JP2024064554A - データ処理装置、光学センサ、データ処理方法、データ処理プログラム - Google Patents

データ処理装置、光学センサ、データ処理方法、データ処理プログラム Download PDF

Info

Publication number
JP2024064554A
JP2024064554A JP2022173227A JP2022173227A JP2024064554A JP 2024064554 A JP2024064554 A JP 2024064554A JP 2022173227 A JP2022173227 A JP 2022173227A JP 2022173227 A JP2022173227 A JP 2022173227A JP 2024064554 A JP2024064554 A JP 2024064554A
Authority
JP
Japan
Prior art keywords
light
distance measurement
intensity
emission intensity
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022173227A
Other languages
English (en)
Inventor
浩 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2022173227A priority Critical patent/JP2024064554A/ja
Priority to PCT/JP2023/035322 priority patent/WO2024090116A1/ja
Publication of JP2024064554A publication Critical patent/JP2024064554A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/495Counter-measures or counter-counter-measures using electronic or electro-optical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】誤検知を抑制可能なデータ処理装置等を提供する。【解決手段】データ処理装置のプロセッサは、測距フレームでの発光強度である測距発光強度にて照射された照射光に対して受光された反射光における受光ピークに関する物理情報を含む測距データと、測距フレームと異なる比較フレームにおいて、測距発光強度と異なる比較発光強度にて照射された照射光に対する反射光における受光ピークに関する物理情報を含む比較データと、を含む検出データを取得することを実行するように構成される。プロセッサは、測距データと比較データとの間において、発光強度と受光ピークでの受光強度との強度比の差が許容強度範囲内且つ受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる受光ピークを、測距データから除外することを実行するように構成される。【選択図】図4

