JP2024077640A - Method for producing benzoxazine compound - Google Patents

Method for producing benzoxazine compound Download PDF

Info

Publication number
JP2024077640A
JP2024077640A JP2022189707A JP2022189707A JP2024077640A JP 2024077640 A JP2024077640 A JP 2024077640A JP 2022189707 A JP2022189707 A JP 2022189707A JP 2022189707 A JP2022189707 A JP 2022189707A JP 2024077640 A JP2024077640 A JP 2024077640A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
general formula
reaction
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022189707A
Other languages
Japanese (ja)
Inventor
嵩浩 浅枝
Takahiro Asae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Chemical Industry Co Ltd
Original Assignee
Honshu Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Chemical Industry Co Ltd filed Critical Honshu Chemical Industry Co Ltd
Priority to JP2022189707A priority Critical patent/JP2024077640A/en
Publication of JP2024077640A publication Critical patent/JP2024077640A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

To provide a production method that can produce a benzoxazine compound with high purity and high yield even when using raw materials poorly soluble in aromatic hydrocarbon solvents.SOLUTION: A method for producing a benzoxazine compound represented by the general formula (1) includes the step of reacting a bisphenol compound, a formaldehyde, and an aminothiol compound in the presence of a C3-8 aliphatic ester solvent. (R1: H, a C1-C6 alkyl. R2: a C1-C10 divalent hydrocarbon. X: a single bond, O, S, SO2, CO, formula (1a) or formula (1b)). (R3, R4: H, a C1-C10 alkyl, a C1-C10 alkyl halide, a C6-C12 aryl, or R3 and R4 bonding together to form a C5-C20 cycloalkylidene. Ar1, Ar2: a C6-C12 aryl (* representing a bonding position)).SELECTED DRAWING: None

Description

本発明は、ベンゾオキサジン化合物の製造方法に関する。詳しくは、ビスフェノール化合物、チオール基を有するアミン及びホルムアルデヒド類を原料として得られるベンゾオキサジン化合物の製造方法に関する。 The present invention relates to a method for producing a benzoxazine compound. More specifically, the present invention relates to a method for producing a benzoxazine compound obtained using a bisphenol compound, an amine having a thiol group, and a formaldehyde compound as raw materials.

ベンゾオキサジン化合物は、フェノール類、アミン類及びホルムアルデヒドを反応させることにより合成される化合物であり、加熱することにより揮発性の副生物を生ずることなく、ベンゾオキサジン環が開環重合して硬化する熱硬化性樹脂原料として知られており、絶縁基板用材料として利用可能な成形体、液晶配向剤、半導体封止用樹脂組成物などの原料として利用されている。
一方で、通常ベンゾオキサジン化合物の硬化温度は比較的高く、その重合温度を下げるために触媒、重合促進剤や高反応性ベンゾオキサジン化合物が近年開発されている。その高反応性ベンゾオキサジン化合物の中でも、例えば、構造内にヒドロキシル基を導入したヒドロキシル官能性ベンゾオキサジン組成物が報告されている(特許文献1)。
Benzoxazine compounds are compounds synthesized by reacting phenols, amines, and formaldehyde, and are known as thermosetting resin raw materials that harden by ring-opening polymerization of the benzoxazine ring when heated without producing volatile by-products. They are used as raw materials for molded articles that can be used as materials for insulating substrates, liquid crystal alignment agents, resin compositions for semiconductor encapsulation, and the like.
On the other hand, the curing temperature of benzoxazine compounds is generally relatively high, and in order to lower the polymerization temperature, catalysts, polymerization accelerators, and highly reactive benzoxazine compounds have been developed in recent years. Among the highly reactive benzoxazine compounds, for example, a hydroxyl-functional benzoxazine composition having a hydroxyl group introduced into the structure has been reported (Patent Document 1).

特表2011-530570号公報JP 2011-530570 A

これら官能性ベンゾオキサジン化合物を合成する際に用いる溶媒として、一般的にトルエン等の芳香族炭化水素系溶媒が好適であるとされている。しかしながら、後述する比較例のように、当該溶媒に不溶・難溶な原料(例えば、4,4’-ジヒドロキシビフェニル等)を用いる場合、反応が進行せず、反応温度や時間を著しく増加する必要があり、結果として製品の純度が大幅に低下してしまうという問題が明らかになった。
本発明は、芳香族炭化水素系溶媒に難溶性のビスフェノール化合物を原料に用いた場合であっても、高収率でベンゾオキサジン化合物が得られる製造方法の提供を課題とする。
In general, aromatic hydrocarbon solvents such as toluene are considered to be suitable as solvents for synthesizing these functional benzoxazine compounds. However, as in the comparative example described below, when using raw materials that are insoluble or poorly soluble in the solvent (e.g., 4,4'-dihydroxybiphenyl, etc.), the reaction does not proceed, and it is necessary to significantly increase the reaction temperature and time, resulting in a significant decrease in the purity of the product.
An object of the present invention is to provide a production method by which a benzoxazine compound can be obtained in high yield even when a bisphenol compound that is poorly soluble in aromatic hydrocarbon solvents is used as a raw material.

本発明者は、上述の課題解決のために鋭意検討した結果、難溶性な原料化合物に対して、トルエン等の芳香族炭化水素系溶媒よりも優れた溶解性を示す脂肪族エステル溶媒を採用することにより、これら原料から高収率でベンゾオキサジン化合物が得られることを見出し、本発明を完成した。 As a result of intensive research into solving the above-mentioned problems, the inventors discovered that by using an aliphatic ester solvent that exhibits superior solubility for poorly soluble raw material compounds compared to aromatic hydrocarbon solvents such as toluene, benzoxazine compounds can be obtained from these raw materials in high yields, and thus completed the present invention.

本発明は以下のとおりである。
1.一般式(2)で表されるビスフェノール化合物、ホルムアルデヒド類及び一般式(3)で表されるアミノチオール化合物を、炭素原子数3~8の脂肪族エステル溶媒の存在下に反応を行う反応工程を含む、一般式(1)で表されるベンゾオキサジン化合物の製造方法。
(式中、Rは各々独立して水素原子又は炭素原子数1~6のアルキル基を示し、Rは各々独立して炭素原子数1~10の2価の炭化水素基を示し、Xは単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基、一般式(1a)で表される2価の基又は(1b)で表される2価の基を示す。)
(一般式(1a)、(1b)中、R及びRは各々独立して水素原子、炭素原子数1~10のアルキル基、炭素原子数1~10のハロゲン化アルキル基又は炭素原子数6~12のアリール基を示し、R及びRはそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、Ar及びArは各々独立して炭素原子数6~12のアリール基を示し、*はそれぞれ結合位置を示す。)
(式中、R、Xは一般式(1)の定義と同じである。)
(式中、Rは一般式(1)の定義と同じである。)
2.前記一般式(1)及び(2)におけるXが、単結合、スルホニル基又は前記一般式(1b)で表される2価の基である、1.に記載の製造方法。
3.前記一般式(1)及び(3)におけるRが、炭素原子数1~10の直鎖状又は分岐鎖状のアルキレン基又は環状アルカンを含むアルキレン基である、1.又は2.に記載の製造方法。
4.前記反応工程における反応温度が30~80℃の範囲である、1.に記載の製造方法。
The present invention is as follows.
1. A method for producing a benzoxazine compound represented by general formula (1), comprising a reaction step of reacting a bisphenol compound represented by general formula (2), a formaldehyde compound, and an aminothiol compound represented by general formula (3) in the presence of an aliphatic ester solvent having 3 to 8 carbon atoms.
(In the formula, each R 1 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, each R 2 independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms, and X represents a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, a divalent group represented by general formula (1a) or a divalent group represented by general formula (1b).)
(In general formulas (1a) and (1b), R3 and R4 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms; R3 and R4 may be bonded to each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole; Ar1 and Ar2 each independently represent an aryl group having 6 to 12 carbon atoms; and * indicates the bonding position.)
(In the formula, R 1 and X are defined as in general formula (1).)
(In the formula, R2 is defined as in general formula (1).)
2. The method according to 1., wherein X in the general formulae (1) and (2) is a single bond, a sulfonyl group, or a divalent group represented by the general formula (1b).
3. The method according to 1. or 2., wherein R 2 in the general formulae (1) and (3) is a linear or branched alkylene group having 1 to 10 carbon atoms or an alkylene group containing a cyclic alkane.
4. The method according to 1., wherein the reaction temperature in the reaction step is in the range of 30 to 80° C.

