JP2024071134A - Antibacterial deodorant comprising microbe and plant component, and antibacterial deodorizing method - Google Patents

Antibacterial deodorant comprising microbe and plant component, and antibacterial deodorizing method Download PDF

Info

Publication number
JP2024071134A
JP2024071134A JP2022181923A JP2022181923A JP2024071134A JP 2024071134 A JP2024071134 A JP 2024071134A JP 2022181923 A JP2022181923 A JP 2022181923A JP 2022181923 A JP2022181923 A JP 2022181923A JP 2024071134 A JP2024071134 A JP 2024071134A
Authority
JP
Japan
Prior art keywords
antibacterial
microbial
microorganisms
cypress
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022181923A
Other languages
Japanese (ja)
Inventor
正男 碇
Masao Ikari
哲宏 松澤
Tetsuhiro Matsuzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022181923A priority Critical patent/JP2024071134A/en
Publication of JP2024071134A publication Critical patent/JP2024071134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

To provide an antibacterial deodorant that exhibits enhanced abilities through a combination of components extracted from microbes, plants and the like with antibacterial deodorizing capabilities, further extending its effective range to include viruses, and also provide an antibacterial deodorizing method.SOLUTION: An antibacterial deodorant exhibits comprehensive abilities to inhibit the growth of fungi and inactivate virus in space and deodorize the space through a combination of volatile substances released by microbes in a spore state and plants.SELECTED DRAWING: None

Description

本発明は、芽胞微生物と植物成分を用いた抗菌消臭剤、抗菌消臭方法に関する。 The present invention relates to an antibacterial deodorizer and an antibacterial deodorizing method that use spore-forming microorganisms and plant components.

従来、さまざまな種類の抗菌剤や抗カビ剤が開発され使用されている。その中には微生物を利用して抗菌や消臭を行うものがある。例えば、特許文献1には、バチルス属などの多種の微生物を鉱物担体に含浸させ、乾燥させることによって得られる消臭剤が記載されている。これを消臭対象の汚泥に散布することによって、汚泥の水分で微生物が活性化し、消臭を行うものである。 Traditionally, various types of antibacterial and antifungal agents have been developed and used. Some of these use microorganisms for antibacterial and deodorizing purposes. For example, Patent Document 1 describes a deodorizer obtained by impregnating a mineral carrier with various types of microorganisms, such as Bacillus, and then drying them. By spraying this on the sludge to be deodorized, the moisture in the sludge activates the microorganisms, thereby deodorizing the odor.

微生物を用いた抗菌方法には微生物が発生させる気化物質などを用いて空間内の抗菌や消臭を行うものがある。例えば特許文献2にはバチルス属に属する新規微生物を用いた抗菌消臭方法が記載されている。 Antibacterial methods using microorganisms include those that use vaporized substances generated by microorganisms to perform antibacterial and deodorizing functions within a space. For example, Patent Document 2 describes an antibacterial and deodorizing method that uses a novel microorganism belonging to the Bacillus genus.

また、ヒノキなどの木材から抽出される成分はフィトンチッドなどと呼ばれ、抗菌能力が知られている。例えば特許文献3にはヒノキから抽出された成分を用いた除菌スプレーが記載されている。 In addition, components extracted from wood such as cypress are called phytoncides and are known to have antibacterial properties. For example, Patent Document 3 describes a disinfectant spray that uses components extracted from cypress.

特開平07-222791JP 07-222791 特開2018-007661Patent Publication 2018-007661 特開平4-5210JP 4-5210

特許文献2で利用されている微生物は「芽胞」という微生物が生存できない環境におかれた微生物が、その環境に対応するために形成する状態を利用している。この形態になると微生物は活動を止め、乾燥や高温、低温などの微生物にとって危険な状況を生き延びることができるようになる。生きた微生物を商材として扱う場合に、輸送や保存は特に問題になるが、この芽胞状態を利用すればこの問題は解決し、容易に管理が可能になる。 The microorganisms used in Patent Document 2 utilize "spores," a state that microorganisms form when placed in an environment in which they cannot survive, in order to adapt to that environment. When they reach this state, the microorganisms cease activity and are able to survive dangerous conditions for microorganisms, such as dryness, high temperatures, and low temperatures. When dealing with live microorganisms as commercial products, transportation and storage are particularly problematic, but using the spore state solves this problem and makes them easy to manage.

特許文献2では芽胞状態の微生物をそのまま利用して抗菌消臭を行っているもので、微生物の活動に適した温度や湿度に捉われずに、安全性に優れ、目的とする空間の隅々までに効果が得られる抗菌方法として、室内などの常温環境だけでなく冷蔵庫やエアコンなどのさまざまな空間に用いることができる。 Patent Document 2 uses microorganisms in the spore state as they are to perform antibacterial and deodorizing, and is an antibacterial method that is safe and effective in every corner of the target space, regardless of the temperature and humidity that are suitable for microbial activity, and can be used not only in room temperature environments such as indoors, but also in a variety of spaces such as refrigerators and air conditioners.

