JP2024065463A - Battery cooling heat sink - Google Patents

Battery cooling heat sink Download PDF

Info

Publication number
JP2024065463A
JP2024065463A JP2022174331A JP2022174331A JP2024065463A JP 2024065463 A JP2024065463 A JP 2024065463A JP 2022174331 A JP2022174331 A JP 2022174331A JP 2022174331 A JP2022174331 A JP 2022174331A JP 2024065463 A JP2024065463 A JP 2024065463A
Authority
JP
Japan
Prior art keywords
cooling
battery
partition plate
cooling fluid
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022174331A
Other languages
Japanese (ja)
Inventor
友晶 深尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2022174331A priority Critical patent/JP2024065463A/en
Publication of JP2024065463A publication Critical patent/JP2024065463A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】複数の電池の冷却を行う場合においても、各電池が均一な温度を維持し得る電池冷却用ヒートシンクを構成する。【解決手段】流入部から冷却流体Lが供給されることにより、電池Bに接触する熱交換壁21を介して電池Bの熱を奪う冷却本体部2と、冷却本体部2に供給された冷却流体Lを排出する排出部とを有し、冷却本体部2が、熱交換壁21の内面側で、冷却流体の流動方向に直交する幅方向の領域を複数に分割することにより複数の冷却流路Fを形成する仕切板25を備え、冷却本体部2が、仕切板25を挟んで隣り合う冷却流路Fの間での冷却流体のリークを許容するリーク許容部Cを有している。【選択図】図3[Problem] To configure a battery cooling heat sink that can maintain a uniform temperature for each battery even when cooling multiple batteries. [Solution] The heat sink has a cooling main body 2 that removes heat from the battery B via a heat exchange wall 21 that contacts the battery B when a cooling fluid L is supplied from an inlet, and a discharge section that discharges the cooling fluid L supplied to the cooling main body 2, the cooling main body 2 has a partition plate 25 that forms multiple cooling flow paths F by dividing an area in the width direction perpendicular to the flow direction of the cooling fluid into multiple parts on the inner surface side of the heat exchange wall 21, and the cooling main body 2 has a leak allowance section C that allows leakage of the cooling fluid between adjacent cooling flow paths F with the partition plate 25 in between. [Selected Figure] Figure 3

Description

本発明は、電池冷却用ヒートシンクに関する。 The present invention relates to a heat sink for cooling batteries.

電池冷却用ヒートシンクとして、箱状の二次電池モジュールの内部に複数の単電池を所定の間隔で配置し、二次電池モジュールに接触する冷却機構の内部に冷媒を流すことにより、二次電池モジュールの内部の複数の単電池の冷却を可能にする構成が特許文献1に記載されている。 Patent document 1 describes a configuration that uses a battery cooling heat sink in which multiple single cells are arranged at a predetermined interval inside a box-shaped secondary battery module, and a refrigerant is passed through the inside of a cooling mechanism that contacts the secondary battery module, making it possible to cool the multiple single cells inside the secondary battery module.

この特許文献1には、冷却機構の内部に平行する複数の経路が形成され、隣り合う経路に対して互いに逆方向に冷媒を流すことにより、二次電池モジュール内の温度分布の均一化を可能にする構成が記載されている(図2A、図2Bを参照)。 This patent document describes a configuration in which multiple parallel paths are formed inside the cooling mechanism, and refrigerant flows in opposite directions through adjacent paths, making it possible to equalize the temperature distribution within the secondary battery module (see Figures 2A and 2B).

特開2015-82353号公報JP 2015-82353 A

電池を冷却するため、例えば、電池に接触する状態で配置したケース状の冷却機構が、内部に冷却流体を流す単純なダクト状のヒートシンクであれば、特許文献1の課題として記載されるように冷媒の流れの上流側と比較して、下流側では冷却性能が低下することになり、下流側で必要とする冷却を十分に行えない。 For example, if a case-shaped cooling mechanism placed in contact with the battery to cool the battery is a simple duct-shaped heat sink with a cooling fluid flowing inside, as described as an issue in Patent Document 1, the cooling performance will be reduced downstream compared to the upstream side of the refrigerant flow, and the required cooling cannot be performed sufficiently downstream.

このような課題に対し、特許文献1に記載されるようにヒートシンクの内部に互いに平行となる複数の流路(文献では経路)を形成し、隣り合う流路に対し互いに逆方向に冷媒を流している。しかしながら、隣り合う流路に対し冷媒を互いに逆方向に流す構成であっても、ヒートシンクのうち電池毎に接触する領域の温度分布が一定でなく、電池の熱を均一に奪えないことが懸念される。 To address this issue, as described in Patent Document 1, multiple parallel flow paths (called paths in the document) are formed inside the heat sink, and the refrigerant flows in opposite directions through adjacent flow paths. However, even with a configuration in which the refrigerant flows in opposite directions through adjacent flow paths, there is a concern that the temperature distribution in the areas of the heat sink that come into contact with each battery is not constant, and heat from the batteries cannot be removed evenly.

このような理由から、複数の電池の冷却を行う場合において、各電池が均一な温度を維持し得る電池冷却用ヒートシンクが求められる。 For these reasons, when cooling multiple batteries, a heat sink for cooling batteries is required that can maintain each battery at a uniform temperature.

