JP2024063135A - Cod/bod sampling amount determination method, automatic dilution device and bod automatic measurement device - Google Patents
Cod/bod sampling amount determination method, automatic dilution device and bod automatic measurement device Download PDFInfo
- Publication number
- JP2024063135A JP2024063135A JP2024030102A JP2024030102A JP2024063135A JP 2024063135 A JP2024063135 A JP 2024063135A JP 2024030102 A JP2024030102 A JP 2024030102A JP 2024030102 A JP2024030102 A JP 2024030102A JP 2024063135 A JP2024063135 A JP 2024063135A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- bod
- cod
- absorbance
- automatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 113
- 239000012895 dilution Substances 0.000 title claims abstract description 46
- 238000010790 dilution Methods 0.000 title claims abstract description 46
- 238000005259 measurement Methods 0.000 title abstract description 50
- 238000005070 sampling Methods 0.000 title abstract description 15
- 239000000523 sample Substances 0.000 claims abstract description 277
- 238000004458 analytical method Methods 0.000 claims abstract description 62
- 239000012470 diluted sample Substances 0.000 claims abstract description 47
- 239000000243 solution Substances 0.000 claims abstract description 14
- 230000036284 oxygen consumption Effects 0.000 claims abstract description 11
- 238000005406 washing Methods 0.000 claims abstract description 6
- 238000002835 absorbance Methods 0.000 claims description 93
- 238000012937 correction Methods 0.000 claims description 14
- 239000012286 potassium permanganate Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 238000004448 titration Methods 0.000 claims description 10
- 238000002360 preparation method Methods 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 4
- 238000013500 data storage Methods 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 16
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 239000002351 wastewater Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 230000008676 import Effects 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 150000002443 hydroxylamines Chemical class 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- QVGXLLKOCUKJST-BJUDXGSMSA-N oxygen-15 atom Chemical compound [15O] QVGXLLKOCUKJST-BJUDXGSMSA-N 0.000 description 1
- 238000012950 reanalysis Methods 0.000 description 1
- 239000012898 sample dilution Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- ZNCPFRVNHGOPAG-UHFFFAOYSA-L sodium oxalate Chemical compound [Na+].[Na+].[O-]C(=O)C([O-])=O ZNCPFRVNHGOPAG-UHFFFAOYSA-L 0.000 description 1
- 229940039790 sodium oxalate Drugs 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、COD、BOD分析における試料の採取量、BODの試料自動希釈装置及びCOD自動測定装置、BOD自動測定装置に関する。 The present invention relates to the amount of sample taken in COD and BOD analysis, an automatic BOD sample dilution device, an automatic COD measurement device, and an automatic BOD measurement device.
JIS K 0102には工場排水試験方法が規定されており、その17には「100℃における過マンガン酸カリウムによる酸素消費量(CODMn)」について規定されている。JIS K 0102の17に基づくCODの分析、COD自動分析装置については、以下のような課題が指摘されている。 JIS K 0102 specifies the industrial wastewater testing method, and section 17 specifies "oxygen consumption by potassium permanganate at 100°C (COD Mn )". The following problems have been pointed out regarding the analysis of COD based on section 17 of JIS K 0102 and the COD automatic analyzer.
排水にヒドロキシルアミン化合物(NS化合物)が共存している場合、NS化合物の分解処理に一週間くらいの時間を要する(例えば特許文献1参照)。生成する塩化銀が反応槽・配管の内壁、反応槽内の酸化還元電位(ORP)電極などの各種センサーへ付着することでCOD値の測定誤差を生じる(例えば特許文献2参照)。さらに以下のような課題がある。 When hydroxylamine compounds (NS compounds) coexist in the wastewater, it takes about a week to decompose the NS compounds (see, for example, Patent Document 1). The silver chloride that is produced adheres to the inner walls of the reaction tank and piping, and to various sensors such as the oxidation-reduction potential (ORP) electrodes in the reaction tank, causing errors in the measurement of the COD value (see, for example, Patent Document 2). Further issues include the following:
現状、COD分析において試料の採取量の決定は、分析担当者が目視によるCOD値の予測、例えば試料液の濁り、色、におい、以前に同じ試料の分析実績があればその時の実績値や、他の項目、例えば懸濁物質SS値などを参考にして採取量を決定している。一方、JIS K 0102の17には、採取量について「30分加熱した後の5mmol/L過マンガン酸カリウム溶液の残留量が4.5~6.5mLになるような量」と規定されている。 Currently, the amount of sample to be collected in COD analysis is determined by the analyst based on visual predictions of the COD value, such as the turbidity, color, and odor of the sample liquid, and, if the same sample has been analyzed previously, on the actual values from that analysis, as well as other items such as the suspended solids (SS) value. Meanwhile, JIS K 0102, Section 17 specifies that the amount to be collected should be "an amount such that after 30 minutes of heating, the residual volume of a 5 mmol/L potassium permanganate solution is 4.5 to 6.5 mL."
人間の感覚による予測の場合、その予測を間違い採取量が正しくなかった場合はCOD値が正しく分析できず、採取量を調整して再試験を行う必要がある。予測値が正しかったことで再分析を免れたとしても、そのCOD値が正しく試験できているかという妥当性においては立証することができず、分析担当者は、再度分析を行ってCOD分析値の確証を得ている。 When predictions are based on human senses, if the prediction is wrong and the sample volume is incorrect, the COD value cannot be analyzed correctly, and the sample volume must be adjusted and retested. Even if reanalysis is avoided because the predicted value was correct, the validity of whether the COD value was tested correctly cannot be proven, so analysts must conduct another analysis to confirm the COD analysis value.
生物化学的酸素要求量(BOD)については、JIS K 0102の21において試料の採取量に関する規定がある。ここでは「5日間の培養によって消費される溶存酸素量が、培養前の量の40~70%になった希釈試料での結果を用いてBOD値を算出する。」とあり、希釈率の重要性がわかる。 Regarding biochemical oxygen demand (BOD), JIS K 0102, section 21 stipulates the amount of sample to be taken. It states that "The BOD value is calculated using the results of a diluted sample in which the amount of dissolved oxygen consumed during five days of cultivation is 40-70% of the amount before cultivation." This shows the importance of the dilution rate.
現状、BODの希釈率の決定は、分析担当者の五感や試料液の透明度等から決定している。またBOD値が正しく試験できているかという妥当性については、CODと同様である。 Currently, the dilution rate for BOD is determined based on the analyst's senses and the transparency of the sample liquid. The validity of whether the BOD value is being tested correctly is the same as for COD.
以上のようにCOD及びBOD分析における試料採取量は、分析結果に重大な影響を与えるにも関わらず、これまで適切な試料量を自動的に採取する方法及び装置は開発されていない。またCOD値、BOD値が正しく試験できているかという妥当性においても、これまでにこれを解決する方法は開発されていない。 As described above, the amount of sample taken in COD and BOD analysis has a significant impact on the results, yet no method or device has been developed to automatically take an appropriate amount of sample. Furthermore, no method has been developed to resolve the issue of whether COD and BOD values are being tested correctly.
本発明の目的は、COD分析、BOD分析における適切な試料量を決定し、また分析結果の妥当性を裏付けられるCOD/BOD試料採取量決定方法、自動希釈装置及びBOD自動測定装置を提供することである。 The object of the present invention is to provide a method for determining the appropriate sample amount for COD and BOD analysis, an automatic dilution device, and an automatic BOD measurement device that can verify the validity of the analysis results.