この芽胞状態を利用した微生物抗菌消臭剤の能力をさらに強化し、抗ウィルス能力を付与することができれば、さらに安全で健康的な空間を提供することができる。 If we could further strengthen the capabilities of this microbial antibacterial deodorant that utilizes the spore state and give it antiviral capabilities, we could provide an even safer and healthier space.

本発明者らは、微生物を用いて抗菌、消臭だけではなく、抗ウィルスの機能を兼備する抗菌消臭剤について鋭意研究を重ねた結果、微生物が放出する微生物と植物成分が組み合わさった時、それぞれ単体で用いるよりもウィルス不活性化能力が非常に大きく上昇することを見出し、本発明を完成するに至った。本発明は、抗菌、消臭だけではなく、抗ウィルス機能を兼備する抗菌消臭剤を提案することを目的とするものである。 The inventors conducted extensive research into antibacterial deodorants that use microorganisms and have not only antibacterial and deodorizing properties but also antiviral properties. As a result, they discovered that when the microorganisms released by microorganisms are combined with plant components, the virus inactivation ability is significantly increased compared to when each component is used alone, which led to the completion of the present invention. The present invention aims to propose an antibacterial deodorant that has not only antibacterial and deodorizing properties but also antiviral properties.

上記目的を達成するため、請求項1に記載の発明は、消臭抗菌能力を持つ微生物と植物成分を用いることを特徴とする抗菌消臭剤をその要旨とした。 To achieve the above object, the invention described in claim 1 is an antibacterial deodorant that uses microorganisms and plant components that have deodorizing and antibacterial properties.

本発明の抗菌消臭剤は、空間内に存在する菌類の発育抑制、また悪臭の消臭を行う特徴を持つ微生物、または、それを含む2種以上の微生物を微生物担体に担持させた状態で乾燥させたものと、植物成分、または植物成分を担体に担持させたものの混合物である。 The antibacterial deodorant of the present invention is a mixture of a microorganism that has the characteristics of inhibiting the growth of fungi present in a space and deodorizing bad odors, or two or more types of microorganisms including such microorganisms that are supported on a microbial carrier and dried, and a plant component, or a plant component supported on a carrier.

使用する微生物としては、消臭や抗菌能力を持ち、芽胞状態を形成し、人体に害のない安全な微生物を使用できる。これらの特徴を併せ持つものとして例えばBacillus属が挙げられる。 The microorganisms used are safe microorganisms that have deodorizing and antibacterial properties, can form spores, and are not harmful to the human body. For example, the Bacillus genus is one that has all of these characteristics.

Bacillus属に属する新規のグラム陽性有芽胞桿菌(独立行政法人 製品評価技術基盤機構 特許生物寄託センター に寄託して平成27年10月2日に受領された受託番号NITE P-02127を有する新規微生物)等を用いることができる。この微生物は、菌類の発育抑制、または臭い成分を分解する特徴を有する。 A novel gram-positive spore-forming bacillus belonging to the genus Bacillus (a novel microorganism with accession number NITE P-02127, deposited at the National Institute of Technology and Evaluation, Patent Organism Depositary Center and received on October 2, 2015) can be used. This microorganism has the characteristics of inhibiting the growth of fungi and decomposing odorous components.

ここで、微生物担体とは、微生物を保持する能力を有するもののことを言い、具体的には、多孔質ガラス、セラミックス、金属酸化物、活性炭、カオリナイト、ベントナイト、ゼオライト、シリカゲル、アルミナ、アンスラサイト、パーライト等の粒子状担体、デンプン、寒天、キチン、キトサン、ポリビニルアルコール、アルギン酸、ポリアクリルアミド、カラギーナン、アガロース、ゼラチン等のゲル状担体、イオン交換樹性セルロース、イオン交換樹脂、セルロース誘導体、グルタルアルデヒド、ポリアクリル酸、ウレタンポリマー等を用いることができる。また、天然、もしくは合成の高分子化合物も有効であり、セルロースを主成分とする綿、麻、パルプ材より作られる紙類もしくは天然物を変性した高分子アセテート等も用いることができる。さらに、ポリエステル、ポリウレタンを初めとする合成高分子からなる布類も使用することができる。これらは微生物の付着性が良く、微細な間隙を有するものが好ましい。また注入時に容易に浸透できる微細な材料を用いるのがより好ましい。 Here, the term "microorganism carrier" refers to a material capable of retaining microorganisms. Specifically, particulate carriers such as porous glass, ceramics, metal oxides, activated carbon, kaolinite, bentonite, zeolite, silica gel, alumina, anthracite, and perlite can be used; gel carriers such as starch, agar, chitin, chitosan, polyvinyl alcohol, alginic acid, polyacrylamide, carrageenan, agarose, and gelatin; ion-exchange dendritic cellulose, ion-exchange resins, cellulose derivatives, glutaraldehyde, polyacrylic acid, and urethane polymers can be used. Natural or synthetic polymer compounds are also effective, and papers made from cotton, hemp, and pulp materials, which are mainly composed of cellulose, or polymer acetates made by modifying natural materials can also be used. Furthermore, fabrics made from synthetic polymers such as polyester and polyurethane can also be used. These are preferably ones that have good adhesion to microorganisms and have fine gaps. It is also more preferable to use fine materials that can easily penetrate when injected.

