JP2024067093A - Film forming equipment - Google Patents

Film forming equipment Download PDF

Info

Publication number
JP2024067093A
JP2024067093A JP2022176925A JP2022176925A JP2024067093A JP 2024067093 A JP2024067093 A JP 2024067093A JP 2022176925 A JP2022176925 A JP 2022176925A JP 2022176925 A JP2022176925 A JP 2022176925A JP 2024067093 A JP2024067093 A JP 2024067093A
Authority
JP
Japan
Prior art keywords
workpiece
insulating
film forming
processing vessel
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022176925A
Other languages
Japanese (ja)
Inventor
一平 田中
悠里 吉本
健太郎 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
University of Hyogo
Original Assignee
Brother Industries Ltd
University of Hyogo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd, University of Hyogo filed Critical Brother Industries Ltd
Priority to JP2022176925A priority Critical patent/JP2024067093A/en
Publication of JP2024067093A publication Critical patent/JP2024067093A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】被加工材料の処理表面に対する成膜処理を従来よりも高速に行い、且つ、従来よりも広範囲に均一で高品質な皮膜を形成できる成膜装置を提供すること。【解決手段】成膜装置1は処理容器2、ガス供給部5、導入部材22、マイクロ波供給部9、電圧印加部20、接続部材、シース拡大電極30、絶縁部材24、及び漏洩抑制部材4を備える。シース拡大電極30は、導入部材22の周囲に配置される。電圧印加部20は被加工材料8の処理表面10に沿うシース層を拡大させる正のバイアス電圧をシース拡大電極30へ印加する。絶縁部材24は、シース拡大電極30と処理容器2との間に配置され、シース拡大電極30と処理容器2とを電気的に絶縁する。漏洩抑制部材4は被加工材料8とは電気的に絶縁した位置に配置され、絶縁部材24と当接する当接面と、当接面から絶縁部材24から離れる側に延びる絶縁部を有する。【選択図】図1[Problem] To provide a film forming apparatus capable of performing a film forming process on the processing surface of a workpiece material at a higher speed than conventionally, and capable of forming a uniform, high-quality coating over a wider area than conventionally. [Solution] The film forming apparatus 1 comprises a processing vessel 2, a gas supply unit 5, an introduction member 22, a microwave supply unit 9, a voltage application unit 20, a connection member, a sheath expansion electrode 30, an insulating member 24, and a leakage suppression member 4. The sheath expansion electrode 30 is disposed around the introduction member 22. The voltage application unit 20 applies a positive bias voltage to the sheath expansion electrode 30, which expands a sheath layer along the processing surface 10 of the workpiece material 8. The insulating member 24 is disposed between the sheath expansion electrode 30 and the processing vessel 2, and electrically insulates the sheath expansion electrode 30 from the processing vessel 2. The leakage suppression member 4 is disposed in a position electrically insulated from the workpiece material 8, and has an abutting surface that abuts against the insulating member 24, and an insulating portion that extends from the abutting surface to a side away from the insulating member 24. [Selected Figure] FIG. 1

Description

本発明は、MVP法(Microwave sheath-Voltage combination Plasma法、高密度励起プラズマ法)を用い、被加工材料の処理表面に皮膜を形成する成膜装置に関する。 The present invention relates to a film forming device that uses the MVP method (Microwave sheath-voltage combination plasma method, a high-density excited plasma method) to form a film on the processing surface of a workpiece.

鋼材等の導電性を有する被加工材料の処理表面に膜を形成する装置が知られている。例えば特許文献1に記載の成膜装置は、マイクロ波供給部、負電圧印加部、負電圧印加端子部材、及び補助電極を備える。マイクロ波供給部は、導電性を有する被加工材料の処理表面に沿ってプラズマを生成させる。負電圧印加部は、被加工材料の処理表面に沿うシース層を拡大させる負のバイアス電圧を被加工材料に印加する。マイクロ波供給口は、マイクロ波供給部から供給されるマイクロ波を拡大されたシース層へ伝搬させる。負電圧印加端子部材は、マイクロ波供給口に対して突出して配置された被加工材料に、負電圧印加部によって印加される負のバイアス電圧を印加させる。補助電極は、マイクロ波供給口側と反対側に形成されるシース層の厚みを拡大させる。補助電極は、GNDに接続され、又は正電圧印加部から供給される正の電圧が印加され、且つ突出して配置された被加工材料の外側の周囲に配置される。成膜装置は、マイクロ波供給口側とは反対側のシース層の厚みを拡大させてプラズマの密度の減衰を低減し、成膜速度の低下を低減する。 There is known an apparatus for forming a film on the processing surface of a conductive workpiece material such as steel. For example, the film forming apparatus described in Patent Document 1 includes a microwave supply unit, a negative voltage application unit, a negative voltage application terminal member, and an auxiliary electrode. The microwave supply unit generates plasma along the processing surface of the conductive workpiece material. The negative voltage application unit applies a negative bias voltage to the workpiece material, which expands the sheath layer along the processing surface of the workpiece material. The microwave supply port propagates the microwaves supplied from the microwave supply unit to the expanded sheath layer. The negative voltage application terminal member applies the negative bias voltage applied by the negative voltage application unit to the workpiece material arranged to protrude from the microwave supply port. The auxiliary electrode expands the thickness of the sheath layer formed on the side opposite to the microwave supply port. The auxiliary electrode is connected to GND or is applied with a positive voltage supplied from the positive voltage application unit, and is arranged around the outside of the workpiece material arranged to protrude. The deposition device increases the thickness of the sheath layer on the side opposite the microwave supply port to reduce attenuation of plasma density and reduce the decrease in deposition rate.

特開2016-69685号公報JP 2016-69685 A

従来の成膜装置は、被加工材料に負のバイアス電圧が印加されているため、ダイヤモンド等の導電性が比較的低い材料の皮膜を形成すると、成膜装置内に異常放電(所謂アーキング現象)が発生し、良好な品質の皮膜を形成できない。 Conventional film-forming equipment applies a negative bias voltage to the material being processed, so when forming a film of a material with relatively low conductivity, such as diamond, abnormal discharge (the so-called arcing phenomenon) occurs within the film-forming equipment, making it impossible to form a film of good quality.

本発明の目的は、被加工材料の処理表面に対する成膜処理を従来よりも高速に行い、且つ、従来よりも広範囲に均一で高品質な皮膜を形成できる成膜装置を提供することである。 The object of the present invention is to provide a film forming apparatus that can perform film forming processing on the processing surface of a workpiece material faster than conventional methods and can form a uniform, high-quality coating over a wider area than conventional methods.

本発明の請求項1の成膜装置は導電性を有する被加工材料を収容する処理容器と、前記処理容器にガスを供給するガス供給部と、前記被加工材料の周囲に設け、且つマイクロ波を導入する導入部材と、前記被加工材料の処理表面に沿ってプラズマを発生させるための前記マイクロ波を前記導入部材から前記被加工材料へ供給するマイクロ波供給部と、前記導入部材の周囲に配置されたシース拡大電極と、前記被加工材料の前記処理表面に沿うシース層を拡大させる正のバイアス電圧を前記シース拡大電極へ印加する電圧印加部と、前記被加工材料を前記電圧印加部の接地電位と同電位に電気的に接続する接地部材と、前記シース拡大電極と前記処理容器との間に配置され、前記シース拡大電極と前記処理容器とを電気的に絶縁する絶縁部材と、前記被加工材料とは電気的に絶縁した位置に配置され、前記絶縁部材と当接する当接面と、前記当接面から前記絶縁部材から離れる側に延びる絶縁部とを有する漏洩抑制部材とを備える。成膜装置は、マイクロ波供給部がマイクロ波を供給し、電圧印加部によりバイアス電圧を印加することで、被加工材料表面にマイクロ波の伝搬をさせ、被加工材料近傍に高密度プラズマの生成する、公知のMVP法(Microwave sheath-Voltage combination Plasma法、高密度励起プラズマ法)を用いた成膜処理を実施できる。成膜装置は、接地部材により被加工材料の電位を接地電位とすることで、アーキング現象の発生を抑制し、高品質な皮膜を形成できる。成膜装置は、漏洩抑制部材を備えるので、絶縁部材の端面から処理容器内にマイクロ波が漏洩することを低減できる。故に成膜装置は、マイクロ波の漏洩に起因して、意図しない部分でプラズマ放電が生じたり、絶縁部材が損傷することでシース拡大電極と処理容器との絶縁を保てなくなる事態が生じたりすることを抑制できる。成膜装置は、シース拡大電極に正のバイアス電圧を印加することで、被加工材料の処理表面に形成されるシース層の厚みを拡大させ、処理表面に均一な皮膜を形成できる。 The film forming apparatus of claim 1 of the present invention includes a processing vessel that contains a conductive workpiece material, a gas supply unit that supplies gas to the processing vessel, an introduction member that is provided around the workpiece material and introduces microwaves, a microwave supply unit that supplies the microwaves from the introduction member to the workpiece material to generate plasma along the processing surface of the workpiece material, a sheath expansion electrode arranged around the introduction member, a voltage application unit that applies a positive bias voltage to the sheath expansion electrode to expand the sheath layer along the processing surface of the workpiece material, a grounding member that electrically connects the workpiece material to the same potential as the ground potential of the voltage application unit, an insulating member that is arranged between the sheath expansion electrode and the processing vessel and electrically insulates the sheath expansion electrode from the processing vessel, and a leakage suppression member that is arranged in a position electrically insulated from the workpiece material and has an abutment surface that abuts the insulating member and an insulating portion that extends from the abutment surface to a side away from the insulating member. The film forming apparatus can perform a film forming process using a known MVP method (Microwave sheath-Voltage combination Plasma method, high density excitation plasma method), in which a microwave supply unit supplies microwaves and a voltage application unit applies a bias voltage to propagate microwaves to the surface of a workpiece, generating high density plasma in the vicinity of the workpiece. The film forming apparatus can suppress the occurrence of arcing and form a high quality film by setting the potential of the workpiece to ground potential using a grounding member. Since the film forming apparatus is provided with a leakage suppression member, it can reduce the leakage of microwaves from the end face of the insulating member into the processing vessel. Therefore, the film forming apparatus can suppress the occurrence of plasma discharge in unintended parts due to microwave leakage, or the occurrence of a situation in which the insulation between the sheath expansion electrode and the processing vessel cannot be maintained due to damage to the insulating member. By applying a positive bias voltage to the sheath expansion electrode, the film-forming device can expand the thickness of the sheath layer formed on the processing surface of the workpiece, forming a uniform coating on the processing surface.

本発明の請求項2の成膜装置の前記絶縁部は、前記当接面において、前記被加工材料を囲む環状に形成されている。請求項2の成膜装置は、絶縁部が加工材料を囲む環状に形成されていない場合に比べ、被加工材料周りの周方向に亘って、絶縁部材の端面から処理容器内にマイクロ波が漏洩することを低減できる。 The insulating portion of the film forming apparatus of claim 2 of the present invention is formed in a ring shape surrounding the workpiece material at the contact surface. The film forming apparatus of claim 2 can reduce leakage of microwaves from the end face of the insulating member into the processing vessel in the circumferential direction around the workpiece material, compared to a case in which the insulating portion is not formed in a ring shape surrounding the workpiece material.

本発明の請求項3の成膜装置の前記絶縁部の前記当接面に垂直な方向における第一長さは、前記マイクロ波の波長又は前記マイクロ波の波長の偶数倍の長さの1/4である第二長さの±1mmの範囲の長さである。請求項3の成膜装置では、絶縁部材から絶縁部に伝搬されて後に跳ね返るマイクロ波の位相は、絶縁部材中を伝搬するマイクロ波の位相の逆付近となる。故に成膜装置は、絶縁部材中を伝搬するマイクロ波を、絶縁部材から絶縁部に伝搬されて後に跳ね返るマイクロ波により打ち消すことで、絶縁部材の端面から処理容器内にマイクロ波が漏洩することを低減できる。 The first length in the direction perpendicular to the contact surface of the insulating part of the film forming apparatus of claim 3 of the present invention is a length within the range of ±1 mm of the second length, which is 1/4 of the wavelength of the microwave or an even multiple of the wavelength of the microwave. In the film forming apparatus of claim 3, the phase of the microwave propagated from the insulating member to the insulating part and then bouncing back is approximately the opposite of the phase of the microwave propagating through the insulating member. Therefore, the film forming apparatus can reduce the leakage of microwaves from the end face of the insulating member into the processing vessel by canceling out the microwaves propagating through the insulating member with the microwaves propagating from the insulating member to the insulating part and then bouncing back.