本発明に係る電池冷却用ヒートシンクの特徴構成は、冷却流体が流入する流入部と、前記流入部から前記冷却流体が供給されることにより、電池の熱を奪う冷却本体部と、当該冷却本体部に供給された前記冷却流体を排出する排出部とを有し、前記冷却本体部が、前記冷却流体の流動方向に直交する幅方向の領域を複数に分割することにより複数の冷却流路を形成する仕切板を備え、前記冷却本体部が、前記仕切板を挟んで隣り合う前記冷却流路の間での前記冷却流体のリークを許容するリーク許容部を有している点にある。 The characteristic configuration of the heat sink for cooling a battery according to the present invention is that it has an inlet section into which a cooling fluid flows, a cooling main body section that removes heat from the battery by supplying the cooling fluid from the inlet section, and a discharge section that discharges the cooling fluid supplied to the cooling main body section, the cooling main body section has a partition plate that forms a plurality of cooling flow paths by dividing a region in a width direction perpendicular to the flow direction of the cooling fluid into a plurality of parts, and the cooling main body section has a leak tolerance section that allows the cooling fluid to leak between the cooling flow paths adjacent to each other across the partition plate.

例えば、複数の冷却流路の夫々の流路断面積を等しくしても、夫々の冷却流路に仕切板があり、通常、仕切板部分に冷却流体が流れないため、各電池の幅方向(長手方向)において電池から奪う熱量にバラツキが生じる。また、複数の電池を冷却する場合に、冷却本体部の外面に近接する複数の電池の位置関係によっては、複数の冷却流路の夫々に流れる冷却流体が電池から奪う熱量が異なることもある。このように複数の冷却流路に流れる冷却流体の温度に差異を生じた場合には、冷却本体部の外面の温度分布が不均一となり、電池の熱を均一に奪うことが困難になるものであった。 For example, even if the cross-sectional area of each of the multiple cooling flow paths is equal, there is a partition plate in each cooling flow path, and cooling fluid does not usually flow through the partition plate portion, so there is variation in the amount of heat removed from the battery in the width direction (longitudinal direction) of each battery. Furthermore, when cooling multiple batteries, the amount of heat removed from the batteries by the cooling fluid flowing through each of the multiple cooling flow paths may differ depending on the relative positions of the multiple batteries close to the outer surface of the cooling main body. When differences in the temperature of the cooling fluid flowing through the multiple cooling flow paths occur in this way, the temperature distribution on the outer surface of the cooling main body becomes uneven, making it difficult to remove heat from the batteries evenly.

これに対し、本構成では隣り合う冷却流路の間で冷却流体の一部のリークを可能にするリーク許容部を有しているため、隣り合う冷却流路に流れる冷却流体の温度が異なる場合でも、冷却流体のリークにより温度差を小さくして、電池に接触するヒートシンクの外面の温度を均一に低下させて電池の熱を奪うことが可能となる。また、リーク許容部により仕切板部分に冷却流体が流れるため、各電池の幅方向において電池から奪う熱量を均一にできる。従って、複数の電池の冷却を行う場合でも、各電池が均一な温度を維持し得る電池冷却用ヒートシンクが構成された。 In contrast, this configuration has a leak-permitting portion that allows some of the cooling fluid to leak between adjacent cooling flow paths, so even if the temperatures of the cooling fluid flowing through adjacent cooling flow paths are different, the temperature difference can be reduced by the leakage of the cooling fluid, and the temperature of the outer surface of the heat sink in contact with the batteries can be uniformly reduced, making it possible to remove heat from the batteries. In addition, because the leak-permitting portion allows the cooling fluid to flow through the partition plate portion, the amount of heat removed from the batteries can be uniform across the width of each battery. Therefore, a battery cooling heat sink has been configured that can maintain each battery at a uniform temperature even when cooling multiple batteries.

他の構成として、前記冷却本体部は、前記仕切板で区画された複数の前記冷却流路において同じ方向に前記冷却流体が流れても良い。 As another configuration, the cooling body may have the cooling fluid flow in the same direction in multiple cooling flow paths partitioned by the partition plate.

これによると、複数の冷却流路に冷却流体を同じ方向に流すため、構造を単純化するだけでなく、複数の冷却流路に冷却流体を直線的に流すことから冷却流体の熱交換効率を高めて冷却性能を向上することができる。 This allows the cooling fluid to flow in the same direction through multiple cooling flow paths, which not only simplifies the structure, but also increases the heat exchange efficiency of the cooling fluid by flowing it linearly through multiple cooling flow paths, thereby improving cooling performance.

他の構成として、複数の前記仕切板の板厚は、前記冷却流路の上流側より下流側が薄く形成されており、複数の前記冷却流路が並ぶ並列方向で、前記冷却流路の上流側の流路幅より、下流側の流路幅が広く設定されても良い。 As another configuration, the thickness of the partition plates may be thinner downstream of the cooling flow passage than upstream, and the width of the downstream side of the cooling flow passage may be wider than the width of the upstream side of the cooling flow passage in the parallel direction in which the cooling flow passages are arranged.

これによると、冷却流路が上流側で電池の熱を奪う熱交換面積より、冷却流路が下流側で電池の熱を奪う熱交換面積を大きくできる。このような理由から、冷却流体が上流側から下流側に流れた場合に、上流側では冷却流体が電池から奪う熱量を抑制し、冷却流体の温度を大きく上昇させることがない。また、冷却流体が上流側から下流側に達した場合に、下流側では上流側より広い熱交換面で電池から熱を奪えるため、上流側と下流側とにおける冷却流体の温度差を小さくして各電池温度の均一化も可能となる。 This allows the heat exchange area where the cooling flow path removes heat from the battery on the downstream side to be larger than the heat exchange area where the cooling flow path removes heat from the battery on the upstream side. For this reason, when the cooling fluid flows from the upstream side to the downstream side, the amount of heat that the cooling fluid removes from the battery on the upstream side is suppressed, and the temperature of the cooling fluid does not rise significantly. Also, when the cooling fluid reaches from the upstream side to the downstream side, the downstream side can remove heat from the battery over a larger heat exchange surface than the upstream side, which reduces the temperature difference of the cooling fluid between the upstream and downstream sides and makes it possible to equalize the temperature of each battery.