植物成分とは、例えば、ヒノキ、タイワンヒノキ、ベイヒバ、サワラ、ローソンヒノキ、チャボヒバ、クジャクヒバ、オウゴンチャボヒバ、スイリュウヒバ、イトヒバ、オウゴンヒヨクヒバ、シノブヒバ、オウゴンシノブヒバ、ヒムロスギ等のヒノキ科ヒノキ属の樹木;ニオイヒバ、ネズコ等のヒノキ科クロベ属の樹木;ヒバ、アスナロ、ヒノキアスナロ、ホソバアスナロ等のヒノキ科アスナロ属の樹木;ハイビャクシン、ネズミサシ、エンピツビャクシン、オキナワハイネズ等のヒノキ科ビャクシン属の樹木;スギ、アシウスギ、エンコウスギ、ヨレスギ、オウゴンスギ、セッカスギ、ミドリスギ等のヒノキ科スギ属の樹木;トドマツ、モミ、ウラジロモミ、シラビソ、オオシラビソ、シラベ、バルサムファー、ミツミネモミ、ホワイトファー、アマビリスファー、アオトドマツ、カリフォルニアレッドファー、グランドファー、ノーブルファー等のマツ科モミ属の樹木;ヒマラヤスギ等のマツ科ヒマラヤスギ属の樹木、アカエゾマツ、トウヒ等のマツ科トウヒ属の樹木;アカマツ、ダイオウショウ、ストローブマツ、ハイマツ等のマツ科マツ属の樹木;カラマツ等のマツ科カラマツ属の樹木;ツガ等のマツ科ツガ属の樹木;コウヤマキ等のコウヤマキ科コウヤマキ属の樹木;カヤ等のイチイ科カヤ属の樹木;ユーカリ等のフトモモ科の樹木等などの中から選択された、1種以上よりなる木材、樹皮、葉などからの抽出した精油等を用いることができる。また、ヒノキ科などの植物から抽出される抗菌成分であるヒノキチオールを併せて用いることができる。 Plant components include, for example, trees of the Cupressaceae family, Chamaecyparis obtusifolia, Taiwan cypress, Japanese cypress, Sawara cypress, Lawson cypress, Oriental cypress, Peacock cypress, Crown cypress, Suiryu cypress, Scutellaria cypress, Crown cypress, Crown cypress, and Cypress; trees of the Cupressaceae family, Arborvitae genus, such as Thuja occidentalis and Juniperus japonicus; Japanese cedar, Asarum arborescens; and other trees of the Cupressaceae family, such as Thuja occidentalis and Juniperus japonicus. Trees of the Cupressaceae family, such as Japanese cedar, Japanese cedar, Japanese pencil juniper, and Okinawan juniper; trees of the Cupressaceae family, such as Japanese cedar, Japanese cedar, Japanese cedar, Japanese silverleaf cedar, Japanese red cedar, and Japanese midorisugi; trees of the Cupressaceae family, such as Japanese cedar, Japanese silverleaf cedar, Japanese silverleaf cedar, and Japanese midorisugi; Japanese spruce, fir, Japanese silverleaf ... The essential oils can be extracted from wood, bark, leaves, etc. of one or more kinds selected from the following: Abies veitchii, Abies veitchii, Balsam fir, Mitsumine fir, White fir, Amabilis fir, Abies sachalinensis, California red fir, Grand fir, Noble fir, etc.; Cedrus gracilis, etc.; Picea spp., Picea glabra, etc.; Pinus glabra, Pinus spp., Picea glabra, etc.; Larix larix, etc.; Tsuga hemlock, etc.; Siberian cedar, etc.; Tora pine, etc.; Myrtaceae, etc.; and Eucalyptus, etc.; and the like. Hinokitiol, an antibacterial component extracted from plants of the Cupressaceae family, can also be used.

植物成分を担持する担体には、前記の微生物担体と同様の物を使用できる。 The carrier for carrying the plant components can be the same as the microbial carrier described above.