本発明は、試料採取ラインを試料で共洗いする過程でUV吸光光度計を用いて試料の吸光度を測定するステップと、試料の吸光度とBODとの相関関係を用い算出される試料のBOD予測値EBOD(mg/L)と、式(3)、式(4)とから試料採取量V(mL)を決定するステップと、を含むことを特徴とするBOD試料採取量決定方法である。
V=A×v/EBOD ・・・(3)
A=5.0 ・・・(4)
ここで Aは、希釈試料の溶存酸素の消費量(D1-D2)の中央値(mg/L)
vは、希釈試料の量(mL)
The present invention is a method for determining a BOD sample collection amount, which includes the steps of measuring the absorbance of the sample using a UV absorptiometer during the process of co-washing the sample collection line with the sample, and determining the sample collection amount V (mL) from the sample's predicted BOD value E BOD (mg/L) calculated using the correlation between the sample's absorbance and BOD, and equations (3) and (4).
V = A × v / E BOD ... (3)
A = 5.0 ... (4)
Here, A is the median (mg/L) of the dissolved oxygen consumption (D 1 -D 2 ) of the diluted sample.
v is the volume of the diluted sample (mL)
本発明は、試料採取ラインの途中にフローセルが取付けられ試料の吸光度を測定するUV吸光光度計と、試料の吸光度とBODとの相関関係を用い算出される試料のBOD予測値EBOD(mg/L)と、公定法に定められるBOD予測値EBOD(mg/L)と試料の適量との関係式から、公定法に定められる試料の適量の試料採取量V(mL)を決定する試料採取量決定手段と、前記試料採取量決定手段で決定された試料採取量V(mL)を自動採取する試料自動採取手段と、採取された試料に希釈水を加え、希釈倍率の異なる希釈試料を調製し、フラン瓶に充填する希釈試料調製手段と、機器及び各手段の動作を制御する制御装置と、を備え、前記制御装置は、試料が送られ前記試料採取ラインが共洗いされる過程で吸光度を測定するように前記UV吸光光度計を制御することを特徴とする自動希釈装置である。 The present invention is an automatic dilution device comprising a UV absorptiometer having a flow cell attached midway through a sampling line for measuring the absorbance of a sample, a sampling amount determination means for determining an appropriate sampling amount V (mL) of the sample defined by an official method from a predicted BOD value E BOD (mg/L) of the sample calculated using the correlation between the absorbance and BOD of the sample and a relational equation between the predicted BOD value E BOD (mg/L) defined by an official method and the appropriate amount of sample, an automatic sample sampling means for automatically sampling the sample amount V (mL) determined by the sampling amount determination means, a diluted sample preparation means for adding dilution water to the sampled sample to prepare diluted samples with different dilution ratios and filling them into frank bottles, and a control device for controlling the operation of the equipment and each means, wherein the control device controls the UV absorptiometer so as to measure absorbance during the process in which the sample is delivered and the sampling line is co-washed.
本発明に係る自動希釈装置は、公定法に定められるBOD予測値EBOD(mg/L)と試料の適量との関係式が、式(3)及び式(4)で示されることを特徴とする。
V=A×v/EBOD ・・・(3)
A=5.0 ・・・(4)
ここで Aは、希釈試料の溶存酸素の消費量(D1-D2)の中央値(mg/L)
Vは、試料採取量(mL)
vは、希釈試料の量(mL)
The automatic dilution device according to the present invention is characterized in that the relationship between the BOD predicted value E BOD (mg/L) defined by the official method and the appropriate amount of sample is expressed by the following formulas (3) and (4).
V = A × v / E BOD ... (3)
A = 5.0 ... (4)
Here, A is the median (mg/L) of the dissolved oxygen consumption (D 1 -D 2 ) of the diluted sample.
V is the sample volume (mL)
v is the volume of the diluted sample (mL)
本発明は、前記自動希釈装置と、前記希釈試料の溶存酸素を測定する溶存酸素測定手段及び前記フラン瓶を保管する恒温槽を備えるBOD分析装置と、前記BOD分析装置の動作を制御する制御装置と、を備えることを特徴とするBOD自動測定装置である。 The present invention is an automatic BOD measurement device that is characterized by comprising the automatic dilution device, a BOD analysis device that includes a dissolved oxygen measurement means for measuring the dissolved oxygen in the diluted sample and a thermostatic chamber for storing the flask, and a control device that controls the operation of the BOD analysis device.
本発明に係るBOD自動測定装置は、前記UV吸光光度計が測定した試料の吸光度と、前記BOD分析装置が測定した前記試料のBODとが紐付けられたBODデータを記憶するデータ記憶手段と、前記BODデータを用いて、予め取得された試料の吸光度とBODとの相関関係を補正する補正手段と、を備え、前記試料採取量決定手段は、補正された試料の吸光度とBODとの相関関係を用い前記試料採取量Vを決定することを特徴とする。 The BOD automatic measurement device according to the present invention comprises a data storage means for storing BOD data linking the absorbance of the sample measured by the UV absorptiometer with the BOD of the sample measured by the BOD analyzer, and a correction means for correcting the correlation between the absorbance and BOD of the sample obtained in advance using the BOD data, and the sample collection amount determination means determines the sample collection amount V using the correlation between the corrected absorbance and BOD of the sample.
本発明は、試料採取ラインを試料で共洗いする過程でUV吸光光度計を用いて試料の吸光度を測定するステップと、試料の吸光度とCODとの相関関係を用い算出される試料のCOD予測値ECOD(mg/L)と、式(1)、式(2)とから試料採取量V(mL)を決定するステップと、を含むことを特徴とするCOD試料採取量決定方法である。
V=0.2×(a-b)×f×1000/ECOD ・・・(1)
a-b=4.5 ・・・(2)
但し、V≧100のときは、V=100
ここで a-bは、滴定値(滴定量-ブランク試験値)の中央値(mL)
fは、5mmol/L過マンガン酸カリウム溶液のファクター
The present invention is a method for determining a COD sample collection amount, which comprises the steps of: measuring the absorbance of the sample using a UV absorptiometer during the process of co-washing the sample collection line with the sample; and determining the sample collection amount V (mL) from the predicted COD value E COD (mg/L) of the sample calculated using the correlation between the sample absorbance and COD, and equations (1) and (2).
V = 0.2 × (a - b) × f × 1000 / E COD ... (1)
a-b=4.5... (2)
However, when V≧100, V=100
Here, a-b is the median of the titration value (titration amount - blank test value) (mL).
f is the factor of 5 mmol/L potassium permanganate solution
本発明によれば、COD分析、BOD分析における適切な試料量を決定し、また分析結果の妥当性を裏付けられるCOD/BOD試料採取量決定方法、自動希釈装置及びBOD自動測定装置を提供することができる。 The present invention provides a method for determining the appropriate sample amount for COD and BOD analysis, an automatic dilution device, and an automatic BOD measurement device that can verify the validity of the analysis results.
図1は、本発明の第1実施形態のCOD試料採取量決定方法の手順、及び試料の吸光度とCODとの関係を示す図である。本発明の第1実施形態のCOD試料採取量決定方法は、JIS K 0102の17「100℃における過マンガン酸カリウムによる酸素消費量(CODMn)」に規定された「試料の適量は、30分加熱した後の5mmol/L過マンガン酸カリウム溶液の残留量が4.5~6.5mLになるような量」を実現するための試料採取量決定方法であり、図1(A)に示すように試料の吸光度を測定するステップ(A1)と、試料のCOD予測値ECOD(mg/L)と式(1)、式(2)とから試料採取量V(mL)を決定するステップ(A2)と、を含む。 Fig. 1 is a diagram showing the procedure of the method for determining the COD sample collection amount according to the first embodiment of the present invention, and the relationship between the absorbance of the sample and the COD. The method for determining the COD sample collection amount according to the first embodiment of the present invention is a method for determining the sample collection amount to realize "the appropriate amount of sample is an amount such that the residual amount of 5 mmol/L potassium permanganate solution after heating for 30 minutes is 4.5 to 6.5 mL" as specified in JIS K 0102-17 "oxygen consumption by potassium permanganate at 100°C (COD Mn)", and includes a step (A1) of measuring the absorbance of the sample as shown in Fig. 1(A) and a step (A2) of determining the sample collection amount V (mL) from the predicted COD value E COD (mg/L) of the sample and formulas (1) and (2).