本発明のベンゾオキサジン化合物の製造方法は、芳香族炭化水素系溶媒への溶解性が低いビスフェノール化合物を原料として用いても、より向上した収率でベンゾオキサジン化合物が得られるため、非常に有用である。 The method for producing a benzoxazine compound of the present invention is extremely useful because it can produce a benzoxazine compound in improved yield even when a bisphenol compound that has low solubility in aromatic hydrocarbon solvents is used as a raw material.

本発明の前記一般式(1)で表されるベンゾオキサジン化合物の製造方法は、前記一般式(2)で表されるビスフェノール化合物、ホルムアルデヒド類及び前記一般式(3)で表されるアミノチオール化合物を、炭素原子数3~8の脂肪族エステル溶媒の存在下に反応を行う反応工程を含む方法である。この反応において、ホルムアルデヒド類としてホルムアルデヒドを用いた場合の反応式は下記の通りである。
(式中、R、R、Xは一般式(1)の定義と同じである。)
The method for producing a benzoxazine compound represented by the general formula (1) of the present invention is a method including a reaction step of reacting a bisphenol compound represented by the general formula (2), a formaldehyde compound, and an aminothiol compound represented by the general formula (3) in the presence of an aliphatic ester solvent having 3 to 8 carbon atoms. In this reaction, the reaction formula when formaldehyde is used as the formaldehyde compound is as follows.
(In the formula, R 1 , R 2 and X are defined as in general formula (1).)

<一般式(1)で表されるベンゾオキサジン化合物>
一般式(1)中のRは、水素原子又は炭素原子数1~4のアルキル基であることが好ましく、水素原子又は炭素原子数1のアルキル基(メチル基)であることがより好ましく、水素原子であることが特に好ましい。Rが水素原子ではない場合の結合位置は、ベンゾオキサジン環の酸素原子に対してベンゼン環上のオルソ位であることが好ましい。
一般式(1)中のRは炭素原子数1~10の2価の基であり、具体的には、例えば、メチレン基、エチレン基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、シクロヘキサン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基などの炭素原子数1~10の直鎖状又は分岐鎖状のアルキレン基若しくは環状アルカンを含むアルキレン基、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、シクロペンチリデン基、シクロヘキシリデン基などの炭素原子数1~10のアルキリデン基、フェニレン基や下記式で表される基などのベンゼン環を含む炭素原子数1~10の2価の基が挙げられる。
(式中、*は結合位置を示す。)
これらの中でもRは、炭素原子数1~10の直鎖状又は分岐鎖状のアルキレン基、環状アルカンを含むアルキレン基又は炭素原子数1~10のアルキリデン基であることが好ましく、炭素原子数1~10の直鎖状又は分岐鎖状のアルキレン基若しくは環状アルカンを含むアルキレン基がより好ましく、炭素原子数1~6の直鎖状又は分岐鎖状のアルキレン基若しくは環状アルカンを含むアルキレン基がさらに好ましく、炭素原子数1~4の直鎖状又は分岐鎖状のアルキレン基が特に好ましい。
<Benzoxazine compound represented by general formula (1)>
R 1 in general formula (1) is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 carbon atom (methyl group), and particularly preferably a hydrogen atom. When R 1 is not a hydrogen atom, the bonding position is preferably the ortho position on the benzene ring with respect to the oxygen atom of the benzoxazine ring.
R 2 in the general formula (1) is a divalent group having 1 to 10 carbon atoms. Specific examples thereof include linear or branched alkylene groups having 1 to 10 carbon atoms, such as methylene group, ethylene group, propane-1,2-diyl group, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, cyclohexane-1,3-diyl group, and cyclohexane-1,4-diyl group, or alkylene groups containing a cyclic alkane; alkylidene groups having 1 to 10 carbon atoms, such as ethylidene group, propylidene group, isopropylidene group, butylidene group, cyclopentylidene group, and cyclohexylidene group; phenylene group; and divalent groups having 1 to 10 carbon atoms containing a benzene ring, such as groups represented by the following formulas.
(In the formula, * indicates the bond position.)
Among these, R2 is preferably a linear or branched alkylene group having 1 to 10 carbon atoms, an alkylene group containing a cyclic alkane, or an alkylidene group having 1 to 10 carbon atoms, more preferably a linear or branched alkylene group having 1 to 10 carbon atoms or an alkylene group containing a cyclic alkane, still more preferably a linear or branched alkylene group having 1 to 6 carbon atoms or an alkylene group containing a cyclic alkane, and particularly preferably a linear or branched alkylene group having 1 to 4 carbon atoms.