植物成分を担持させた担体は、被覆し、植物成分の放出量を調整しても良い。この被覆にはロジンやロジンエステルなどの天然樹脂、蜜蝋やパラフィンワックスなどの固形ワックス、ポリビニルアルコールなどのポリマー樹脂、高級脂肪酸、高級アルコール、セラック、シュガーエステル等を用いることができる。 The carrier carrying the plant components may be coated to adjust the amount of plant components released. For this coating, natural resins such as rosin and rosin esters, solid waxes such as beeswax and paraffin wax, polymer resins such as polyvinyl alcohol, higher fatty acids, higher alcohols, shellac, sugar esters, etc. can be used.

本発明によれば、空間内に存在する菌類に対して、芽胞状態の微生物から発生する揮発性成分と植物成分の相乗効果により、菌類等の発育が抑制され、悪臭の消臭が行われ、ウィルスを不活性化させるので、スプレーなどによる散布や刷毛などによる塗布といった作業を行うことなく、空間内に本発明を置いておくだけで、空間内の隅々まで効果を得ることができる。また、乾燥した室内や低温化で使用できる。しかも安全性が高いため、人が生活している環境下で持続的に使用することが可能である。 According to the present invention, the growth of fungi present in a space is suppressed, odors are eliminated, and viruses are inactivated through the synergistic effect of volatile components generated from spore-state microorganisms and plant components, so that the effects can be felt throughout every corner of the space by simply placing the present invention in the space, without the need for tasks such as spraying or applying with a brush. It can also be used indoors in dry conditions or at low temperatures. Moreover, because it is highly safe, it can be used continuously in environments where people live.

以下、本発明の実施の形態について詳細に説明する。 The following describes in detail the embodiments of the present invention.

(実地例1)
1-1:使用する植物成分の選定
まず本発明者らは使用する成分を選定するために、さまざまな植物の精油や微生物粉体を用いてウィルス不活性化試験を行った。植物の精油として、ティーツリー精油、ラベンダー精油、サイプレス精油、ユーカリ精油、ジュニパーベリー精油、マジョラム精油、イランイラン精油、フランキンセス精油、パルマローザ精油、ヒノキ精油、ヒバ精油を用意した。
(Example 1)
1-1: Selection of plant components to be used First, the inventors conducted virus inactivation tests using various plant essential oils and microbial powders in order to select the components to be used. As plant essential oils, tea tree essential oil, lavender essential oil, cypress essential oil, eucalyptus essential oil, juniper berry essential oil, marjoram essential oil, ylang-ylang essential oil, frankincense essential oil, palmarosa essential oil, cypress essential oil, and Japanese cedar essential oil were prepared.

1-2:微生物粉体の製造方法
Bacillus属等に属する微生物は乾燥状態などの生存に適さない状態になると芽胞を形成し、乾燥や温度変化などに強い保存に適した状態となる。これを利用して、微生物培養液を多孔質物質に含浸させた後に乾燥させ、芽胞形成を促すことで芽胞微生物粉体を作成することができる。
多孔質の粉末担体としてパーライト 1kgに、使用する微生物の微生物培養液 2Lを含浸させた。その後、微生物を担持した担体を常温の乾燥下に置き、乾燥させて水分を10%以下にし、芽胞微生物粉体を作成した。微生物に弊社保有の微生物株を用いて、それぞれで芽胞微生物粉体を作成した。
1-2: Manufacturing method of microbial powder
Microorganisms belonging to the genus Bacillus and the like form spores when they become in an unsuitable state for survival, such as dry conditions, and become suitable for storage because they are resistant to drying and temperature changes, etc. Taking advantage of this, it is possible to create spore-forming microbial powder by impregnating a porous material with a microbial culture solution and then drying it to promote spore formation.
1 kg of perlite was used as a porous powder carrier, and 2 L of the microbial culture solution of the microorganism to be used was impregnated into it. The carrier carrying the microorganism was then placed under dry conditions at room temperature, and dried to a moisture content of 10% or less to create a spore-forming microorganism powder. Spore-forming microorganism powders were created using microbial strains owned by our company.

1-3:空間内ウィルス不活性化試験
本試験に用いた被験菌には、病原ウィルスの代用として大腸菌ファージを使用した。エンペローブに覆われた大腸菌ファージはインフルエンザウィルスよりも抗ウィルス剤の影響を受けにくいと言われる。10の8乗クラスのpfu/mlを持つ大腸菌ファージ液 20 μlを1 cm角のろ紙に滴下し、2Lの密閉できる箱の内部に配置した。そこに検体となる物質を被検菌液に接触しないように配置し密閉した。検体が精油の場合は、10 μlを箱内に配置したシャーレに滴下し、検体が微生物粉体の場合は粉体1gを箱内に配置したシャーレ内に置いた。24時間後にろ紙を取り出し、大腸菌を宿主細胞として、プラーク数を計測した。また検体を使用しない空試験も同様に行った。これらの試験中、容器内の湿度が90%を超えるように水のみで作成した寒天培地を配置し調整した。
1-3: Virus inactivation test in space E. coli phage was used as a substitute for pathogenic viruses in this test. E. coli phage covered by an envelope is said to be less susceptible to antiviral agents than influenza viruses. 20 μl of E. coli phage liquid with 108 class pfu/ml was dropped onto a 1 cm square filter paper and placed inside a 2L sealable box. The sample material was placed there so as not to come into contact with the test bacteria liquid and sealed. If the sample was essential oil, 10 μl was dropped onto a petri dish placed inside the box, and if the sample was microbial powder, 1 g of the powder was placed in a petri dish placed inside the box. After 24 hours, the filter paper was removed and the number of plaques was counted using E. coli as host cells. A blank test without using a sample was also performed in the same way. During these tests, an agar medium made only of water was placed and adjusted so that the humidity inside the container exceeded 90%.