Description

本開示は、光学センサにて生成された検出データを処理するデータ処理技術に、関する。
特許文献1には、LiDAR(Light Detection and Ranging / Laser Imaging Detection and Ranging)装置が開示されている。この装置は、放射するパルス化されたビーム光の照明強度を、測定された戻りパルスの強度に基づいて変化させる。具体的には、装置は、戻りパルスの強度がAD変換器の線形範囲に収まるように、照明強度を設定する。
特表2021‐510417号公報
ところで、特許文献1のLiDAR装置のような光学センサは、他の光学センサ等の光源からの照射光をクロストーク光として受光する場合がある。この場合、クロストーク光を、自身の照射した照射光がターゲットにて反射した反射光と誤検知してしまう虞がある。
本開示の課題は、誤検知を抑制可能なデータ処理装置を、提供することにある。本開示の別の課題は、誤検知を抑制可能な光学センサを、提供することにある。本開示の又別の課題は、誤検知を抑制可能なデータ処理方法を、提供することにある。本開示のさらに別の課題は、誤検知を抑制可能な荷役制御プログラムを、提供することにある。
以下、課題を解決するための本開示の技術的手段について、説明する。尚、特許請求の範囲及び本欄に記載された括弧内の符号は、後に詳述する実施形態に記載された具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。
本開示の第一態様は、プロセッサ(102)を有し、検出エリア(A)に対する照射光(Bi)がターゲット(T)にて反射した反射光(Br)を受光することによりターゲットを検出する光学センサ(1)にて生成された検出データを処理するデータ処理装置であって、
プロセッサは、
測距フレームでの発光強度である測距発光強度にて照射された照射光に対して受光された反射光における受光ピークに関する物理情報を含む測距データと、測距フレームと異なる比較フレームにおいて、測距発光強度と異なる比較発光強度にて照射された照射光に対する反射光における受光ピークに関する物理情報を含む比較データと、を含む検出データを取得することと、
測距データと比較データとの間において、発光強度と受光ピークでの受光強度との強度比の差が許容強度範囲内且つ受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる受光ピークを、測距データから除外することと、
を実行するように構成される。
本開示の第二態様は、検出エリア(A)に対する照射光(Bi)がターゲット(T)にて反射した反射光(Br)を受光することによりターゲットを検出する光学センサであって、
照射光を照射する発光ユニット(10)と、
反射光を受光する受光ユニット(30)と、
受光ユニットからの検出データを取得する制御ユニット(100)と、
を備え、
制御ユニットは、
測距フレームでの発光強度である測距発光強度にて照射された照射光に対して受光された反射光における受光ピークに関する物理情報を含む測距データと、測距フレームと異なる比較フレームにおいて、測距発光強度と異なる比較発光強度にて照射された照射光に対する反射光における受光ピークに関する物理情報を含む比較データと、を含む検出データを取得する取得部(120)と、
測距データと比較データとの間において、発光強度と受光ピークでの受光強度との強度比の差が許容強度範囲内且つ受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる受光ピークを、測距データから除外する除外部(130)と、
を有する。
本開示の第三態様は、検出エリア(A)に対する照射光(Bi)がターゲット(T)にて反射した反射光(Br)を受光することによりターゲットを検出する光学センサ(1)にて生成された検出データを処理するために、プロセッサ(102)により実行されるデータ処理方法であって、
測距フレームでの発光強度である測距発光強度にて照射された照射光に対して受光された反射光における受光ピークに関する物理情報を含む測距データと、測距フレームと異なる比較フレームにおいて、測距発光強度と異なる比較発光強度にて照射された照射光に対する反射光における受光ピークに関する物理情報を含む比較データと、を含む検出データを取得することと、
測距データと比較データとの間において、発光強度と受光ピークでの受光強度との強度比の差が許容強度範囲内且つ受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる受光ピークを、測距データから除外することと、
を含む。
本開示の第四態様は、検出エリア(A)に対する照射光(Bi)がターゲット(T)にて反射した反射光(Br)を受光することによりターゲットを検出する光学センサ(1)にて生成された検出データを処理するために記憶媒体(101)に記憶され、プロセッサ(102)に実行させる命令を含むデータ処理プログラムであって、
命令は、
測距フレームでの発光強度である測距発光強度にて照射された照射光に対して受光された反射光における受光ピークに関する物理情報を含む測距データと、測距フレームと異なる比較フレームにおいて、測距発光強度と異なる比較発光強度にて照射された照射光に対する反射光における受光ピークに関する物理情報を含む比較データと、を含む検出データを取得することと、
測距データと比較データとの間において、発光強度と受光ピークでの受光強度との強度比の差が許容強度範囲内且つ受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる受光ピークを、測距データから除外することと、
を含む。
これら第一~第四態様によると、発光強度の異なる検出データにおいて正規条件が不成立となる受光ピークが、測距データから除外される。他の光源からのクロストーク光は、受光強度が光学センサの発光強度によらず、受光タイミングも大きく変化し得るため、正規条件が不成立の受光ピークは、クロストーク光に由来するものとなり得る。したがって、誤検知を抑制可能となる。
第一実施形態の全体構成を示すブロック図である。 第一実施形態による光学センサの適用される自律搬送車両の走行環境を示す模式図である。 第一実施形態による制御ユニットの機能構成を示すブロック図である。 第一実施形態によるデータ処理フローを示すフローチャートである。 各フレームからの距離画像の生成を概念的に示す図である。 1つの走査ラインにおける測距フレームの受発光処理を概念的に示す図である。 比較フレームにおける受発光処理を概念的に示す図である。 クロストーク光入射時の背景光データの一例を示すグラフである。 比較発光強度のパターンの一例を示す表である。 各パターンにおける具体的な数値例を示す表である。