他の構成として、前記冷却本体部は、前記電池に隣接する熱交換壁と、当該熱交換壁に対向する位置の底壁とを有し、前記仕切板は、前記熱交換壁と前記底壁との間に対応する板丈方向の一端が、前記底壁の内面に隙間なく連結固定され、前記仕切板の前記板丈方向の他端が前記リーク許容部として前記熱交換壁の内面に間隙を作る形態で支持されても良い。 As another configuration, the cooling body may have a heat exchange wall adjacent to the battery and a bottom wall facing the heat exchange wall, and the partition plate may be supported in such a manner that one end of the partition plate in the plate height direction corresponding to the space between the heat exchange wall and the bottom wall is connected and fixed to the inner surface of the bottom wall without any gaps, and the other end of the partition plate in the plate height direction forms a gap on the inner surface of the heat exchange wall as the leak-permitting portion.

これによると、仕切板の板丈方向の一端の底壁側の固定箇所において隣接する冷却流路に冷却流体がリークすることはなく、仕切板の板丈方向の他端の熱交換壁側におけるリーク許容部として形成される間隙において、隣接する冷却流路に熱媒のリークが許される。この構成では、電池が隣接する熱交換壁の内面における夫々の冷却流路間で冷却流体がリークされることにより、仕切板を挟んで隣接する位置関係にある冷却流路の温度差を小さくして熱交換壁の温度分布の均一化が可能となる。 With this, the cooling fluid does not leak into the adjacent cooling flow passage at the fixed portion on the bottom wall side of one end of the partition plate in the plate height direction, but the heat medium is allowed to leak into the adjacent cooling flow passage in the gap formed as a leak-permitting portion on the heat exchange wall side of the other end of the partition plate in the plate height direction. In this configuration, the cooling fluid leaks between the respective cooling flow passages on the inner surface of the heat exchange wall adjacent to the battery, thereby reducing the temperature difference between the cooling flow passages adjacent to each other across the partition plate, making it possible to uniform the temperature distribution of the heat exchange wall.

他の構成として、前記仕切板の前記板丈方向での前記一端が溶接により前記底壁に固定され、前記仕切板の前記他端が前記熱交換壁に形成された凹部の内部に配置されても良い。 As another configuration, one end of the partition plate in the plate height direction may be fixed to the bottom wall by welding, and the other end of the partition plate may be disposed inside a recess formed in the heat exchange wall.

これによると、仕切板の板丈方向の一端が底壁に強固に固定され、仕切板の板丈方向の他端が熱交換壁の凹部の内部との間で冷却流体のリークを可能にする。この構成では、仕切板の板丈方向の一端だけが溶接固定されるため、溶接箇所を少なくして製造コストの低減が可能となる。 With this, one end of the partition plate in the plate height direction is firmly fixed to the bottom wall, and the other end of the partition plate in the plate height direction allows leakage of cooling fluid between the inside of the recess in the heat exchange wall. With this configuration, only one end of the partition plate in the plate height direction is welded and fixed, which reduces the number of welding points and reduces manufacturing costs.

電池冷却用ヒートシンクの全体図である。FIG. 2 is an overall view of a heat sink for cooling a battery. 流入部、冷却本体部、排出部の構成を示す断面図である。4 is a cross-sectional view showing the configuration of an inlet portion, a cooling main body portion, and an outlet portion. FIG. 冷却本体部と仕切板との位置関係を示す断面図である。4 is a cross-sectional view showing the positional relationship between a cooling main body and a partition plate. FIG. 仕切板の延出端部とリーク許容部との位置関係を示す拡大断面図である。5 is an enlarged cross-sectional view showing the positional relationship between an extended end portion of a partition plate and a leak allowance portion. FIG. 仕切板の板厚を示す断面図である。FIG. 4 is a cross-sectional view showing the plate thickness of a partition plate. 別実施形態(a)のリーク許容部の構成を示す断面図である。FIG. 11 is a cross-sectional view showing the configuration of a leak allowing portion according to another embodiment (a). 別実施形態(b)のリーク許容部の構成を示す断面図である。13 is a cross-sectional view showing the configuration of a leak allowance portion of another embodiment (b). FIG.

以下、本発明の実施形態を図面に基づいて説明する。
〔基本構成〕
図1、図2に示すように、冷却流体Lが流入する筒状の流入部1と、流入部1から冷却流体Lが供給されるダクト状の冷却本体部2と、冷却本体部2に供給された冷却流体Lを排出する筒状の排出部3とを有し、流入部1に冷却流体Lを供給する冷却流体ポンプ4と、排出部3から排出された冷却流体Lを放熱する放熱部5とを有する電池冷却用ヒートシンクAが構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[Basic configuration]
As shown in Figures 1 and 2, a battery cooling heat sink A is configured to have a cylindrical inlet section 1 into which cooling fluid L flows, a duct-shaped cooling main body section 2 to which the cooling fluid L is supplied from the inlet section 1, and a cylindrical outlet section 3 from which the cooling fluid L supplied to the cooling main body section 2 is discharged, and also has a cooling fluid pump 4 which supplies the cooling fluid L to the inlet section 1, and a heat dissipation section 5 which dissipates heat from the cooling fluid L discharged from the outlet section 3.