以下、JIS K 0102の17「100℃における過マンガン酸カリウムによる酸素消費量(CODMn)」に規定された方法を公定法、公定法に規定された「試料の適量は、30分加熱した後の5mmol/L過マンガン酸カリウム溶液の残留量が4.5~6.5mLになるような量」を公定法の試料の適量と記す。 Hereinafter, the method specified in JIS K 0102, Section 17 "Oxygen consumption by potassium permanganate at 100°C (COD Mn )" will be referred to as the official method, and the appropriate amount of sample for the official method will be the amount specified in the official method, "such that the residual amount of 5 mmol/L potassium permanganate solution after heating for 30 minutes is 4.5 to 6.5 mL."
ステップ(A1)の試料の吸光度の測定は、UV吸光光度計を用い、波長254nmの光を試料に照射しその吸光度を測定する。UV吸光光度計及び吸光度の測定手法は、特に限定されるものではなく公知のUV吸光光度計及び測定手法を用いることができる。 In step (A1), the absorbance of the sample is measured using a UV spectrophotometer, by irradiating the sample with light having a wavelength of 254 nm and measuring the absorbance. The UV spectrophotometer and the method for measuring the absorbance are not particularly limited, and any known UV spectrophotometer and measurement method can be used.
ステップ(A2)では、試料のCOD予測値ECOD(mg/L)と式(1)、式(2)とから試料採取量V(mL)を決定する。試料のCOD予測値ECOD(mg/L)は、ステップ(A1)で測定された試料の吸光度と、予め取得された試料の吸光度とCODとの相関関係とを用い算出される。この相関関係の一例を図1(B)に示した。 In step (A2), the sample collection volume V (mL) is determined from the predicted COD value E COD (mg/L) of the sample and formulas (1) and (2). The predicted COD value E COD (mg/L) of the sample is calculated using the absorbance of the sample measured in step (A1) and a correlation between the absorbance and COD of the sample obtained in advance. An example of this correlation is shown in Figure 1 (B).
図1(B)の横軸、縦軸は、UV吸光光度計を用い波長254nmの光で測定される試料の吸光度、試料を公定法で分析し得られるCOD(mg/L)である。図1(B)は、複数の試料を測定し得られた吸光度とCODとをプロットしたものであり、CODは、吸光度に正比例することが分かる。これが予め取得された試料の吸光度とCODとの相関関係であり、ステップ(A1)で得られた吸光度Xを先の相関関係に当てはめることで試料のCOD予測値ECOD(mg/L)が得られる。試料の吸光度とCODとの相関関係は、図1(B)に示すように相関式で表すことができるが、他の方法で表してもよい。 The horizontal and vertical axes of Fig. 1(B) are the absorbance of the sample measured with a UV absorptiometer using light with a wavelength of 254 nm, and the COD (mg/L) obtained by analyzing the sample by an official method. Fig. 1(B) plots the absorbance and COD obtained by measuring a number of samples, and it can be seen that the COD is directly proportional to the absorbance. This is the correlation between the absorbance and COD of the sample obtained in advance, and the predicted COD value E COD (mg/L) of the sample is obtained by applying the absorbance X obtained in step (A1) to the above correlation. The correlation between the absorbance and COD of the sample can be expressed by a correlation formula as shown in Fig. 1(B), but it may also be expressed by other methods.
図1(B)は、排水の種類、排出場所など種類の異なる試料を用い、試料の吸光度とCODとを取得し、これをプロットしたものであるが、同じ工場から排出される排水、同じ工場の同じ場所から排出される排水など、特定の試料毎に吸光度とCODとの相関関係を導出してもよい。特定の試料の吸光度とCODとの相関関係を導出し、その試料に対応した相関関係を使用すれば、精度の高いCOD予測値ECOD(mg/L)を得ることができる。また標準物質を用いて模擬試料を調製し、該模擬試料から吸光度とCODとの相関関係を得てもよい。 In Fig. 1 (B), the absorbance and COD of samples are obtained and plotted using samples of different types, such as wastewater type and discharge location, but the correlation between absorbance and COD may be derived for each specific sample, such as wastewater discharged from the same factory or wastewater discharged from the same location in the same factory. By deriving the correlation between absorbance and COD of a specific sample and using the correlation corresponding to that sample, a highly accurate COD predicted value E COD (mg/L) can be obtained. Also, a simulated sample may be prepared using a standard substance, and the correlation between absorbance and COD may be obtained from the simulated sample.
式(1)及び式(2)は、試料のCOD予測値ECOD(mg/L)を基に試料採取量V(mL)を算出するための式であり、以下のとおりである。式(1)、式(2)は、公定法にも示されている。
V=0.2×(a-b)×f×1000/ECOD ・・・(1)
a-b=4.5 ・・・(2)
但し、V≧100のときは、V=100
ここで a-bは、滴定値(滴定量-ブランク試験値)の中央値(mL)
fは、5mmol/L過マンガン酸カリウム溶液のファクター
Equations (1) and (2) are used to calculate the sample collection volume V (mL) based on the predicted COD value E COD (mg/L) of the sample, as shown below: Equations (1) and (2) are also shown in the official method.
V = 0.2 × (a - b) × f × 1000 / E COD ... (1)
a-b=4.5... (2)
However, when V≧100, V=100
Here, a-b is the median of the titration value (titration amount - blank test value) (mL).
f is the factor of 5 mmol/L potassium permanganate solution
式(2)のa-bの根拠は、次のとおりである。公定法によれば、試料に5mmol/L過マンガン酸カリウム溶液を10mL加え、30分加熱した後の5mmol/L過マンガン酸カリウム溶液の残留量が4.5~6.5mLとなるような量が試料の適量とあるため、このときの5mmol/L過マンガン酸カリウム溶液の消費量(滴定値)は3.5~5.5mLとなる。a-bは、この消費量(滴定値)の中央値の4.5mLである。 The basis for a-b in formula (2) is as follows. According to the official method, the appropriate amount of sample is one in which 10 mL of 5 mmol/L potassium permanganate solution is added to the sample and the remaining amount of 5 mmol/L potassium permanganate solution after heating for 30 minutes is 4.5-6.5 mL, so the amount of 5 mmol/L potassium permanganate solution consumed (titration value) at this time is 3.5-5.5 mL. a-b is the median value of this consumption (titration value), 4.5 mL.
以上のように本発明の第1実施形態のCOD試料採取量決定方法は、UV吸光光度計を用い波長254nmの光で測定される試料の吸光度と、公定法で分析し得られる試料のCOD(mg/L)との間に相関関係があることを利用し、これから試料のCOD予測値ECOD(mg/L)を得て、試料の採取量を決定する方法である。 As described above, the method for determining the amount of COD sample to be collected in the first embodiment of the present invention utilizes the correlation between the absorbance of a sample measured using a UV absorptiometer with light of a wavelength of 254 nm and the COD (mg/L) of the sample obtained by analysis using an official method, and from this obtains a predicted COD value E COD (mg/L) of the sample to determine the amount of sample to be collected.