一般式(1)におけるXは、単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基、一般式(1a)で表される2価の基又は(1b)で表される2価の基を示す。その中でも、単結合、スルホニル基、(1b)で表される2価の基である場合のベンゾオキサジン化合物に対応する原料ビスフェノール化合物は、芳香族炭化水素系溶媒に溶解し難く、芳香族炭化水素系溶媒を反応に用いてベンゾオキサジン化合物を合成し難い。しかしながら、本発明の製造方法によると、収率を向上してベンゾオキサジン化合物を製造することができるので、より有用性が高い観点から好ましい。
一般式(1)におけるXが一般式(1a)である場合のより好ましいR及びRとしては、各々独立して水素原子、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲン化アルキル基又は炭素原子数6~12のアリール基であり、さらに好ましくは水素原子、炭素原子数1~4のアルキル基、トリフルオロメチル基又は炭素原子数6~8のアリール基である。
また、R及びRはそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、この場合、このベンゾオキサジン化合物を使用して得られる硬化物は耐熱性に優れる。炭素原子数5~20のシクロアルキリデン基は、分岐鎖としてのアルキル基を含んでいてもよい。シクロアルキリデン基は炭素原子数5~15であることが好ましく、炭素原子数6~12であることがより好ましく、炭素原子数6~9であることが特に好ましい。
シクロアルキリデン基としては、具体的には、例えば、シクロペンチリデン基(炭素原子数5)、シクロヘキシリデン基(炭素原子数6)、3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロヘプチリデン基(炭素原子数7)、ビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数7)、1,7,7-トリメチルビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数10)、4,7,7-トリメチルビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数10)、トリシクロ[5.2.1.02,6]デカン-8,8-ジイル基(炭素原子数10)、2,2-アダマンチリデン基(炭素原子数10)、シクロドデカニリデン基(炭素原子数12)等が挙げられる。好ましくはシクロヘキシリデン基(炭素原子数6)、3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロドデカニリデン基(炭素原子数12)であり、より好ましくはシクロヘキシリデン基(炭素原子数6)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロドデカニリデン基(炭素原子数12)であり、特に好ましくはシクロヘキシリデン基(炭素原子数6)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)である。
一般式(1)におけるXが一般式(1b)である場合の好ましいAr及びArとしては、各々独立してベンゼン環、ナフタレン環であり、Ar及びArが共にベンゼン環であることがより好ましい。例えば、Ar及びArが共にベンゼン環である場合、一般式(1b)で表される基はフルオレニリデン基である。
一般式(1)におけるXと、2つのベンゾオキサジン環との結合位置は、ベンゾオキサジン環の酸素原子に対してベンゼン環上のオルソ位又はパラ位であることが好ましい。
X in the general formula (1) represents a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, a divalent group represented by the general formula (1a) or a divalent group represented by (1b). Among them, the raw material bisphenol compound corresponding to the benzoxazine compound when it is a single bond, a sulfonyl group, or a divalent group represented by (1b) is difficult to dissolve in an aromatic hydrocarbon solvent, and it is difficult to synthesize the benzoxazine compound using an aromatic hydrocarbon solvent in the reaction. However, according to the production method of the present invention, the benzoxazine compound can be produced with an improved yield, which is preferable from the viewpoint of higher usefulness.
When X in general formula (1) is general formula (1a), more preferable R3 and R4 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and further preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a trifluoromethyl group, or an aryl group having 6 to 8 carbon atoms.
R3 and R4 may be bonded to each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole, in which case the cured product obtained by using this benzoxazine compound has excellent heat resistance. The cycloalkylidene group having 5 to 20 carbon atoms may contain an alkyl group as a branched chain. The cycloalkylidene group preferably has 5 to 15 carbon atoms, more preferably has 6 to 12 carbon atoms, and particularly preferably has 6 to 9 carbon atoms.
Specific examples of the cycloalkylidene group include a cyclopentylidene group (5 carbon atoms), a cyclohexylidene group (6 carbon atoms), a 3-methylcyclohexylidene group (7 carbon atoms), a 4-methylcyclohexylidene group (7 carbon atoms), a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms), a cycloheptylidene group (7 carbon atoms), a bicyclo[2.2.1]heptane-2,2-diyl group (7 carbon atoms), a 1,7,7-trimethylbicyclo[2.2.1]heptane-2,2-diyl group (10 carbon atoms), a 4,7,7-trimethylbicyclo[2.2.1]heptane-2,2-diyl group (10 carbon atoms), a tricyclo[5.2.1.0 2,6 ]decane-8,8-diyl group (10 carbon atoms), 2,2-adamantylidene group (10 carbon atoms), cyclododecanylidene group (12 carbon atoms), etc. are preferred. Cyclohexylidene group (6 carbon atoms), 3-methylcyclohexylidene group (7 carbon atoms), 4-methylcyclohexylidene group (7 carbon atoms), 3,3,5-trimethylcyclohexylidene group (9 carbon atoms), cyclododecanylidene group (12 carbon atoms) are more preferred. Cyclohexylidene group (6 carbon atoms), 3,3,5-trimethylcyclohexylidene group (9 carbon atoms), cyclododecanylidene group (12 carbon atoms) are more preferred. Cyclohexylidene group (6 carbon atoms), 3,3,5-trimethylcyclohexylidene group (9 carbon atoms), cyclododecanylidene group (12 carbon atoms) are particularly preferred.
When X in formula (1) is formula (1b), preferred Ar 1 and Ar 2 are each independently a benzene ring or a naphthalene ring, and more preferably both Ar 1 and Ar 2 are benzene rings. For example, when both Ar 1 and Ar 2 are benzene rings, the group represented by formula (1b) is a fluorenylidene group.
The bonding positions of X in the general formula (1) and the two benzoxazine rings are preferably the ortho or para positions on the benzene ring relative to the oxygen atom of the benzoxazine ring.

(脂肪族エステル溶媒)
本発明の製造方法で用いる炭素原子数3~8の脂肪族エステル溶媒としては、炭素原子数3~8の酢酸エステル溶媒が好ましく、炭素原子数3~6の酢酸エステル溶媒がより好ましく、炭素原子数4~6の酢酸エステル溶媒がさらに好ましく、炭素原子数6の酢酸エステル溶媒が特に好ましい。炭素原子数3~8の脂肪族エステル溶媒として、具体的には、例えば、酢酸メチル、酢酸エチル、酢酸プロピル(酢酸n-プロピル、酢酸イソプロピル)、酢酸ブチル(酢酸n-ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸t-ブチル)、酢酸ヘキシル(酢酸n-ヘキシル等)が挙げられる。この中でも酢酸ブチルが好ましく、酢酸ブチルの中でも酢酸n-ブチルが特に好ましい。なお、酢酸ブチルの化学式はC12であることから、炭素原子数6の脂肪族エステル溶媒に相当する。当該脂肪族エステル溶媒は、その中でも1種類又は2種類以上を組み合わせて用いることができ、1種のみを用いることが好ましい。また、脂肪族エステル溶媒の使用量は、一般式(2)で表されるビスフェノール化合物に対し1.5~5重量倍の範囲が好ましく、2~4重量倍の範囲がより好ましく、2.5~3重量倍の範囲がさらに好ましい。
(Aliphatic ester solvent)
As the aliphatic ester solvent having 3 to 8 carbon atoms used in the production method of the present invention, an acetate ester solvent having 3 to 8 carbon atoms is preferred, an acetate ester solvent having 3 to 6 carbon atoms is more preferred, an acetate ester solvent having 4 to 6 carbon atoms is even more preferred, and an acetate ester solvent having 6 carbon atoms is particularly preferred. Specific examples of the aliphatic ester solvent having 3 to 8 carbon atoms include methyl acetate, ethyl acetate, propyl acetate (n-propyl acetate, isopropyl acetate), butyl acetate (n-butyl acetate, isobutyl acetate, sec-butyl acetate, t-butyl acetate), and hexyl acetate (n-hexyl acetate, etc.). Among these, butyl acetate is preferred, and among butyl acetates, n-butyl acetate is particularly preferred. Note that the chemical formula of butyl acetate is C 6 H 12 O 2 , and therefore corresponds to an aliphatic ester solvent having 6 carbon atoms. The aliphatic ester solvent can be used alone or in combination of two or more thereof, and it is preferable to use only one type. The amount of the aliphatic ester solvent used is preferably 1.5 to 5 times by weight, more preferably 2 to 4 times by weight, and even more preferably 2.5 to 3 times by weight, relative to the amount of the bisphenol compound represented by formula (2).