本発明の請求項4の成膜装置の前記漏洩抑制部材の前記当接面の外径の1/2が30mm以上、且つ前記処理容器から離隔して配置される長さである。請求項4の成膜装置は、漏洩抑制部材の当接面の外径の1/2が30mm未満である場合に比べ、絶縁部材の端面から処理容器内にマイクロ波が漏洩することを低減できる。 In the film forming apparatus of claim 4 of the present invention, 1/2 of the outer diameter of the contact surface of the leakage suppression member is 30 mm or more, and the length is such that the leakage suppression member is disposed at a distance from the processing vessel. The film forming apparatus of claim 4 can reduce the leakage of microwaves from the end face of the insulating member into the processing vessel, compared to when 1/2 of the outer diameter of the contact surface of the leakage suppression member is less than 30 mm.

本発明の請求項5の成膜装置の前記絶縁部は、前記当接面から前記絶縁部材から離れる側に延びる凹部であり、前記漏洩抑制部材には、前記絶縁部と、前記処理容器内の空間とを連通する貫通孔が形成されている。請求項5の成膜装置は、成膜処理を行う時、大気等の意図しないガスが絶縁部に残ることを抑制し、処理容器内の排気時間を短縮できる。 The insulating portion of the film forming apparatus of claim 5 of the present invention is a recess extending from the contact surface away from the insulating member, and the leakage suppression member has a through hole that communicates the insulating portion with the space inside the processing vessel. The film forming apparatus of claim 5 can suppress unintended gas such as air from remaining in the insulating portion when performing film forming processing, and can shorten the evacuation time inside the processing vessel.

本発明の請求項6の成膜装置の前記漏洩抑制部材の前記当接面には、外径が互いに異なる複数の前記絶縁部が形成されている。請求項6の成膜装置は、漏洩抑制部材の当接面に被加工材料の周りを囲む一重の絶縁部が形成されている場合に比べ、絶縁部材の端面から処理容器内にマイクロ波が漏洩することを抑制できる。 The contact surface of the leakage suppression member of the film forming apparatus of claim 6 of the present invention is formed with a plurality of insulating portions having different outer diameters. The film forming apparatus of claim 6 can suppress leakage of microwaves from the end face of the insulating member into the processing vessel, compared to a case in which a single insulating portion surrounding the workpiece material is formed on the contact surface of the leakage suppression member.

本発明の請求項7の成膜装置の前記絶縁部材の外径は、前記漏洩抑制部材の前記当接面の外径よりも大きい。請求項7の成膜装置は、絶縁部材の外径が漏洩抑制部材の当接面の外径以下である場合に比べ、絶縁部材の端面から処理容器内にマイクロ波が漏洩することを抑制できる。 The outer diameter of the insulating member of the film forming apparatus of claim 7 of the present invention is larger than the outer diameter of the contact surface of the leakage suppression member. The film forming apparatus of claim 7 can suppress leakage of microwaves from the end face of the insulating member into the processing vessel, compared to when the outer diameter of the insulating member is equal to or smaller than the outer diameter of the contact surface of the leakage suppression member.

成膜装置1の概略構成を示す図である。1 is a diagram showing a schematic configuration of a film forming apparatus 1. FIG. 導入部材22、被加工材料8、シース拡大電極30の配置を示す図である。1 is a diagram showing the arrangement of an introduction member 22, a workpiece 8, and a sheath expansion electrode 30. FIG. 漏洩抑制部材4の斜視図である。FIG. 2 is a perspective view of a leakage suppression member 4. 漏洩抑制部材4の斜視図である。FIG. 2 is a perspective view of the leakage suppression member 4. 漏洩抑制部材4の断面図である。3 is a cross-sectional view of the leakage suppression member 4. FIG. 評価試験条件を示す表である。1 is a table showing evaluation test conditions. 評価試験条件と結果とを示す表である。1 is a table showing evaluation test conditions and results. 成膜装置1における電界強度(V/m)と絶縁部42の第一長さD2(mm)との関係を示すシミュレーション結果を示すグラフである。11 is a graph showing a simulation result illustrating the relationship between the electric field strength (V/m) and the first length D2 (mm) of the insulating portion 42 in the film forming apparatus 1. 成膜装置1における電界強度(V/m)と絶縁部42の幅D1(mm)との関係を示すシミュレーション結果を示すグラフである。11 is a graph showing a simulation result illustrating the relationship between the electric field strength (V/m) and the width D1 (mm) of the insulating portion 42 in the film forming apparatus 1. 成膜装置1における電界強度(V/m)と漏洩抑制部材4の当接面41の外径D4の1/2(mm)との関係を示すシミュレーション結果を示すグラフである。13 is a graph showing a simulation result illustrating the relationship between the electric field strength (V/m) in the film forming apparatus 1 and ½ (mm) of the outer diameter D4 of the contact surface 41 of the leakage suppression member 4. 変形例の漏洩抑制部材54の斜視図である。13 is a perspective view of a leakage suppression member 54 according to a modified example. FIG. 変形例の導入部材22、被加工材料8、シース拡大電極130の配置を示す図である。13 is a diagram showing the arrangement of an introduction member 22, a workpiece 8, and a sheath expansion electrode 130 in a modified example. FIG.

図面を参照し本発明の一実施形態の成膜装置1を説明する。以下説明は、図中に矢印で示す左右、前後、及び上下を使用する。成膜装置1は、特開2004-47207号公報に開示されたMVP法を用い、被加工材料8の処理表面10に皮膜を形成可能な装置である。本実施形態の被加工材料8は、棒状であり、例えば、穴加工用ドリルである。被加工材料8の材質は、皮膜が形成される領域である処理表面10が導電性を有していれば、特に限定されるものではなく、例えば、超硬K10である。超硬K10は、JIS B 4053:2013に記載される分類に基づく超硬合金である。被加工材料8は、セラミクス、又は樹脂に導電性の材料がコーティングされたものでもよいし、表面にスパッタリング法等により金属膜が成膜されたものでもよい。処理表面10は、被加工材料8の表面のうちの皮膜を形成する対象とする領域である。処理表面10は、被加工材料8の用途に応じて設定される。例えば、被加工材料8がドリルであれば、処理表面10にはドリルの溝部が設定される。例えば、被加工材料8がエンドミルであれば、処理表面10にはエンドミルの刃部が設定される。 The film forming apparatus 1 according to one embodiment of the present invention will be described with reference to the drawings. In the following description, the left and right, front and rear, and up and down directions shown by arrows in the drawings will be used. The film forming apparatus 1 is an apparatus capable of forming a film on the processing surface 10 of the workpiece material 8 using the MVP method disclosed in JP 2004-47207 A. The workpiece material 8 in this embodiment is rod-shaped, for example, a drill for drilling holes. The material of the workpiece material 8 is not particularly limited as long as the processing surface 10, which is the area where the film is formed, is conductive, and is, for example, superhard K10. Superhard K10 is a superhard alloy based on the classification described in JIS B 4053:2013. The workpiece material 8 may be ceramics or resin coated with a conductive material, or a metal film may be formed on the surface by a sputtering method or the like. The processing surface 10 is the area of the surface of the workpiece material 8 on which the film is to be formed. The processing surface 10 is set according to the application of the workpiece material 8. For example, if the workpiece 8 is a drill, the grooves of the drill are set on the treatment surface 10. For example, if the workpiece 8 is an end mill, the cutting edge of the end mill is set on the treatment surface 10.

図1及び図2の如く、成膜装置1は、処理容器2、導入部材22、カバー23、シース拡大電極30、絶縁部材24、漏洩抑制部材4、DC電源15、正電圧パルス発生部16、真空ポンプ3、圧力調整バルブ7、リーク弁33、ガス供給部5、放射温度計29、制御部6、及びマイクロ波供給部9を備える。 As shown in Figures 1 and 2, the film forming apparatus 1 includes a processing vessel 2, an introduction member 22, a cover 23, a sheath expansion electrode 30, an insulating member 24, a leakage suppression member 4, a DC power supply 15, a positive voltage pulse generating unit 16, a vacuum pump 3, a pressure adjustment valve 7, a leak valve 33, a gas supply unit 5, a radiation thermometer 29, a control unit 6, and a microwave supply unit 9.

処理容器2は、ステンレス等の金属製であり、気密構造の容器である。処理容器2は、接地電位(GND)に電気的に接続される。処理容器2は、導入部材22、カバー23、シース拡大電極30、絶縁部材24、漏洩抑制部材4を収容する。導入部材22は、処理容器2の底面の中央部に設けられる。 The processing vessel 2 is made of a metal such as stainless steel and has an airtight structure. The processing vessel 2 is electrically connected to the ground potential (GND). The processing vessel 2 houses an introduction member 22, a cover 23, a sheath expansion electrode 30, an insulating member 24, and a leakage suppression member 4. The introduction member 22 is provided in the center of the bottom surface of the processing vessel 2.

導入部材22は、石英等のマイクロ波を透過する誘電体等の部材で形成され、マイクロ波供給部9が発振したマイクロ波を処理容器2内に供給する。導入部材22は、処理容器2内へ向けて突出する突出部221と、突出部221を支持する基部222とを有する。突出部221は、突出部221の上面である導入面224から下方に凹む凹部223が形成されている。凹部223は、マイクロ波の導入方向J、即ち上方に沿う向きに長い。凹部223の外周は、被加工材料8の外周よりもやや大きい。被加工材料8の下端部が凹部223に挿入されると、被加工材料8の下端部は、突出部221によって周囲が覆われる。導入方向Jに沿った方向、即ち上下方向おける被加工材料8の延設範囲は、突出部221の延設範囲と一部が重なる。これにより被加工材料8は、導入部材22によって支持される。被加工材料8は、被加工材料8の長手方向が、マイクロ波の導入方向Jと一致する姿勢で処理容器2の内側に配置される。成膜装置1は、凹部223内に被加工材料8を支持する治具を設けてもよい。被加工材料8の上端には、電極14が接続される。被加工材料8の上端は、マイクロ波の導入方向Jの端部であり、被加工材料8の内の導入部材22から最も離れた部分である。電極14は接地電位(GND)と電気的に接続される。即ち、被加工材料8の電位は、処理容器2と同電位の接地電位である。電極14は、被加工材料8の上端よりも下方で被加工材料8と接続されてもよい。 The introduction member 22 is formed of a material such as a dielectric material that transmits microwaves, such as quartz, and supplies the microwaves generated by the microwave supply unit 9 into the processing vessel 2. The introduction member 22 has a protrusion 221 that protrudes into the processing vessel 2 and a base 222 that supports the protrusion 221. The protrusion 221 has a recess 223 that is recessed downward from the introduction surface 224, which is the upper surface of the protrusion 221. The recess 223 is long in the introduction direction J of the microwave, that is, in the upward direction. The outer periphery of the recess 223 is slightly larger than the outer periphery of the workpiece 8. When the lower end of the workpiece 8 is inserted into the recess 223, the lower end of the workpiece 8 is covered by the protrusion 221. The extension range of the workpiece 8 in the direction along the introduction direction J, that is, in the vertical direction, partially overlaps with the extension range of the protrusion 221. As a result, the workpiece 8 is supported by the introduction member 22. The workpiece 8 is placed inside the processing vessel 2 in such a position that the longitudinal direction of the workpiece 8 coincides with the microwave introduction direction J. The film forming apparatus 1 may be provided with a jig for supporting the workpiece 8 in the recess 223. The electrode 14 is connected to the upper end of the workpiece 8. The upper end of the workpiece 8 is the end in the microwave introduction direction J, and is the part of the workpiece 8 that is the furthest from the introduction member 22. The electrode 14 is electrically connected to a ground potential (GND). That is, the potential of the workpiece 8 is the same ground potential as the processing vessel 2. The electrode 14 may be connected to the workpiece 8 below the upper end of the workpiece 8.

カバー23は、金属製であり、処理容器2と電気的に接続されている。カバー23は、処理容器2と一体であって処理容器2がカバー23の役割を果たしていてもよい。カバー23は、マイクロ波の導入方向J以外の方向において基部222の外周表面を覆うことで、マイクロ波が被加工材料8の径方向に伝播することを防ぐ。被加工材料8の径方向とは、被加工材料8の軸線Kから離れる方向に放射状に延びる方向である。軸線Kは上下方向に延びる。カバー23は、導入部材22を透過したマイクロ波パルスの伝播方向を上方向に限定する。 The cover 23 is made of metal and is electrically connected to the processing vessel 2. The cover 23 may be integral with the processing vessel 2, with the processing vessel 2 fulfilling the role of the cover 23. The cover 23 covers the outer peripheral surface of the base 222 in directions other than the microwave introduction direction J, thereby preventing the microwaves from propagating in the radial direction of the workpiece 8. The radial direction of the workpiece 8 is the direction extending radially away from the axis K of the workpiece 8. The axis K extends in the vertical direction. The cover 23 limits the propagation direction of the microwave pulse that has passed through the introduction member 22 to the upward direction.