図2は、本発明の第2実施形態のBOD試料採取量決定方法の手順、及び試料の吸光度とBODとの関係を示す図である。本発明の第2実施形態のBOD試料採取量決定方法は、JIS K 0102の21「生物化学的酸素消費量(BOD)」に規定された「試料の正常なBODを得るための希釈試料の溶存酸素の消費量(D1-D2)は、O 3.6~6.4mg/Lの範囲である」を実現するための試料採取量決定方法であり、図2(A)に示すように試料の吸光度を測定するステップ(B1)と、試料のBOD予測値EBOD(mg/L)と式(3)、式(4)とから試料採取量V(mL)を決定するステップ(B2)と、を含む。 Fig. 2 is a diagram showing the procedure of the method for determining the BOD sample collection amount according to the second embodiment of the present invention, and the relationship between the absorbance and BOD of the sample. The method for determining the BOD sample collection amount according to the second embodiment of the present invention is a method for determining the sample collection amount to realize the requirement in JIS K 0102, 21 "Biochemical oxygen consumption (BOD)" that "the amount of dissolved oxygen consumed by a diluted sample to obtain a normal BOD of the sample (D 1 -D 2 ) is in the range of O 3.6 to 6.4 mg/L", and includes a step (B1) of measuring the absorbance of the sample as shown in Fig. 2(A) and a step (B2) of determining the sample collection amount V (mL) from the predicted BOD value E BOD (mg/L) of the sample and formulas (3) and (4).
以下、JIS K 0102の21「生物化学的酸素消費量(BOD)」に規定された方法を公定法、公定法に規定された「試料の正常なBODを得るための希釈試料の溶存酸素の消費量(D1-D2)は、O 3.6~6.4mg/Lの範囲である」を満足する試料の適量を公定法の試料の適量と記す。 Hereinafter, the method specified in JIS K 0102, Section 21 "Biochemical oxygen consumption (BOD)" will be referred to as the official method, and the appropriate amount of sample that satisfies the official method's specified requirement that "the amount of dissolved oxygen consumed by a diluted sample to obtain a normal BOD for the sample (D 1 -D 2 ) is in the range of O 3.6 to 6.4 mg/L" will be referred to as the appropriate amount of sample for the official method.
ステップ(B1)の試料の吸光度の測定は、UV吸光光度計を用い、波長254nmの光を試料に照射しその吸光度を測定する。UV吸光光度計及び吸光度の測定手法は、特に限定されるものではなく公知のUV吸光光度計及び測定手法を用いることができる。 In step (B1), the absorbance of the sample is measured using a UV spectrophotometer, by irradiating the sample with light having a wavelength of 254 nm and measuring the absorbance. The UV spectrophotometer and the method for measuring the absorbance are not particularly limited, and any known UV spectrophotometer and measurement method can be used.
ステップ(B2)では、試料のBOD予測値EBOD(mg/L)と式(3)、式(4)とから試料採取量V(mL)を決定する。試料のBOD予測値EBOD(mg/L)は、ステップ(B1)で測定された試料の吸光度と、予め取得された試料の吸光度とBODとの相関関係とを用い算出される。この相関関係の一例を図2(B)に示した。 In step (B2), the sample collection volume V (mL) is determined from the predicted BOD value E BOD (mg/L) of the sample and equations (3) and (4). The predicted BOD value E BOD (mg/L) of the sample is calculated using the absorbance of the sample measured in step (B1) and a correlation between the absorbance and BOD of the sample obtained in advance. An example of this correlation is shown in Figure 2 (B).
図2(B)の横軸、縦軸は、UV吸光光度計を用い波長254nmの光で測定される試料の吸光度、及び試料を公定法で分析し得られるBOD(mg/L)である。図2(B)は、複数の試料を測定し得られた吸光度とBODとをプロットしたものであり、BODは、吸光度に正比例することが分かる。これが予め取得された試料の吸光度とBODとの相関関係であり、ステップ(B1)で得られた吸光度Xを先の相関関係に当てはめることで試料のBOD予測値EBOD(mg/L)が得られる。試料の吸光度とBODとの相関関係は、図2(B)に示すように相関式で表すことができるが、他の方法で表してもよい。 The horizontal and vertical axes of Fig. 2(B) are the absorbance of the sample measured with a UV absorptiometer using light with a wavelength of 254 nm, and the BOD (mg/L) obtained by analyzing the sample by the official method. Fig. 2(B) plots the absorbance and BOD obtained by measuring a number of samples, and it can be seen that the BOD is directly proportional to the absorbance. This is the correlation between the absorbance and BOD of the sample obtained in advance, and the predicted BOD value E BOD (mg/L) of the sample is obtained by applying the absorbance X obtained in step (B1) to the above correlation. The correlation between the absorbance and BOD of the sample can be expressed by a correlation formula as shown in Fig. 2(B), but it may also be expressed by other methods.
図2(B)は、排水の種類、排出場所など種類の異なる試料を用い、試料の吸光度とBODとを取得し、これをプロットしたものであるが、同じ工場から排出される排水、同じ工場の同じ場所から排出される排水など、特定の試料毎の吸光度とBODとの相関関係を導出してもよい。特定の試料の吸光度とBODとの相関関係を導出し、その試料に対応した相関関係を使用すれば、精度の高いBOD予測値EBOD(mg/L)を得ることができる。また標準物質を用いて模擬試料を調製し、該模擬試料から吸光度とBODとの相関関係を得てもよい。 2(B) shows a plot of absorbance and BOD of samples obtained using samples of different types, such as wastewater type and discharge location, but the correlation between absorbance and BOD for each specific sample, such as wastewater discharged from the same factory or wastewater discharged from the same location in the same factory, may be derived. By deriving the correlation between absorbance and BOD of a specific sample and using the correlation corresponding to that sample, a highly accurate BOD predicted value E BOD (mg/L) can be obtained. Also, a simulated sample may be prepared using a standard substance, and the correlation between absorbance and BOD may be obtained from the simulated sample.
式(3)及び式(4)は、試料のBOD予測値EBOD(mg/L)を基に試料採取量V(mL)を算出するための式であり、以下のとおりである。式(3)、式(4)は、公定法にも示されている。
V=A×v/EBOD ・・・(3)
A=5.0 ・・・(4)
ここで Aは、希釈試料の溶存酸素の消費量(D1-D2)の中央値(mg/L)
vは、希釈試料の量(mL)
Equations (3) and (4) are used to calculate the sample collection volume V (mL) based on the predicted BOD value E BOD (mg/L) of the sample, as shown below: Equations (3) and (4) are also shown in the official method.
V = A × v / E BOD ... (3)
A = 5.0 ... (4)
Here, A is the median (mg/L) of the dissolved oxygen consumption (D 1 -D 2 ) of the diluted sample.
v is the volume of the diluted sample (mL)
式(4)のAの根拠は、次のとおりである。公定法によれば、試料の正常なBODを得るための希釈試料の溶存酸素の消費量(D1-D2)は、O 3.6~6.4mg/Lの範囲とあるため、希釈試料の溶存酸素の消費量(D1-D2)の中央値は5.0mg/Lとなる。Aは、この希釈試料の溶存酸素の消費量(D1-D2)の中央値の5.0mg/Lである。 The basis for A in formula (4) is as follows: According to the official method, the amount of dissolved oxygen consumed by a diluted sample (D 1 -D 2 ) to obtain a normal BOD for the sample is in the range of O 3.6 to 6.4 mg/L, so the median value of the amount of dissolved oxygen consumed by the diluted sample (D 1 -D 2 ) is 5.0 mg/L. A is the median value of the amount of dissolved oxygen consumed by this diluted sample (D 1 -D 2 ), 5.0 mg/L.
以上のように本発明の第2実施形態のBOD試料採取量決定方法は、UV吸光光度計を用い波長254nmの光で測定される試料の吸光度と、公定法で分析し得られる試料のBOD(mg/L)との間に相関関係があることを利用し、これから試料のBOD予測値EBOD(mg/L)を得て、試料の採取量を決定する方法であり、本発明の第1実施形態のCOD試料採取量決定方法と技術的思想を共通にする。 As described above, the method for determining the amount of BOD sample to be collected of the second embodiment of the present invention utilizes the correlation between the absorbance of a sample measured using a UV absorptiometer with light of a wavelength of 254 nm and the BOD (mg/L) of the sample obtained by analysis using an official method, and from this obtains a predicted BOD value E BOD (mg/L) for the sample to determine the amount of sample to be collected, and shares a common technical concept with the method for determining the amount of COD sample to be collected of the first embodiment of the present invention.