以下、本開示の実施形態を図面に基づき複数説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことで、重複する説明を省略する場合がある。又、各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。さらに、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。
(第一実施形態)
図1に示す第一実施形態の光学センサ1は、図2に示す自律搬送車両2に搭載される。自律搬送車両2を中心とする視点において、自律搬送車両2は自車両(ego-vehicle)であるともいえる。自律搬送車両2は、前後左右の任意方向に自律走行可能な自律走行ロボットである。自律搬送車両2は、倉庫等の施設を自律走行して搬送物を搬送する車両である。自律搬送車両2は、例えば自律走行可能なフォークリフトである。光学センサ1は、走行エリア内における搬送物等のターゲットTを、検知する。
光学センサ1は、照射光BiがターゲットTにて反射した反射光Brを受光することによりターゲットTを検出する、所謂LiDARである。光学センサ1は、照射光Biを照射して反射光Brとして受光されるまでの飛行時間(Time Of Flight)に応じて、光学センサ1からターゲットTまでの距離を検出可能である。光学センサ1は、発光ユニット10と、走査ユニット20と、受光ユニット30と、制御ユニット100と、を含んで構成されている。
発光ユニット10は、例えばレーザダイオード等の、指向性レーザ光を発する半導体素子を複数含んで構成されている。発光ユニット10は、制御ユニット100からの制御信号に応じた電流を半導体素子に印加することで、自律搬送車両2の外界へ向かう光を、断続的なパルスビーム状に照射する。発光ユニット10は、例えば後述の走査ユニット20の反射角に応じて、各半導体素子が、各走査ラインLにおける各画素に対応する照射光Biを照射可能である。発光ユニット10は、半導体素子に対して境界電流値よりも大きい範囲の電流を印加することで、発振状態のLD(Laser Diode)モードによるレーザ光を、照射可能である。そして、発光ユニット10は、半導体素子に対して境界電流値よりも小さい範囲の電流を印加することで、未発振状態のLED(Light Emitting Diode)モードによるLED光を、照射可能である。尚、本実施形態においては、LEDモードは実行されない。
走査ユニット20は、発光ユニット10から照射されたビームを光学センサ1の出射面へと反射する反射鏡と、アクチュエータとを含んで構成されている。アクチュエータが反射鏡の反射角を制御することで、レーザ光がスキャンされる。スキャン方向は、水平方向であってもよく、垂直方向であってもよい。尚、走査ユニット20は、光学センサ1の筐体自体の姿勢角を制御することで、ビームを走査するものであってもよい。
受光ユニット30は、受光レンズと、受光素子ユニットと、受光回路と、を備えている。受光レンズは、反射光Brを含む外界から入射した光を、受光素子ユニットに集光する。受光素子ユニットは、例えばSPAD(Single Photon Avalanche Diode)等の、光に対して高感度な複数の受光素子により構成されている。受光ユニット30の外界のうち、受光ユニット30の画角により決まる検出エリアAから入射する光により、受光素子ユニットが露光される。受光素子ユニットを構成する受光素子は、例えば二次元方向にアレイ状に複数配列されている。隣接する複数の受光素子の組により、反射光Br検出における画素が構成される。走査ユニット20による照射光Biの反射角度に応じた複数の走査ラインL毎に、各画素において受光した光の強度(受光強度)に応じた電気信号が、出力される。電気信号は、受光回路へと出力する。
受光回路は、各検出フレームに規定された、背景光検出期間Pe及び測距期間Prのそれぞれの期間ごとに、受光素子ユニットからの電気信号を、取得する。具体的には、発光ユニット10からの断続的な光照射の停止中に受光素子ユニットを露光する背景光検出期間Peでは、検出エリア内の物点が背景光の反射点となる。その結果、外界からの光が反射点で反射された背景光が、入射面を通して受光ユニット30に入射する。このとき受光回路は、受光素子ユニットの複数画素を走査して景光をセンシングする。ここで特に設定ブロック110は、センシングした背景光の強度に応じて画素毎に取得される輝度値を、各画素値としてデータ化することで、背景光データを取得することが可能である。尚、背景光データは、外光データ又は外乱光データと呼称することも可能である。背景光検出期間Peは、「照射停止期間」の一例である。背景光データは、「停止データ」の一例である。
一方で、発光ユニット10からの光照射により受光ユニット30を露光する測距期間Prでは、検出エリア内の物点がレーザ光の反射点となる。その結果、反射点で反射されたレーザ光が、入射面を通して受光ユニット30に入射する。このとき受光回路は、受光素子ユニットの複数画素を走査することで、反射光Brをセンシングする。
受光回路は、各画素において走査された受光強度を受光周波数ごとに積算することで、図6及び図7等に示すように、受光までの照射光Biの飛行時間と受光強度の関係を、画素ごとに取得する。具体的には、受光回路は、受光強度を所定の時間ビンごとに積算したヒストグラム情報、又はヒストグラムにおける時間ビンごとの受光強度に基づく波形情報を、取得可能である。このとき受光回路は、背景光検出期間Peにて取得された背景光データに応じて測距期間Prにおける背景光をノイズとして除去し、照射光Biに対する反射光Brによる受光強度のデータを取得可能である。又、受光回路は、画素ごとの受光強度のピークにおける飛行時間を光学センサ1からターゲットTまでの距離に換算することで、飛行時間に応じた反射物までの距離を取得可能である。
尚、自律搬送車両2には、光学センサ1以外の外界センサが搭載されてもよい。光学センサ1以外の外界センサは、例えばカメラ、ミリ波レーダ及びソナー等の少なくとも一種類である。
制御ユニット100は、例えばLAN(Local Area Network)回線、ワイヤハーネス、内部バス、及び無線通信回線等のうち、少なくとも一種類を介して発光ユニット10、走査ユニット20、受光ユニット30に接続されている。制御ユニット100は、例えば、少なくとも一つの専用コンピュータを含んで構成されている。
制御ユニット100を構成する専用コンピュータは、光学センサ1を制御するセンサECUであってもよい。制御ユニット100を構成する専用コンピュータは、自律搬送車両2の走行する目標軌道を計画する、プランニングECU(Electronic Control Unit)であってもよい。制御ユニット100を構成する専用コンピュータは、自律搬送車両2の目標軌道に実軌道を追従させる、軌道制御ECUであってもよい。制御ユニット100を構成する専用コンピュータは、自律搬送車両2の各電動アクチュエータ等を制御する、アクチュエータECUであってもよい。