(一般式(2)で表されるビスフェノール化合物)
一般式(2)で表されるビスフェノール化合物におけるR及びXについて、その定義及び好ましい態様は一般式(1)と同じである。
一般式(2)で表されるビスフェノール化合物としては、具体的には、例えば、ビスフェノールF(ビス(2-ヒドロキシフェニル)メタン、2-ヒドロキシフェニル-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシフェニル)メタン)、ビスフェノールE(1,1-ビス(4-ヒドロキシフェニル)エタン)、ビスフェノールA(2,2-ビス(4-ヒドロキシフェニル)プロパン)、ビスフェノールC(2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン)、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、4,4’-ジヒドロキシビフェニル(以下、「BP」という。)、4,4’-ジヒドロキシ-3,3’-ジメチルビフェニル、ビス(4-ヒドロキシフェニル)エーテル、4,4’-ジヒドロキシベンゾフェノン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルフィド、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-1-ナフチルエタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビスフェノールZ(1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン)、ビスフェノールTMC(1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン)、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等が挙げられる。
この中でも、4,4’-ジヒドロキシビフェニル(以下、「BP」という。)、4,4’-ジヒドロキシ-3,3’-ジメチルビフェニル、ビス(4-ヒドロキシフェニル)スルホン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等は、芳香族炭化水素系溶媒に溶解し難く、芳香族炭化水素系溶媒を反応に用いてベンゾオキサジン化合物を合成し難いが、本発明の製造方法によると、収率を向上して製造することができるので、有用性が高い観点から好ましい。
(Bisphenol compound represented by general formula (2))
The definitions and preferred embodiments of R1 and X in the bisphenol compound represented by the general formula (2) are the same as those in the general formula (1).
Specific examples of the bisphenol compound represented by the general formula (2) include bisphenol F (bis(2-hydroxyphenyl)methane, 2-hydroxyphenyl-4-hydroxyphenylmethane, bis(4-hydroxyphenyl)methane), bisphenol E (1,1-bis(4-hydroxyphenyl)ethane), bisphenol A (2,2-bis(4-hydroxyphenyl)propane), bisphenol C (2,2-bis(4-hydroxy-3-methylphenyl)propane), 2,2-bis(4-hydroxyphenyl)-4-methylpentane, 4,4'-dihydroxybiphenyl (hereinafter referred to as "BP"), 4,4'-dihydroxy-3,3'-dimethylbiphenyl, bis(4-hydroxyphenyl)ether, 4, Examples of the 4'-dihydroxybenzophenone include bis(4-hydroxyphenyl)sulfone, bis(4-hydroxyphenyl)sulfide, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 1,1-bis(4-hydroxyphenyl)-1-naphthylethan, 2,2-bis(4-hydroxyphenyl)hexafluoropropane, bisphenol Z (1,1-bis(4-hydroxyphenyl)cyclohexane), bisphenol TMC (1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane), 1,1-bis(4-hydroxyphenyl)cyclododecane, 2,2-bis(4-hydroxyphenyl)adamantane, and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene.
Among these, 4,4'-dihydroxybiphenyl (hereinafter referred to as "BP"), 4,4'-dihydroxy-3,3'-dimethylbiphenyl, bis(4-hydroxyphenyl)sulfone, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, and the like are difficult to dissolve in aromatic hydrocarbon solvents, and it is difficult to synthesize benzoxazine compounds using aromatic hydrocarbon solvents in reactions. However, according to the production method of the present invention, they can be produced with an improved yield, and are therefore preferred from the viewpoint of high usefulness.

(一般式(3)で表されるアミノチオール化合物)
一般式(3)で表されるアミノチオール化合物におけるRについて、その定義及び好ましい態様は一般式(1)と同じである。
一般式(3)で表されるアミノチオール化合物としては、具体的には、例えば、2-アミノエタンチオール、3-アミノ-1-プロパンチオール、2-アミノ-1-メチルエタンチオール、2-アミノ-2-メチルエタンチオール、5-アミノ-1-ペンタンチオール、6-アミノ-1-ヘキサンチオール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノール、4-アミノベンジルメルカプタン等が挙げられる。この中でも、2-アミノエタンチオール、3-アミノ-1-プロパンチオール、2-アミノ-1-メチルエタンチオール、2-アミノ-2-メチルエタンチオール、5-アミノ-1-ペンタンチオール、6-アミノ-1-ヘキサンチオールが好ましく、2-アミノエタンチオール、3-アミノ-1-プロパンチオール、2-アミノ-1-メチルエタンチオールがより好ましく、2-アミノエタンチオールが特に好ましい。
一般式(3)で表されるアミノチオール化合物の使用量としては、一般式(2)で表されるビスフェノール化合物1モルに対して、2.0~10.0モルの範囲であることが好ましく、2.0~8.0モルの範囲であることがより好ましく、2.0~6.0モルの範囲であることがさらに好ましく、2.0~3.0モルの範囲であることが特に好ましい。
(Aminothiol compound represented by general formula (3))
The definition and preferred embodiments of R2 in the aminothiol compound represented by the general formula (3) are the same as those in the general formula (1).
Specific examples of the aminothiol compound represented by the general formula (3) include 2-aminoethanethiol, 3-amino-1-propanethiol, 2-amino-1-methylethanethiol, 2-amino-2-methylethanethiol, 5-amino-1-pentanethiol, 6-amino-1-hexanethiol, 2-aminothiophenol, 3-aminothiophenol, 4-aminothiophenol, 4-aminobenzylmercaptan, etc. Among these, 2-aminoethanethiol, 3-amino-1-propanethiol, 2-amino-1-methylethanethiol, 2-amino-2-methylethanethiol, 5-amino-1-pentanethiol, and 6-amino-1-hexanethiol are preferred, 2-aminoethanethiol, 3-amino-1-propanethiol, and 2-amino-1-methylethanethiol are more preferred, and 2-aminoethanethiol is particularly preferred.
The amount of the aminothiol compound represented by the general formula (3) used is preferably in the range of 2.0 to 10.0 mol, more preferably in the range of 2.0 to 8.0 mol, even more preferably in the range of 2.0 to 6.0 mol, and particularly preferably in the range of 2.0 to 3.0 mol, relative to 1 mol of the bisphenol compound represented by the general formula (2).

(ホルムアルデヒド類)
ホルムアルデヒド類としては、具体的には、例えば、ホルムアルデヒド水溶液、1,3,5-トリオキサン、パラホルムアルデヒド等を挙げることができる。
ホルムアルデヒド類の使用量としては、一般式(2)で表されるビスフェノール化合物1モルに対して4.0~20.0モルの範囲であることが好ましく、4.0~16.0モルの範囲であることがより好ましく、4.0~12.0モルの範囲であることがさらに好ましく、4.0~8.0モルの範囲であることが特に好ましい。
(Formaldehyde)
Specific examples of formaldehydes include aqueous formaldehyde solutions, 1,3,5-trioxane, and paraformaldehyde.
The amount of formaldehyde used is preferably in the range of 4.0 to 20.0 mol, more preferably in the range of 4.0 to 16.0 mol, even more preferably in the range of 4.0 to 12.0 mol, and particularly preferably in the range of 4.0 to 8.0 mol, relative to 1 mol of the bisphenol compound represented by the general formula (2).