電池冷却用ヒートシンクAは、冷却流体ポンプ4の駆動により、冷却流体Lを複数(図2では4つ)の電池Bの並び方向に沿って循環させて電池Bの熱を奪い、電池Bの温度上昇を抑制する。冷却本体部2は、電池Bの所定の面に対し伝熱シート20を挟み込む状態で近接配置される熱交換壁21を有している。尚、伝熱シート20は、良好な熱伝導が可能で柔軟に変形し得る樹脂材料が用いられ、電池Bの所定の面と熱交換壁21の外面とに密着することで良好な熱伝導を実現する。尚、複数の電池Bの数量は特に限定されず、電池冷却用ヒートシンクAの冷却性能に応じて適宜設定される。 The battery cooling heat sink A circulates the cooling fluid L along the arrangement direction of multiple batteries B (four in FIG. 2) by driving the cooling fluid pump 4, removing heat from the batteries B and suppressing the temperature rise of the batteries B. The cooling main body 2 has a heat exchange wall 21 that is placed close to a specific surface of the battery B in a state in which a heat transfer sheet 20 is sandwiched between the battery B. The heat transfer sheet 20 is made of a resin material that has good thermal conductivity and can be flexibly deformed, and achieves good thermal conduction by being in close contact with the specific surface of the battery B and the outer surface of the heat exchange wall 21. The number of multiple batteries B is not particularly limited, and is set appropriately according to the cooling performance of the battery cooling heat sink A.

この電池冷却用ヒートシンクAでは、冷却流体Lとして、エチレングリコールや、プロピレングリコール等を含むロングライフクーラント(LLC)等の冷却水、パラフィン系等の絶縁油、又はハイドロフルオロカーボン(HFC)やハイドロフルオロオレフィン(HFO)等の冷媒が用いられる。 In this battery cooling heat sink A, the cooling fluid L is a cooling water such as long-life coolant (LLC) containing ethylene glycol or propylene glycol, insulating oil such as paraffin, or a refrigerant such as hydrofluorocarbon (HFC) or hydrofluoroolefin (HFO).

電池冷却用ヒートシンクAは、電池Bから供給される電力によって走行するEV車において、電池Bの熱を奪い電池Bの温度上昇を抑制する。電池Bは、リチウムイオン電池のように充電が可能な二次電池の利用が想定されている。 The battery cooling heat sink A, in an EV vehicle that runs on power supplied from battery B, removes heat from battery B and suppresses the rise in temperature of battery B. It is assumed that battery B will be a rechargeable secondary battery such as a lithium-ion battery.

〔冷却本体部〕
図3に示すように、冷却本体部2は、断面形状が矩形のダクト状に形成されている。この冷却本体部2は、電池Bの外面に近接する熱交換壁21と、これに対向する位置に配置された底壁22と、底壁22と一体形成された一対の側壁23とを備え、内部には、内部空間を複数の冷却流路Fに分割する複数の仕切板25を備えている。熱交換壁21と、底壁22と、側壁23と、仕切板25とは、アルミニウム材が用いられている。
[Cooling main body]
3, the cooling body 2 is formed into a duct shape having a rectangular cross section. The cooling body 2 includes a heat exchange wall 21 adjacent to the outer surface of the battery B, a bottom wall 22 disposed opposite the heat exchange wall 21, and a pair of side walls 23 integrally formed with the bottom wall 22. The cooling body 2 includes a plurality of partition plates 25 inside the cooling body 22 that divide the internal space into a plurality of cooling flow paths F. The heat exchange wall 21, the bottom wall 22, the side walls 23, and the partition plates 25 are made of aluminum.

この冷却本体部2は、図3に示される横方向を幅方向(冷却流体Lの流動方向に直交する方向)と称し、図3に示される上下方向を丈方向と称することもある。また、冷却本体部2の丈方向に沿う仕切板25の板丈方向と称し、図3に示す方向視で冷却本体部2の幅方向に沿う仕切板25の厚みを、板厚と称することもある。 The horizontal direction of the cooling body 2 shown in FIG. 3 is sometimes referred to as the width direction (the direction perpendicular to the flow direction of the cooling fluid L), and the vertical direction shown in FIG. 3 is sometimes referred to as the height direction. Also, the partition plate 25 along the height direction of the cooling body 2 is sometimes referred to as the plate height direction, and the thickness of the partition plate 25 along the width direction of the cooling body 2 when viewed in the direction shown in FIG. 3 is sometimes referred to as the plate thickness.

このように複数の仕切板25で冷却本体部2の内部空間を区画することにより、図2、図3に示すように複数の冷却流路Fが形成され、複数の冷却流路Fでは、流入部1から供給される冷却流体Lが図2に矢印で示す方向に流れる。 By dividing the internal space of the cooling body 2 with multiple partition plates 25 in this manner, multiple cooling flow paths F are formed as shown in Figures 2 and 3, and the cooling fluid L supplied from the inlet 1 flows in the direction shown by the arrows in Figure 2 in the multiple cooling flow paths F.

図5に示すように、複数の仕切板25は、冷却流体Lの流れの上流側の端部となる上流端板厚T1が、下流側の端部となる下流端板厚T2より厚く設定されている(図2も参照)。これにより、仕切板25は、板厚方向で全体的にテーパ状に形成され、図2、図5に示すように複数の冷却流路Fの流路幅が下流側ほど広くなる。尚、仕切板25をテーパ状に形成する代わりに、仕切板25に段差を設けて上流端板厚T1を下流端板厚T2より厚く設定しても良い。 As shown in FIG. 5, the multiple partition plates 25 are set so that the upstream end plate thickness T1, which is the end on the upstream side of the flow of the cooling fluid L, is thicker than the downstream end plate thickness T2, which is the end on the downstream side (see also FIG. 2). As a result, the partition plates 25 are formed in a tapered shape overall in the plate thickness direction, and as shown in FIGS. 2 and 5, the flow path width of the multiple cooling flow paths F becomes wider toward the downstream side. Note that instead of forming the partition plates 25 in a tapered shape, a step may be provided in the partition plates 25 to set the upstream end plate thickness T1 thicker than the downstream end plate thickness T2.