試験結果を表1に示す。植物精油ではユーカリ、ヒノキなどで、微生物粉体ではNITE P-02127株を用いたものでわずかなプラーク数の減少を確認した。 The test results are shown in Table 1. A slight reduction in plaque count was confirmed when plant essential oils such as eucalyptus and cypress were used, and when microbial powder was used, the NITE P-02127 strain was used.

Figure 2024071134000001
Figure 2024071134000001

1-4:微生物揮発性物質再現液体の調整
多少の有効性を示したNITE P-02127株の微生物粉体であるが、放出される揮発性物質の定性分析を行い、その成分を分析済みである。この成分を配合して微生物から放出される揮発性物質を再現した微生物揮発性物質再現液体を作成した。この再現溶液には有機酸や芳香族アルデヒドなどが含まれる。また本来の放出濃度よりも高い濃度となっている。これを試験に用いることで、微生物を用いた時に起きる現象の差異をわかりやすく判別できる。
1-4: Preparation of microbial volatile substance replica liquid The microbial powder of the NITE P-02127 strain showed some effectiveness, but a qualitative analysis of the volatile substances emitted was performed and the components were analyzed. A microbial volatile substance replica liquid was created by mixing these components to replicate the volatile substances released from microorganisms. This replica solution contains organic acids and aromatic aldehydes. It also has a higher concentration than the original release concentration. By using this in tests, it is possible to easily distinguish the differences in phenomena that occur when using microorganisms.

1-5:空間内ウィルス不活性化試験
ある程度の有効性を示した前述の精油やNITE P-02127株の微生物揮発性物質再現液体を用い、これらを混合して、前述の空間内ウィルス不活性化試験を再度行った。検体が液体の場合は、10 μlを箱内に配置したシャーレに滴下し、検体が液体と粉体の場合は液体 5 μlと粉体 0.5 gを箱内に二つ配置したシャーレ内にそれぞれ置いた。
1-5: Virus inactivation test in the air Using the aforementioned essential oils and NITE P-02127 strain microbial volatile substance replica liquids that showed some degree of effectiveness, these were mixed and the aforementioned virus inactivation test in the air was performed again. If the specimen was a liquid, 10 μl was dropped into a petri dish placed in the box, and if the specimen was a liquid and a powder, 5 μl of the liquid and 0.5 g of the powder were placed in each of the two petri dishes placed in the box.

試験結果を表2に示すそれぞれの精油と微生物揮発性物質再現液体を混合した時に、プラーク数を大きく減少させる性能の向上がみられた。ヒバ、ヒノキを混合しても能力の強化が起きた。また、微生物粉体とヒバ・ヒノキ精油混合物を同時に使用した時には大きな能力の向上が見られた。 The test results are shown in Table 2. When each essential oil was mixed with the liquid that reproduced microbial volatile substances, an improvement in performance was observed in greatly reducing the number of plaques. The ability was also enhanced when Hiba and Hinoki were mixed. In addition, a large improvement in ability was observed when the microbial powder and the Hiba and Hinoki essential oil mixture were used simultaneously.

Figure 2024071134000002
Figure 2024071134000002

ヒバ・ヒノキ精油という木材成分と微生物(NITE P-02127株)の微生物粉体の揮発性物質を同時に使用すると、相乗効果が発生し、高いウィルス不活性化能力を示すことがわかった。 It was found that when wood components such as hiba and hinoki essential oils and volatile substances from microbial powder of a microorganism (NITE P-02127 strain) are used simultaneously, a synergistic effect occurs, demonstrating high virus inactivation capabilities.

微生物粉体再現液体に含まれる成分は、空気中での劣化などで長期の放出に向かないものがあるが、芽胞微生物はこれらの成分を長期にわたって生産しつづけるため、植物成分を放出する製剤と組み合わせて運用すれば、長期にわたって空間内のウィルス不活性化を行うことができる。 Some of the components contained in the microbial powder replica liquid are not suitable for long-term release due to degradation in the air, but spore-forming microorganisms continue to produce these components over a long period of time, so if used in combination with a formulation that releases plant components, it is possible to inactivate viruses in the space for a long period of time.