シース拡大電極30は、導入部材22の突出部221の周囲を囲って、導入部材22の周囲に配置される筒状の電極である。シース拡大電極30は、金属材料から形成され、ガスは透過しない。シース拡大電極30は、正電圧パルス発生部16と電気的に接続し、正のバイアス電圧パルスが印加される。シース拡大電極30の上下方向の長さは、シース拡大電極30が処理容器2内に収まる範囲であればよく、シース拡大電極30の上下方向の長さは5(mm)以上が好ましい。シース拡大電極30の上下方向の長さが5(mm)未満の場合、プラズマがシース拡大電極30を乗り越えて、導入面224よりも下方で皮膜が形成される可能性がある。シース拡大電極30の上端31の位置が、処理表面10の導入部材22側における下端と同じ位置になることを考慮して、シース拡大電極30の上下方向の長さD6が設定される。本実施形態のシース拡大電極30の上端31は、導入部材22の突出部221の導入面224よりも上下方向で上側に配置される。これにより導入面224はシース拡大電極30と被加工材料8に囲まれるため原料ガスが到達しにくくなり、成膜工程における導入面224の汚れ付着を防止できる。シース拡大電極30の下端部は、基部222を覆うカバー23よりも上に位置する。 The sheath expansion electrode 30 is a cylindrical electrode that surrounds the protrusion 221 of the introduction member 22 and is arranged around the introduction member 22. The sheath expansion electrode 30 is made of a metal material and is gas impermeable. The sheath expansion electrode 30 is electrically connected to the positive voltage pulse generator 16, and a positive bias voltage pulse is applied to the sheath expansion electrode 30. The vertical length of the sheath expansion electrode 30 may be within a range in which the sheath expansion electrode 30 fits within the processing vessel 2, and the vertical length of the sheath expansion electrode 30 is preferably 5 (mm) or more. If the vertical length of the sheath expansion electrode 30 is less than 5 (mm), the plasma may overcome the sheath expansion electrode 30 and a film may be formed below the introduction surface 224. The vertical length D6 of the sheath expansion electrode 30 is set taking into consideration that the position of the upper end 31 of the sheath expansion electrode 30 is the same as the lower end of the processing surface 10 on the introduction member 22 side. In this embodiment, the upper end 31 of the sheath expansion electrode 30 is positioned above the introduction surface 224 of the protrusion 221 of the introduction member 22 in the vertical direction. As a result, the introduction surface 224 is surrounded by the sheath expansion electrode 30 and the material to be processed 8, making it difficult for the raw material gas to reach it, and preventing the introduction surface 224 from becoming dirty during the film formation process. The lower end of the sheath expansion electrode 30 is located above the cover 23 that covers the base 222.

絶縁部材24は、カバー23とシース拡大電極30の下端部との間に設けられる。絶縁部材24は、突出部221の周囲を囲い、且つマイクロ波パルスの導入方向Jに厚みを有する円板状である。絶縁部材24は、シース拡大電極30とカバー23及び処理容器2とを電気的に絶縁する。絶縁部材24の厚みは、マイクロ波パルスの波長の1/4以下であり、電力の印加によって絶縁破壊が起きない厚さであり、実施例では厚さ0.125(mm)である。この構成により、導入部材22を透過するマイクロ波パルスがカバー23とシース拡大電極30との間にある絶縁部材24を透過して、導入方向Jとは異なる方向に処理容器2内へ漏れ出すことが抑制される。なお、実施例において絶縁部材24はポリイミドを用いたが、これに限るものではない。 The insulating member 24 is provided between the cover 23 and the lower end of the sheath expansion electrode 30. The insulating member 24 is a disk-shaped member that surrounds the periphery of the protrusion 221 and has a thickness in the introduction direction J of the microwave pulse. The insulating member 24 electrically insulates the sheath expansion electrode 30 from the cover 23 and the processing vessel 2. The thickness of the insulating member 24 is 1/4 or less of the wavelength of the microwave pulse, and is a thickness that does not cause dielectric breakdown due to the application of power, and is 0.125 (mm) in the embodiment. With this configuration, the microwave pulse that penetrates the introduction member 22 is prevented from penetrating the insulating member 24 between the cover 23 and the sheath expansion electrode 30 and leaking into the processing vessel 2 in a direction different from the introduction direction J. Note that, although polyimide is used for the insulating member 24 in the embodiment, the present invention is not limited to this.

漏洩抑制部材4は、被加工材料8とは電気的に絶縁された位置に配置される。漏洩抑制部材4は、上下方向に延び且つ中央部に空洞47を有する筒状である。漏洩抑制部材4は、空洞47に被加工材料8及びシース拡大電極30を配置する。漏洩抑制部材4とシース拡大電極30は電気的に同電位となるよう配置されていてもよい。被加工材料8の下端部の外周は、導入部材22及び漏洩抑制部材4によって囲まれる。漏洩抑制部材4は、少なくとも他の部材に対し露出する表面が、ステンレス等の導電性を有する材料で形成される。本実施形態の漏洩抑制部材4は、全体がステンレスで形成される。漏洩抑制部材4は、内側鍔部45、外側鍔部46、絶縁部材24と当接する当接面41と、内周面44とを有する。内側鍔部45は、漏洩抑制部材4の下端部において、軸線K側に向かって突出する。外側鍔部46は、漏洩抑制部材4の下端部において、軸線Kから離れる側、即ち径方向に突出する。本実施形態の当接面41は、漏洩抑制部材4の下面である。当接面41には、絶縁部材24から離れる側、即ち上側に凹んだ凹部である絶縁部42が形成される。絶縁部42は当接面41において、被加工材料8を囲む環状に形成されており、絶縁部42の表面は導電性を有する。 The leakage suppression member 4 is arranged at a position electrically insulated from the workpiece material 8. The leakage suppression member 4 is cylindrical, extending in the vertical direction and having a cavity 47 in the center. The leakage suppression member 4 arranges the workpiece material 8 and the sheath expansion electrode 30 in the cavity 47. The leakage suppression member 4 and the sheath expansion electrode 30 may be arranged so as to be electrically at the same potential. The outer periphery of the lower end of the workpiece material 8 is surrounded by the introduction member 22 and the leakage suppression member 4. At least the surface of the leakage suppression member 4 that is exposed to other members is formed of a conductive material such as stainless steel. The leakage suppression member 4 of this embodiment is formed entirely of stainless steel. The leakage suppression member 4 has an inner flange portion 45, an outer flange portion 46, an abutment surface 41 that abuts against the insulating member 24, and an inner peripheral surface 44. The inner flange portion 45 protrudes toward the axis K side at the lower end of the leakage suppression member 4. The outer flange 46 protrudes from the lower end of the leakage suppression member 4 away from the axis K, i.e., in the radial direction. In this embodiment, the abutment surface 41 is the lower surface of the leakage suppression member 4. The abutment surface 41 is formed with an insulating portion 42 that is a recessed portion recessed toward the side away from the insulating member 24, i.e., toward the upper side. The insulating portion 42 is formed in a ring shape on the abutment surface 41 that surrounds the workpiece material 8, and the surface of the insulating portion 42 is conductive.

当接面41に垂直な方向における絶縁部42の第一長さD2は、第二長さの±1(mm)の範囲の長さである。第一長さD2は、絶縁部42の上下方向の長さである。第二長さは、導入部材22から処理容器2内に導入されるマイクロ波の波長、又はマイクロ波の波長の偶数倍の長さの1/4である。例えば、マイクロ波の周波数が2.45(GHz)である場合、マイクロ波の波長は約122(mm)である。この場合、第一長さD2は、例えば、マイクロ波の波長の1/4である30.5(mm)の±1(mm)の範囲、即ち、29.5(mm)から31.5(mm)の範囲であることが好ましい。この場合絶縁部42は、マイクロ波が絶縁部材24から処理容器2の内部の空間に漏洩することを防止するチョーク構造として機能する。 The first length D2 of the insulating part 42 in the direction perpendicular to the contact surface 41 is a length within the range of ±1 (mm) of the second length. The first length D2 is the length of the insulating part 42 in the vertical direction. The second length is 1/4 of the wavelength of the microwave introduced from the introduction member 22 into the processing vessel 2, or a length of an even multiple of the microwave wavelength. For example, when the microwave frequency is 2.45 (GHz), the microwave wavelength is about 122 (mm). In this case, the first length D2 is preferably within the range of ±1 (mm) of 30.5 (mm), which is 1/4 of the microwave wavelength, that is, in the range of 29.5 (mm) to 31.5 (mm). In this case, the insulating part 42 functions as a choke structure that prevents the microwave from leaking from the insulating member 24 into the space inside the processing vessel 2.

当接面41において、被加工材料8の径方向における、絶縁部42の幅D1は、マイクロ波の波長の7/60以下の範囲内にあることが好ましい。例えば、マイクロ波の周波数が2.45(GHz)である場合、絶縁部42の幅D1は、14(mm)以下であることが好ましい。 At the contact surface 41, the width D1 of the insulating portion 42 in the radial direction of the workpiece material 8 is preferably within a range of 7/60 or less of the microwave wavelength. For example, when the microwave frequency is 2.45 (GHz), the width D1 of the insulating portion 42 is preferably 14 (mm) or less.

絶縁部材24の外径D5は、漏洩抑制部材4の当接面41の外径D4よりも大きい。当接面41の全面は絶縁部材24と当接する。当接面41の外側輪郭は、平面視円状である。当接面41の外径D4は、マイクロ波の波長の1/2以上であることが好ましい。例えば、マイクロ波の周波数が2.45(GHz)である場合、当接面41の外径D4の1/2、即ち当接面41の外側輪郭の半径は、30(mm)以上、且つ、処理容器2から離隔して配置される長さであることが好ましい。当接面41の平面形状が円形以外の場合、当接面41の外周において最も被加工材料8に近い位置と被加工材料8の中心との距離が30(mm)以上であることが好ましい。平面視円状の当接面41の外側輪郭の中心が、被加工材料8の中心と異なる場合も、当接面41の外周において最も被加工材料8に近い位置と被加工材料8の中心との距離が30(mm)以上であることが好ましい。 The outer diameter D5 of the insulating member 24 is larger than the outer diameter D4 of the contact surface 41 of the leakage suppression member 4. The entire surface of the contact surface 41 contacts the insulating member 24. The outer contour of the contact surface 41 is circular in plan view. The outer diameter D4 of the contact surface 41 is preferably 1/2 or more of the wavelength of the microwave. For example, when the microwave frequency is 2.45 (GHz), it is preferable that 1/2 of the outer diameter D4 of the contact surface 41, i.e., the radius of the outer contour of the contact surface 41, is 30 (mm) or more and is a length that is spaced apart from the processing vessel 2. When the planar shape of the contact surface 41 is other than circular, it is preferable that the distance between the position closest to the workpiece material 8 on the outer periphery of the contact surface 41 and the center of the workpiece material 8 is 30 (mm) or more. Even if the center of the outer contour of the contact surface 41, which is circular in plan view, differs from the center of the workpiece material 8, it is preferable that the distance between the position on the periphery of the contact surface 41 closest to the workpiece material 8 and the center of the workpiece material 8 is 30 mm or more.

内周面44は、漏洩抑制部材4の内側鍔部45の内周面である。内周面44は、シース拡大電極30と当接する。漏洩抑制部材4には、絶縁部42と、処理容器2内の空間とを連通する貫通孔43が形成されている。貫通孔43は、漏洩抑制部材4の上面に、平面視円状に形成される。貫通孔43は、絶縁部42の上端から上方に延びる。 The inner peripheral surface 44 is the inner peripheral surface of the inner flange portion 45 of the leakage suppression member 4. The inner peripheral surface 44 abuts against the sheath expansion electrode 30. The leakage suppression member 4 has a through hole 43 that communicates between the insulating portion 42 and the space inside the processing vessel 2. The through hole 43 is formed in a circular shape in a plan view on the upper surface of the leakage suppression member 4. The through hole 43 extends upward from the upper end of the insulating portion 42.