図3に示すように、熱交換壁21は平坦なプレート状であり、この熱交換壁21の幅方向での端部を一対の側壁23の端部にレーザ溶接等の技術で溶接固定することで筒状に形成されている。 As shown in FIG. 3, the heat exchange wall 21 is a flat plate, and is formed into a cylindrical shape by welding the ends of the heat exchange wall 21 in the width direction to the ends of a pair of side walls 23 using a technique such as laser welding.

また、仕切板25は、板丈方向で底壁22に対向する基端部を底壁22に当接させた状態でレーザ溶接等の技術で溶接固定されている。また、図3、図4に示すように仕切板25の板丈方向で熱交換壁21に対向する延出端部25aが熱交換壁21の内面側(電池Bと反対側)に形成された凹部21gの内部に配置されている。尚、凹部21gを形成せずに、延出端部25aを自由端として、仕切板25と熱交換壁21の内面側との間に僅かな間隙を形成しても良い。また、熱交換壁21の内面側のうち、下流側のみに凹部21gを設け、上流側には仕切板25との間に間隙を設けない構成としても良い。仕切板25と熱交換壁21の内面側との間に間隙を設ける領域は、少なくとも熱交換壁21の中央より下流側であることが好ましい。 The partition plate 25 is welded and fixed by a technique such as laser welding with the base end facing the bottom wall 22 in the plate height direction in contact with the bottom wall 22. As shown in Figs. 3 and 4, the extension end 25a facing the heat exchange wall 21 in the plate height direction of the partition plate 25 is disposed inside the recess 21g formed on the inner surface side (opposite the battery B) of the heat exchange wall 21. It is also possible to form a small gap between the partition plate 25 and the inner surface side of the heat exchange wall 21 without forming the recess 21g, with the extension end 25a as a free end. It is also possible to provide the recess 21g only on the downstream side of the inner surface side of the heat exchange wall 21, and not provide a gap between the partition plate 25 and the inner surface side of the heat exchange wall 21 on the upstream side. It is preferable that the area where the gap is provided between the partition plate 25 and the inner surface side of the heat exchange wall 21 is at least downstream of the center of the heat exchange wall 21.

このように、仕切板25の延出端部25aを凹部21gの内部に配置することにより、仕切板25を挟んで隣り合う位置の冷却流路Fの間で冷却流体Lのリークを可能にするリーク許容部Cが構成されている。 In this way, by arranging the extended end portion 25a of the partition plate 25 inside the recess 21g, a leak-permitting portion C is formed that allows the cooling fluid L to leak between the cooling flow paths F located adjacent to each other across the partition plate 25.

リーク許容部Cの具体的な構成として、熱交換壁21の内面側のうち、仕切板25に対応する位置に、冷却流体Lの流動方向に沿って一対のガイド部21aが形成され、これら一対のガイド部21aの間に溝状の凹部21gが形成される。特に、リーク許容部Cにおいて、仕切板25の延出端部25aは、一対のガイド部21aと、熱交換壁21の内面側との夫々の間に間隙を形成する位置に配置されている。尚、凹部21gは、熱交換壁21の内面側に溝を形成する加工により形成されても良い。 As a specific configuration of the leak-permitting portion C, a pair of guide portions 21a are formed along the flow direction of the cooling fluid L at a position on the inner surface side of the heat exchange wall 21 corresponding to the partition plate 25, and a groove-shaped recess 21g is formed between the pair of guide portions 21a. In particular, in the leak-permitting portion C, the extending end portion 25a of the partition plate 25 is arranged at a position that forms a gap between each of the pair of guide portions 21a and the inner surface side of the heat exchange wall 21. The recess 21g may be formed by processing to form a groove on the inner surface side of the heat exchange wall 21.

これにより、仕切板25と底壁22との溶接箇所では隣り合う冷却流路Fの間で冷却流体Lが流れることはなく、仕切板25のうち板丈方向で熱交換壁21に対向する延出端部25aと、凹部21gとの間隙において冷却流体Lのリークが許容される。 As a result, the cooling fluid L does not flow between adjacent cooling flow paths F at the welded points between the partition plate 25 and the bottom wall 22, and leakage of the cooling fluid L is permitted in the gap between the extension end 25a of the partition plate 25 that faces the heat exchange wall 21 in the plate height direction and the recess 21g.

〔実施形態の作用効果〕
このような構成から、複数の冷却流路Fにおいて同じ方向で、直線的に冷却流体Lが流れることにより、冷却流体Lの流速を高速化し、冷却流体Lによる熱交換効率を高めて、電池Bの熱を効率的に奪うことが可能となる。また、冷却流体Lが複数の冷却流路Fに沿って平行に流れるため、例えば、側壁23の近傍において冷却流体Lが滞留する不都合を抑制して電池Bの熱を均一に奪うことが可能となる。
[Effects of the embodiment]
With this configuration, the cooling fluid L flows linearly in the same direction in the multiple cooling flow paths F, thereby accelerating the flow rate of the cooling fluid L and improving the heat exchange efficiency of the cooling fluid L, thereby making it possible to efficiently remove heat from the battery B. In addition, since the cooling fluid L flows in parallel along the multiple cooling flow paths F, it is possible to suppress, for example, the inconvenience of the cooling fluid L stagnation near the side wall 23, and to uniformly remove heat from the battery B.

