JP2024060280A - Thermally conductive organic-inorganic composite material with high inorganic filler loading - Google Patents

Thermally conductive organic-inorganic composite material with high inorganic filler loading Download PDF

Info

Publication number
JP2024060280A
JP2024060280A JP2022167567A JP2022167567A JP2024060280A JP 2024060280 A JP2024060280 A JP 2024060280A JP 2022167567 A JP2022167567 A JP 2022167567A JP 2022167567 A JP2022167567 A JP 2022167567A JP 2024060280 A JP2024060280 A JP 2024060280A
Authority
JP
Japan
Prior art keywords
thermally conductive
inorganic filler
insulating granular
resin
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022167567A
Other languages
Japanese (ja)
Inventor
裕之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2022167567A priority Critical patent/JP2024060280A/en
Publication of JP2024060280A publication Critical patent/JP2024060280A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】 本発明の目的は、単に絶縁性無機フィラーの含有量を増加させての高熱伝導化ではなく、また表面処理やフィラー粒子の特殊処理を伴わず、あるいは加圧成形を伴わずに粒子間の接触頻度を上げて伝熱経路を形成し、高密度、高熱伝導率を両立させる手法を提供。【解決手段】 本発明の有機無機放熱材料は、粒径が異なる2種類の板状、鱗片状、繊維状、棒状等の粒子ではない絶縁性粒状無機フィラーとマトリックス樹脂で構成される有機無機放熱材であって、その配合量の体積比が絶縁性粒状熱伝導無機フィラー:マトリックス樹脂=50:50~60:40の構成比であり、大きい絶縁性粒状熱伝導無機フィラーの粒径が200~500μmであり、小さい絶縁性粒状熱伝導無機フィラーの粒径が2~30μmであり、2種類の絶縁性粒状熱伝導無機フィラー混合体積比率が、大きい粒子:小さい粒子=5:1~1:1である。【選択図】 図2[Problem] The object of the present invention is to provide a method for achieving both high density and high thermal conductivity by increasing the frequency of contact between particles to form a heat transfer path without simply increasing the content of insulating inorganic filler, without surface treatment or special treatment of filler particles, or without pressure molding. [Solution] The organic inorganic heat dissipation material of the present invention is an organic inorganic heat dissipation material composed of two types of insulating granular inorganic fillers with different particle sizes, which are not particles such as plate-like, scaly, fibrous, or rod-like, and a matrix resin, in which the volume ratio of the blended amounts is insulating granular thermally conductive inorganic filler:matrix resin=50:50-60:40, the particle size of the larger insulating granular thermally conductive inorganic filler is 200-500 μm, the particle size of the smaller insulating granular thermally conductive inorganic filler is 2-30 μm, and the volume ratio of the two types of insulating granular thermally conductive inorganic fillers mixed is large particles:small particles=5:1-1:1. [Selected Figure] Figure 2

Description

本発明は、絶縁性無機フィラーの接触度合いが高く、熱等方性を兼ね備えた放熱材料として好適な有機無機コンポジット材料に関するものである。 The present invention relates to an organic-inorganic composite material that has a high degree of contact between insulating inorganic fillers and is suitable as a heat dissipation material that also has thermal isotropy.

放熱用途の有機無機コンポジットは、樹脂と熱伝導率の高い無機物で構成されており、樹脂そのものの高熱伝導化や無機フィラーの形状、分散性、表面被覆、配向性やパーコレーションについて多くの研究がなされている。
そして、自動車の電動化に伴いバッテリー、モーターなどの熱対策、通信機器、電子機器、家電製品などは、利便性の観点からますます軽量化、薄型化が求められており、機器内に組み込まれる放熱材の高性能化が益々必要となっている。
Organic-inorganic composites for heat dissipation applications are composed of resin and inorganic substances with high thermal conductivity, and much research has been conducted on increasing the thermal conductivity of the resin itself, as well as the shape, dispersibility, surface coating, orientation, and percolation of the inorganic fillers.
Furthermore, with the electrification of automobiles, there is a demand for heat countermeasures for batteries, motors, communication devices, electronic devices, home appliances, etc. to be made thinner and lighter in order to improve convenience, and there is an increasing need for high-performance heat dissipation materials incorporated into such devices.