電圧印加部20は、被加工材料8の処理表面10に沿うシース層を拡大させる正のバイアス電圧をシース拡大電極30へ印加する。シース拡大電極30と漏洩抑制部材4が電気的に同電位となるよう配置されている場合は、漏洩抑制部材4へ正のバイアス電圧を印加してもよい。電圧印加部20はDC電源15及び正電圧パルス発生部16を備える。DC電源15は、制御部6の指示に従い、正電圧パルス発生部16に正のバイアス電圧を供給する。DC電源15の負極は、接地電位(GND)に電気的に接続されている。正電圧パルス発生部16は、DC電源15から供給された正のバイアス電圧をパルス化する。このパルス化の処理は、正電圧パルス発生部16が制御部6の指示に従い、正のバイアス電圧パルスの大きさ、周期、及びデューティ比を制御する処理である。正正のバイアス電圧は、例えば、+300~+390(V)の範囲のバイアス電圧である。成膜装置1の電圧印加部20は、正電圧パルス発生部16を備えず、DC電源15から、連続する正のバイアス電圧をシース拡大電極30に印加してもよい。真空ポンプ3は、圧力調整バルブ7を介して処理容器2の内部を真空排気可能なポンプである。 The voltage application unit 20 applies a positive bias voltage to the sheath expansion electrode 30 to expand the sheath layer along the processing surface 10 of the workpiece 8. If the sheath expansion electrode 30 and the leakage suppression member 4 are arranged to have the same electrical potential, a positive bias voltage may be applied to the leakage suppression member 4. The voltage application unit 20 includes a DC power supply 15 and a positive voltage pulse generation unit 16. The DC power supply 15 supplies a positive bias voltage to the positive voltage pulse generation unit 16 in accordance with instructions from the control unit 6. The negative electrode of the DC power supply 15 is electrically connected to the ground potential (GND). The positive voltage pulse generation unit 16 pulses the positive bias voltage supplied from the DC power supply 15. This pulsing process is a process in which the positive voltage pulse generation unit 16 controls the magnitude, period, and duty ratio of the positive bias voltage pulse in accordance with instructions from the control unit 6. The positive and negative bias voltages are, for example, bias voltages in the range of +300 to +390 (V). The voltage application unit 20 of the film forming apparatus 1 may not include a positive voltage pulse generation unit 16, and may apply a continuous positive bias voltage from a DC power source 15 to the sheath expansion electrode 30. The vacuum pump 3 is a pump that can evacuate the inside of the processing vessel 2 via a pressure adjustment valve 7.

ガス供給部5は、処理容器2の内部に成膜用の原料ガスを供給する。ガス供給部5は、例えばマスフローコントローラ(MFC)が用いられる。原料ガスは、例えばCH、C等の炭化水素系と水素ガス(H)とを含み、不活性ガスは、例えば窒素ガス(N)などを含む。ガス供給部5の制御により、適度に混合されて処理容器2内に供給される。図示しないが、処理容器2内には不活性ガスも供給されてもよい。 The gas supply unit 5 supplies source gas for film formation into the processing vessel 2. For example, a mass flow controller (MFC) is used as the gas supply unit 5. The source gas includes, for example, a hydrocarbon gas such as CH4 or C2H2 and hydrogen gas ( H2 ), and the inert gas includes, for example, nitrogen gas ( N2 ). The gases are appropriately mixed and supplied into the processing vessel 2 under the control of the gas supply unit 5. Although not shown, an inert gas may also be supplied into the processing vessel 2.

放射温度計29は、処理容器2の側壁に設けられた窓27の外側近傍の位置に配置される。放射温度計29は、制御部6に電気的に接続される。放射温度計29は赤外線を受信し、受信した赤外線の強度を算出する。放射温度計29は、算出した赤外線の強度から被加工材料8の表面温度を算出し、被加工材料8の温度情報を制御部6に出力する。 The radiation thermometer 29 is disposed near the outside of the window 27 provided on the side wall of the processing vessel 2. The radiation thermometer 29 is electrically connected to the control unit 6. The radiation thermometer 29 receives infrared rays and calculates the intensity of the received infrared rays. The radiation thermometer 29 calculates the surface temperature of the workpiece 8 from the calculated infrared intensity, and outputs temperature information of the workpiece 8 to the control unit 6.

制御部6は、装置全体の制御を司る。制御部6は、CPU、ROM、及びRAM等を含む。制御部6は、マイクロ波供給部9と電圧印加部20とに制御信号を出力してマイクロ波パルスの印加電力と正電圧パルスの印加電圧を制御する。制御部6は、放射温度計29から入力された出力温度が予め設定された上限温度以下であることを確認したのち、正電圧パルス発生部16及びマイクロ波パルス制御部11に制御信号を出力する。制御部6は、上限温度以上の場合は制御信号の出力を停止し、自然冷却によって上限温度以下になる迄待機する。制御部6は、バイアス電圧パルスの印加タイミング、及び供給電圧と、マイクロ波発振器12から発生されるマイクロ波パルスの供給タイミング、及び供給電力とを制御する。制御部6は、ガス供給部5に流量制御信号を出力して原料ガス及び不活性ガスの供給を制御する。処理容器2は処理容器2内の圧力を表す圧力信号を出力する真空計26を有する。制御部6は、真空計26から入力される圧力信号に基づいて、圧力調整バルブ7、リーク弁33に制御信号を出力して、処理容器2内の圧力を制御する。 The control unit 6 controls the entire device. The control unit 6 includes a CPU, a ROM, and a RAM. The control unit 6 outputs a control signal to the microwave supply unit 9 and the voltage application unit 20 to control the applied power of the microwave pulse and the applied voltage of the positive voltage pulse. After the control unit 6 confirms that the output temperature input from the radiation thermometer 29 is equal to or lower than a preset upper limit temperature, it outputs a control signal to the positive voltage pulse generation unit 16 and the microwave pulse control unit 11. If the temperature is equal to or higher than the upper limit temperature, the control unit 6 stops outputting the control signal and waits until the temperature falls below the upper limit temperature by natural cooling. The control unit 6 controls the application timing of the bias voltage pulse, the supply voltage, and the supply timing and supply power of the microwave pulse generated by the microwave oscillator 12. The control unit 6 outputs a flow control signal to the gas supply unit 5 to control the supply of the raw material gas and the inert gas. The processing vessel 2 has a vacuum gauge 26 that outputs a pressure signal indicating the pressure inside the processing vessel 2. The control unit 6 outputs control signals to the pressure adjustment valve 7 and the leak valve 33 based on the pressure signal input from the vacuum gauge 26 to control the pressure inside the processing vessel 2.

マイクロ波供給部9は、被加工材料8の処理表面10に沿ってプラズマを発生させるためのマイクロ波を導入部材22から被加工材料8へ供給する。マイクロ波供給部9は、マイクロ波パルス制御部11、マイクロ波発振器12、マイクロ波電源13、アイソレータ17、チューナー18、導波管19、及び同軸導波管21を備える。マイクロ波パルス制御部11は制御部6の指示に従い、マイクロ波電源13にパルス信号を供給する。マイクロ波電源13は、制御部6の指示に従い、マイクロ波発振器12へ電力を供給する。マイクロ波発振器12は、制御部6の指示に従いパルス化した2.45(GHz)のマイクロ波を発振しアイソレータ17にマイクロ波パルスを供給する。マイクロ波パルスはマイクロ波発振器12からアイソレータ17、チューナー18、導波管19、同軸導波管21及び導入部材22を経由し、被加工材料8の処理表面10に供給される。なお、本実施形態のマイクロ波発振器12は、パルス化したマイクロ波を発振したが、これに限らずパルス化しないマイクロ波を連続出力してもよい。 The microwave supply unit 9 supplies microwaves to the workpiece 8 from the introduction member 22 to generate plasma along the processing surface 10 of the workpiece 8. The microwave supply unit 9 includes a microwave pulse control unit 11, a microwave oscillator 12, a microwave power supply 13, an isolator 17, a tuner 18, a waveguide 19, and a coaxial waveguide 21. The microwave pulse control unit 11 supplies a pulse signal to the microwave power supply 13 according to the instructions of the control unit 6. The microwave power supply 13 supplies power to the microwave oscillator 12 according to the instructions of the control unit 6. The microwave oscillator 12 oscillates a pulsed 2.45 (GHz) microwave according to the instructions of the control unit 6 and supplies a microwave pulse to the isolator 17. The microwave pulse is supplied from the microwave oscillator 12 through the isolator 17, the tuner 18, the waveguide 19, the coaxial waveguide 21, and the introduction member 22 to the processing surface 10 of the workpiece 8. In this embodiment, the microwave oscillator 12 oscillates pulsed microwaves, but this is not limiting and it may also output continuous non-pulsed microwaves.

アイソレータ17は、マイクロ波の反射波がマイクロ波発振器12へ戻ることを防ぐ。チューナー18は、マイクロ波の反射波が最小になるようにチューナー18前後のインピーダンスを整合する。同軸導波管21は、図示しない同軸導波管変換器を介し、導波管19から上方に円柱状に突設され、基部222と底面と勘合する。同軸導波管21の軸心は、導入部材22に支持された被加工材料8の軸線Kと一致する。 The isolator 17 prevents the reflected microwave from returning to the microwave oscillator 12. The tuner 18 matches the impedance before and after the tuner 18 so that the reflected microwave is minimized. The coaxial waveguide 21 protrudes upward from the waveguide 19 in a cylindrical shape via a coaxial waveguide converter (not shown), and engages with the base 222 and the bottom surface. The axis of the coaxial waveguide 21 coincides with the axis K of the workpiece 8 supported by the introduction member 22.

上記成膜装置1を用いてMVP法を行う場合に生じる表面波励起プラズマについて説明する。通常、表面波励起プラズマを発生させる場合、ある程度以上の電子(イオン)密度におけるプラズマと、プラズマに接する誘電体との界面に沿ってマイクロ波が供給される。供給されたマイクロ波は、プラズマと誘電体との界面に電磁波のエネルギーが集中した状態で表面波として伝播される。その結果、界面に接するプラズマは高エネルギー密度の表面波によって励起され、さらに増幅される。これにより高密度プラズマが生成されて維持される。ただし、この誘電体を導電性の被加工材料8に換えた場合、被加工材料8は表面波の導波路としては機能せず、好ましい表面波の伝播及びプラズマ励起を生ずることはできない。 The surface wave excited plasma generated when the MVP method is performed using the above-mentioned film forming apparatus 1 will be described. Normally, when generating surface wave excited plasma, microwaves are supplied along the interface between plasma at a certain level of electron (ion) density and a dielectric material in contact with the plasma. The supplied microwaves are propagated as surface waves with the electromagnetic wave energy concentrated at the interface between the plasma and the dielectric material. As a result, the plasma in contact with the interface is excited by the high energy density surface wave and further amplified. This generates and maintains high density plasma. However, if this dielectric is replaced with a conductive workpiece material 8, the workpiece material 8 does not function as a waveguide for the surface wave, and favorable surface wave propagation and plasma excitation cannot be generated.

一方、プラズマに接する物体の表面近傍には、本質的に単一極性の荷電粒子層、所謂シース層が形成される。物体が、接地電位に接続された被加工材料8の場合、シース層とは電子密度が低い層、即ち、正極性であって、マイクロ波の周波数帯においては比誘電率ε≒1の層である。このため、被加工材料8の下端部の周囲にシース拡大電極30を設け、被加工材料8を接地電位に接続し、シース拡大電極30に、接地電位よりも高い正のバイアス電圧を印加することで、被加工材料8の処理表面10に沿って形成されるシース層のシース厚さが厚くなり、即ちシース層が拡大する。このシース層が、プラズマとプラズマに接する物体との界面に表面波を伝播させる誘電体として作用する。尚、シース拡大電極30に印加される正のバイアス電圧は、接地電位との電位差が、プラズマの生成に必要な電位差よりも低くなるように設定した電圧である。 On the other hand, a layer of charged particles of essentially the same polarity, a so-called sheath layer, is formed near the surface of an object in contact with the plasma. When the object is a workpiece material 8 connected to a ground potential, the sheath layer is a layer with a low electron density, i.e., a layer of positive polarity and a relative dielectric constant ε ≒ 1 in the microwave frequency band. For this reason, a sheath expansion electrode 30 is provided around the lower end of the workpiece material 8, the workpiece material 8 is connected to a ground potential, and a positive bias voltage higher than the ground potential is applied to the sheath expansion electrode 30, so that the sheath thickness of the sheath layer formed along the processing surface 10 of the workpiece material 8 becomes thicker, that is, the sheath layer expands. This sheath layer acts as a dielectric that propagates surface waves to the interface between the plasma and the object in contact with the plasma. The positive bias voltage applied to the sheath expansion electrode 30 is a voltage set so that the potential difference with the ground potential is lower than the potential difference required to generate plasma.