(実施例2)
2-1:微生物粉体の製造方法
多孔質の粉末担体としてパーライト 1kgに、使用する微生物の微生物培養液 2Lを含浸させた。その後、微生物を担持した担体を常温の乾燥下に置き、乾燥させて水分を10%以下にし、芽胞微生物粉体を作成した。微生物には、前記のNITE P-02127株の微生物株を用いてそれぞれ芽胞微生物粉体1を作成した。
Example 2
2-1: Manufacturing method of microbial powder 1 kg of perlite as a porous powder carrier was impregnated with 2 L of microbial culture solution of the microorganism to be used. The carrier carrying the microorganism was then placed under dry conditions at room temperature and dried to a moisture content of 10% or less to produce spore-forming microbial powder. The above-mentioned NITE P-02127 strain was used as the microorganism to produce spore-forming microbial powder 1.

2-2:徐放性を持つフィトンチッドビーズの製造方法
次に、担体の孔の中等に、植物成分とロジンなどの被覆材を混合したものを共に埋め込むことにより、フィトンチッドビーズを作成することができる。
担体として、ビスコパール(レンゴー株式会社製)を使用し、このセルロースビーズ0.3 kgに対し、熱で融解させたロジンエステルAA-G(荒川化学工業製)1 kg、ヒバ精油・ヒノキ精油などからなる植物成分0.1 kgを混合したものを加え、浸透、攪拌し、フィトンチッドビーズ2を作成した。
このフィトンチッドビーズ2と微生物粉体1を等量で混合したものを微生物フィトン剤3とした。
2-2: Method for producing phytoncide beads having sustained release properties Next, phytoncide beads can be produced by embedding a mixture of plant components and a coating material such as rosin into the pores of the carrier.
Viscopearl (manufactured by Rengo Co., Ltd.) was used as a carrier. 0.3 kg of these cellulose beads were mixed with 1 kg of heat-melted rosin ester AA-G (manufactured by Arakawa Chemical Industries Co., Ltd.) and 0.1 kg of plant components consisting of hiba essential oil, hinoki cypress essential oil, etc., and the mixture was allowed to penetrate and stir to create phytoncide beads 2.
The phytoncide beads 2 and the microbial powder 1 were mixed in equal amounts to form a microbial phyton agent 3.

2-2:空間内ウィルス不活性化持続試験の試験方法
本試験でも用いた被験菌には、病原ウィルスの代用として大腸菌ファージを使用した。10の8乗クラスのpfu/gを持つ大腸菌ファージ液 20 μlを1 cm角のろ紙に滴下し、2Lの密閉できる箱の内部に配置した。そこに検体として微生物フィトン剤3 2gを被検菌液に接触しないように配置し密閉した。24時間後にろ紙を取り出し、大腸菌を宿主細胞として、プラーク数を計測した。また検体を使用しない空試験も同様に行った。これらの試験中、容器内の湿度が90%を超えるように適宜水を容器内に滴下し調整した。
試験終了後、微生物フィトン剤3を取り出し、室内の開放状態で放置し、一定日数経過後、再度同様の試験を繰り返した。
2-2: Test method for virus inactivation duration test in space The test bacteria used in this test were E. coli phages as a substitute for pathogenic viruses. 20 μl of E. coli phage liquid with 108 class pfu/g was dropped onto a 1 cm square filter paper and placed inside a 2 L sealable box. 2 g of microbial phyton agent 3 was placed there as a specimen so as not to come into contact with the test bacteria liquid and sealed. After 24 hours, the filter paper was removed and the number of plaques was counted using E. coli as host cells. A blank test without using a specimen was also performed in the same way. During these tests, water was dropped into the container as appropriate to adjust the humidity inside the container to exceed 90%.
After the test was completed, the microbial phyton agent 3 was removed and left in an open room, and after a certain number of days had passed, the same test was repeated again.

試験結果を表3に示す。かなりの日数が経過してもファージを大きく減少させる効果を確認できた。被覆したビーズによる徐放性と、長期的に効果を発揮する芽胞状態の微生物粉体がどちらも長期的に効果を発揮し続けたものだと思われる。 The test results are shown in Table 3. We were able to confirm the effect of significantly reducing the number of phages even after a considerable number of days had passed. This is thought to be due to the sustained release properties of the coated beads and the long-term effectiveness of the microbial powder in spore form, both of which continued to be effective for a long period of time.