図3は、本発明の第3実施形態のCOD自動測定装置1の構成図であり、図3(A)は全体構成図、図3(B)は、制御装置70の機能構成図である。COD自動測定装置1は、公定法の試料の適量を自動採取しCOD分析装置50に送る試料採取装置10と、試料のCODを測定するCOD分析装置50とを備える。
Figure 3 is a configuration diagram of an automatic
試料採取装置10は、COD分析装置50に試料を送る試料採取ライン12を備え、試料採取ライン12には、試料を採取するオートサンプラー14、試料を送液する送液ポンプ16、試料の吸光度を測定する、フローセルが挿入されたUV吸光光度計18、決定された試料量を分取する分取ビュレット20が設けられている。試料採取装置10は、制御装置70とデータを送受信可能に接続し、制御装置70が動作を制御する。
The sample collection device 10 is equipped with a
COD分析装置50は、公定法に準拠した構成を有するCOD分析装置であり、試薬を貯蔵する試薬貯槽53を備え、貯蔵する試薬を一定量自動採取し、反応槽56に供給する試薬供給手段52、反応槽56、反応槽56を加熱する水浴又は油浴からなる加熱器57を備える反応手段55、滴定器62及び終点を検出する検出器63を備える滴定手段60、データを処理し、各装置・機器の動作を制御する制御手段70を備える。またCOD分析装置50は、上記各手段の他、反応槽56等を洗浄する洗浄手段、廃液を貯留する廃液タンク等を備える。
The
制御装置70は、各装置・機器とデータを送受信可能に接続するデータ送受信手段71、データを入力するタッチパネル、CD読み取り装置などからなる入力手段72、データを出力するディスプレイ、プリンターなどの出力手段73、各種データ・プログラムなどを記憶・格納する記憶手段74、各手段を制御する制御手段75、データを処理するデータ処理手段76を備える。
The
記憶手段74には、公定法に規定された試料の適量を採取するためのプログラム、公定法に規定された分析手順に従いCOD分析装置50の各機器・手段を動作させるためのプログラム、CODの算出などのデータ処理プログラムがインストールされている。公定法に規定された試料の適量を採取するためのプログラムは、本発明の第1実施形態のCOD試料採取量決定方法をプログラム化したものであり、試料の吸光度とCODとの相関式、及び式(1)、式(2)を含んでなる。
In the storage means 74, a program for collecting an appropriate amount of sample specified by the official method, a program for operating each device and means of the
上記構成からなる制御装置70は、前記プログラムをインストールしたコンピュータ、プログラマブルロジックコントローラとディスプレイなどの周辺機器で実現される。
The
第3実施形態のCOD自動測定装置1の動作について説明する。制御装置70は、試料採取装置10を動作させ、公定法の試料の適量を採取するように制御する。具体的には、制御装置70は、試料の採取に先立ち実施される、オートサンプラー14からCOD分析装置50に試料を送り試料採取ライン12を共洗いする過程で、UV吸光光度計18に波長254nmの光で試料の吸光度を測定するように指令を出す。当該指令を受け、UV吸光光度計18は、試料の吸光度を測定し、測定値を制御装置70に送る。
The operation of the automatic
制御装置70は、UV吸光光度計18からの吸光度データと、記憶手段74に格納された公定法の試料の適量を採取するためのプログラムとを用い、試料の適量を決定し、当該量を分取するように分取ビュレット20を制御する。分取ビュレット20は、試料の適量を採取し、COD分析装置50に送る。
The
続いて、制御装置70は、記憶手段74に格納された公定法に規定された分析手順に従いCOD分析装置50の各機器・手段を動作させるためのプログラムを読み出し、公定法に規定された分析手順に従いCOD分析装置50の各機器・手段を動作させる。COD分析装置50の動作の概略は、以下のとおりである。
Next, the
制御装置70は、試料採取装置10からの送液された試料に適量の水を加え、所定の硫酸を加え、撹拌しながら所定の硝酸銀溶液を加えるように反応手段55、試薬供給手段52を制御し、試料中の塩化イオンをマスキングする。続いて、所定の過マンガン酸カリウム溶液を加え、撹拌し、直ちに反応槽56を加熱器57で30分間加熱するように反応手段55、試薬供給手段52を制御する。
The
続いて制御装置70は、反応槽56を加熱器57から取り出し、所定のしゅう酸ナトリウムを加え撹拌し、反応するように反応手段55、試薬供給手段52を制御し、続いて液温50~60℃で所定の過マンガン酸カリウム溶液で滴定するように滴定手段60を制御する。別途、水についても同様の操作を行う。得られた結果をデータ処理手段76で処理し、測定結果を出力手段73に出力する。
Then, the
上記構成からなる第3実施形態のCOD自動測定装置1は、試料採取装置10がUV吸光光度計18で測定した吸光度を基に公定法の試料の適量を自動採取し、COD分析装置50が公定法に沿って分析するので、COD分析における試料の適量採取が実現され、また分析結果の妥当性を裏付けることができる。
In the third embodiment of the automatic
次に、第3実施形態のCOD自動測定装置1の第1変形例を説明する。第1変形例では、制御装置70は、記憶手段74に吸光度とCODとが紐付けられたデータ(以下、CODデータ)を記録するCODデータベース81、データ処理手段76にデータ補正手段82を備える。データ補正手段82は、予め入力された公定法の試料の適量を採取するためのプログラムのうち試料の吸光度とCODとの相関式を補正するためのものである。制御装置70は、以下のように動作する。
Next, a first modified example of the COD
制御装置70は、COD分析装置50による試料のCODの測定が完了すると、UV吸光光度計18で測定した吸光度とCOD分析装置50で測定したCODとを紐付け、これをCODデータとし、CODデータベース81に記録する。また制御装置70は、定期的にデータ補正手段82を動作させ、CODデータベース81からCODデータを読み出し、当該データを取り込み試料の吸光度とCODとの相関式を補正する。吸光度とCODとの相関式が補正された後は、データ処理手段76は、補正された相関式に基づき公定法の試料の適量を決定する。
When the COD measurement of the sample by the
次に、第3実施形態のCOD自動測定装置1の第2変形例を示す。第2変形例では、第1変形例と同様に、制御装置70の記憶手段74にCODデータベース81を、データ処理手段76にデータ補正手段82を備える。
Next, a second modified example of the COD
制御装置70は、試料の採取及びCODの測定に先立ち、分析する試料名の入力を要求するように出力手段73に表示し、入力手段72を介して試料名が入力された後、試料採取装置10及びCOD分析装置50を動作させる。制御装置70は、試料のCODの測定が完了すると、試料名と、UV吸光光度計18で測定した吸光度と、COD分析装置50で測定したCODとを紐付け、これをCODデータとし、CODデータベース81に記録する。
Prior to sampling and measuring COD, the
また制御装置70は、定期的にデータ補正手段82を動作させ、CODデータベース81からCODデータを読み出し、試料別に該当するデータを取り込み、試料毎の吸光度とCODとの相関式を作成又は補正する。吸光度とCODとの相関式が補正された後は、データ処理手段76は、試料に対応した相関式に基づき公定法の試料の適量を決定する。
The
第3実施形態のCOD自動測定装置1の第1変形例は、CODデータを蓄積し、当該データを用いて試料の吸光度とCODとの相関式の見直しを行い、また第3実施形態のCOD自動測定装置1の第2変形例は、試料別にCODデータを蓄積し、当該データを用いて試料毎の吸光度とCODとの相関式の見直しを行い又は作成するので、精度の高い試料の適量採取が実現され、また分析結果の妥当性を裏付けることができる。
The first variant of the automatic
以上、第3実施形態のCOD自動測定装置1、第1変形例及び第2変形例を用いて本発明に係るCOD自動測定装置を説明したが、本発明に係るCOD自動測定装置は、上記実施形態に限定されるものではない。本発明に係るCOD自動測定装置のCOD分析装置50は、公定法を実施可能であれば他の構成からなるものであってもよい。
The automatic COD measurement device according to the present invention has been described above using the automatic
第3実施形態のCOD自動測定装置1では、制御装置70がCOD分析装置50に組み込まれているが、制御装置70をCOD分析装置50から切り離し独立させてもよく、また制御装置70の一部をCOD分析装置50から切り離し独立させてもよい。また試料採取装置10に試料採取のための制御装置を別途設け、制御装置70はCOD分析装置50を主に担当させてもよい。
In the third embodiment of the COD
第3実施形態のCOD自動測定装置1を構成する試料採取装置10(含む制御手段)は、公定法の試料の適量を決定する手段と、決定された試料を自動採取しCOD分析装置50に送液する手段とで構成されているといえる。よって前者の公定法の試料の適量を決定する手段(含む制御手段)を独立した試料採取量決定装置とすることもできる。このような装置は、既設のCOD分析装置に組み込むことで本発明に係るCOD自動測定装置を得ることができる。
The sample collection device 10 (including the control means) constituting the automatic