(触媒)
本発明において、反応を促進するための触媒は特に必要はないが、必要に応じて、酸触媒又は塩基触媒を使用することができる。この場合、使用できる酸触媒として、濃塩酸、塩酸ガス、トリフルオロ酢酸、メタンスルホン酸、p-トルエンスルホン酸、安息香酸及びそれらの混合物等が挙げられ、使用できる塩基触媒としては、水酸化ナトリウム、炭酸ナトリウム、トリエチルアミン、トリエタノールアミン及びそれらの混合物等が挙げられる。中でも、p-トルエンスルホン酸、水酸化ナトリウムが好ましく、水酸化ナトリウムがより好ましい。
触媒の使用量としては、一般式(3)で表されるアミノチオール化合物1モルに対して、1~3モル倍の範囲であることが好ましく、1~2モル倍の範囲であることがより好ましく、1~1.5モル倍であることがさらに好ましい。
(catalyst)
In the present invention, a catalyst for promoting the reaction is not particularly necessary, but an acid catalyst or a base catalyst can be used as necessary. In this case, examples of acid catalysts that can be used include concentrated hydrochloric acid, hydrochloric acid gas, trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, benzoic acid, and mixtures thereof, and examples of base catalysts that can be used include sodium hydroxide, sodium carbonate, triethylamine, triethanolamine, and mixtures thereof. Among these, p-toluenesulfonic acid and sodium hydroxide are preferred, and sodium hydroxide is more preferred.
The amount of the catalyst used is preferably in the range of 1 to 3 moles, more preferably in the range of 1 to 2 moles, and even more preferably in the range of 1 to 1.5 moles, relative to 1 mole of the aminothiol compound represented by general formula (3).

(反応条件および方法)
反応温度は、30~80℃の範囲で行うことが好ましく、40~80℃の範囲がより好ましく、50~70℃の範囲がさらに好ましい。
反応圧力は常圧条件下で行ってもよく、また、加圧下でも、或は減圧下で行ってもよい。
原料となる一般式(1)で表されるビスフェノール化合物、ホルムアルデヒド類、及び一般式(2)で表されるアミン化合物の混合方法に制限はない。例えば、(i)一般式(1)で表されるビスフェノール化合物とホルムアルデヒド類を含む混合物に、一般式(2)で表されるアミン化合物を混合して反応を行う方法、(ii)ホルムアルデヒド類と一般式(2)で表されるアミン化合物を含む混合物に、一般式(1)で表されるビスフェノール化合物を混合する方法などが挙げられる。これらの混合物は上述の溶媒や触媒を含んでいてもよく、触媒を混合する方法にも制限はないが、一般式(2)で表されるアミン化合物を混合するその前に、触媒を混合することが好ましい。
本発明の製造方法は、原料の混合物に対して、残る原料を混合する方法には制限はないが、反応選択率と副生物である高分子量成分の生成を抑える観点から、一気に混合するよりも、連続的に若しくは断続的に混合することが好ましい。
反応に際して、原料に由来する水若しくは反応中に生成した水を系外に除去する手順を含むことができる。反応溶液から生成した水を除去する手順は特に制限されず、生成した水を反応溶液中の溶媒系と共沸的に蒸留することにより行うことができる。生成した水は、例えばコックを備えた等圧滴下漏斗、ジムロート冷却器、ディーンスターク装置等の使用により反応系外に除去することができる。
(Reaction conditions and methods)
The reaction temperature is preferably in the range of 30 to 80°C, more preferably in the range of 40 to 80°C, and even more preferably in the range of 50 to 70°C.
The reaction may be carried out under normal pressure, or under increased or reduced pressure.
There is no limitation on the method of mixing the raw materials, bisphenol compound represented by general formula (1), formaldehydes, and amine compound represented by general formula (2). For example, (i) a method of mixing an amine compound represented by general formula (2) with a mixture containing a bisphenol compound represented by general formula (1) and formaldehydes to carry out a reaction, (ii) a method of mixing a bisphenol compound represented by general formula (1) with a mixture containing formaldehydes and an amine compound represented by general formula (2), etc. can be mentioned. These mixtures may contain the above-mentioned solvents and catalysts, and there is no limitation on the method of mixing the catalyst, but it is preferable to mix the catalyst before mixing the amine compound represented by general formula (2).
In the production method of the present invention, there is no limitation on the method for mixing the remaining raw materials with the raw material mixture. However, from the viewpoint of reaction selectivity and suppressing the production of high molecular weight components as by-products, it is preferable to mix the raw materials continuously or intermittently rather than mixing them all at once.
The reaction may include a procedure for removing water derived from the raw materials or water generated during the reaction from the system. The procedure for removing the generated water from the reaction solution is not particularly limited, and the water can be removed by azeotropically distilling the generated water with the solvent system in the reaction solution. The generated water can be removed from the reaction system by using, for example, a pressure-equalizing dropping funnel equipped with a cock, a Dimroth condenser, a Dean-Stark apparatus, or the like.

(後処理操作)
前記反応工程により得た反応終了混合物は、反応終了後、公知の方法によりこの混合物から一般式(1)で表されるベンゾオキサジン化合物を得ることができる。
例えば、前記反応工程により得た反応終了混合物は、水や、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムなどを水に溶解したアルカリ性水溶液により洗浄を行う洗浄工程により、洗浄を行ってもよい。アルカリ性水溶液により洗浄をした後は、アルカリが反応液に残らないようにするために、水で洗浄することが好ましい。より具体的な操作としては、例えば、反応終了混合物に純水を反応混合物100重量部に対して約80重量部程度添加して、30分程度撹拌後に静置後、有機層と水層を分離する操作を1回若しくは複数回行うことが好ましい。水による洗浄は洗浄後に分離する水層のpHが7~8の範囲であることを確認して終了することがより好ましい。
前記反応工程により得た溶液には、塩及び未反応のパラホルムアルデヒドが含まれる場合があり、これらをろ過により取り除くろ過工程を行ってもよい。
前記反応工程により得た反応終了混合物若しくは上記洗浄工程やろ過工程を経た反応混合物については、溶媒を留去する溶媒留去工程を行うことができる。
また、その反応混合物若しくは溶媒を留去した反応混合物に対して、溶媒を添加して晶析して結晶を得る晶析工程を行うことができる。得られた結晶はろ過することにより粉体若しくは粒状の目的物を得ることも考えられる。上記方法により、取り出されたベンゾオキサジン化合物は、例えば、溶媒や水での洗浄や再結晶等の通常の精製手段により、高純度品とすることができる。
なお、上述の反応工程、洗浄工程、ろ過工程、溶媒留去工程、晶析工程、その他の通常の精製手段を実施する際においては、酸素の影響による酸化、劣化、着色などを抑制するために、窒素、アルゴンなどの不活性ガス雰囲気下若しくは空気よりも酸素が少ない雰囲気下にて行うことが好ましい。
(Post-processing operations)
After completion of the reaction, the reaction mixture obtained in the reaction step can be used to obtain the benzoxazine compound represented by general formula (1) from the mixture by a known method.
For example, the reaction-finished mixture obtained in the reaction step may be washed in a washing step with water or an alkaline aqueous solution in which sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, or the like is dissolved in water. After washing with the alkaline aqueous solution, it is preferable to wash with water so that the alkali does not remain in the reaction liquid. As a more specific operation, for example, it is preferable to add about 80 parts by weight of pure water to 100 parts by weight of the reaction mixture after the reaction is finished, stir for about 30 minutes, leave it, and then separate the organic layer and the aqueous layer once or a plurality of times. It is more preferable to end the washing with water by confirming that the pH of the aqueous layer separated after washing is in the range of 7 to 8.
The solution obtained by the reaction step may contain salts and unreacted paraformaldehyde, and a filtration step may be carried out to remove these by filtration.
The reaction mixture obtained in the reaction step or the reaction mixture that has been subjected to the washing step and/or filtration step can be subjected to a solvent distillation step in which the solvent is distilled off.
In addition, a crystallization step can be carried out by adding a solvent to the reaction mixture or the reaction mixture from which the solvent has been distilled off to obtain crystals. The obtained crystals can be filtered to obtain a powder or granular target product. The benzoxazine compound extracted by the above method can be made into a high-purity product by ordinary purification means such as washing with a solvent or water or recrystallization.
In addition, when carrying out the above-mentioned reaction step, washing step, filtration step, solvent distillation step, crystallization step, and other usual purification means, it is preferable to carry out the steps in an inert gas atmosphere such as nitrogen or argon, or in an atmosphere with less oxygen than air, in order to suppress oxidation, deterioration, coloration, and the like due to the influence of oxygen.