故に、被加工材料8の一端に近接して配置された導入部材22から被加工材料8の他端に向けて、被加工材料8の処理表面10に沿ってマイクロ波が供給され、被加工材料8及び導入部材22の周囲に配置されたシース拡大電極30に正のバイアス電圧が印加され、且つ被加工材料8が接地電位に接続されることによって、マイクロ波はシース層とプラズマとの界面に沿って表面波として伝搬する。この結果、被加工材料8の処理表面10に沿って表面波に基づく高密度励起プラズマが発生する。この高密度励起プラズマが、上記表面波励起プラズマである。 Therefore, microwaves are supplied from the introduction member 22 arranged close to one end of the workpiece 8 toward the other end of the workpiece 8 along the processing surface 10 of the workpiece 8, and a positive bias voltage is applied to the sheath expansion electrode 30 arranged around the workpiece 8 and the introduction member 22, and the workpiece 8 is connected to ground potential, so that the microwaves propagate as surface waves along the interface between the sheath layer and the plasma. As a result, high-density excited plasma based on the surface waves is generated along the processing surface 10 of the workpiece 8. This high-density excited plasma is the above-mentioned surface wave excited plasma.

上記実施形態の成膜装置1を用いたMVP法では、導入部材22に密着させて被加工材料8を配置し、被加工材料8の処理表面10に沿ってシース層が形成される。被加工材料8を接地電位に接続し、被加工材料8の下端部が配置される導入部材22の周囲にシース拡大電極30を配置して正のバイアス電圧を印加することにより拡大されたシース層に沿って、表面波として伝搬するマイクロ波によって高密度プラズマが生成される。このプラズマの密度が高いので、被加工材料8は高速成膜される。被加工材料8は、同軸導波管21の中心導体と対向して配置されるので、マイクロ波が上方向に効率よく伝搬する。 In the MVP method using the film-forming apparatus 1 of the above embodiment, the workpiece 8 is placed in close contact with the introduction member 22, and a sheath layer is formed along the processing surface 10 of the workpiece 8. The workpiece 8 is connected to a ground potential, and a sheath expansion electrode 30 is placed around the introduction member 22 where the lower end of the workpiece 8 is placed, and a positive bias voltage is applied to expand the sheath layer, generating high-density plasma by microwaves propagating as surface waves along the expanded sheath layer. Because the density of this plasma is high, the workpiece 8 is rapidly film-formed. The workpiece 8 is placed opposite the central conductor of the coaxial waveguide 21, so that the microwaves propagate efficiently upward.

MVP法を用いた成膜処理を簡単に説明する。作業者又は自動搬送機は、被加工材料8を処理容器2の凹部223に挿入して、被加工材料8を処理容器2にセットした後、被加工材料8の上端に電極14を接続して、被加工材料8を接地電位に接続し、処理容器2を密閉する。制御部6は、真空ポンプ3を起動させた後、圧力調整バルブ7を全開に設定し、真空計26から入力される圧力信号に基づいて、処理容器2の内部が、所定の真空度になる迄排気する。 A brief explanation of the film formation process using the MVP method will be given below. An operator or an automatic transport machine inserts the workpiece 8 into the recess 223 of the processing vessel 2, sets the workpiece 8 in the processing vessel 2, then connects the electrode 14 to the top end of the workpiece 8, connects the workpiece 8 to ground potential, and seals the processing vessel 2. The control unit 6 starts the vacuum pump 3, then sets the pressure adjustment valve 7 to full open, and evacuates the inside of the processing vessel 2 until a predetermined vacuum level is reached based on the pressure signal input from the vacuum gauge 26.

制御部6は、ガス供給部5、圧力調整バルブ7を制御して、処理容器2に不活性ガス及び原料ガスを、処理容器2内の圧力が所定値になる迄供給する。制御部6は、放射温度計29から入力された出力温度が上限温度以下の条件で、マイクロ波発振器12を制御して、2.45(GHz)のマイクロ波電力でマイクロ波パルスを生成して、生成されたマイクロ波パルスをアイソレータ17、チューナー18、導波管19、同軸導波管21及び導入部材22を介して被加工材料8の処理表面10に供給する。マイクロ波の周波数は0.3~50(GHz)の周波数であればよく、例えば、2.45(GHz)である。マイクロ波はパルス状のマイクロ波パルスの他、連続するマイクロ波でもよい。 The control unit 6 controls the gas supply unit 5 and the pressure adjustment valve 7 to supply the inert gas and raw material gas to the processing vessel 2 until the pressure inside the processing vessel 2 reaches a predetermined value. Under the condition that the output temperature input from the radiation thermometer 29 is equal to or lower than the upper limit temperature, the control unit 6 controls the microwave oscillator 12 to generate a microwave pulse with a microwave power of 2.45 (GHz), and supplies the generated microwave pulse to the processing surface 10 of the workpiece material 8 via the isolator 17, the tuner 18, the waveguide 19, the coaxial waveguide 21, and the introduction member 22. The frequency of the microwave may be 0.3 to 50 (GHz), for example, 2.45 (GHz). The microwave may be a continuous microwave in addition to a pulsed microwave pulse.

成膜装置1は、被加工材料8の表面のうち、シース拡大電極30の上端31よりも処理容器2内に突出する処理表面10に皮膜を形成する。炭化水素系ガスを原料ガスとする場合、プラズマによって、グラファイト、ダイヤモンド、カーボンナノチューブ(CNT)等、様々な構造の炭化物が生成される。被加工材料8に付着したグラファイト、CNTは水素プラズマによって選択的にエッチングされるため、被加工材料8の表面にはダイヤモンド薄膜が形成される。ダイヤモンドは導電性がなく、従来技術のように被加工材料8に負のバイアス電圧を印加した場合、ダイヤモンドの表面に電荷がたまる。このため、貯まった電荷と被加工材料8の電位差によって異常放電(アーキング現象)が発生し、ダイヤモンド皮膜を破壊する。本実施形態の成膜装置1は被加工材料8の電位を接地電位とすることで、貯まった電荷との電位差を小さくしアーキング現象の発生を抑制できるので、ダイヤモンド皮膜の破壊を防止し、高品質なダイヤモンド皮膜を形成できる。 The film forming apparatus 1 forms a film on the processing surface 10 of the workpiece 8 that protrudes into the processing vessel 2 beyond the upper end 31 of the sheath expansion electrode 30. When a hydrocarbon gas is used as the raw material gas, carbides of various structures such as graphite, diamond, and carbon nanotubes (CNTs) are generated by the plasma. The graphite and CNTs attached to the workpiece 8 are selectively etched by the hydrogen plasma, so that a diamond thin film is formed on the surface of the workpiece 8. Diamond is not conductive, and when a negative bias voltage is applied to the workpiece 8 as in the conventional technology, charges accumulate on the surface of the diamond. For this reason, the potential difference between the accumulated charges and the workpiece 8 causes abnormal discharge (arcing phenomenon), destroying the diamond film. The film forming apparatus 1 of this embodiment sets the potential of the workpiece 8 to the ground potential, thereby reducing the potential difference with the accumulated charges and suppressing the occurrence of the arcing phenomenon, thereby preventing the destruction of the diamond film and forming a high-quality diamond film.

制御部6は、処理容器2内に残留している原料ガス及び不活性ガスを真空ポンプ3ですみやかに排気させたのち、圧力調整バルブ7を全閉動作させる。その後、制御部6は、リーク弁33を開放し処理容器2の内部の圧力が外気圧と同じになった場合には、液晶ディスプレイ(LCD)等の報知部に成膜終了である旨を報知し、成膜処理を終了する。作業者又は自動搬送機は、被加工材料8から電極14を取り外し、処理表面10に皮膜が形成された被加工材料8を処理容器2から取り出す。 The control unit 6 promptly exhausts the source gas and inert gas remaining in the processing vessel 2 using the vacuum pump 3, and then fully closes the pressure adjustment valve 7. The control unit 6 then opens the leak valve 33, and when the pressure inside the processing vessel 2 becomes the same as the outside air pressure, it notifies an alarm unit such as a liquid crystal display (LCD) that film formation is complete, and ends the film formation process. The operator or automatic conveyor removes the electrode 14 from the processed material 8, and takes out the processed material 8 with the film formed on the processing surface 10 from the processing vessel 2.

図6及び図7を参照し、評価試験結果を説明する。被加工材料8は、直径10(mm)、全長が85(mm)で溝長50(mm)の超硬K10製切削工具とした。漏洩抑制部材4を備えない成膜装置1を比較例とし、漏洩抑制部材4を備える成膜装置1を実施例とした。処理表面10として被加工材料8の先端から50(mm)までの領域を設定した。図6の如く、成膜装置1のマイクロ波発振器12が発振するマイクロ波は、ピーク電力が500~1000(W)、周波数が1(kHz)、デューティ比が50%に制御した。バイアス電圧パルスは、周波数が1kHz、ピーク電圧の値が200~390(V)に制御した。ガス流量は、Hが200(sccm)、CHが2(sccm)で供給され、圧力が1(kPa)に制御された。比較例と、実施例との各々について、同一の条件で試験を行い、絶縁部材24付近で漏洩されたマイクロ波由来のプラズマの発生の有無を目視で確認した。図7において白丸は、プラズマの発生が確認されなかった場合を示し、バツ印はプラズマの発生が確認された場合を示す。 The evaluation test results will be described with reference to Figures 6 and 7. The workpiece 8 was a cutting tool made of superhard K10 with a diameter of 10 (mm), a total length of 85 (mm), and a groove length of 50 (mm). The film-forming device 1 without the leakage suppression member 4 was used as a comparative example, and the film-forming device 1 with the leakage suppression member 4 was used as an example. The area from the tip of the workpiece 8 to 50 (mm) was set as the processing surface 10. As shown in Figure 6, the microwaves oscillated by the microwave oscillator 12 of the film-forming device 1 were controlled to have a peak power of 500 to 1000 (W), a frequency of 1 (kHz), and a duty ratio of 50%. The bias voltage pulse was controlled to have a frequency of 1 kHz and a peak voltage value of 200 to 390 (V). The gas flow rates were H2 at 200 (sccm) and CH4 at 2 (sccm), and the pressure was controlled to 1 (kPa). Tests were performed under the same conditions for each of the comparative example and the example, and visual inspection was performed to check for the presence or absence of plasma generated due to microwave leakage near the insulating member 24. In Fig. 7, white circles indicate cases where plasma generation was not confirmed, and crosses indicate cases where plasma generation was confirmed.

図7の如く、比較例では、マイクロ波のピーク電力が500W、且つ、バイアス電圧パルスのピーク電圧の値が370V又は390Vの条件と、マイクロ波のピーク電力が1000W、且つ、バイアス電圧パルスのピーク電圧の値が370Vの条件との各々でプラズマの発生が確認された。比較例のその他の条件では、プラズマの発生が確認されなかった。一方実施例では、何れの条件でも、プラズマの発生が確認されなかった。以上より、漏洩抑制部材4を配置することで、マイクロ波の漏洩が抑制できることが確認された。 As shown in FIG. 7, in the comparative example, plasma generation was confirmed under the conditions of a microwave peak power of 500 W and a bias voltage pulse peak voltage value of 370 V or 390 V, and a microwave peak power of 1000 W and a bias voltage pulse peak voltage value of 370 V. Plasma generation was not confirmed under other conditions in the comparative example. On the other hand, in the working example, plasma generation was not confirmed under any conditions. From the above, it was confirmed that microwave leakage can be suppressed by arranging the leakage suppression member 4.

図8から図10を参照し、漏洩抑制部材4の構造が絶縁部材24からマイクロ波が漏洩することが効果に与える影響の確認するシミュレーション結果を説明する。シミュレーターには有限要素解析ソフトのCOMSOL(登録商標) Multiphysics 6.0を用い、RFモジュールを使用した。マイクロ波の周波数を2.45(GHz)とし、周波数領域の解析を行った。モデル中では被加工材料8、導入部材22、及び絶縁部材24の比誘電率、非透磁率、及び導電率を設定した。プラズマは圧力を50(Pa)、プラズマ密度を1E17(1/m)、電子温度を2(eV)として算出した誘電率と導電率を使用した。漏洩抑制部材4の構造の内、絶縁部42の第一長さD2(mm)、絶縁部42の幅D1(mm)、及び当接面41の外径D4の1/2(mm)の各々について、プラズマが発生しない条件をシミュレーション結果に基づき判断した。プラズマ放電を維持するために必要な最小電界強度は、絶縁破壊電圧の半分とされており、公知文献(Analysis of hydrogen plasma in a microwave plasma chemical vapor deposition reactor、G. Shivkumar et al.、Journal of Applied Physics 119、 113301 、2016)から、1.33(kPa)の条件で7500(V/m)である条件を採用した。即ち、電界強度が7500(V/m)以下となる条件であれば、プラズマは発生しないことが想定される。絶縁部42の第一長さD2(mm)、絶縁部42の幅D1(mm)、及び当接面41の外径D4の1/2(mm)の各々の値を変えた場合の電界強度を公知のシミュレーターを用いて計算した。絶縁部42の内径は36(mm)、漏洩抑制部材4の高さD3は32.6(mm)とした。図8~図10にある太線は電界強度の閾値7500(V/m)を示す。 8 to 10, a simulation result for confirming the effect of the structure of the leakage suppression member 4 on the effect of microwave leakage from the insulating member 24 will be described. The simulator used finite element analysis software COMSOL (registered trademark) Multiphysics 6.0, and used an RF module. The frequency of the microwave was set to 2.45 (GHz), and the frequency domain analysis was performed. In the model, the relative permittivity, non-permeability, and conductivity of the workpiece material 8, the introduction member 22, and the insulating member 24 were set. The plasma used a permittivity and conductivity calculated with a pressure of 50 (Pa), a plasma density of 1E17 (1/m 3 ), and an electron temperature of 2 (eV). In the structure of the leakage suppression member 4, the first length D2 (mm) of the insulating portion 42, the width D1 (mm) of the insulating portion 42, and 1/2 (mm) of the outer diameter D4 of the abutting surface 41 were determined based on the simulation result under which plasma was not generated. The minimum electric field strength required to maintain plasma discharge is half the breakdown voltage, and a condition of 7500 (V/m) at 1.33 (kPa) was adopted from a known document (Analysis of hydrogen plasma in a microwave plasma chemical vapor deposition reactor, G. Shivkumar et al., Journal of Applied Physics 119, 113301, 2016). In other words, it is assumed that plasma will not be generated if the electric field strength is 7500 (V/m) or less. The electric field strength was calculated using a known simulator when the first length D2 (mm) of the insulating part 42, the width D1 (mm) of the insulating part 42, and 1/2 (mm) of the outer diameter D4 of the contact surface 41 were changed. The inner diameter of the insulating part 42 was 36 (mm), and the height D3 of the leakage suppression member 4 was 32.6 (mm). The thick lines in Figures 8 to 10 indicate the electric field strength threshold of 7500 (V/m).