Figure 2024071134000003
Figure 2024071134000003

2-3:空間内ウィルス不活性化試験
大腸菌ファージではなくインフルエンザウィルスを使用して、前述のものと同様のウィルス不活性化試験を行った。2cm円形ろ紙(ガラス製)を設置し、インフルエンザウィルス(Influenza virus H1N1 A/PR/8/34 ATCC VR-1469
) 7x10^7 PFU/mL を0.05 mLずつ滴下し、2Lの密閉できる箱の内部に配置した。そこに検体として微生物フィトン剤3を2g配置し、6時間後にろ紙を取り出し、MDCK細胞(イヌ腎細胞)を宿主細胞としたプラーク数を計測し、ウィルス感染力価を測定した
2-3: Virus inactivation test in the air A virus inactivation test similar to that described above was conducted using influenza virus instead of E. coli phage. A 2 cm circular filter (made of glass) was placed and the influenza virus (Influenza virus H1N1 A/PR/8/34 ATCC VR-1469) was inoculated into the air.
) 0.05 mL of 7x10^7 PFU/mL was dropped into each well and placed inside a 2L sealable box. 2 g of Microbial Phyton Agent 3 was placed there as a specimen, and after 6 hours, the filter paper was removed and the number of plaques was counted using MDCK cells (canine kidney cells) as host cells, and the viral infection titer was measured.

試験結果を表4に示す。ファージだけでなくウィルスにも99.99%の高い不活性化能力が確認できた。 The test results are shown in Table 4. A high inactivation capacity of 99.99% was confirmed not only for phages but also for viruses.

Figure 2024071134000004
Figure 2024071134000004

2-4:消臭試験・抗菌試験
微生物フィトン剤3を構成している微生物粉体1は真菌類に対する抗菌能力とアンモニアやアミンなどに対する消臭能力を持つ。また、ヒバやヒノキは一般的に知られている通り、抗菌消臭能力を持つため、この微生物フィトン剤3は前記のような抗ウィルス効果と抗菌、消臭能力を併せ持つものとなる。
2-4: Deodorizing and antibacterial tests The microbial powder 1 that constitutes the microbial phyton agent 3 has antibacterial properties against fungi and deodorizing properties against ammonia, amines, etc. Also, as is generally known, Japanese cypress and hinoki cypress have antibacterial and deodorizing properties, so this microbial phyton agent 3 has the above-mentioned antiviral effect as well as antibacterial and deodorizing properties.

消臭試験:10Lバロンボックスを用意し、室温下で内部に被検体となる臭気を発生させた。このバロンボックス内に微生物フィトン剤3を不織布製の袋に1 g詰めて封をしたものを壁面に触れぬように吊下げて、被検体濃度を観察した。観察にはガステック社の検知管法を用いた。 Deodorization test: A 10L Baron Box was prepared and the odor to be tested was generated inside at room temperature. 1 g of Microbial Phyton Agent 3 was placed in a nonwoven bag, sealed, and hung in the Baron Box so as not to touch the wall, and the concentration of the test substance was observed. The detector tube method from Gastec Corporation was used for the observation.

表5に被検体濃度の変化を示す。被検体のアンモニア、トリメチルアミン、硫化水素の減少が確認できた。 Table 5 shows the changes in analyte concentrations. A decrease in the analytes ammonia, trimethylamine, and hydrogen sulfide was confirmed.

Figure 2024071134000005
Figure 2024071134000005

抗菌試験:大腸菌と黄色ブドウ球菌を塗布した普通寒天培地を2Lの密閉できる箱の内部に配置した。そこに微生物フィトン剤3を接触しないように配置して密閉し、48時間室温で静置し、培地上での生育を観察した。また微生物フィトン剤を配置しない対照も用意した。 Antibacterial test: A normal agar medium coated with Escherichia coli and Staphylococcus aureus was placed inside a 2L sealable box. Microbial Phyton Agent 3 was placed there without contact and the box was sealed, left to stand at room temperature for 48 hours, and growth on the medium was observed. A control was also prepared in which no microbial Phyton Agent was placed.

対照では大腸菌、黄色ブドウ球菌が寒天培地上で大量のコロニーを作ったが、微生フィトン剤3を配置したものではどちらも肉眼でコロニーは確認できなかった。これらの微生物の繁殖を抑制したと考えられる。 In the control, Escherichia coli and Staphylococcus aureus formed large numbers of colonies on the agar medium, but in the area where Microbial Phyton Agent 3 was placed, no colonies could be seen with the naked eye. It is believed that the proliferation of these microorganisms was suppressed.

本発明によれば、微生物と植物という自然界の存在するものを利用した安全性に優れた、抗菌消臭抗ウィルス剤や抗菌消臭抗ウィルスの方法として、さまざまな空間に用いることができる。家庭内であれば、部屋やエアコン、玄関、トイレ等で用いることができる。
According to the present invention, the antibacterial, deodorant, and antiviral agent and method, which utilize microorganisms and plants that exist in nature and have excellent safety, can be used in various spaces. In the home, it can be used in rooms, air conditioners, entrances, toilets, etc.