以下、実施例により、本発明をさらに具体的に説明する。
<分析方法>
1.原料化合物の残存量の確認(液体クロマトグラフィー:LC)
装置:(株)島津製作所製Prominence UFLC(液体クロマトグラフィー)
ポンプ:LC-20AD
カラムオーブン:CTO-20A
検出器:SPD-20A
カラム:HALO C18(内径3mm、長さ75mm)
オーブン温度:50℃
流量:0.7mL/min
移動相:(A)0.2体積%酢酸水溶液、(B)テトラヒドロフラン
グラジエント条件:(A)体積%
メゾット:20%(0min)→40%(10min)→60%(20min)→100%(37min)→100%(40min)
試料注入量:10μL
検出波長:280nm
2.反応溶液組成及び純度分析(ゲル浸透クロマトグラフィー:GPC)
合成した各種ベンゾオキサジン化合物の純度は、本分析によるベンゾオキサジン化合物の面積百分率の数値とした。
装置:HLC-8320/東ソー(株)製
検出器:示差屈折計(RI)
[測定条件]
流量:1mL/min
溶出液:テトラヒドロフラン
温度:40℃
波長:254nm
測定試料:ベンゾオキサジン化合物含有組成物1gをテトラヒドロフランで200倍に希釈した。
3.目的化合物の化学構造確認(H-NMR)
装置:フーリエ変換核磁気共鳴AVANCE III HD 400(BRUKER製)
測定サンプルを重クロロホルムに溶解し、H-NMRスペクトルを測定した。
The present invention will now be described more specifically with reference to examples.
<Analysis method>
1. Confirmation of remaining amount of raw material compound (liquid chromatography: LC)
Apparatus: Prominence UFLC (liquid chromatography) manufactured by Shimadzu Corporation
Pump: LC-20AD
Column oven: CTO-20A
Detector: SPD-20A
Column: HALO C18 (inner diameter 3 mm, length 75 mm)
Oven temperature: 50°C
Flow rate: 0.7 mL/min
Mobile phase: (A) 0.2% by volume acetic acid aqueous solution, (B) tetrahydrofuran Gradient conditions: (A) vol.%
Method: 20% (0 min) → 40% (10 min) → 60% (20 min) → 100% (37 min) → 100% (40 min)
Sample injection volume: 10 μL
Detection wavelength: 280 nm
2. Reaction solution composition and purity analysis (gel permeation chromatography: GPC)
The purity of each synthesized benzoxazine compound was expressed as the area percentage value of the benzoxazine compound by this analysis.
Apparatus: HLC-8320/Tosoh Corporation Detector: Differential refractometer (RI)
[Measurement condition]
Flow rate: 1 mL/min
Eluent: tetrahydrofuran Temperature: 40°C
Wavelength: 254 nm
Measurement sample: 1 g of the benzoxazine compound-containing composition was diluted 200 times with tetrahydrofuran.
3. Confirmation of the chemical structure of the target compound ( 1H -NMR)
Apparatus: Fourier transform nuclear magnetic resonance AVANCE III HD 400 (manufactured by BRUKER)
The measurement sample was dissolved in deuterated chloroform, and the 1 H-NMR spectrum was measured.

<実施例1>
2Lの4つ口フラスコにシステアミン塩酸塩を231g(2.0moL)加えた後、撹拌しながら48%NaOH水溶液を165g(2.0moL)昇温を確認しながらゆっくりと5分かけて添加した。その後水層のpHが9~10である事を確認した後に、パラホルムアルデヒド(純度:92%)を140g(4.3moL)30分かけて小分けしながら添加した。この際に反応系の温度が30℃から42℃まで昇温が確認された。その後、撹拌をしながら空冷し、温度が30℃に下がったのを確認した後から1時間、30℃で撹拌を行った。その後、フラスコ内に酢酸ブチル508g(BPに対して2.8重量倍)と、BP184gを添加した。その後、液温を60℃まで昇温して7時間反応を行い、上記LCによる反応液の分析を行った結果、BPの残存率をBPの検量線より算出した結果は6.4%(以下同様)であった。そのため、更に70℃で5時間反応を行ったところ、BPの残存率は1.1%であり、原料が殆ど消費されたため、反応を終了した。
フラスコ内の液温を40℃まで下げた後、反応終了液の有機層を水洗するため、純水400gを添加して30分間撹拌した後静置して、有機層と水層の分離を確認した後に水層を除去した。この水洗操作を4回行い、水層のpHが7~8である事を確認した。その後、60℃減圧下に蒸留により溶媒を除去した。蒸留後の蒸留残渣の固形分が15重量%含むワニスになるように酢酸ブチルを添加して、黄色のワニスを291g得た。目的化合物である下記式(A)で表されるベンゾオキサジン化合物の収率は使用したBPに対して64%であった。この得られたベンゾオキサジン化合物の純度は、上記方法によるGPC分析の結果、64面積%であった。
H-NMRの分析結果から、式(A)で表されるベンゾオキサジン化合物が得られたことが明らかになった。
H-NMR分析(400MHz、溶媒:CDCl、基準物質:テトラメチルシラン)
3.00-3.17(8H,m),3.81-4.06(8H,m),4.84-4.86(1H,br),6.84-7.39(6H,m).
Example 1
After adding 231 g (2.0 mol) of cysteamine hydrochloride to a 2 L four-neck flask, 165 g (2.0 mol) of 48% NaOH aqueous solution was added slowly over 5 minutes while stirring and checking the temperature rise. After that, after confirming that the pH of the aqueous layer was 9 to 10, 140 g (4.3 mol) of paraformaldehyde (purity: 92%) was added in small portions over 30 minutes. At this time, it was confirmed that the temperature of the reaction system rose from 30°C to 42°C. Then, the mixture was air-cooled while stirring, and after confirming that the temperature had dropped to 30°C, stirring was performed at 30°C for 1 hour. Then, 508 g of butyl acetate (2.8 times the weight of BP) and 184 g of BP were added to the flask. Then, the liquid temperature was raised to 60°C and the reaction was performed for 7 hours, and the reaction liquid was analyzed by the above LC. As a result, the residual rate of BP was calculated from the BP calibration curve and was 6.4% (same below). Therefore, the reaction was continued for an additional 5 hours at 70° C., but the residual rate of BP was 1.1%, and since the raw material had been almost consumed, the reaction was terminated.
After lowering the liquid temperature in the flask to 40°C, 400g of pure water was added to wash the organic layer of the reaction-terminated liquid, and the mixture was stirred for 30 minutes and then allowed to stand. After confirming the separation of the organic layer and the aqueous layer, the aqueous layer was removed. This washing operation was performed four times, and it was confirmed that the pH of the aqueous layer was 7 to 8. The solvent was then removed by distillation at 60°C under reduced pressure. Butyl acetate was added so that the solid content of the distillation residue after distillation became a varnish containing 15% by weight, and 291g of a yellow varnish was obtained. The yield of the benzoxazine compound represented by the following formula (A), which is the target compound, was 64% based on the BP used. The purity of the obtained benzoxazine compound was 64 area% as a result of GPC analysis by the above method.
The results of 1 H-NMR analysis revealed that the benzoxazine compound represented by formula (A) was obtained.
1 H-NMR analysis (400 MHz, solvent: CDCl 3 , standard substance: tetramethylsilane)
3.00-3.17 (8H,m), 3.81-4.06 (8H,m), 4.84-4.86 (1H,br), 6.84-7.39 (6H,m).

