrounded by the battery holder to 100% of the total area of the side surfaces of the battery R1)/100" (mm 2 ); d1 is the distance in the direction of fall from the battery located at the lowest point in the vertical direction to the end of the battery holder (mm); W is the total weight (kg) of batteries included in the area obtained by cutting the battery holder in the direction of fall at the largest cross section that has the largest area among the cross sections perpendicular to the fall direction of the battery located at the lowest point in the vertical direction; g is the acceleration of gravity (m/s 2 ); and h is the fall height (m).)
前記電池ホルダーの電池を収納する部分間の最薄部の厚みが0mm超10mm以下である、請求項1又は2に記載の電池ホルダー。 The battery holder according to claim 1 or 2, wherein the thickness of the thinnest part between the battery-storing portions of the battery holder is greater than 0 mm and less than or equal to 10 mm. 前記電池ホルダーの難燃性がV-2以上である、請求項1又は2に記載の電池ホルダー。 The battery holder according to claim 1 or 2, wherein the flame retardancy of the battery holder is V-2 or higher. 前記電池ホルダーの荷重たわみ温度が90℃以上である、請求項1又は2に記載の電池ホルダー。 The battery holder according to claim 1 or 2, wherein the deflection temperature under load of the battery holder is 90°C or higher. 発泡体からなる、請求項1又は2に記載の電池ホルダー。 The battery holder according to claim 1 or 2, which is made of foam. ビーズ発泡体からなる、請求項1又は2に記載の電池ホルダー。 The battery holder according to claim 1 or 2, which is made of bead foam. 更に、少なくとも1つの電池を収納する部分の上端面及び/又は下端面の少なくとも一部を囲む蓋を含み、
前記蓋が樹脂を含む発泡体である、請求項1又は2に記載の電池ホルダー。
Further, the battery housing includes a cover that surrounds at least a portion of an upper end surface and/or a lower end surface of the portion that houses the at least one battery,
3. The battery holder according to claim 1, wherein the lid is made of a foam containing a resin.
前記発泡体がビーズ発泡体である、請求項11に記載の電池ホルダー。 The battery holder of claim 11, wherein the foam is a bead foam. 前記蓋の圧縮強度SSカーブから算出される面積1mmあたりのひずみ比率0~0.75の範囲における圧縮強度の積分値J75が0.1~50N/mmである、請求項11に記載の電池ホルダー。 12. The battery holder according to claim 11, wherein the lid has an integral value J75 of compressive strength within a strain ratio range of 0 to 0.75 per mm2 area calculated from a compressive strength SS curve, which is 0.1 to 50 N/ mm2 . 前記蓋の厚みが0mm超5mm以下である、請求項11に記載の電池ホルダー。 The battery holder according to claim 11, wherein the thickness of the lid is greater than 0 mm and less than or equal to 5 mm.
JP2022194524A 2022-12-05 2022-12-05 Battery holder Pending JP2024081072A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022194524A JP2024081072A (en) 2022-12-05 2022-12-05 Battery holder
CN202311628913.3A CN118156705A (en) 2022-12-05 2023-11-30 Battery rack
DE102023133873.0A DE102023133873A1 (en) 2022-12-05 2023-12-04 Battery holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022194524A JP2024081072A (en) 2022-12-05 2022-12-05 Battery holder

Publications (1)

Publication Number Publication Date
JP2024081072A true JP2024081072A (en) 2024-06-17

Family

ID=91078794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022194524A Pending JP2024081072A (en) 2022-12-05 2022-12-05 Battery holder

Country Status (3)

Country Link
JP (1) JP2024081072A (en)
CN (1) CN118156705A (en)
DE (1) DE102023133873A1 (en)