図8に示す電界強度(V/m)と絶縁部42の第一長さD2(mm)とに関するシミュレーションでは、絶縁部42の幅D1を8(mm)、及び当接面41の外径D4の1/2を36(mm)に設定した。図8の如く、絶縁部42の第一長さD2が29.6(mm)の条件では、電界強度が7124(V/m)であり、30.6(mm)の条件では、電界強度が1944(V/m)であり、31.6(mm)の条件では、電界強度が3233(V/m)であり、何れの場合も7500(V/m)を下回った。絶縁部42の第一長さD2が28.6(mm)の条件では、電界強度が12367(V/m)であり、絶縁部42の第一長さD2が32.6(mm)の条件では、電界強度が8431(V/m)であり、何れも7500(V/m)を超えた。以上より、絶縁部42の第一長さD2(mm)が、第二長さの±1(mm)の範囲にある場合に、絶縁部材24から漏洩したマイクロ波に起因するプラズマの発生を好適に抑制できることが示唆された。 In a simulation of the electric field strength (V/m) and the first length D2 (mm) of the insulating portion 42 shown in Fig. 8, the width D1 of the insulating portion 42 was set to 8 (mm), and 1/2 of the outer diameter D4 of the abutment surface 41 was set to 36 (mm). As shown in Fig. 8, when the first length D2 of the insulating portion 42 was 29.6 (mm), the electric field strength was 7124 (V/m), when it was 30.6 (mm), the electric field strength was 1944 (V/m), and when it was 31.6 (mm), the electric field strength was 3233 (V/m), and in all cases it was below 7500 (V/m). When the first length D2 of the insulating portion 42 is 28.6 (mm), the electric field strength is 12367 (V/m), and when the first length D2 of the insulating portion 42 is 32.6 (mm), the electric field strength is 8431 (V/m), both of which exceed 7500 (V/m). From the above, it is suggested that when the first length D2 (mm) of the insulating portion 42 is within the range of ±1 (mm) of the second length, the generation of plasma caused by microwaves leaking from the insulating member 24 can be suitably suppressed.

図9に示す電界強度(V/m)と絶縁部42の幅D1(mm)とに関するシミュレーションでは、絶縁部42の第一長さD2を30.6(mm)、及び当接面41の外径D4の1/2を36(mm)に設定した。図9の如く、絶縁部42の幅D1が12(mm)以下の条件では、電界強度が7500(V/m)を下回り、絶縁部42の幅D1が1(mm)以上の条件では絶縁部42の幅D1と、電界強度とは単調増加傾向が確認された。絶縁部42の幅D1が14(mm)の条件では、電界強度が7543(V/m)であり、絶縁部42の幅D1が16(mm)では、8697(V/m)であった。以上より、絶縁部42の幅D1が14(mm)以下である場合に、絶縁部材24から漏洩したマイクロ波に起因するプラズマの発生を好適に抑制できることが示唆された。 In the simulation of the electric field strength (V/m) and the width D1 (mm) of the insulating portion 42 shown in FIG. 9, the first length D2 of the insulating portion 42 was set to 30.6 (mm), and 1/2 of the outer diameter D4 of the abutting surface 41 was set to 36 (mm). As shown in FIG. 9, when the width D1 of the insulating portion 42 was 12 (mm) or less, the electric field strength was below 7500 (V/m), and when the width D1 of the insulating portion 42 was 1 (mm) or more, the width D1 of the insulating portion 42 and the electric field strength tended to increase monotonically. When the width D1 of the insulating portion 42 was 14 (mm), the electric field strength was 7543 (V/m), and when the width D1 of the insulating portion 42 was 16 (mm), it was 8697 (V/m). From the above, it was suggested that when the width D1 of the insulating portion 42 was 14 (mm) or less, the generation of plasma caused by microwaves leaking from the insulating member 24 can be suitably suppressed.

図10に示す電界強度(V/m)と漏洩抑制部材4の当接面41の外径D4の1/2(mm)とに関するシミュレーションでは、絶縁部42の第一長さD2を30.6(mm)、絶縁部42の幅D1を8(mm)に設定した。図10の如く、当接面41の外径D4の1/2が28(mm)以上の条件では当接面41の外径D4の1/2と、電界強度とは単調減少傾向が確認された。当接面41の外径D4の1/2が29(mm)以下の条件では、電界強度が7500(V/m)を上回り、当接面41の外径D4の1/2が29(mm)の条件では、電界強度が8136(V/m)であり、当接面41の外径D4の1/2が30(mm)では、7452(V/m)であった。以上より、漏洩抑制部材4の当接面41の外径D4の1/2が30(mm)以上、且つ処理容器2から離隔して配置される長さである場合に、絶縁部材24から漏洩したマイクロ波に起因するプラズマの発生を好適に抑制できることが示唆された。 In the simulation of the electric field strength (V/m) and 1/2 (mm) of the outer diameter D4 of the contact surface 41 of the leakage suppression member 4 shown in FIG. 10, the first length D2 of the insulating portion 42 was set to 30.6 (mm), and the width D1 of the insulating portion 42 was set to 8 (mm). As shown in FIG. 10, when 1/2 of the outer diameter D4 of the contact surface 41 was 28 (mm) or more, a monotonically decreasing tendency was confirmed between 1/2 of the outer diameter D4 of the contact surface 41 and the electric field strength. When 1/2 of the outer diameter D4 of the contact surface 41 was 29 (mm) or less, the electric field strength exceeded 7500 (V/m), when 1/2 of the outer diameter D4 of the contact surface 41 was 29 (mm), the electric field strength was 8136 (V/m), and when 1/2 of the outer diameter D4 of the contact surface 41 was 30 (mm), the electric field strength was 7452 (V/m). From the above, it is suggested that if 1/2 of the outer diameter D4 of the contact surface 41 of the leakage suppression member 4 is 30 (mm) or more and is long enough to be placed away from the processing vessel 2, the generation of plasma caused by microwaves leaking from the insulating member 24 can be suitably suppressed.

図11及び図12を参照して変形例の成膜装置1を説明する。図11及び図12では、上記実施形態の成膜装置1と同様の構成には同じ符号を付与している。変形例の成膜装置1は、導入部材22とシース拡大電極30と漏洩抑制部材4とに替えて、導入部材122とシース拡大電極130と漏洩抑制部材54とを備える点で上記実施形態の成膜装置1と互いに異なり、他の構成は上記実施形態の成膜装置1と互いに同じである。以下、導入部材122とシース拡大電極130と漏洩抑制部材54とについて説明する。変形例の導入部材122は、処理容器2内へ向けて突出する突出部225と、突出部225を支持する基部222とを有する。突出部225は、突出部225の上面である導入面226から下方に凹む凹部227が形成されている。凹部228は、マイクロ波の導入方向J、即ち上方に沿う向きに長い。凹部227の外周は、被加工材料8の外周よりもやや大きい。シース拡大電極130は、上端131が導入部材122の導入面226よりも下方にある。シース拡大電極130の上端131が導入面226よりも突出方向の下方側にある場合、突出方向における上端131の位置から導入面226の位置までの範囲において、被加工材料8は突出部225に覆われるので皮膜は形成されないが、導入面226から上側には十分な品質の皮膜を形成できる。シース拡大電極130は、上端131が上下方向において導入部材122の導入面226と同じ位置でもよい。 The modified film forming apparatus 1 will be described with reference to Figures 11 and 12. In Figures 11 and 12, the same reference numerals are given to the same components as those of the film forming apparatus 1 of the above embodiment. The modified film forming apparatus 1 is different from the film forming apparatus 1 of the above embodiment in that it includes an introduction member 122, a sheath expansion electrode 130, and a leakage suppression member 54 instead of the introduction member 22, the sheath expansion electrode 30, and the leakage suppression member 4, and the other components are the same as those of the film forming apparatus 1 of the above embodiment. The introduction member 122, the sheath expansion electrode 130, and the leakage suppression member 54 will be described below. The introduction member 122 of the modified embodiment has a protruding portion 225 that protrudes into the processing vessel 2 and a base portion 222 that supports the protruding portion 225. The protruding portion 225 has a recessed portion 227 that is recessed downward from the introduction surface 226, which is the upper surface of the protruding portion 225. The recessed portion 228 is long in the microwave introduction direction J, that is, in the upward direction. The outer circumference of the recess 227 is slightly larger than the outer circumference of the workpiece 8. The upper end 131 of the sheath expansion electrode 130 is located below the introduction surface 226 of the introduction member 122. When the upper end 131 of the sheath expansion electrode 130 is located below the introduction surface 226 in the protruding direction, the workpiece 8 is covered by the protruding portion 225 in the range from the position of the upper end 131 in the protruding direction to the position of the introduction surface 226, so no coating is formed, but a coating of sufficient quality can be formed above the introduction surface 226. The upper end 131 of the sheath expansion electrode 130 may be located at the same position as the introduction surface 226 of the introduction member 122 in the vertical direction.

漏洩抑制部材54は、被加工材料8とは電気的に絶縁された位置に配置される。漏洩抑制部材54は、上下方向に延び且つ中央部に空洞47を有する筒状である。空洞47に被加工材料8及びシース拡大電極130を配置する。漏洩抑制部材54は、絶縁部材24と当接する当接面51と、上記実施形態と同様の内周面44とを有する。漏洩抑制部材54は、少なくとも表面が、ステンレス等の導電性を有する材料で形成される。本実施形態の漏洩抑制部材54は、全体がステンレスで形成される。本実施形態の当接面51は、漏洩抑制部材54の下面である。当接面51には、絶縁部材24から離れる側、即ち上側に凹んだ凹部である絶縁部52、53が形成される。絶縁部52、53は当接面41において、被加工材料8を囲む環状に形成されている。絶縁部52、53は、外径が互いに異なる。絶縁部52、53の幅及び第一長さは、互いに同じである。漏洩抑制部材54は、絶縁部52、53の各々について、処理容器2と連通させる貫通孔が形成されてもよい。 The leakage suppression member 54 is disposed at a position electrically insulated from the workpiece material 8. The leakage suppression member 54 is cylindrical, extending in the vertical direction and having a cavity 47 in the center. The workpiece material 8 and the sheath expansion electrode 130 are disposed in the cavity 47. The leakage suppression member 54 has a contact surface 51 that contacts the insulating member 24 and an inner peripheral surface 44 similar to the above embodiment. At least the surface of the leakage suppression member 54 is formed of a conductive material such as stainless steel. The leakage suppression member 54 of this embodiment is entirely formed of stainless steel. The contact surface 51 of this embodiment is the lower surface of the leakage suppression member 54. The contact surface 51 is formed with insulating parts 52 and 53, which are recesses recessed on the side away from the insulating member 24, i.e., the upper side. The insulating parts 52 and 53 are formed in a ring shape surrounding the workpiece material 8 on the contact surface 41. The insulating parts 52 and 53 have different outer diameters. The width and first length of the insulating parts 52 and 53 are the same. The leakage suppression member 54 may have a through hole formed in each of the insulating parts 52 and 53 to communicate with the processing vessel 2.