<比較例1>(芳香族炭化水素系溶媒を用いた試験例1)
100mLの試験管にシステアミン塩酸塩を5.0g(0.043moL)加えた後、撹拌しながら48%NaOH水溶液を3.5g(0.042moL)ゆっくりと添加した。その後水層のpHが9~10程度である事を確認した後に、パラホルムアルデヒド(純度:92%)を3.0g(0.090moL)30分かけて小分けしながら添加した。この際に反応系の温度が30℃から35℃まで昇温が確認された。その後撹拌をしながら空冷し、温度が30℃に下がったのを確認した後に30℃で1時間撹拌を行った。その後、試験管内にトルエン11.0g(BPに対して2.8重量倍)と、BP4.0gを添加した。その後、液温を60℃まで昇温し、7時間反応を行い、上記LCによる反応液の分析を行った結果、BPの残存率は93.3%であった。そのため、更に70℃で5時間反応を行い、上記LCによる反応液の分析を行った結果、BPの残存率は80.6%まで低減し、更に5時間追加で反応を行ったところ、BPの残存率は80.4%であり、更なるBPの消費が殆ど無かったため、反応を終了した。
Comparative Example 1 (Test Example 1 using an aromatic hydrocarbon solvent)
After adding 5.0 g (0.043 mol) of cysteamine hydrochloride to a 100 mL test tube, 3.5 g (0.042 mol) of 48% NaOH aqueous solution was slowly added while stirring. After that, it was confirmed that the pH of the aqueous layer was about 9 to 10, and 3.0 g (0.090 mol) of paraformaldehyde (purity: 92%) was added in small portions over 30 minutes. At this time, it was confirmed that the temperature of the reaction system rose from 30°C to 35°C. Then, it was air-cooled while stirring, and after it was confirmed that the temperature had dropped to 30°C, it was stirred at 30°C for 1 hour. Then, 11.0 g of toluene (2.8 times the weight of BP) and 4.0 g of BP were added to the test tube. Then, the liquid temperature was raised to 60°C, and the reaction was carried out for 7 hours. As a result of the analysis of the reaction liquid by the above LC, the residual rate of BP was 93.3%. Therefore, the reaction was continued for an additional 5 hours at 70°C, and the reaction solution was analyzed by LC as described above. As a result, the residual rate of BP had decreased to 80.6%. When the reaction was continued for an additional 5 hours, the residual rate of BP was 80.4%. Since there was almost no further consumption of BP, the reaction was terminated.

<比較例2>(芳香族炭化水素系溶媒を用いた試験例2)
100mLの試験管にシステアミン塩酸塩を5.0g(0.043moL)加えた後、撹拌しながら48%NaOH水溶液を3.5g(0.042moL)ゆっくりと添加した。その後水層のpHが9~10程度である事を確認した後に、パラホルムアルデヒド(純度:92%)を3.0g(0.090moL)30分かけて小分けしながら添加した。この際に反応系の温度が30℃から35℃まで昇温が確認された。その後、撹拌をしながら空冷し、温度が30℃に下がったのを確認した後から1時間、30℃で撹拌を行った。その後試験管内にトルエン11.0g(BPに対して2.8重量倍)添加し、BPを4.0g添加した。その後試験管内の液温を100℃まで昇温し、3時間反応を行ったところ、ゲル状化合物が生じて、上記LCによる反応液の分析を行うこともできず、目的とする式(A)で表されるベンゾオキサジン化合物を得ることができなかった。
Comparative Example 2 (Test Example 2 using an aromatic hydrocarbon solvent)
After adding 5.0 g (0.043 mol) of cysteamine hydrochloride to a 100 mL test tube, 3.5 g (0.042 mol) of 48% NaOH aqueous solution was slowly added while stirring. After that, it was confirmed that the pH of the aqueous layer was about 9 to 10, and 3.0 g (0.090 mol) of paraformaldehyde (purity: 92%) was added in small portions over 30 minutes. At this time, it was confirmed that the temperature of the reaction system rose from 30°C to 35°C. Then, it was air-cooled while stirring, and after it was confirmed that the temperature had dropped to 30°C, it was stirred at 30°C for 1 hour. Then, 11.0 g of toluene (2.8 times the weight of BP) was added to the test tube, and 4.0 g of BP was added. After that, the liquid temperature in the test tube was raised to 100°C and the reaction was carried out for 3 hours, and a gel-like compound was generated, and the reaction liquid could not be analyzed by the above LC, and the benzoxazine compound represented by the desired formula (A) could not be obtained.

上記の実施例1と比較例1における、反応開始時からの原料化合物であるBPの消費率を、下記表1に示す。なおBPの消費率は検量線より算出した残存率を100%から減じたものである。
The consumption rates of BP, a raw material compound, from the start of the reaction in the above Example 1 and Comparative Example 1 are shown in Table 1 below. The consumption rate of BP is calculated by subtracting the remaining rate calculated from the calibration curve from 100%.