制御ユニット100を構成する専用コンピュータは、自律搬送車両2の自己状態量を推定する、ロケータECUであってもよい。制御ユニット100を構成する専用コンピュータは、例えば自律搬送車両2と通信可能な外部センタ又はモバイル端末等を構築する、自律搬送車両2以外のコンピュータであってもよい。
制御ユニット100を構成する専用コンピュータは、メモリ101とプロセッサ102とを、少なくとも一つずつ有している。メモリ101は、コンピュータにより読み取り可能なプログラム及びデータ等を非一時的に記憶する、例えば半導体メモリ、磁気媒体、及び光学媒体等のうち、少なくとも一種類の非遷移的実体的記憶媒体(non-transitory tangible storage medium)である。ここで記憶とは、自律搬送車両2の起動オフによってもデータが保持される蓄積であってもよいし、自律搬送車両2の起動オフによりデータが消去される一時的な格納であってもよい。プロセッサ102は、例えばCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、RISC(Reduced Instruction Set Computer)-CPU、DFP(Data Flow Processor)、及びGSP(Graph Streaming Processor)等のうち、少なくとも一種類をコアとして含んでいる。
制御ユニット100においてプロセッサ102は、光学センサ1にて生成された検出データを処理するためにメモリ101に記憶された、データ処理プログラムに含まれる複数の命令を実行する。これにより制御ユニット100は、自律搬送車両2を制御するための機能ブロックを、複数構築する。制御ユニット100において構築される複数の機能ブロックには、図3に示すように設定ブロック110、取得ブロック120、及び出力ブロック130が含まれている。制御ユニット100は、「データ処理装置」の一例である。
これらのブロック110,120,130の共同により、制御ユニット100が光学センサ1にて生成された検出データを処理するデータ処理方法は、図4に示すデータ処理フローに従って実行される。本処理フローは、光学センサ1の起動中に繰り返し実行される。尚、本処理フローにおける各「S」は、データ処理プログラムに含まれた複数命令によって実行される複数ステップを、それぞれ意味している。
まずS10では、取得ブロック120が、測距フレームFrにおいて、1つの走査ラインLでの個々の画素ごとに、背景光検出期間Peの背景光データを取得する。具体的には、取得ブロック120は、照射光Biの照射が停止される背景光検出期間Peにわたって受光強度を積算した積算受光強度を含む情報として、背景光データを取得する。例えば、取得ブロック120は、図7に示すように、背景光検出期間Peにおける所定の時刻ごとの積算受光強度を、背景光データとして取得する。
続くS20では、設定ブロック110が、背景光検出期間Peの後の測距期間Prにおいて、発光ユニット10から照射光Biを照射させる発光制御を実行する。測距フレームFrにおいては、設定ブロック110は、予め規定された一定の発光強度である測距発光強度Iiaにて、照射光Biを照射させる。
そしてS30では、取得ブロック120が、測距期間Prにおける測距データDrを、受光ユニット30から走査ラインLにおける個々の画素ごとに取得する。測距データDrは、照射光BiがターゲットTにて反射された反射光Brにおける受光ピークに関する物理情報を、含んでいる。例えば図5に示すように、測距データDrは、受光ピークの物理情報として、各ピークの受光時刻La及び受光強度Iraを少なくとも含んでいる。S10にて取得された背景光データと本ステップにて取得された測距データDrとが、測距フレームFrにおける検出データに含まれる情報となる。
尚、受光ユニット30は、反射光Br以外に、外部光源3から照射された光を、クロストーク光Bcとして受光する場合がある。外部光源3は、例えば他の自律走行車両(以下、他車両)4に搭載された別の光学センサ等である。この場合、測距データDrには、反射光Brに由来する受光ピークと、クロストーク光Bcに由来する受光ピークと、が含まれ得る。
次に、S40では、取得ブロック120が、全走査ラインLについて、検出データの取得が完了したか否かを判定する。全走査ラインLについての検出データ取得未完了との判定が下された場合、本フローはS10へと戻る。これにより、次の走査ラインLについて画素ごとの検出データの取得が実行される。
一方で、全走査ラインLについての検出データ取得完了との判定が下された場合、本フローはS50へと進む。S50では、取得ブロック120が、比較フレームFcにおいて、1つの走査ラインLの各画素について背景光検出期間Peの背景光データを取得する。背景光データは、例えば測距フレームFrと同様に、積算受光強度を含んでいる。
続くS60では、設定ブロック110が、背景光検出期間Peの後の測距期間Prにおいて、発光制御を実行する。比較フレームFcにおいては、設定ブロック110は、画素ごとにクロストーク光Bcの受光強度(クロストーク受光強度)と、測距フレームFrでの測距データDrにおける受光ピークの受光強度と、に応じた比較発光強度Iibにて、照射光Biを照射させる。
クロストーク受光強度について詳記すると、設定ブロック110は、まず背景光データからクロストーク光Bcの入射有無を推定する。具体的には、設定ブロック110は、背景光データにおける受光強度の時間変化幅が許容幅範囲外となる場合に、クロストーク光Bcの入射有との判定を下す。例えば、設定ブロック110は、図7に示すように、積算受光強度の時刻毎の差分Vdを受光強度の時間変化幅として判定を実行する。ここで、許容幅範囲は、差分Vdが閾値以下又は未満となる数値範囲である。
背景光検出期間Peでは照射光Biを照射しないため、クロストーク光Bcが入射しない場合、積算受光強度は線形的に増加することになる。一方で、他の光学センサ等の周期的且つ瞬時的に光照射を行う外部光源3からのクロストーク光Bcが入射すると、図8に示すように入射前後で積算受光強度は非線形的に増加することになる。すなわち、設定ブロック110は、積算受光強度の増加が線形的であるか非線形的であるかを、差分Vdにより判定することになるといえる。尚、本ステップにて利用される背景光データは、測距フレームFrにて取得されたものであってもよいし、比較フレームFcにて取得されたものであってもよい。又は、各フレームFr,Fcの背景光データについての判定結果が統合されてもよい。