以上のような情勢に鑑み、樹脂と熱伝導率の高い無機物を含有させた有機無機コンポジット系放熱材料が種々開発されている(特許文献1、2等)。 In light of the above situation, various organic-inorganic composite heat dissipation materials that contain resin and inorganic substances with high thermal conductivity have been developed (Patent Documents 1 and 2, etc.).

セラミックス焼結体であっても、有機無機コンポジットであっても、熱伝導率向上には伝熱経路を形成することが重要である。有機無機コンポジットが含有する無機フィラー量が30、40、50vol%と増加すると熱伝導率が増大するのは、単に無機フィラー量が増えたことによる効果よりも、無機フィラー同士の接触が増加して伝熱経路が多く形成された効果によるところが大きい。 Whether it is a ceramic sintered body or an organic-inorganic composite, it is important to form a heat transfer path to improve thermal conductivity. When the amount of inorganic filler contained in the organic-inorganic composite is increased to 30, 40, and 50 vol%, the thermal conductivity increases, but this is largely due to the effect of increased contact between inorganic fillers and the formation of more heat transfer paths, rather than simply the effect of an increase in the amount of inorganic filler.

しかし、六方晶窒化ホウ素は構造異方性を有する板状結晶であるため高充填が難しい。例えば、フィラー粒子が理想球体であっても最大でも6~7割程度しか充填できない。板状結晶ではファセットが形成されるため充填度が下がる。その隙間を樹脂で充填されていればコンポジット自体の密度低下は回避できるものの、熱伝導性無機フィラー同士の接触度合いが低下するため、伝熱経路の確保が出来ない。 However, because hexagonal boron nitride is a plate-shaped crystal with structural anisotropy, it is difficult to achieve high packing. For example, even if the filler particles are ideal spheres, they can only be packed at a maximum of about 60-70%. With plate-shaped crystals, facets are formed, which reduces the packing degree. If these gaps are filled with resin, the density of the composite itself can be prevented from decreasing, but the degree of contact between the thermally conductive inorganic fillers decreases, making it impossible to ensure a heat transfer path.

実際のフィラーは多面体であるため粒子同士が点や面で接するが、理想球体で考えた場合、2球体の接点はその大きさ(半径)に関わらずただ1点である。粒径の小さな熱伝導性無機フィラーを使用すると、粒子間接点の数が増え、粒子間隙間を小さくすることは可能であるが、粒子自体の熱伝導率が小さくなるためコンポジットの高熱伝導化にはそぐわない。逆に粒径の大きな熱伝導性無機フィラーでは粒子自体の熱伝導率が小粒子フィラーよりも高いが、粒子間接点の数が少ないうえ、粒子間隙間が大きくなり、伝熱経路を多く形成することができない。 Since actual fillers are polyhedral, the particles contact each other at points or surfaces, but when considering ideal spheres, there is only one point of contact between two spheres, regardless of their size (radius). When a thermally conductive inorganic filler with a small particle size is used, the number of interparticle junctions increases and it is possible to reduce the gaps between the particles, but this is not suitable for increasing the thermal conductivity of the composite because the thermal conductivity of the particles themselves is low. Conversely, in the case of a thermally conductive inorganic filler with a large particle size, the thermal conductivity of the particles themselves is higher than that of small particle fillers, but the number of interparticle junctions is low and the gaps between the particles are large, making it impossible to form many heat transfer paths.

上記欠点を補い、フィラー高充填化と伝熱経路確保を図るために、形状の異なる2種類以上のフィラーを配合した混合フィラーを充填することが提唱されている(特許文献3~5)。
特許文献3は、アスペクト比が異なる2種類の熱伝導性充填剤を用いた熱伝導性成型組成物が開示されている。
特許文献4は、繊維状熱伝導性無機フィラーと形状または大きさが異なる熱伝導性無機フィラーを含む熱伝導性樹脂組成物が開示されている。
In order to compensate for the above-mentioned drawbacks and to increase the filler loading and ensure a heat transfer path, it has been proposed to fill the material with a mixed filler containing two or more types of fillers with different shapes (Patent Documents 3 to 5).
Patent Document 3 discloses a thermally conductive molding composition using two types of thermally conductive fillers with different aspect ratios.
Patent Document 4 discloses a thermally conductive resin composition containing a thermally conductive inorganic filler having a shape or size different from that of a fibrous thermally conductive inorganic filler.