表1に示すとおり、本発明の具体例である実施例1は、反応溶媒として酢酸ブチルを用いる事でBPが効率的に消費され反応が進行するのに対して、比較例1では、反応溶媒としてトルエンを用いると、BPの消費率が低く、反応が途中で停止してしまう事が判明した。
また比較例2では反応温度を高く設定したため、目的物であるベンゾキサジンが熱による硬化反応を引き起こし、ゲル状の化合物となったと考えられる。この実験データより、反応温度を上昇させる事でBPを溶解し、反応を進行させる事は困難である事が判明した。
これらの事から、4,4’-ジヒドロキシビフェニル等の芳香族炭化水素系溶媒に不溶・難溶な原料を用いたベンゾオキサジン化合物の製造方法において、反応溶媒として脂肪族エステル溶媒を採用することにより、反応温度を高くすることなく、より速やかに反応を行うことができ、さらに高収率でベンゾオキサジン化合物が得られることが明らかとなった。
As shown in Table 1, in Example 1, which is a specific example of the present invention, BP is efficiently consumed and the reaction proceeds by using butyl acetate as a reaction solvent, whereas in Comparative Example 1, when toluene is used as a reaction solvent, the consumption rate of BP is low and the reaction stops midway.
In addition, in Comparative Example 2, the reaction temperature was set too high, which is thought to have caused the target benzoxazine to undergo a heat-induced hardening reaction, resulting in a gel-like compound. This experimental data demonstrated that it is difficult to dissolve BP and advance the reaction by increasing the reaction temperature.
From these facts, it has become clear that in a production method of a benzoxazine compound using a raw material that is insoluble or poorly soluble in an aromatic hydrocarbon solvent, such as 4,4'-dihydroxybiphenyl, by employing an aliphatic ester solvent as a reaction solvent, the reaction can be carried out more quickly without increasing the reaction temperature, and the benzoxazine compound can be obtained in a higher yield.

Claims (4)

一般式(2)で表されるビスフェノール化合物、ホルムアルデヒド類及び一般式(3)で表されるアミノチオール化合物を、炭素原子数3~8の脂肪族エステル溶媒の存在下に反応を行う反応工程を含む、一般式(1)で表されるベンゾオキサジン化合物の製造方法。
(式中、Rは各々独立して水素原子又は炭素原子数1~6のアルキル基を示し、Rは各々独立して炭素原子数1~10の2価の炭化水素基を示し、Xは単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基、一般式(1a)で表される2価の基又は(1b)で表される2価の基を示す。)
(一般式(1a)、(1b)中、R及びRは各々独立して水素原子、炭素原子数1~10のアルキル基、炭素原子数1~10のハロゲン化アルキル基又は炭素原子数6~12のアリール基を示し、R及びRはそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、Ar及びArは各々独立して炭素原子数6~12のアリール基を示し、*はそれぞれ結合位置を示す。)
(式中、R、Xは一般式(1)の定義と同じである。)
(式中、Rは一般式(1)の定義と同じである。)
A method for producing a benzoxazine compound represented by general formula (1), comprising a reaction step of reacting a bisphenol compound represented by general formula (2), a formaldehyde compound, and an aminothiol compound represented by general formula (3) in the presence of an aliphatic ester solvent having 3 to 8 carbon atoms.
(In the formula, each R 1 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, each R 2 independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms, and X represents a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, a divalent group represented by general formula (1a) or a divalent group represented by general formula (1b).)
(In general formulas (1a) and (1b), R3 and R4 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms; R3 and R4 may be bonded to each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole; Ar1 and Ar2 each independently represent an aryl group having 6 to 12 carbon atoms; and * indicates the bonding position.)
(In the formula, R 1 and X are defined as in general formula (1).)
(In the formula, R2 is defined as in general formula (1).)
前記一般式(1)及び(2)におけるXが、単結合、スルホニル基又は前記一般式(1b)で表される2価の基である、請求項1に記載の製造方法。 The method according to claim 1, wherein X in the general formulas (1) and (2) is a single bond, a sulfonyl group, or a divalent group represented by the general formula (1b). 前記一般式(1)及び(3)におけるRが、炭素原子数1~10の直鎖状又は分岐鎖状のアルキレン基又は環状アルカンを含むアルキレン基である、請求項1又は2に記載の製造方法。 The method according to claim 1 or 2, wherein R 2 in the general formulas (1) and (3) is a linear or branched alkylene group having 1 to 10 carbon atoms or an alkylene group containing a cyclic alkane. 前記反応工程における反応温度が30~80℃の範囲である、請求項1に記載の製造方法。 The method according to claim 1, wherein the reaction temperature in the reaction step is in the range of 30 to 80°C.
JP2022189707A 2022-11-29 2022-11-29 Method for producing benzoxazine compound Pending JP2024077640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022189707A JP2024077640A (en) 2022-11-29 2022-11-29 Method for producing benzoxazine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022189707A JP2024077640A (en) 2022-11-29 2022-11-29 Method for producing benzoxazine compound

Publications (1)

Publication Number Publication Date
JP2024077640A true JP2024077640A (en) 2024-06-10

Family

ID=91377325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022189707A Pending JP2024077640A (en) 2022-11-29 2022-11-29 Method for producing benzoxazine compound

Country Status (1)

Country Link
JP (1) JP2024077640A (en)

Similar Documents

Publication Publication Date Title
Goldmann et al. A series of calix [4] arenes, having two opposite para positions connected by an aliphatic chain
KR20160108336A (en) Method for producing cyclobutane tetracarboxylic acid derivative
KR101607717B1 (en) Novel tetrakis(ether-substituted formylphenyl) and novel polynuclear poly(phenol) derived from the same
KR20230138467A (en) Method for producing benzoxazine compounds
JP2024077640A (en) Method for producing benzoxazine compound
KR20230138468A (en) Novel method for preparing benzoxazine compounds
JP5000345B2 (en) Novel tetrakis (sec-butylphenol) compound
CN116783170A (en) Process for producing benzoxazine compound
JP7379770B2 (en) Crystalline form of bisfluorene compound
JP2022061763A (en) Novel polythiol compound
WO2024106525A1 (en) Method for producing benzoxazine compound
JP2012131749A (en) Anthracene derivative, curable composition, cured product, and method of producing the anthracene derivative
JP7280262B2 (en) Novel polyacyloxymethyl-4,4&#39;-acyloxybiphenyl compound
JP2009107991A (en) New hydroxymethyl-substituted or alkoxymethyl-substituted bisphenol compound
WO2008044568A1 (en) Novel bis(formylphenyl)alkane and novel polynuclear phenol derived from the same
TW202434555A (en) Method for producing benzoxazine compound
WO2017170095A1 (en) Novel dihydroxy compound
JP2011046623A (en) New epoxy compound
TWI718276B (en) Novel dihydroxy compound
TW202344494A (en) Biphenanthrene compound or alkali metal salt thereof
JP2003306461A (en) 1,3,5-tris(4-hydroxyphenyl)adamantane and method for producing the same
WO2024214521A1 (en) Method for producing polycarboxylic acid ester compound
JP2024056799A (en) Bisphenol composition and polycarbonate resin
WO2024214519A1 (en) Method for producing polycarboxylic acid ester compound
JP2024130530A (en) Method for producing bisphenol and method for producing polycarbonate resin