図4は、本発明の第4実施形態の自動希釈装置100の構成図であり、図4(A)は全体構成図、図4(B)は、制御装置165の機能構成図である。自動希釈装置100は、BOD測定のための希釈試料を調製するための装置であり、試料の吸光度を測定するUV吸光光度計118、公定法の試料の適量を採取する試料自動採取手段111、試料に希釈水を加え所定の希釈試料を調製する試料調製手段130、各機器・装置と接続し動作を制御する制御装置165を備える。希釈水は、公定法に規定されたものである。なお、試料の前処理が必要な場合、植種希釈水を使用する場合は、公定法に従った各手段を準備し、公定法に従った操作を行う。
Figure 4 is a block diagram of an
制御装置165は、各装置・機器とデータを送受信可能に接続するデータ送受信手段171、データを入力するタッチパネル、CD読み取り装置などからなる入力手段172、データを出力するディスプレイ、プリンターなどの出力手段173、各種データ・プログラムなどを記憶・格納する記憶手段174、各手段を制御する制御手段175、データを処理するデータ処理手段176を備える。
The
記憶手段174には、公定法に規定された試料の適量を採取するためのプログラム、段階的に希釈倍率の異なる希釈試料を調製するためのプログラムがインストールされている。公定法に規定された試料の適量を採取するためのプログラムは、本発明の第2実施形態のBOD試料採取量決定方法をプログラム化したものであり、試料の吸光度とBODとの相関式、及び式(3)、式(4)を含んでなる。 The storage means 174 is installed with a program for collecting an appropriate amount of sample specified by the official method, and a program for preparing diluted samples with stepwise different dilution ratios. The program for collecting an appropriate amount of sample specified by the official method is a program version of the BOD sample collection amount determination method of the second embodiment of the present invention, and includes a correlation equation between the absorbance of the sample and the BOD, as well as equations (3) and (4).
上記構成からなる制御装置165は、前記プログラムをインストールしたコンピュータ、プログラマブルロジックコントローラとディスプレイなどの周辺機器で実現される。
The
UV吸光光度計118は、制御装置165からの指令を受け、波長254nmの光で試料の吸光度を測定し、測定値を制御装置165に送る。制御装置165は、UV吸光光度計118からの吸光度データと、記憶手段174に格納された公定法の試料の適量を採取するためのプログラムとを用い、試料の適量を決定する。
Upon receiving a command from the
試料自動採取手段111は、制御装置165からの指令を受け、試料の適量を採取する。希釈試料調製手段130は、採取された試料に希釈水を加え撹拌し希釈試料を調製し、さらにその希釈試料の一部に希釈水を加え撹拌し、段階的に希釈倍率の異なる希釈試料を調製する。
The automatic sample collection means 111 receives a command from the
上記構成からなる第4実施形態の自動希釈装置100は、試料自動採取手段111がUV吸光光度計118で測定した吸光度を基に公定法の試料の適量を自動採取し、希釈試料調製手段130が段階的に希釈倍率の異なる希釈試料を調製するので、BOD分析における試料の適量採取が実現され、また分析結果の妥当性を裏付けることができる。
In the fourth embodiment of the
第4実施形態の自動希釈装置100は、公定法の試料の適量を決定する手段と、決定された試料を自動採取する手段と、試料を希釈し希釈試料を調製する手段とで構成されているといえる。よって前者の公定法の試料の適量を決定する手段(含む制御手段)を独立した試料採取量決定装置とすることもできる。このような装置は、既設の自動希釈装置に組み込むことで本発明に係る自動希釈装置を得ることができる。
The
図5は、本発明の第5実施形態のBOD自動測定装置2の構成図であり、図5(A)は全体構成図、図5(B)は、制御装置170の機能構成図である。図4に示す本発明の第4実施形態の自動希釈装置100と同一の構成には同一の符号を付して説明を省略する。BOD自動測定装置2は、公定法の試料の適量を自動採取し、試料に希釈水を加え希釈試料を調製し、公定法に沿ってBODを分析する装置であり、自動希釈装置100とBOD分析装置150と制御装置170とを備える。
Figure 5 is a block diagram of the BOD
第5実施形態のBOD自動測定装置2の自動希釈装置100は、本発明の第4実施形態の自動希釈装置100と基本構成を同じくする。第5実施形態のBOD自動測定装置2においては、自動希釈装置100の制御は、制御装置170が行う。試料の前処理が必要な場合、植種希釈水を使用する場合は、公定法に従った各手段を準備し、公定法に従った操作を行う点は、自動希釈装置100と同じである。
The
BOD分析装置150は、公定法に準拠した構成を有するBOD分析装置であり、希釈試料を充填し、密栓したフラン瓶を所定の温度に維持する恒温器157、前記フラン瓶をストックする貯蔵用ストッカー、前記フラン瓶を抽出・搬送する手段、前記フラン瓶の栓を開閉する栓開閉手段を備える培養手段155、希釈試料の溶存酸素を測定するDO測定手段160を備える。
The
制御装置170は、各装置・機器とデータを送受信可能に接続するデータ送受信手段171、データを入力するタッチパネル、CD読み取り装置などからなる入力手段172、データを出力するディスプレイ、プリンターなどの出力手段173、各種データ・プログラムなどを記憶・格納する記憶手段174、各手段を制御する制御手段175、データを処理するデータ処理手段176を備える。
The
記憶手段174には、公定法に規定された試料の適量を採取するためのプログラム、公定法に規定された分析手順に従いBOD分析装置150の各機器・手段を動作させるためのプログラム、BODの算出などデータ処理プログラムがインストールされている。公定法に規定された試料の適量を採取するためのプログラムは、本発明の第2実施形態のBOD試料採取量決定方法をプログラム化したものであり、試料の吸光度とBODとの相関式、及び式(3)、式(4)を含んでなる。
In the storage means 174, a program for collecting an appropriate amount of sample specified by the official method, a program for operating each device and means of the
上記構成からなる制御装置170は、前記プログラムをインストールしたコンピュータ、プログラマブルロジックコントローラとディスプレイなどの周辺機器で実現される。
The
第5実施形態のBOD自動測定装置2の動作について説明する。制御装置170は、自動希釈装置100を動作させ、公定法の試料の適量を採取し、続いて希釈試料を調製するように制御する。
The operation of the BOD
具体的には、UV吸光光度計118は、制御装置170からの指令を受け、波長254nmの光で試料の吸光度を測定し、測定値を制御装置170に送る。制御装置170は、UV吸光光度計118からの吸光度データと、記憶手段174に格納された公定法の試料の適量を採取するためのプログラムとを用い、試料の適量を決定し、試料自動採取手段111に試料の適量を採取するように指令を出す。続いて制御装置170は、採取された試料に希釈水を加え、撹拌し希釈試料を調製し、フラン瓶に充填するように希釈試料調製手段130を制御する。
Specifically, the
続いて、制御装置170は、記憶手段174に格納された公定法に規定された分析手順に従いBOD分析装置150の各機器・手段を動作させるためのプログラムを読み出し、公定法に規定された分析手順に従いBOD分析装置150の各機器・手段を動作させる。BOD分析装置150の動作の概略は、以下のとおりである。
Next, the
制御装置170は、希釈試料の調製15分後の溶存酸素を測定するようにDO測定手段160を制御し、その測定値を記憶手段174に記録する。希釈試料が充填され、密栓されたフラン瓶を貯蔵用ストッカーに収納し、所定の条件下、恒温器157で5日間培養した後、希釈試料の溶存酸素を測定し、記憶手段174に記録する。得られた結果をデータ処理手段176で処理し、測定結果を出力手段173に出力する。
The
上記構成からなる第5実施形態のBOD自動測定装置2は、自動希釈装置100がUV吸光光度計118で測定した吸光度を基に公定法の試料の適量を自動採取し、希釈水で希釈して段階的に希釈倍率の異なる希釈試料を調製し、BOD分析装置150が公定法に沿って分析するので、BOD分析における試料の適量採取が実現され、また分析結果の妥当性を裏付けることができる。
In the fifth embodiment of the BOD
次に、第5実施形態のBOD自動測定装置2の第1変形例を説明する。第1変形例では、制御装置170は、記憶手段174に吸光度とBODとが紐付けられたデータ(以下、BODデータ)を記録するBODデータベース181、データ処理手段176にデータ補正手段182を備える。データ補正手段182は、予め入力された公定法の試料の適量を採取するためのプログラムのうち試料の吸光度とBODとの相関式を補正するためのものである。制御装置170は、以下のように動作する。