設定ブロック110は、差分Vdが許容幅範囲外となる場合、クロストーク光Bcの入射有として、差分Vdの大きさから、クロストーク受光強度の大きさを推定する。設定ブロック110は、差分Vdが大きいほど、大きいクロストーク受光強度を推定する。設定ブロック110は、例えば予め規定された差分Vdとクロストーク受光強度との関係情報から、クロストーク受光強度を推定すればよい。又は、設定ブロック110は、差分Vdをそのままクロストーク受光強度を示すパラメータとして利用してもよい。
受光ピークの受光強度について詳記すると、設定ブロック110は、注目距離範囲内に含まれる受光ピークの受光強度をピーク受光強度として取得する。注目距離範囲は、光学センサ1による測距シーンに応じて設定される距離範囲である。例えば、本実施形態の場合、自律搬送車両2が屋内を走行中の場合、光学センサ1に比較的近い距離範囲が、注目距離範囲に設定される。又、自律搬送車両2が屋外を走行中の場合には、屋内の場合と比較して遠い距離範囲が、注目距離範囲に設定される。注目距離範囲内に複数の受光ピークが検出されている場合、設定ブロック110は、それら複数の受光ピークの平均受光強度を算出すればよい。尚、ターゲットTまでの距離は飛行時間、すなわち受光タイミングに相関するため、設定ブロック110は注目距離範囲に対応する注目時間範囲を規定してもよい。
設定ブロック110は、以上のクロストーク受光強度と、測距フレームFrでの測距データDrにおけるピーク受光強度と、に応じて、比較発光強度Iibの測距発光強度Iiaに対する相対的な大きさを決定する。例えば、設定ブロック110は、図9,10に示すような組み合わせパターンにより規定される大きさの比較発光強度Iibにて、該当する画素に対応する照射光Biを照射する。
図9,10に示す例では、クロストーク受光強度及びピーク受光強度について、大レベル、中レベル、小レベルの3レベルにて分類し、それらのレベルの組み合わせにて、比較発光強度Iibを決定する。図10の数値例に示すように、ピーク受光強度が小レベル及び中レベルの場合には、比較発光強度Iibは測距発光強度Iiaに対して大きく設定される。すなわち、比較発光強度Iibは、測距フレームFrにて検知した注目距離範囲内の受光ピークが消失しないように増大される。一方で、ピーク受光強度が大レベルの場合には、比較発光強度Iibは測距発光強度Iiaに対して小さく設定される。すなわち、比較発光強度Iibは、測距フレームFrにて検知した注目距離範囲内の受光ピークが飽和しないように減少される。そして、各ピーク受光強度に対するクロストーク受光強度の対応関係に応じて、比較フレームFcにおける反射光Brの受光強度がクロストーク光の受光強度と差が出るように、具体的な比較発光強度Iibの大きさが決定される。
S70では、取得ブロック120が、前のステップにて設定された比較発光強度Iibにて照射された照射光Biに対する反射光Brにおける受光ピークに関する物理情報を含む比較データDcを、取得する。比較データDcは、測距データDrと同様に、各ピークの受光時刻La及び受光強度Iraを少なくとも含んでいる。S50にて取得された背景光データと本ステップにて取得された比較データDcとが、比較フレームFcにおける検出データに含まれる情報となる。
そして、S80では、出力ブロック130が、画素ごとの測距データDr及び比較データDcの間に、正規条件が成立するか否かを判定する。正規条件は、発光強度と受光ピークでの受光強度との強度比の差が許容強度範囲内且つ受光ピークについて受光タイミングの差が許容時間範囲内となることとされる。ここで許容強度範囲は、強度比が閾値以下又は未満となる範囲とされる。又、許容時間範囲は、受光タイミングの差が閾値以下又は未満となる範囲とされる。許容時間範囲は、自律搬送車両2の走行速度が小さいほど小さい範囲に設定されてもよい。受光ピークが複数ある場合、出力ブロック130は、全ての受光ピークについて正規条件が成立するか否かを判定する。尚、出力ブロック130は、測距データDrにおける特定の受光ピークに対応する比較データDcの受光ピークを、当該特定の受光ピークとの受光タイミングの差が最も小さい受光ピークとして特定すればよい。
例えば、測距データDrにおける特定の受光ピークの受光強度をIra、受光タイミングをTaとおき、比較データDcにおいて対応する受光ピークの受光強度をIrb、受光タイミングをTbとおく。特定の受光ピークについて正規条件が成立する場合、以下の数式(1)(2)の関係がそれぞれ満たされることになる。
(数1)
|Ira-(Iia/Iib)Irb|≦Ei ・・・(1)
(数2)
|Ta-Tb|≦Et ・・・(2)
尚、数式(1)におけるEiは、強度比の閾値である。又、数式(2)におけるEtは受光タイミングの差の閾値である。数式(1)(2)は、それぞれ閾値以下を許容強度範囲及び許容時間範囲としているが、上述したように少なくとも一方が閾値未満となる範囲であってもよい。数式(1)の関係を満たす受光ピーク、すなわち強度比の差が許容強度範囲内となる受光ピークは、各フレームFr,Fcにおける受光強度が発光強度に相関することになる。換言すれば、照射光Biに対する反射光Brに由来する受光ピークである可能性が比較的高いことになる。さらに、数式(2)の関係を満たす受光ピーク、すなわち受光タイミングの差が許容時間範囲内となる受光ピークは、同じターゲットTからの反射光Brに由来する可能性が比較的高い。したがって、正規条件が成立する受光ピークは、同じターゲットTからの反射光Brに由来すると推定できる受光ピークである。
S80にて1つの走査ラインLにおける各画素の全受光ピークについて正規条件成立の判定が下された場合には、出力ブロック130は、全受光ピークが反射光Br由来である正規のデータとして測距データDrを採用する。
一方で、S80にて正規条件不成立の受光ピークがあるとの判定が下された場合には、本フローはS100へと移行する。例えば図6,7の最も受光タイミングが遅い受光ピークは、強度比の差が許容強度範囲外となる、各フレームFr,Fcにおける受光強度が発光強度に相関しない受光ピークである。S100では、出力ブロック130が、こうした正規条件不成立の受光ピークが存在する測距データDrから、当該受光ピークをクロストーク光Bcに由来する受光ピークとして除外した除外済データを生成する。
続くS110では、出力ブロック130が、全走査ラインLに対して正規条件の成立判定が完了したか否かを判定する。正規条件の成立判定未完了との判定が下された場合には、本フローはS50へと戻る。一方で、S110にて正規条件の成立判定完了との判定が下された場合には、本フローはS120へと移行する。S120では、出力ブロック130が、画素ごとの正規条件の成立した測距データDr又は除外済みデータを、全走査ラインLにわたって合成することで、距離画像を生成する。
尚、以上の設定ブロック110、取得ブロック120、出力ブロック130は、それぞれ設定部、取得部、出力部と称することもできる。又、出力ブロック130は、除外部と称することもできる。