仕切板25を挟んで隣り合う冷却流路Fの間で、リーク許容部Cが冷却流体Lの一部のリークを許容するため、隣り合う冷却流路Fに流れる冷却流体Lの温度が異なる場合でも、冷却流体Lがリークすることにより隣り合う冷却流路Fに流れる冷却流体Lの温度差を小さくして、熱交換壁21の外面の幅方向に接触する電池Bの熱を更に均一に奪うことが可能となる。 Because the leak-permitting portion C allows some of the cooling fluid L to leak between adjacent cooling flow paths F separated by the partition plate 25, even if the temperatures of the cooling fluid L flowing through adjacent cooling flow paths F are different, the temperature difference between the cooling fluid L flowing through adjacent cooling flow paths F is reduced by the leakage of the cooling fluid L, making it possible to more uniformly remove heat from the batteries B that are in contact with the outer surface of the heat exchange wall 21 in the width direction.

また、仕切板25の板丈方向の一端が底壁22に溶接固定されており、板丈方向の一端が溶接されていないため、製造コストを低減できる。 In addition, one end of the partition plate 25 in the plate height direction is welded to the bottom wall 22, and the other end in the plate height direction is not welded, which reduces manufacturing costs.

リーク許容部Cは、熱交換壁21の内面と、仕切板25の延出端部25aとの間に間隙を作り出すものである。そのため、一対のガイド部21aの間の溝状の凹部21g内に仕切板25の延出端部25aを配置しており、仕切板25の位置ズレを抑制しつつ、冷却流体Lが隣接する冷却流路Fの間で積極的にリークさせることも可能にする。 The leak-permitting portion C creates a gap between the inner surface of the heat exchange wall 21 and the extending end 25a of the partition plate 25. For this reason, the extending end 25a of the partition plate 25 is disposed in a groove-shaped recess 21g between a pair of guide portions 21a, which suppresses misalignment of the partition plate 25 while also allowing the cooling fluid L to actively leak between adjacent cooling flow paths F.

更に、複数の仕切板25は、冷却流体Lの流れの上流側の端部となる上流端板厚T1を、下流側の端部となる下流端板厚T2より厚く設定している。これにより、複数の冷却流路Fの流路幅が、上流側より下流側で広くなり、複数の冷却流路Fの夫々の上流側で電池Bの熱を奪う熱交換面積より、冷却流路Fの下流側で電池Bの熱を奪う熱交換面積を広くする。 Furthermore, the upstream end plate thickness T1 of the multiple partition plates 25, which is the upstream end of the flow of the cooling fluid L, is set to be thicker than the downstream end plate thickness T2, which is the downstream end. As a result, the flow path width of the multiple cooling flow paths F is wider downstream than upstream, and the heat exchange area that removes heat from the battery B downstream of the cooling flow paths F is wider than the heat exchange area that removes heat from the battery B upstream of each of the multiple cooling flow paths F.

従って、冷却流体Lが上流側から下流側に流れた場合に、上流側では冷却流体Lが電池Bから奪う熱量を抑制し、熱交換壁21の内面に接触して流れる冷却流体Lの温度を大きく上昇させることがない。また、冷却流体Lが上流側から下流側に達した場合に、下流側では上流側より広い熱交換面で電池Bから熱を奪えるため、熱交換壁21の上流側と下流側とにおける電池Bの温度差を小さくして各電池Bの温度の均一化も可能になる。 Therefore, when the cooling fluid L flows from the upstream side to the downstream side, the amount of heat that the cooling fluid L removes from the battery B is suppressed on the upstream side, and the temperature of the cooling fluid L that flows in contact with the inner surface of the heat exchange wall 21 is not significantly increased. In addition, when the cooling fluid L reaches the downstream side from the upstream side, the downstream side can remove heat from the battery B with a wider heat exchange surface than the upstream side, so the temperature difference between the battery B on the upstream and downstream sides of the heat exchange wall 21 is reduced, making it possible to equalize the temperature of each battery B.

〔別実施形態〕
本発明は、上記した実施形態以外に以下のように構成しても良い(実施形態と同じ機能を有するものには、実施形態と共通の番号、符号を付している)。
[Another embodiment]
The present invention may be configured as follows in addition to the above-described embodiment (common numbers and symbols as in the embodiment are used to designate components having the same functions as in the embodiment).

(a)リーク許容部Cの構成として、図6に示すように、冷却流体Lの流動方向の下流側ほど、板丈方向で熱交換壁21に近接する端部(延出端部25a)と、熱交換壁21との間隔が拡大するように、仕切板25の延出端部25aを、この仕切板25の基端側(底壁22側)に近付くように傾斜させる。これにより、複数の冷却流路Fの下流側ほど、仕切板25を挟む位置の冷却流路Fの間で冷却流体Lのリーク量を増大させる。 (a) As shown in FIG. 6, the configuration of the leak-permitting portion C is such that the extending end 25a of the partition plate 25 is inclined toward the base end side (bottom wall 22 side) of the partition plate 25 so that the distance between the end (extending end 25a) closest to the heat exchange wall 21 in the plate height direction and the heat exchange wall 21 increases toward the downstream side in the flow direction of the cooling fluid L. This increases the amount of leakage of the cooling fluid L between the cooling flow paths F at the position sandwiching the partition plate 25 toward the downstream side of the multiple cooling flow paths F.