上記実施形態において、成膜装置1、処理容器2、漏洩抑制部材4、ガス供給部5、被加工材料8、電極14、マイクロ波供給部9、処理表面10、導入部材22、絶縁部材24、シース拡大電極30、当接面41、絶縁部42、及び貫通孔43は各々、本発明の成膜装置、処理容器、漏洩抑制部材、ガス供給部、被加工材料、接地部材、マイクロ波供給部、処理表面、導入部材、絶縁部材、シース拡大電極、当接面、絶縁部、及び貫通孔の一例である。電圧印加部20は本発明の電圧印加部の一例である。変形例の導入部材122、シース拡大電極130、漏洩抑制部材54、及び当接面51は、本発明の導入部材、シース拡大電極、漏洩抑制部材、及び当接面の一例である。絶縁部52、53は、本発明の複数の絶縁部の一例である。 In the above embodiment, the film forming apparatus 1, the processing vessel 2, the leakage suppression member 4, the gas supply unit 5, the workpiece 8, the electrode 14, the microwave supply unit 9, the processing surface 10, the introduction member 22, the insulating member 24, the sheath expansion electrode 30, the contact surface 41, the insulating portion 42, and the through hole 43 are examples of the film forming apparatus, the processing vessel, the leakage suppression member, the gas supply unit, the workpiece, the grounding member, the microwave supply unit, the processing surface, the introduction member, the insulating member, the sheath expansion electrode, the contact surface, the insulating portion, and the through hole of the present invention, respectively. The voltage application unit 20 is an example of the voltage application unit of the present invention. The introduction member 122, the sheath expansion electrode 130, the leakage suppression member 54, and the contact surface 51 of the modified example are examples of the introduction member, the sheath expansion electrode, the leakage suppression member, and the contact surface of the present invention. The insulating portions 52 and 53 are examples of the multiple insulating portions of the present invention.

上記実施形態の成膜装置1は、処理容器2、ガス供給部5、マイクロ波供給部9、シース拡大電極30、電圧印加部20、電極14、絶縁部材24、及び漏洩抑制部材4を備える。ガス供給部5は、処理容器2にガスを供給する。処理容器2は、導電性を有する被加工材料8を収容する。導入部材22は、処理容器2の周囲に設け、且つマイクロ波を導入する。マイクロ波供給部9は、被加工材料8の処理表面10に沿ってプラズマを発生させるためのマイクロ波を導入部材22から被加工材料8へ供給する。シース拡大電極30は、導入部材22の周囲に配置される。電圧印加部20は、被加工材料8の処理表面10に沿うシース層を拡大させる正のバイアス電圧をシース拡大電極30へ印加する。電極14は、被加工材料8を電圧印加部20の接地電位と同電位に電気的に接続する。絶縁部材24は、シース拡大電極30と処理容器2との間に配置され、シース拡大電極30と処理容器2とを電気的に絶縁する。漏洩抑制部材4は、被加工材料8とは電気的に絶縁した位置に配置され、絶縁部材24と当接する当接面41と、当接面41から絶縁部材24から離れる側に延びる絶縁部42とを有する。成膜装置1は、マイクロ波供給部9がマイクロ波を供給し、電圧印加部20によりバイアス電圧を印加することで、被加工材料8の処理表面10にマイクロ波の伝搬をさせ、被加工材料8近傍に高密度プラズマの生成する、公知のMVP法を用いた成膜処理を実施できる。成膜装置1は、電極14により被加工材料8の電位を接地電位とすることで、アーキング現象の発生を抑制し、高品質な皮膜を形成できる。成膜装置1は、漏洩抑制部材4を備えるので、絶縁部材24の端面から処理容器2内にマイクロ波が漏洩することを低減できる。故に成膜装置1は、マイクロ波の漏洩に起因して、意図しない部分でプラズマ放電が生じたり、絶縁部材24が損傷することでシース拡大電極30と処理容器2との絶縁を保てなくなる事態が生じたりすることを抑制できる。成膜装置1は、シース拡大電極30に正のバイアス電圧を印加することで、被加工材料8の処理表面10に形成されるシース層の厚みを拡大させ、処理表面10に均一な皮膜を形成できる。 The film forming apparatus 1 of the above embodiment includes a processing vessel 2, a gas supply unit 5, a microwave supply unit 9, a sheath expansion electrode 30, a voltage application unit 20, an electrode 14, an insulating member 24, and a leakage suppression member 4. The gas supply unit 5 supplies gas to the processing vessel 2. The processing vessel 2 contains a conductive workpiece 8. The introduction member 22 is provided around the processing vessel 2 and introduces microwaves. The microwave supply unit 9 supplies microwaves from the introduction member 22 to the workpiece 8 to generate plasma along the processing surface 10 of the workpiece 8. The sheath expansion electrode 30 is arranged around the introduction member 22. The voltage application unit 20 applies a positive bias voltage to the sheath expansion electrode 30 to expand the sheath layer along the processing surface 10 of the workpiece 8. The electrode 14 electrically connects the workpiece 8 to the same potential as the ground potential of the voltage application unit 20. The insulating member 24 is disposed between the sheath expansion electrode 30 and the processing vessel 2, and electrically insulates the sheath expansion electrode 30 from the processing vessel 2. The leakage suppression member 4 is disposed at a position electrically insulated from the workpiece 8, and has a contact surface 41 that contacts the insulating member 24, and an insulating portion 42 that extends from the contact surface 41 to a side away from the insulating member 24. The film forming apparatus 1 can perform a film forming process using a known MVP method in which the microwave supply unit 9 supplies microwaves and the voltage application unit 20 applies a bias voltage to propagate the microwaves to the processing surface 10 of the workpiece 8, thereby generating high-density plasma near the workpiece 8. The film forming apparatus 1 can suppress the occurrence of the arcing phenomenon and form a high-quality film by setting the potential of the workpiece 8 to a ground potential using the electrode 14. Since the film forming apparatus 1 is provided with the leakage suppression member 4, it is possible to reduce the leakage of microwaves from the end face of the insulating member 24 into the processing vessel 2. Therefore, the film forming apparatus 1 can prevent microwave leakage from causing plasma discharge in unintended areas, or from damaging the insulating member 24, which can cause insulation between the sheath expansion electrode 30 and the processing vessel 2 to be lost. By applying a positive bias voltage to the sheath expansion electrode 30, the film forming apparatus 1 can increase the thickness of the sheath layer formed on the processing surface 10 of the workpiece 8, forming a uniform film on the processing surface 10.

絶縁部42は、当接面41において、被加工材料8を囲む環状に形成されている。成膜装置1は、絶縁部42が被加工材料8を囲む環状に形成されていない場合に比べ、被加工材料8周りの周方向に亘って、絶縁部材24の端面から処理容器2内にマイクロ波が漏洩することを低減できる。 The insulating portion 42 is formed in a ring shape surrounding the workpiece material 8 at the contact surface 41. The film forming apparatus 1 can reduce leakage of microwaves from the end face of the insulating member 24 into the processing vessel 2 in the circumferential direction around the workpiece material 8, compared to a case in which the insulating portion 42 is not formed in a ring shape surrounding the workpiece material 8.

絶縁部42の当接面41に垂直な方向における第一長さD2は、マイクロ波の波長又はマイクロ波の波長の偶数倍の長さの1/4である第二長さの±1(mm)の範囲の長さである。成膜装置1では、絶縁部材24から絶縁部42に伝搬されて後に跳ね返るマイクロ波の位相は、絶縁部材24中を伝搬するマイクロ波の位相の逆付近となる。故に成膜装置1は、絶縁部材24中を伝搬するマイクロ波を、絶縁部材24から絶縁部42に伝搬されて後に跳ね返るマイクロ波により打ち消すことで、絶縁部材24の端面から処理容器2内にマイクロ波が漏洩することを低減できる。 The first length D2 in the direction perpendicular to the contact surface 41 of the insulating portion 42 is within the range of ±1 (mm) of the second length, which is 1/4 of the microwave wavelength or an even multiple of the microwave wavelength. In the film forming apparatus 1, the phase of the microwave propagating from the insulating member 24 to the insulating portion 42 and then bouncing back is approximately the opposite of the phase of the microwave propagating through the insulating member 24. Therefore, the film forming apparatus 1 can reduce the leakage of microwaves from the end face of the insulating member 24 into the processing vessel 2 by canceling out the microwaves propagating through the insulating member 24 with the microwaves propagating from the insulating member 24 to the insulating portion 42 and then bouncing back.

漏洩抑制部材4の当接面41の外径の1/2が30(mm)以上、且つ処理容器2から離隔して配置される長さである。成膜装置1は、被加工材料8から当接面41の外径の1/2が30(mm)未満である場合に比べ、絶縁部材24の端面から処理容器2内にマイクロ波が漏洩することを低減できる。 Half of the outer diameter of the contact surface 41 of the leakage suppression member 4 is 30 (mm) or more, and the length is such that it is placed away from the processing vessel 2. The film forming device 1 can reduce the leakage of microwaves from the end face of the insulating member 24 into the processing vessel 2 compared to when half of the outer diameter of the contact surface 41 is less than 30 (mm) from the workpiece material 8.

絶縁部42は、当接面41から絶縁部材24から離れる側に延びる凹部である。漏洩抑制部材4には、絶縁部42と、処理容器2内の空間とを連通する貫通孔43が形成されている。成膜装置1は、成膜処理を行う時、大気等の意図しないガスが絶縁部42に残ることを抑制し、処理容器2内の排気時間を短縮できる。 The insulating portion 42 is a recess extending from the contact surface 41 away from the insulating member 24. The leakage suppression member 4 has a through hole 43 formed therein that connects the insulating portion 42 to the space inside the processing vessel 2. When performing the film formation process, the film formation device 1 suppresses unintended gases such as air from remaining in the insulating portion 42, thereby shortening the evacuation time inside the processing vessel 2.

絶縁部材24の外径D5は、漏洩抑制部材4の当接面41の外径D4よりも大きい。成膜装置1は、絶縁部材24の外径D5が漏洩抑制部材4の当接面41の外径D4以下である場合に比べ、絶縁部材24の端面から処理容器2内にマイクロ波が漏洩することを抑制できる。 The outer diameter D5 of the insulating member 24 is larger than the outer diameter D4 of the contact surface 41 of the leakage suppression member 4. The film forming apparatus 1 can suppress leakage of microwaves from the end face of the insulating member 24 into the processing vessel 2, compared to when the outer diameter D5 of the insulating member 24 is equal to or smaller than the outer diameter D4 of the contact surface 41 of the leakage suppression member 4.

シース拡大電極30は、導入部材22の導入面224の周囲を囲う。故に導入面224から被加工材料8に導入されるマイクロ波がシース拡大電極30の外側に漏れることがなく、成膜装置1は、広範囲に均一で高品質な皮膜を高速に形成できる。導入部材22の周囲をシース拡大電極30が囲う部分には成膜されない。故に、シース拡大電極30の上端31の位置を設定することにより、成膜装置1は、処理表面10に確実に成膜処理を行うことができる。被加工材料8の電位を接地電位としたことで、成膜装置1は導電性の低い皮膜を形成する場合に問題となるアーキング現象の発生を抑制できる。故に成膜装置1は、ダイヤモンド等の導電性の低い皮膜であっても、広範囲に均一で高品質に、且つ高速に形成できる。 The sheath expansion electrode 30 surrounds the periphery of the introduction surface 224 of the introduction member 22. Therefore, the microwaves introduced from the introduction surface 224 to the workpiece material 8 do not leak outside the sheath expansion electrode 30, and the film forming apparatus 1 can form a uniform, high-quality film over a wide area at high speed. No film is formed in the area where the sheath expansion electrode 30 surrounds the introduction member 22. Therefore, by setting the position of the upper end 31 of the sheath expansion electrode 30, the film forming apparatus 1 can reliably perform film formation on the processing surface 10. By setting the potential of the workpiece material 8 to ground potential, the film forming apparatus 1 can suppress the occurrence of the arcing phenomenon, which is a problem when forming a film with low conductivity. Therefore, the film forming apparatus 1 can form a film with high quality, uniformity over a wide area, and at high speed, even if it is a film with low conductivity such as diamond.

変形例の漏洩抑制部材54の当接面41には、外径が互いに異なる複数の絶縁部52、53が形成されている。成膜装置1は、当接面41に被加工材料8の周りを囲む一重の絶縁部42が形成されている場合に比べ、絶縁部材24の端面から処理容器2内にマイクロ波が漏洩することを抑制できる。 The contact surface 41 of the leakage suppression member 54 of the modified example has multiple insulating portions 52, 53 with different outer diameters. Compared to a case in which a single insulating portion 42 that surrounds the workpiece material 8 is formed on the contact surface 41, the film forming apparatus 1 can suppress leakage of microwaves from the end face of the insulating member 24 into the processing vessel 2.