以上の第一実施形態によれば、発光強度の異なる検出データにおいて正規条件が不成立となる受光ピークが、測距データから除外される。他の光源からのクロストーク光は、受光強度が光学センサの発光強度によらず、受光タイミングも大きく変化し得るため、正規条件が不成立の受光ピークは、クロストーク光に由来するものとなり得る。したがって、誤検知を抑制可能となる
又、第一実施形態によれば、比較発光強度Iibの測距発光強度Iiaに対する相対的な大きさが設定される。故に、受光ピークの正規条件成立判定のためのより適切な比較発光強度Iibが設定され得る。
さらに、第一実施形態によれば、背景光データにおける受光強度の時間変化幅が許容幅範囲外となる場合に、比較発光強度Iibの大きさが時間変化幅に応じて設定される。故に、背景光データにより、外部光源3からのクロストーク光Bcの受光強度が推定され得る。したがって、より適切な比較発光強度Iibが設定され得る。
加えて、第一実施形態によれば、比較フレームFcに先行する測距フレームFrにおける測距データDrでの受光ピークの受光強度に応じて比較発光強度Iibの相対的な大きさが設定される。故に、測距フレームFrでの受光ピークの受光強度に応じて、受光ピークの正規条件成立判定のためのより適切な比較発光強度Iibが設定され得る。さらに、第一実施形態においては注目距離範囲内に含まれる受光ピークの受光強度に応じて比較発光強度Iibの相対的な大きさが設定される。したがって、注目する必要性の高い距離範囲の受光ピークについて、正規条件成立判定のためのより適切な比較発光強度Iibが設定され得る。
又、第一実施形態によれば、ターゲットTとしての搬送物を搬送する自律搬送車両2に搭載された光学センサ1にて生成された検出データが処理される。こうした車両は、公道を走行する一般的な車両と比較して走行速度が比較的小さくなり得る。光学センサ1の搭載された移動体の走行速度が小さいほど、受光ピークにおける測距フレームFrでの受光タイミングと比較フレームFcでの受光タイミングとの時間差が小さくなり得る。したがって、第一実施形態におけるデータ処理方法により適した移動体に搭載された光学センサ1にて、データ処理方法を実行可能となる。
(他の実施形態)
以上、複数の実施形態について説明したが、本開示は、それらの実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
変形例において、光学センサ1は、公道を走行する車両に搭載されてもよい。この場合、光学センサ1は、車両の走行速度が閾値以下又は未満となる速度範囲内において、上述したデータ処理方法を実行するようにしてもよい。
変形例において、測距フレームFrに対応する比較フレームFcは、測距フレームFrに先行するフレームであってもよい。この場合、設定ブロック110は、測距発光強度Iiaの大きさを直接設定することで、比較発光強度Iibの測距発光強度Iiaに対する相対的な大きさを設定すればよい。
変形例において制御ユニット100を構成する専用コンピュータは、デジタル回路及びアナログ回路のうち、少なくとも一方をプロセッサとして有していてもよい。ここでデジタル回路とは、例えばASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、SOC(System on a Chip)、PGA(Programmable Gate Array)、及びCPLD(Complex Programmable Logic Device)等のうち、少なくとも一種類である。又こうしたデジタル回路は、プログラムを記憶したメモリを、有していてもよい。
ここまでの説明形態の他に上述の実施形態及び変形例は、自律搬送車両2に搭載可能に構成されてプロセッサ及びメモリを少なくとも一つずつ有する制御装置として、処理回路(例えば処理ECU等)又は半導体装置(例えば半導体チップ等)の形態で実施されてもよい。
(付記)
この明細書には、以下に列挙する複数の技術的思想と、それらの複数の組み合わせが開示されている。
(技術的思想1)
プロセッサ(102)を有し、検出エリア(A)に対する照射光(Bi)がターゲット(T)にて反射した反射光(Br)を受光することにより前記ターゲットを検出する光学センサ(1)にて生成された検出データを処理するデータ処理装置であって、
前記プロセッサは、
測距フレームでの発光強度である測距発光強度にて照射された前記照射光に対して受光された前記反射光における受光ピークに関する物理情報を含む測距データと、前記測距フレームと異なる比較フレームにおいて、前記測距発光強度と異なる比較発光強度にて照射された前記照射光に対する前記反射光における前記受光ピークに関する前記物理情報を含む比較データと、を含む前記検出データを取得することと、
前記測距データと前記比較データとの間において、前記発光強度と前記受光ピークでの受光強度との強度比の差が許容強度範囲内且つ前記受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる前記受光ピークを、前記測距データから除外することと、
を実行するように構成されるデータ処理装置。
(技術的思想2)
前記比較発光強度の前記測距発光強度に対する相対的な大きさを設定することをさらに実行するように構成される技術的思想1に記載のデータ処理装置。
(技術的思想3)
前記検出データを取得することは、
前記照射光の照射停止期間における前記受光強度を含む停止データを取得することを含み、
前記比較発光強度の相対的な大きさを設定することは、
前記停止データにおける前記受光強度の時間変化幅が許容幅範囲外となる場合に、前記比較発光強度の大きさを前記時間変化幅に応じて設定することを含む技術的思想2に記載のデータ処理装置。
(技術的思想4)
前記比較発光強度の相対的な大きさを設定することは、
前記比較フレームに先行する前記測距フレームにおける前記測距データでの前記受光ピークの前記受光強度に応じて前記比較発光強度の相対的な大きさを設定することを含む技術的思想2又は技術的思想3に記載のデータ処理装置。
(技術的思想5)
前記比較発光強度の相対的な大きさを設定することは、
注目距離範囲内に含まれる前記受光ピークの前記受光強度に応じて前記比較発光強度の相対的な大きさを設定することを含む技術的思想4に記載のデータ処理装置。
(技術的思想6)
前記ターゲットとしての搬送物を搬送する搬送車両に搭載された前記光学センサにて生成された前記検出データを処理する技術的思想1から技術的思想5のいずれか1項に記載のデータ処理装置。
尚、以上において技術的思想1~6は、光学センサ1、方法及びプログラムの形態で実現されてもよい。
1:光学センサ、2:自律搬送車両(搬送車両)、10:発光ユニット、30:受光ユニット、100:制御ユニット(データ処理装置)、101:メモリ(記憶媒体)、102:プロセッサ、120:取得ブロック(取得部)、130:出力ブロック(除外部)、A:検出エリア、Bi:照射光、Br:反射光、T:ターゲット