(b)リーク許容部Cの構成として、図7に示すように、冷却流体Lの流動方向の下流側において、熱交換壁21のガイド部21aの突出端(図7で下側)の一部を切り欠くことにより複数の切欠部21bを形成する。これにより、複数の冷却流路Fの下流側において、仕切板25を挟む位置の冷却流路Fの間で冷却流体Lのリーク量の増大を可能にする。 (b) As a configuration of the leak-permitting portion C, as shown in FIG. 7, a plurality of cutout portions 21b are formed by cutting out a part of the protruding end (lower side in FIG. 7) of the guide portion 21a of the heat exchange wall 21 on the downstream side in the flow direction of the cooling fluid L. This allows an increase in the amount of leakage of the cooling fluid L between the cooling flow paths F at a position sandwiching the partition plate 25 on the downstream side of the plurality of cooling flow paths F.

(c)リーク許容部Cの構成として、複数の冷却流路Fの下流側において、仕切板25の一部に貫通孔を形成する。これにより、複数の冷却流路Fの下流側において、仕切板25を挟む位置の冷却流路Fの間で冷却流体Lを、貫通孔を介してリークさせることが可能となる。尚、冷却流体Lの流動方向での下流側ほど貫通孔の孔径を拡大することも考えられる。 (c) As a configuration of the leak-permitting portion C, a through hole is formed in a part of the partition plate 25 on the downstream side of the multiple cooling flow paths F. This allows the cooling fluid L to leak through the through hole between the cooling flow paths F at a position sandwiching the partition plate 25 on the downstream side of the multiple cooling flow paths F. It is also possible to enlarge the diameter of the through hole the further downstream in the flow direction of the cooling fluid L.

冷却流路Fの下流側では、冷却流体Lの温度がある程度上昇した状況にあり、電池Bの熱を効率的に奪えないことも想定される。これに対し、別実施形態(a)、(b)、(c)のように冷却流路Fの下流側において仕切板25を挟む位置の冷却流路Fの間で冷却流体Lのリーク量を増大させることにより、例えば、一部の冷却流路Fに流れる冷却流体Lの温度が上昇する状況であっても、冷却流体Lの流動方向での下流側において熱交換壁21の幅方向での温度差を小さくし、効率的な冷却を可能にする。その結果、高温化しやすい冷却流路Fの下流側で冷却流体Lの熱交換効率を高めることができる。 It is assumed that the temperature of the cooling fluid L has risen to a certain degree downstream of the cooling flow path F, and the heat of the battery B cannot be efficiently removed. In contrast, by increasing the amount of leakage of the cooling fluid L between the cooling flow paths F at the position where the partition plate 25 is sandwiched downstream of the cooling flow path F as in the alternative embodiments (a), (b), and (c), for example, even in a situation where the temperature of the cooling fluid L flowing through some of the cooling flow paths F rises, the temperature difference in the width direction of the heat exchange wall 21 downstream in the flow direction of the cooling fluid L is reduced, enabling efficient cooling. As a result, the heat exchange efficiency of the cooling fluid L can be increased downstream of the cooling flow path F, which is prone to high temperatures.

(d)電池冷却用ヒートシンクAとして、流入部1と冷却本体部2と排出部3とを有する構成を複数備え、複数の冷却本体部2を電池Bの底面と、側面とに振り分けて配置することや、複数の冷却本体部2を電池Bの底面と、一対の側面との3箇所に配置することも可能である。 (d) The heat sink A for cooling a battery may have multiple configurations each having an inlet section 1, a cooling main body section 2, and an outlet section 3, and multiple cooling main body sections 2 may be distributed and arranged on the bottom and side surfaces of the battery B, or multiple cooling main body sections 2 may be arranged in three locations: on the bottom surface and a pair of side surfaces of the battery B.

(e)上述した実施形態では、熱交換壁21と仕切板25との間で間隙を設けたが、冷却本体部2の底壁22と仕切板25との間で間隙を設けても良い。この場合、熱交換壁21と仕切板25とがレーザ溶接等により溶接固定されることとなる。また、複数の冷却流路Fにおいて同じ方向で直線的に冷却流体Lが流れるように仕切板25を設けたが、複数の冷却流路Fが蛇行するように仕切板25を設けても良い。 (e) In the above-described embodiment, a gap is provided between the heat exchange wall 21 and the partition plate 25, but a gap may also be provided between the bottom wall 22 of the cooling main body 2 and the partition plate 25. In this case, the heat exchange wall 21 and the partition plate 25 are welded and fixed by laser welding or the like. Also, the partition plate 25 is provided so that the cooling fluid L flows linearly in the same direction in the multiple cooling flow paths F, but the partition plate 25 may be provided so that the multiple cooling flow paths F meander.

(f)冷却流体Lとして、ハイドロフルオロカーボン(HFC)やハイドロフルオロオレフィン(HFO)等の流体を用いる場合には、電池Bの熱を奪うことにより液相から気相に変化する性質を利用し、潜熱による効率的な冷却を可能にする。 (f) When a fluid such as hydrofluorocarbon (HFC) or hydrofluoroolefin (HFO) is used as the cooling fluid L, the property of changing from a liquid phase to a gas phase by removing heat from the battery B is utilized, enabling efficient cooling by latent heat.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 The configurations disclosed in the above embodiment (including other embodiments, the same applies below) can be applied in combination with configurations disclosed in other embodiments, provided no contradictions arise. Furthermore, the embodiments disclosed in this specification are merely examples, and the present invention is not limited to these embodiments. Appropriate modifications can be made without departing from the scope of the present invention.

本発明は、電池冷却用ヒートシンクに利用することができる。 The present invention can be used in heat sinks for cooling batteries.