Next, a first modified example of the BOD
制御装置170は、BOD分析装置150による試料のBODの測定が完了すると、UV吸光光度計118で測定した吸光度とBOD分析装置150で測定したBODとを紐付け、これをBODデータとし、BODデータベース181に記録する。また制御装置170は、定期的にデータ補正手段182を動作させ、BODデータベース181からBODデータを読み出し、当該データを取り込み試料の吸光度とBODとの相関式を補正する。吸光度とBODとの相関式が補正された後は、データ処理手段176は、補正された相関式に基づき公定法の試料の適量を決定する。
When the measurement of the BOD of the sample by the
次に、第5実施形態のBOD自動測定装置2の第2変形例を示す。第2変形例では、第1変形例と同様に、制御装置170の記憶手段174にBODデータベース181を、データ処理手段176にデータ補正手段182を備える。
Next, a second modified example of the BOD
制御装置170は、試料の採取及びBODの測定に先立ち、分析する試料名の入力を要求するように出力手段173に表示し、入力手段172を介して試料名が入力された後、自動希釈装置100及びBOD分析装置150を動作させる。制御装置170は、試料のBODの測定が完了すると、試料名と、UV吸光光度計118で測定した吸光度と、BOD分析装置150で測定したBODとを紐付け、これをBODデータとし、BODデータベース181に記録する。
Prior to collecting a sample and measuring the BOD, the
また制御装置170は、定期的にデータ補正手段182を動作させ、BODデータベース181からBODデータを読み出し、試料別に該当するデータを取り込み、試料毎の吸光度とBODとの相関式を作成又は補正する。吸光度とBODとの相関式が補正された後は、データ処理手段176は、試料に対応した相関式に基づき公定法の試料の適量を決定する。
The
第5実施形態のBOD自動測定装置2の第1変形例は、BODデータを蓄積し、当該データを用いて試料の吸光度とBODとの相関式を見直し、また第5実施形態のBOD自動測定装置2の第2変形例は、試料毎にBODデータを蓄積し、当該データを用いて試料毎の吸光度とBODとの相関式を見直し、又は作成するので、精度の高い試料の適量採取が実現され、また分析結果の妥当性を裏付けることができる。
The first variant of the BOD
以上、第5実施形態のBOD自動測定装置2、第1変形例及び第2変形例を用いて本発明に係るBOD自動測定装置を説明したが、本発明に係るBOD自動測定装置は、上記実施形態に限定されるものではない。本発明に係るBOD自動測定装置のBOD分析装置150は、公定法を実施可能であれば他の構成からなるものであってもよい。また制御装置170の構成も上記実施形態に限定されるものではない。
The above describes the automatic BOD measurement device of the present invention using the automatic
以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本明細書を見て、自明な範囲内で種々の変更及び修正を容易に想定するであろう。従って、そのような変更及び修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, a preferred embodiment has been described with reference to the drawings. However, a person skilled in the art would easily imagine various changes and modifications within the obvious scope upon reading this specification. Therefore, such changes and modifications are to be interpreted as being within the scope of the invention as defined by the claims.
1 COD自動測定装置
2 BOD自動測定装置
10 試料採取装置
12 試料採取ライン
18 UV吸光光度計
50 COD分析装置
70 制御装置
81 CODデータベース
82 データ補正手段
100 自動希釈装置
111 試料自動採取手段
118 UV吸光光度計
130 希釈試料調製手段
150 BOD分析装置
155 培養手段
157 恒温器
160 DO測定手段
165 制御装置
170 制御装置
181 BODデータベース
182 データ補正手段
1 Automatic
Claims (6)
試料の吸光度とBODとの相関関係を用い算出される試料のBOD予測値EBOD(mg/L)と、式(3)、式(4)とから試料採取量V(mL)を決定するステップと、
を含むことを特徴とするBOD試料採取量決定方法。
V=A×v/EBOD ・・・(3)
A=5.0 ・・・(4)
ここで Aは、希釈試料の溶存酸素の消費量(D1-D2)の中央値(mg/L)
vは、希釈試料の量(mL) Measuring the absorbance of the sample using a UV spectrophotometer during the co-washing of the sample collection line with the sample;
A step of determining a sample collection volume V (mL) from a predicted BOD value E BOD (mg/L) of the sample calculated using the correlation between the absorbance and BOD of the sample and from equations (3) and (4);
A method for determining a BOD sample collection amount, comprising:
V = A × v / E BOD ... (3)
A = 5.0 ... (4)
Here, A is the median (mg/L) of the dissolved oxygen consumption (D 1 -D 2 ) of the diluted sample.
v is the volume of the diluted sample (mL)
試料の吸光度とBODとの相関関係を用い算出される試料のBOD予測値EBOD(mg/L)と、公定法に定められるBOD予測値EBOD(mg/L)と試料の適量との関係式から、公定法に定められる試料の適量の試料採取量V(mL)を決定する試料採取量決定手段と、
前記試料採取量決定手段で決定された試料採取量V(mL)を自動採取する試料自動採取手段と、
採取された試料に希釈水を加え、希釈倍率の異なる希釈試料を調製し、フラン瓶に充填する希釈試料調製手段と、
機器及び各手段の動作を制御する制御装置と、
を備え、
前記制御装置は、試料が送られ前記試料採取ラインが共洗いされる過程で吸光度を測定するように前記UV吸光光度計を制御することを特徴とする自動希釈装置。 a UV spectrophotometer having a flow cell attached to a sample collection line for measuring the absorbance of the sample;
a sample collection amount determination means for determining an appropriate sample collection amount V (mL) of the sample, as defined by the official method, from a predicted BOD value E BOD (mg/L) of the sample calculated using the correlation between the absorbance and BOD of the sample and a relational expression between the predicted BOD value E BOD (mg/L) and an appropriate amount of the sample, as defined by the official method;
an automatic sample collection means for automatically collecting the sample amount V (mL) determined by the sample collection amount determination means;
A diluted sample preparation means for adding dilution water to the collected sample to prepare diluted samples with different dilution ratios and filling the diluted samples into the flask;
A control device for controlling the operation of the device and each of the means;
Equipped with
The automatic dilution apparatus is characterized in that the control device controls the UV absorptiometer to measure absorbance during the process in which the sample is delivered and the sample collection line is co-washed.