Claims (9)

  1. プロセッサ(102)を有し、検出エリア(A)に対する照射光(Bi)がターゲット(T)にて反射した反射光(Br)を受光することにより前記ターゲットを検出する光学センサ(1)にて生成された検出データを処理するデータ処理装置であって、
    前記プロセッサは、
    測距フレームでの発光強度である測距発光強度にて照射された前記照射光に対して受光された前記反射光における受光ピークに関する物理情報を含む測距データと、前記測距フレームと異なる比較フレームにおいて、前記測距発光強度と異なる比較発光強度にて照射された前記照射光に対する前記反射光における前記受光ピークに関する前記物理情報を含む比較データと、を含む前記検出データを取得することと、
    前記測距データと前記比較データとの間において、前記発光強度と前記受光ピークでの受光強度との強度比の差が許容強度範囲内且つ前記受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる前記受光ピークを、前記測距データから除外することと、
    を実行するように構成されるデータ処理装置。
  2. 前記比較発光強度の前記測距発光強度に対する相対的な大きさを設定することをさらに実行するように構成される請求項1に記載のデータ処理装置。
  3. 前記検出データを取得することは、
    前記照射光の照射停止期間における前記受光強度を含む停止データを取得することを含み、
    前記比較発光強度の相対的な大きさを設定することは、
    前記停止データにおける前記受光強度の時間変化幅が許容幅範囲外となる場合に、前記比較発光強度の大きさを前記時間変化幅に応じて設定することを含む請求項2に記載のデータ処理装置。
  4. 前記比較発光強度の相対的な大きさを設定することは、
    前記比較フレームに先行する前記測距フレームにおける前記測距データでの前記受光ピークの前記受光強度に応じて前記比較発光強度の相対的な大きさを設定することを含む請求項2に記載のデータ処理装置。
  5. 前記比較発光強度の相対的な大きさを設定することは、
    注目距離範囲内に含まれる前記受光ピークの前記受光強度に応じて前記比較発光強度の相対的な大きさを設定することを含む請求項4に記載のデータ処理装置。
  6. 前記ターゲットとしての搬送物を搬送する搬送車両(2)に搭載された前記光学センサにて生成された前記検出データを処理する請求項1に記載のデータ処理装置。
  7. 検出エリア(A)に対する照射光(Bi)がターゲット(T)にて反射した反射光(Br)を受光することにより前記ターゲットを検出する光学センサであって、
    前記照射光を照射する発光ユニット(10)と、
    前記反射光を受光する受光ユニット(30)と、
    前記受光ユニットからの検出データを取得する制御ユニット(100)と、
    を備え、
    前記制御ユニットは、
    測距フレームでの発光強度である測距発光強度にて照射された前記照射光に対して受光された前記反射光における受光ピークに関する物理情報を含む測距データと、前記測距フレームと異なる比較フレームにおいて、前記測距発光強度と異なる比較発光強度にて照射された前記照射光に対する前記反射光における前記受光ピークに関する前記物理情報を含む比較データと、を含む前記検出データを取得する取得部(120)と、
    前記測距データと前記比較データとの間において、前記発光強度と前記受光ピークでの受光強度との強度比の差が許容強度範囲内且つ前記受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる前記受光ピークを、前記測距データから除外する除外部(130)と、
    を有する光学センサ。
  8. 検出エリア(A)に対する照射光(Bi)がターゲット(T)にて反射した反射光(Br)を受光することにより前記ターゲットを検出する光学センサ(1)にて生成された検出データを処理するために、プロセッサ(102)により実行されるデータ処理方法であって、
    測距フレームでの発光強度である測距発光強度にて照射された前記照射光に対して受光された前記反射光における受光ピークに関する物理情報を含む測距データと、前記測距フレームと異なる比較フレームにおいて、前記測距発光強度と異なる比較発光強度にて照射された前記照射光に対する前記反射光における前記受光ピークに関する前記物理情報を含む比較データと、を含む前記検出データを取得することと、
    前記測距データと前記比較データとの間において、前記発光強度と前記受光ピークでの受光強度との強度比の差が許容強度範囲内且つ前記受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる前記受光ピークを、前記測距データから除外することと、
    を含むデータ処理方法。
  9. 検出エリア(A)に対する照射光(Bi)がターゲット(T)にて反射した反射光(Br)を受光することにより前記ターゲットを検出する光学センサ(1)にて生成された検出データを処理するために記憶媒体(101)に記憶され、プロセッサ(102)に実行させる命令を含むデータ処理プログラムであって、
    前記命令は、
    測距フレームでの発光強度である測距発光強度にて照射された前記照射光に対して受光された前記反射光における受光ピークに関する物理情報を含む測距データと、前記測距フレームと異なる比較フレームにおいて、前記測距発光強度と異なる比較発光強度にて照射された前記照射光に対する前記反射光における前記受光ピークに関する前記物理情報を含む比較データと、を含む前記検出データを取得することと、
    前記測距データと前記比較データとの間において、前記発光強度と前記受光ピークでの受光強度との強度比の差が許容強度範囲内且つ前記受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる前記受光ピークを、前記測距データから除外することと、
    を含むデータ処理プログラム。
JP2022173227A 2022-10-28 2022-10-28 データ処理装置、光学センサ、データ処理方法、データ処理プログラム Pending JP2024064554A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022173227A JP2024064554A (ja) 2022-10-28 2022-10-28 データ処理装置、光学センサ、データ処理方法、データ処理プログラム
PCT/JP2023/035322 WO2024090116A1 (ja) 2022-10-28 2023-09-28 データ処理装置、光学センサ、データ処理方法、データ処理プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022173227A JP2024064554A (ja) 2022-10-28 2022-10-28 データ処理装置、光学センサ、データ処理方法、データ処理プログラム