1 流入部
2 冷却本体部
3 排出部
21 熱交換壁
21g 凹部
22 底壁
25 仕切板
C リーク許容部
F 冷却流路
L 冷却流体
Reference Signs List 1 Inlet section 2 Cooling body section 3 Discharge section 21 Heat exchange wall 21g Recess 22 Bottom wall 25 Partition plate C Leak allowance section F Cooling flow path L Cooling fluid

Claims (5)

冷却流体が流入する流入部と、前記流入部から前記冷却流体が供給されることにより、電池の熱を奪う冷却本体部と、当該冷却本体部に供給された前記冷却流体を排出する排出部とを有し、
前記冷却本体部が、前記冷却流体の流動方向に直交する幅方向の領域を複数に分割することにより複数の冷却流路を形成する仕切板を備え、
前記冷却本体部が、前記仕切板を挟んで隣り合う前記冷却流路の間での前記冷却流体のリークを許容するリーク許容部を有している電池冷却用ヒートシンク。
the cooling fluid is supplied from the inlet portion to the cooling body portion, and the cooling fluid is supplied from the inlet portion to the cooling body portion to remove heat from the battery; and the cooling fluid is supplied from the inlet portion to the cooling body portion to the cooling body portion.
the cooling body includes a partition plate that divides a region in a width direction perpendicular to a flow direction of the cooling fluid into a plurality of regions to form a plurality of cooling flow paths,
The cooling body has a leak allowing portion that allows leakage of the cooling fluid between adjacent cooling flow paths sandwiching the partition plate.
前記冷却本体部は、前記仕切板で区画された複数の前記冷却流路において同じ方向に前記冷却流体が流れている請求項1に記載の電池冷却用ヒートシンク。 The heat sink for cooling a battery according to claim 1, wherein the cooling fluid flows in the same direction in the multiple cooling flow paths divided by the partition plate in the cooling main body. 複数の前記仕切板の板厚は、前記冷却流路の上流側より下流側が薄く形成されており、
複数の前記冷却流路が並ぶ並列方向で、前記冷却流路の上流側の流路幅より、下流側の流路幅が広く設定されている請求項1又は2に記載の電池冷却用ヒートシンク。
The thickness of each of the partition plates is thinner on a downstream side of the cooling flow passage than on an upstream side of the cooling flow passage,
3 . The heat sink for cooling a battery according to claim 1 , wherein a width of the cooling flow passage on a downstream side is set wider than a width of the cooling flow passage on an upstream side in a parallel direction in which the plurality of cooling flow passages are arranged.
前記冷却本体部は、前記電池に隣接する熱交換壁と、当該熱交換壁に対向する位置の底壁とを有し、
前記仕切板は、前記熱交換壁と前記底壁との間に対応する板丈方向の一端が、前記底壁の内面に隙間なく連結固定され、前記仕切板の前記板丈方向の他端が前記リーク許容部として前記熱交換壁の内面に間隙を作る形態で支持されている請求項1又は2に記載の電池冷却用ヒートシンク。
the cooling body has a heat exchange wall adjacent to the battery and a bottom wall facing the heat exchange wall;
The heat sink for cooling a battery as described in claim 1 or 2, wherein one end of the partition plate in the plate height direction corresponding to the space between the heat exchange wall and the bottom wall is connected and fixed without any gaps to the inner surface of the bottom wall, and the other end of the partition plate in the plate height direction is supported in a form that creates a gap on the inner surface of the heat exchange wall as the leak tolerance portion.
前記仕切板の前記板丈方向での前記一端が溶接により前記底壁に固定され、前記仕切板の前記他端が前記熱交換壁に形成された凹部の内部に配置されている請求項4に記載の電池冷却用ヒートシンク。 The battery cooling heat sink according to claim 4, wherein one end of the partition plate in the plate height direction is fixed to the bottom wall by welding, and the other end of the partition plate is disposed inside a recess formed in the heat exchange wall.
JP2022174331A 2022-10-31 2022-10-31 Battery cooling heat sink Pending JP2024065463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022174331A JP2024065463A (en) 2022-10-31 2022-10-31 Battery cooling heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022174331A JP2024065463A (en) 2022-10-31 2022-10-31 Battery cooling heat sink

Publications (1)

Publication Number Publication Date
JP2024065463A true JP2024065463A (en) 2024-05-15

Family

ID=91064210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022174331A Pending JP2024065463A (en) 2022-10-31 2022-10-31 Battery cooling heat sink

Country Status (1)

Country Link
JP (1) JP2024065463A (en)

Similar Documents

Publication Publication Date Title
WO2012056880A1 (en) Cooling structure
US11254236B2 (en) High performance uniform temperature cold plate
KR20060045008A (en) Battery
KR102600257B1 (en) Water block assembly
WO2007145352A1 (en) Heat sink and cooler
KR20190044180A (en) Battery cooling device for vehicle
KR20140138412A (en) Battery cooling apparatus in electric vehicle
CN110247133B (en) Cooling plate for power battery module and liquid cooling circulation system
JP2013254787A (en) Heat exchanger and manufacturing method of the same
US11133555B2 (en) Battery device
JP2011192730A (en) Cooler, laminated cooler, and intermediate plate
US20180090800A1 (en) Water cooling system for a battery
JP2012227338A (en) Cooling apparatus
JP2024065463A (en) Battery cooling heat sink
CN110634815B (en) Cooling device
JP2017153339A (en) Apparatus unit
JP2013229125A (en) Battery module and vehicle
WO2022217980A1 (en) Battery cell module and electric automobile
US20210066166A1 (en) Liquid-cooling-type cooler
CN112470329B (en) Cooling device
JP2012222277A (en) Heat exchanger
WO2022181345A1 (en) Cooling device
CN113316843A (en) Cooling system
JP2024062128A (en) heat sink
JP7294126B2 (en) Cooler