特開2018-159062号公報JP 2018-159062 A 特開2016-79353号公報JP 2016-79353 A 特表2002-535469号公報JP 2002-535469 A 特開2022-059896号公報JP 2022-059896 A

本発明の目的は、単に絶縁性無機フィラーの含有量を増加させての高熱伝導化ではなく、また表面処理やフィラー粒子の特殊処理を伴わず、あるいは加圧成形を伴わずに粒子間の接触頻度を上げて伝熱経路を形成し、高密度、高熱伝導率を両立させる手法を提供することにある。 The object of the present invention is to provide a method for achieving both high density and high thermal conductivity by increasing the frequency of contact between particles to form a heat transfer path, rather than simply increasing the content of insulating inorganic filler, without surface treatment, special treatment of the filler particles, or pressure molding.

上記目的を達成するために、粒径が異なる2種類以上の絶縁性粒状無機フィラーを充填することによって伝熱経路を確保する。すなわち、大きな粒子の接触点近傍を小さな粒子が埋めることで粒子間の接触頻度を上げる(図1)ことにある。これにより1種類の無機フィラーを同じ体積分率混ぜるよりも、高密度で高い熱伝導率を発現することを見出し、本発明を完成するに至った。すなわち本発明は、以下の構成からなることを特徴とし、上記課題を解決するものである。 To achieve the above objective, a heat transfer path is secured by filling two or more types of insulating granular inorganic filler with different particle sizes. In other words, by filling the area near the contact points of larger particles with smaller particles, the frequency of contact between the particles is increased (Figure 1). It was found that this achieves a higher density and thermal conductivity than mixing one type of inorganic filler at the same volume fraction, and this led to the completion of the present invention. In other words, the present invention is characterized by the following configuration and solves the above problems.

〔1〕 粒径が異なる2種類の絶縁性粒状無機フィラーとマトリックス樹脂で構成される有機無機放熱材であって、その配合量の体積比が絶縁性粒状熱伝導無機フィラー:マトリックス樹脂=50:50~60:40の構成比であり、大きい絶縁性粒状熱伝導無機フィラーの粒径が200~500μmであり、小さい絶縁性粒状熱伝導無機フィラーの粒径が2~30μmであり、大きい絶縁性粒状熱伝導無機フィラーが立方晶窒化ホウ素で、小さい絶縁性粒状熱伝導無機フィラーが六方晶窒化ホウ素、窒化ケイ素、窒化アルミニウム、合成ダイヤモンド、ナノダイヤモンド、酸化アルミニウム、酸化マグネシウム、タルクのいずれかであり、2種類の絶縁性粒状熱伝導無機フィラー混合体積比率が、大きい粒子:小さい粒子=5:1~1:1である有機無機放熱材料。
〔2〕 前記マトリックス樹脂がフェノール樹脂、ポリイミド、エポキシ樹脂、ユリア樹脂、メラミン樹脂、シリコーン樹脂やセルロースナノファイバーのいずれである前記〔1〕に記載の有機無機放熱材料。
〔3〕 粒径が異なる2種類の絶縁性粒状無機フィラーと樹脂で構成される有機無機放熱材料の製造方法であって、粒径が大きい絶縁性粒状無機フィラーである立方晶窒化ホウ素と粒径が小さい絶縁性粒状熱伝導無機フィラーである六方晶窒化ホウ素、窒化ケイ素、窒化アルミニウム、合成ダイヤモンド、ナノダイヤモンド、酸化アルミニウム、酸化マグネシウム、タルクのいずれか1種類の体積比率が5:1~1:1となるように配合する工程(工程1)と、前記工程1で配合した絶縁性粒状無機フィラーとマトリックス樹脂を体積比で絶縁性粒状熱伝導無機フィラー:マトリックス樹脂=50:50~60:40の配合比で混合・混練してする工程(工程2)と、前記工程2で得られた混練生成物を成型容器に鋳込み加熱・硬化する工程(工程3)を含む有機無機放熱材料の製造方法。
[1] An organic inorganic heat dissipation material composed of two types of insulating granular inorganic fillers having different particle sizes and a matrix resin, the volume ratio of the blended amounts being insulating granular thermally conductive inorganic filler:matrix resin=50:50 to 60:40, the particle size of the large insulating granular thermally conductive inorganic filler being 200 to 500 μm, the particle size of the small insulating granular thermally conductive inorganic filler being 2 to 30 μm, the large insulating granular thermally conductive inorganic filler being cubic boron nitride, the small insulating granular thermally conductive inorganic filler being any one of hexagonal boron nitride, silicon nitride, aluminum nitride, synthetic diamond, nanodiamond, aluminum oxide, magnesium oxide, and talc, and the mixing volume ratio of the two types of insulating granular thermally conductive inorganic fillers being large particles:small particles=5:1 to 1:1.
[2] The organic/inorganic heat dissipation material according to [1], wherein the matrix resin is any one of a phenolic resin, a polyimide, an epoxy resin, a urea resin, a melamine resin, a silicone resin, and a cellulose nanofiber.
[3] A method for producing an organic/inorganic heat dissipating material composed of two types of insulating granular inorganic fillers with different particle sizes and a resin, comprising the steps of: blending a large-particle insulating granular inorganic filler, cubic boron nitride, with a small-particle insulating granular thermally conductive inorganic filler, hexagonal boron nitride, silicon nitride, aluminum nitride, synthetic diamond, nanodiamond, aluminum oxide, magnesium oxide, or talc, in a volume ratio of 5:1 to 1:1 (step 1); mixing and kneading the insulating granular inorganic filler blended in step 1 with a matrix resin in a volume ratio of insulating granular thermally conductive inorganic filler:matrix resin = 50:50 to 60:40 (step 2); and casting the kneaded product obtained in step 2 into a molding container and heating and curing it (step 3).