V=A×v/EBOD ・・・(3)
A=5.0 ・・・(4)
ここで Aは、希釈試料の溶存酸素の消費量(D1-D2)の中央値(mg/L)
Vは、試料採取量(mL)
vは、希釈試料の量(mL) 3. The automatic dilution device according to claim 2, wherein the relationship between the BOD predicted value E BOD (mg/L) defined by the official method and the appropriate amount of sample is expressed by the following formulas (3) and (4).
V = A × v / E BOD ... (3)
A = 5.0 ... (4)
Here, A is the median (mg/L) of the dissolved oxygen consumption (D 1 -D 2 ) of the diluted sample.
V is the sample volume (mL)
v is the volume of the diluted sample (mL)
前記希釈試料の溶存酸素を測定する溶存酸素測定手段及び前記フラン瓶を保管する恒温槽を備えるBOD分析装置と、
前記BOD分析装置の動作を制御する制御装置と、
を備えることを特徴とするBOD自動測定装置。 The automatic dilution device according to claim 2 or 3,
a BOD analyzer including a dissolved oxygen measuring means for measuring the dissolved oxygen in the diluted sample and a thermostatic chamber for storing the flask;
A control device for controlling the operation of the BOD analysis device;
A BOD automatic measuring device comprising:
前記BODデータを用いて、予め取得された試料の吸光度とBODとの相関関係を補正する補正手段と、
を備え、
前記試料採取量決定手段は、補正された試料の吸光度とBODとの相関関係を用い前記試料採取量Vを決定することを特徴とする請求項4に記載のBOD自動測定装置。 a data storage means for storing BOD data in which the absorbance of the sample measured by the UV absorptiometer and the BOD of the sample measured by the BOD analyzer are linked;
A correction means for correcting a correlation between absorbance and BOD of a sample, which has been previously obtained, using the BOD data;
Equipped with
5. The BOD automatic measuring device according to claim 4, wherein said sample collection amount determining means determines said sample collection amount V by using a correlation between the corrected absorbance of the sample and the BOD.
試料の吸光度とCODとの相関関係を用い算出される試料のCOD予測値ECOD(mg/L)と、式(1)、式(2)とから試料採取量V(mL)を決定するステップと、
を含むことを特徴とするCOD試料採取量決定方法。
V=0.2×(a-b)×f×1000/ECOD ・・・(1)
a-b=4.5 ・・・(2)
但し、V≧100のときは、V=100
ここで a-bは、滴定値(滴定量-ブランク試験値)の中央値(mL)
fは、5mmol/L過マンガン酸カリウム溶液のファクター Measuring the absorbance of the sample using a UV spectrophotometer during the co-washing of the sample collection line with the sample;
determining a sample collection volume V (mL) from a predicted COD value E COD (mg/L) of the sample calculated using the correlation between the absorbance and COD of the sample and from equations (1) and (2);
A method for determining a COD sample collection amount, comprising:
V = 0.2 × (a - b) × f × 1000 / E COD ... (1)
a-b=4.5... (2)
However, when V≧100, V=100
Here, a-b is the median of the titration value (titration amount - blank test value) (mL).
f is the factor of 5 mmol/L potassium permanganate solution
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024030102A JP2024063135A (en) | 2022-05-20 | 2024-02-29 | Cod/bod sampling amount determination method, automatic dilution device and bod automatic measurement device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022082672A JP7453702B2 (en) | 2022-05-20 | 2022-05-20 | COD automatic measuring device |
JP2024030102A JP2024063135A (en) | 2022-05-20 | 2024-02-29 | Cod/bod sampling amount determination method, automatic dilution device and bod automatic measurement device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022082672A Division JP7453702B2 (en) | 2022-05-20 | 2022-05-20 | COD automatic measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024063135A true JP2024063135A (en) | 2024-05-10 |
Family
ID=88927616
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022082672A Active JP7453702B2 (en) | 2022-05-20 | 2022-05-20 | COD automatic measuring device |
JP2024030102A Pending JP2024063135A (en) | 2022-05-20 | 2024-02-29 | Cod/bod sampling amount determination method, automatic dilution device and bod automatic measurement device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022082672A Active JP7453702B2 (en) | 2022-05-20 | 2022-05-20 | COD automatic measuring device |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7453702B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000088840A (en) | 1998-09-14 | 2000-03-31 | Kohei Urano | Simplified measuring method for cod, and spectrophotometer used therefor |
JP2004101495A (en) | 2002-09-05 | 2004-04-02 | Rabotekku Kk | Bod automatic analyzing apparatus ready for saturdays and sundays |
JP5631015B2 (en) | 2010-01-29 | 2014-11-26 | 新日鐵住金株式会社 | Concentration measuring method and detecting method and device for specific oil in waste water or specific oil-containing waste water |
JP5622063B1 (en) | 2013-11-05 | 2014-11-12 | 東亜ディーケーケー株式会社 | Chemical oxygen consumption (COD) automatic measuring device |
-
2022
- 2022-05-20 JP JP2022082672A patent/JP7453702B2/en active Active
-
2024
- 2024-02-29 JP JP2024030102A patent/JP2024063135A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP7453702B2 (en) | 2024-03-21 |
JP2023170718A (en) | 2023-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11703494B2 (en) | Measuring device | |
US7349760B2 (en) | System and method for sensing and controlling the concentration of a chemical agent in a solution | |
US9518900B2 (en) | Sample preparation system for an analytical system for determining a measured variable of a liquid sample | |
US9897549B2 (en) | Analytical device for automated determination of a measured variable of a liquid sample | |
US20130156646A1 (en) | Method and apparatus for degassing a liquid and analytical device having the apparatus | |
US8956875B2 (en) | Water hardness monitoring via fluorescence | |
US20190310235A1 (en) | Methods for colorimetric endpoint detection and multiple analyte titration systems | |
CN104345034A (en) | Method for determining chemical oxygen demand of liquid sample and analyzer | |
EP3969897B1 (en) | Ultra low range chlorine measurement | |
JP2024063135A (en) | Cod/bod sampling amount determination method, automatic dilution device and bod automatic measurement device | |
CZ2001551A3 (en) | Control method of cleaning baths | |
KR102209901B1 (en) | Liquid analyzing apparatus | |
EP4166929A1 (en) | Water quality analyzer and water quality analysis method | |
US20220136961A1 (en) | Method for calibrating a photometric analyzer | |
US12019021B2 (en) | Zinc measurement | |
JPS63138268A (en) | Automatic analyzing device | |
US11549884B2 (en) | Zinc and copper measurement | |
US20210033630A1 (en) | Method for testing, verifying, calibrating or adjusting an automatic analysis apparatus | |
JP2001124757A (en) | Self diagnosis method of system in trimorphic nitrogen- analyzing system | |
US20240102923A1 (en) | Iron mitigation zinc measurement | |
US10677717B2 (en) | Colorimetric analyzer with reagent diagnostics | |
Adams et al. | Operators Need to Know Process Control Laboratory QA/QC | |
JP3125576U (en) | Automatic analyzer | |
JPS62232542A (en) | Automatic analysis of waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241021 |