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US35695A (en) 1862-06-24 Improvement in machines for upsetting tires
BE635350A (en) 1962-07-24
NL295748A (en) 1962-07-24
US3257357A (en) 1963-04-01 1966-06-21 Du Pont Copolymers of polyphenylene ethers
US3257358A (en) 1963-07-02 1966-06-21 Du Pont 2, 6-dichloro-1, 4-polyphenylene ether
DE1704462A1 (en) 1967-02-14 1971-05-19 Basf Ag Process for the production of foam moldings from ethylene or propylene polymers
IT1008525B (en) 1972-12-19 1976-11-30 Kanegafuchi Chemical Ind CONNECTION OF BLOCK SKIS TO INERTIA METHOD AND MOLDING EQUIPMENT FOR EXPANDED POLYOLEFIN RESINS
JPS5238596B2 (en) 1973-09-06 1977-09-29
JPS5217880B2 (en) 1974-05-25 1977-05-18
JPS5959724A (en) 1982-09-29 1984-04-05 Unitika Ltd Production of modified thermoplastic resin
US5216089A (en) 1986-08-28 1993-06-01 General Electric Company Modified polyphenylene ether resins having improved processability and oxidative stability
US5214109A (en) 1986-08-28 1993-05-25 General Electric Company Modified polyphenylene ether resins having improved processability and oxidative stability
EP0257486A1 (en) 1986-08-28 1988-03-02 General Electric Company Modified polyphenylene ether resins having improved processability and oxidative stability
JPS63152628A (en) 1986-12-17 1988-06-25 Asahi Chem Ind Co Ltd Production of polyphenylene ether resin having excellent color tone
EP0407584B1 (en) 1989-01-27 1996-01-31 Asahi Kasei Kogyo Kabushiki Kaisha Stabilized polyphenylene ether resin
JP3207219B2 (en) 1991-06-20 2001-09-10 旭化成株式会社 Low-expanded particles of polyolefin resin and method for producing the same
JP4046217B2 (en) 2002-06-04 2008-02-13 株式会社ウイングス Recovery method of leading digging machine in propulsion method and leading digging machine used for this
JP2005197192A (en) 2004-01-09 2005-07-21 Sanyo Electric Co Ltd Pack cell and its assembling method
JP2006077218A (en) 2004-09-13 2006-03-23 Asahi Kasei Life & Living Corp Thermoplastic resin extruded foam and method for producing the same
JP6022919B2 (en) 2012-12-10 2016-11-09 積水化学工業株式会社 Lining material inversion method and inversion device
JP6049795B2 (en) 2014-04-10 2016-12-21 ヤマサ醤油株式会社 L-glutamine measurement kit

Also Published As

Publication number Publication date
CN118156705A (en) 2024-06-07
DE102023133873A1 (en) 2024-06-06

Similar Documents

Publication Publication Date Title
JP4712914B2 (en) Foam beads, molded body using the same, and method for producing molded body
JP5722066B2 (en) Multilayer structure
JP6042695B2 (en) Foam for battery transport tray
JP5722067B2 (en) Multilayer structure
JP6001323B2 (en) Foam for secondary battery container
JP7355838B2 (en) Containers, storage devices, electrical parts storage bodies
JP5642521B2 (en) Foamed bead molded body and manufacturing method thereof
JP2024081072A (en) Battery holder
EP4316800A1 (en) Laminate
JP7457528B2 (en) Cover and antenna equipment
WO2021166667A1 (en) Lithium-ion battery module
JP2021197210A (en) Composite article
WO2023171330A1 (en) Bead foam body and foam particles, and manufacturing methods therfor
WO2024043103A1 (en) Method for producing foam beads, amorphous resin foam beads, crystalline resin foam beads and foam molded body
JP7158600B2 (en) SPACER, METHOD FOR MANUFACTURING SAME, AND COMPOSITE
JP2023043785A (en) Foam thermoplastic resin pellet group and its production method
JP2017114081A (en) Fiber-reinforced composite body
JP2022100556A (en) Device for transmitting and receiving radio waves and cover material
CN116194289A (en) Composite nonflammable molded body
JP2022094801A (en) LIB cooling plate and LIB cooling kit
EP4296708A1 (en) Cover