Publications (1)

Publication Number Publication Date
JP2024064554A true JP2024064554A (ja) 2024-05-14

Family

ID=90830599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022173227A Pending JP2024064554A (ja) 2022-10-28 2022-10-28 データ処理装置、光学センサ、データ処理方法、データ処理プログラム

Country Status (2)

Country Link
JP (1) JP2024064554A (ja)
WO (1) WO2024090116A1 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852416B2 (ja) * 2016-03-10 2021-03-31 株式会社リコー 距離測定装置、移動体、ロボット、装置及び3次元計測方法
US11971507B2 (en) * 2018-08-24 2024-04-30 Velodyne Lidar Usa, Inc. Systems and methods for mitigating optical crosstalk in a light ranging and detection system
US11808887B2 (en) * 2018-11-02 2023-11-07 Waymo Llc Methods and systems for mapping retroreflectors
US10830894B2 (en) * 2018-11-21 2020-11-10 Zoox, Inc. Intensity and depth measurements in time-of-flight sensors
US20230288544A1 (en) * 2020-08-13 2023-09-14 Sony Group Corporation Information processing device, information processing method, and program
JP2022140045A (ja) * 2021-03-12 2022-09-26 オムロン株式会社 搬送可否判定装置、測距装置、搬送ユニット、搬送可否判定方法、搬送可否判定プログラム

Also Published As

Publication number Publication date
WO2024090116A1 (ja) 2024-05-02

Similar Documents

Publication Publication Date Title
CN109959942B (zh) 距离测量设备、识别设备和距离测量方法
US11579254B2 (en) Multi-channel lidar sensor module
US20190310375A1 (en) Automatic gain control for lidar for autonomous vehicles
US20210116572A1 (en) Light ranging apparatus
KR20220136336A (ko) 라이다 시스템용 적응식 방출기 및 수신기
US10242262B2 (en) Dynamic adjustment of imaging parameters
US11961306B2 (en) Object detection device
JP7015801B2 (ja) 電子装置および方法
US11908119B2 (en) Abnormality detection device for vehicle
JP2011247872A (ja) 距離測定装置、距離測定方法、および距離測定プログラム
KR102664396B1 (ko) 라이다 장치 및 그 동작 방법
US10962644B1 (en) Dynamic laser power control in light detection and ranging (LiDAR) systems
WO2024090116A1 (ja) データ処理装置、光学センサ、データ処理方法、データ処理プログラム
US20230219532A1 (en) Vehicle control device, vehicle control method, and computer program product
JP2022125966A (ja) 測距補正装置、測距補正方法、測距補正プログラム、および測距装置
US20230384436A1 (en) Distance measurement correction device, distance measurement correction method, and distance measurement device
US20220404499A1 (en) Distance measurement apparatus
US20230078063A1 (en) Distance measurement device and distance measurement system
EP4303615A1 (en) Lidar system and method to operate
WO2023079944A1 (ja) 制御装置、制御方法、制御プログラム
US20230066857A1 (en) Dynamic laser emission control in light detection and ranging (lidar) systems
CN117616304A (zh) 测距装置以及测距方法
CN116848430A (zh) 测距修正装置、测距修正方法、测距修正程序以及测距装置
CN113227840A (zh) 物体检测装置以及物体检测方法
JP2023059629A (ja) 路面状態推定システム、路面状態推定装置、路面状態推定方法、路面状態推定プログラム