Claims (5)

芽胞状態の微生物が放出する揮発性物質と植物成分を組み合わせることにより、空間内の真菌類の発育の抑制、ウィルスの不活性化、消臭の能力を併せ持つ抗菌消臭剤。 An antibacterial deodorizer that combines the volatile substances released by spore-state microorganisms with plant ingredients to inhibit fungal growth in the air, inactivate viruses, and eliminate odors. 用いる微生物が受託番号NITE P-02127を有する微生物である請求項1記載の抗菌消臭剤。 The antibacterial deodorant according to claim 1, wherein the microorganism used is a microorganism having the accession number NITE P-02127. 用いる植物成分がヒノキ科、またはユーカリ属の植物の精油を含む請求項1記載の抗菌消臭剤。 The antibacterial deodorant according to claim 1, wherein the plant component used contains essential oils from plants of the Cupressaceae family or Eucalyptus genus. 用いる植物成分がヒノキ及びヒバの精油を含む請求項1記載の抗菌消臭剤。 The antibacterial deodorant according to claim 1, wherein the plant ingredients used include essential oils of cypress and Japanese cypress. 請求項1~4のいずれかに記載の抗菌消臭剤を用いた抗菌方法。



An antibacterial method using the antibacterial deodorant according to any one of claims 1 to 4.



JP2022181923A 2022-11-14 2022-11-14 Antibacterial deodorant comprising microbe and plant component, and antibacterial deodorizing method Pending JP2024071134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022181923A JP2024071134A (en) 2022-11-14 2022-11-14 Antibacterial deodorant comprising microbe and plant component, and antibacterial deodorizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022181923A JP2024071134A (en) 2022-11-14 2022-11-14 Antibacterial deodorant comprising microbe and plant component, and antibacterial deodorizing method

Publications (1)

Publication Number Publication Date
JP2024071134A true JP2024071134A (en) 2024-05-24

Family

ID=91129128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022181923A Pending JP2024071134A (en) 2022-11-14 2022-11-14 Antibacterial deodorant comprising microbe and plant component, and antibacterial deodorizing method

Country Status (1)

Country Link
JP (1) JP2024071134A (en)

Similar Documents

Publication Publication Date Title
US10721907B2 (en) Antimicrobial compositions and methods with novel polymeric binding system
JP2007530642A (en) Disinfecting composition having sterilizing, antifungal and virucidal effects simultaneously, and method for producing and using the composition
JP5046666B2 (en) Antibacterial method and microorganism powder, microorganism-containing liquid agent, microorganism-containing gelling agent
US20120225109A1 (en) Disinfection of a Contaminated Environment
WO2003104561A1 (en) Paper product for sterilizing a surface
KR20060110386A (en) Coating materials for surface finishing of construction
WO2020082912A1 (en) Air freshener, air freshening device and manufacturing method thereof
KR20190012805A (en) FUNCTIONAL PAINT COMPOSITIONS WITH ANTIMICROBIAL AND MOTHPROOfING ACTIVITY
KR100803110B1 (en) Composition for eliminating detrimental gas and absorbing volatile organic compounds
KR20090115503A (en) Adsorptive composition having antimicrobial and deodorant function
Woo et al. Evaluation of the performance of dialdehyde cellulose filters against airborne and waterborne bacteria and viruses
JP2024071134A (en) Antibacterial deodorant comprising microbe and plant component, and antibacterial deodorizing method
CN101569754A (en) High-efficiency deodorizer
KR20110048671A (en) Air cleaning filter comprising protein deactivating agent, and process for producing the same
JP6347430B2 (en) Microorganism having antibacterial ability and deodorizing ability, and antibacterial agent, deodorant, antibacterial method, and deodorizing method using the same
Takahashi et al. Synergetic deodorant effect and antibacterial activity of composite paper containing waste tea leaves
KR20110048672A (en) Air cleaning filter comprising kimchi lactic acid bacteria and anticeptic, and process for producing the same
JP6929504B2 (en) Microorganisms that have antibacterial and deodorant abilities even in cold temperatures, as well as antibacterial agents, deodorants, antibacterial methods, and deodorant methods that use them.
KR20060006709A (en) Nano silver or perfume raw materials contain papering walls adhesives
Astuti et al. Mixed characteristics of activated charcoal ori bamboo and red ginger as air purifier on food cabinets
JP2014234361A (en) Antibacterial-aromatic agent using aromatic distilled water of wood and metal-carrying calcined product
CN1275525C (en) Photocatalytic bactericidal purifying agent and its preparation
KR101467564B1 (en) Deodorizing Material Containing Essential Oil and Filter Using the Same
JP2023151751A (en) Microbes having deodorization ability and antibacterial ability, and deodorization agent, antibacterial agent, deodorization method and antibacterial method using the same
KR20160080179A (en) Sponge filter for air cleaning, and preparation method of the same