本発明の成膜装置は上記実施形態の他に種々変更できる。下記変形例は矛盾がない範囲で適宜組み合わされてもよい。被加工材料8は接地されなくてもよい。漏洩抑制部材4は、少なくとも表面が導電性を有すればよく、例えば、表面に導電性コーティングを行ったセラミクス等でもよい。絶縁部材24及び漏洩抑制部材4の平面形状は各々リング状でなくてもよい。導入部材22、シース拡大電極30、130、漏洩抑制部材4、54の形状、大きさ、及び配置は各々適宜変更されてよい。漏洩抑制部材4の当接面41は、絶縁部材24の下面と当接してもよい。マイクロ波の導入方向Jは、上方でなくてもよく、マイクロ波の導入方向Jに応じて各部材の配置は変更されてよい。 The film forming apparatus of the present invention can be modified in various ways in addition to the above embodiment. The following modified examples may be appropriately combined within a range that does not cause any inconsistency. The workpiece material 8 does not need to be grounded. The leakage suppression member 4 may be made of ceramics with a conductive coating on its surface, as long as at least the surface is conductive. The planar shapes of the insulating member 24 and the leakage suppression member 4 do not need to be ring-shaped. The shapes, sizes, and arrangements of the introduction member 22, the sheath expansion electrodes 30, 130, and the leakage suppression members 4, 54 may each be appropriately changed. The contact surface 41 of the leakage suppression member 4 may contact the lower surface of the insulating member 24. The introduction direction J of the microwave does not need to be upward, and the arrangement of each member may be changed according to the introduction direction J of the microwave.

漏洩抑制部材4の絶縁部42の形状及び大きさは、導入部材22、シース拡大電極30、及び絶縁部材24の構成、並びに被加工材料8の皮膜形成条件等を考慮して適宜変更されてよい。絶縁部は、当接面41から絶縁部材24から離れる側に延びる凹部の他、セラミクス等の絶縁材料で形成された、当接面41から絶縁部材24から離れる側に延びる絶縁層であってもよい。漏洩抑制部材4の絶縁部42は、当接面41において被加工材料8を囲む環状に形成されなくてもよく、当接面41において被加工材料8周りの周方向の一部に円状、円弧状及び線分状等の任意の形状に形成されてもよい。漏洩抑制部材4の絶縁部42の当接面41に垂直な方向における第一長さD2は、第二長さの±1(mm)の範囲の長さでなくてもよい。漏洩抑制部材に絶縁部が複数形成されている場合、一の絶縁部が、漏洩抑制部材の当接面において被加工材料8を囲む環状に形成されなくてもよく、他の絶縁部が円弧状又は線分状に形成されてもよいし、各絶縁部の第一長さは互いに同じであってもよいし、互いに異なっていてもよい。漏洩抑制部材4の当接面41の外径D4の1/2は30(mm)未満でもよい。漏洩抑制部材4は、絶縁部42と処理容器2内の空間とを連通する貫通孔43が形成されなくてもよい。貫通孔43の配置、形状、数は適宜変更されてよい。被加工材料8の周りを囲む複数の絶縁部が形成される場合、絶縁部の数は適宜変更されてよい。絶縁部材24の外径D5は、漏洩抑制部材4の当接面41の外径D4以下でもよい。 The shape and size of the insulating portion 42 of the leakage suppression member 4 may be appropriately changed in consideration of the configuration of the introduction member 22, the sheath expansion electrode 30, and the insulating member 24, as well as the film formation conditions of the workpiece material 8. The insulating portion may be a recess extending from the contact surface 41 to the side away from the insulating member 24, or an insulating layer formed of an insulating material such as ceramics and extending from the contact surface 41 to the side away from the insulating member 24. The insulating portion 42 of the leakage suppression member 4 does not have to be formed in a ring shape surrounding the workpiece material 8 on the contact surface 41, and may be formed in any shape such as a circle, an arc, or a line segment in a part of the circumferential direction around the workpiece material 8 on the contact surface 41. The first length D2 of the insulating portion 42 of the leakage suppression member 4 in a direction perpendicular to the contact surface 41 does not have to be within the range of ±1 (mm) of the second length. When a plurality of insulating parts are formed on the leakage suppression member, one insulating part does not have to be formed in a ring shape surrounding the workpiece material 8 on the contact surface of the leakage suppression member, and the other insulating parts may be formed in an arc shape or a line segment shape, and the first lengths of the insulating parts may be the same or different from each other. 1/2 of the outer diameter D4 of the contact surface 41 of the leakage suppression member 4 may be less than 30 (mm). The leakage suppression member 4 may not have a through hole 43 that communicates between the insulating part 42 and the space in the processing vessel 2. The arrangement, shape, and number of the through holes 43 may be changed as appropriate. When a plurality of insulating parts are formed to surround the workpiece material 8, the number of insulating parts may be changed as appropriate. The outer diameter D5 of the insulating member 24 may be equal to or smaller than the outer diameter D4 of the contact surface 41 of the leakage suppression member 4.

1 :成膜装置
2 :処理容器
4 :漏洩抑制部材
5 :ガス供給部
8 :被加工材料
9 :マイクロ波供給部
10 :処理表面
11 :マイクロ波パルス制御部
12 :マイクロ波発振器
13 :マイクロ波電源
14 :電極
15 :DC電源
17 :アイソレータ
18 :チューナー
19 :導波管
20 :電圧印加部
21 :同軸導波管
22 :導入部材
24 :絶縁部材
30 :シース拡大電極
41 :当接面
42 :絶縁部
43 :貫通孔
44 :内周面
45 :内側鍔部
46 :外側鍔部
47 :空洞
LIST OF SYMBOLS 1: Film forming apparatus 2: Processing vessel 4: Leakage suppression member 5: Gas supply unit 8: Material to be processed 9: Microwave supply unit 10: Processing surface 11: Microwave pulse control unit 12: Microwave oscillator 13: Microwave power source 14: Electrode 15: DC power source 17: Isolator 18: Tuner 19: Waveguide 20: Voltage application unit 21: Coaxial waveguide 22: Introduction member 24: Insulating member 30: Sheath expansion electrode 41: Contact surface 42: Insulating portion 43: Through hole 44: Inner peripheral surface 45: Inner flange portion 46: Outer flange portion 47: Cavity

Claims (7)

導電性を有する被加工材料を収容する処理容器と、
前記処理容器にガスを供給するガス供給部と、
前記被加工材料の周囲に設け、且つマイクロ波を導入する導入部材と、
前記被加工材料の処理表面に沿ってプラズマを発生させるための前記マイクロ波を前記導入部材から前記被加工材料へ供給するマイクロ波供給部と、
前記導入部材の周囲に配置されたシース拡大電極と、
前記被加工材料の前記処理表面に沿うシース層を拡大させる正のバイアス電圧を前記シース拡大電極へ印加する電圧印加部と、
前記被加工材料を前記電圧印加部の接地電位と同電位に電気的に接続する接地部材と、
前記シース拡大電極と前記処理容器との間に配置され、前記シース拡大電極と前記処理容器とを電気的に絶縁する絶縁部材と、
前記被加工材料とは電気的に絶縁した位置に配置され、前記絶縁部材と当接する当接面と、前記当接面から前記絶縁部材から離れる側に延びる絶縁部とを有する漏洩抑制部材と
を備えることを特徴とする成膜装置。
A processing vessel for accommodating a conductive workpiece;
a gas supply unit for supplying a gas to the processing vessel;
An introduction member that is provided around the workpiece and introduces microwaves;
a microwave supply unit that supplies the microwaves from the introduction member to the workpiece to generate plasma along a treatment surface of the workpiece;
a sheath expansion electrode disposed around the introduction member;
a voltage application unit that applies a positive bias voltage to the sheath expansion electrode to expand a sheath layer along the processing surface of the workpiece;
a grounding member that electrically connects the workpiece to the same potential as the ground potential of the voltage application unit;
an insulating member disposed between the sheath expansion electrode and the processing vessel, electrically insulating the sheath expansion electrode from the processing vessel;
A film forming apparatus comprising: a leakage suppression member that is arranged in a position electrically insulated from the workpiece, and that has an abutment surface that abuts against the insulating member, and an insulating portion that extends from the abutment surface away from the insulating member.
前記絶縁部は、前記当接面において、前記被加工材料を囲む環状に形成されていることを特徴とする請求項1に記載の成膜装置。 The film forming apparatus according to claim 1, characterized in that the insulating portion is formed in a ring shape on the contact surface so as to surround the workpiece material. 前記絶縁部の前記当接面に垂直な方向における第一長さは、前記マイクロ波の波長又は前記マイクロ波の波長の偶数倍の長さの1/4である第二長さの±1mmの範囲の長さであることを特徴とする請求項2に記載の成膜装置。 The deposition apparatus according to claim 2, characterized in that the first length of the insulating part in the direction perpendicular to the contact surface is within a range of ±1 mm of the second length, which is 1/4 of the wavelength of the microwave or an even multiple of the wavelength of the microwave. 前記漏洩抑制部材の前記当接面の外径の1/2が30mm以上、且つ前記処理容器から離隔して配置される長さであることを特徴とする請求項2又は3に記載の成膜装置。 The film forming apparatus according to claim 2 or 3, characterized in that 1/2 of the outer diameter of the contact surface of the leakage suppression member is 30 mm or more, and the length of the member is such that the member is disposed away from the processing vessel. 前記絶縁部は、前記当接面から前記絶縁部材から離れる側に延びる凹部であり、
前記漏洩抑制部材には、前記絶縁部と、前記処理容器内の空間とを連通する貫通孔が形成されていることを特徴とする請求項1又は2に記載の成膜装置。
the insulating portion is a recess extending from the contact surface toward a side away from the insulating member,
3. The film forming apparatus according to claim 1, wherein the leakage suppression member has a through hole formed therein, the through hole communicating the insulating portion with a space within the processing chamber.
前記漏洩抑制部材の前記当接面には、外径が互いに異なる複数の前記絶縁部が形成されていることを特徴とする請求項2に記載の成膜装置。 The film forming apparatus according to claim 2, characterized in that a plurality of insulating parts having different outer diameters are formed on the contact surface of the leakage suppression member. 前記絶縁部材の外径は、前記漏洩抑制部材の前記当接面の外径よりも大きいことを特徴とする請求項1又は2に記載の成膜装置。 The film forming apparatus according to claim 1 or 2, characterized in that the outer diameter of the insulating member is larger than the outer diameter of the contact surface of the leakage suppression member.
JP2022176925A 2022-11-04 2022-11-04 Film forming equipment Pending JP2024067093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022176925A JP2024067093A (en) 2022-11-04 2022-11-04 Film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022176925A JP2024067093A (en) 2022-11-04 2022-11-04 Film forming equipment

Publications (1)

Publication Number Publication Date
JP2024067093A true JP2024067093A (en) 2024-05-17

Family

ID=91068245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022176925A Pending JP2024067093A (en) 2022-11-04 2022-11-04 Film forming equipment

Country Status (1)

Country Link
JP (1) JP2024067093A (en)

Similar Documents

Publication Publication Date Title
KR100498584B1 (en) Plasma Treatment Equipment and Plasma Treatment Methods
TWI506668B (en) Plasma processing device and plasma processing method
TWI643236B (en) Plasma processing device
JP5454467B2 (en) Plasma etching processing apparatus and plasma etching processing method
EP1758149A1 (en) Microwave plasma generating apparatus
JP2002170824A (en) Plasma-processing apparatus
KR102111206B1 (en) Plasma probe device and plasma processing apparatus
KR19980070654A (en) Plasma processing equipment
JP5073545B2 (en) Plasma processing apparatus and plasma processing method
JP3889280B2 (en) Plasma processing equipment
JP2002246372A (en) Plasma apparatus and the manufacturing method therefor
JP2024067093A (en) Film forming equipment
CN111383893B (en) Plasma processor and plasma control method
JP4672169B2 (en) Plasma processing equipment
JP6081842B2 (en) Deposition equipment
KR100449524B1 (en) Plasma processing method and apparatus thereof
US20180374680A1 (en) Plasma processing apparatus
JP2000073175A (en) Surface treating device
US10312057B2 (en) Plasma processing apparatus
CN112687510B (en) Plasma processor and method for preventing arc damage of confinement rings
KR20020089172A (en) Inductively coupled plasma treatment apparatus
KR100952854B1 (en) Plasma generator for manufacturing large-size LCD substrates
WO2020116257A1 (en) Plasma processing device and plasma processing method
JP2023130168A (en) Film deposition apparatus
JP3247491B2 (en) Plasma processing equipment