本発明に従えば、加圧成形やフィラー表面処理を行うことなく、粒径の大きな無機フィラー粒子間を粒径の小さな無機フィラーで埋めることによって伝熱経路を確保し、高密度で高い熱伝導率を発現する有機無機コンポジットを提供することができる。 According to the present invention, it is possible to provide an organic-inorganic composite that has high density and high thermal conductivity by filling the spaces between larger inorganic filler particles with smaller inorganic filler particles without pressure molding or filler surface treatment.

本発明の実施例に関わる熱伝導性有機無機コンポジットのコンセプトを説明する概略図である。FIG. 1 is a schematic diagram illustrating the concept of a thermally conductive organic-inorganic composite according to an embodiment of the present invention. 本発明の実施例で作製した軽量有機無機放熱材料の試料表面の二次電子像である。1 is a secondary electron image of a sample surface of a lightweight organic/inorganic heat dissipation material produced in an embodiment of the present invention. 本発明の実施例及び比較例で作製したすべての有機無機放熱材料の配合比、実測密度および熱伝導率を示したグラフである。1 is a graph showing the compounding ratio, measured density, and thermal conductivity of all organic/inorganic heat dissipation materials produced in the examples and comparative examples of the present invention. Bruggemanのモデル式より求めたフィラー体積分率と熱伝導率の関係を表したグラフである。(樹脂の熱伝導率を0.2W/m/Kに固定し、フィラーの熱伝導率を20,80、200W/m/Kで算出した。このモデル式ではフィラーの粒径は反映されないため、フィラー熱伝導率で区別をした。)1 is a graph showing the relationship between the filler volume fraction and thermal conductivity obtained from the Bruggeman model formula. (The thermal conductivity of the resin was fixed at 0.2 W/m/K, and the thermal conductivity of the filler was calculated at 20, 80, and 200 W/m/K. Since the particle size of the filler is not reflected in this model formula, the filler thermal conductivity was used to distinguish the results.)

本発明の熱伝導性有機無機コンポジットは、粒径が異なる2種類の絶縁性粒状無機フィラーとマトリックス樹脂で構成される有機無機放熱材であって、その配合量の体積比が絶縁性粒状熱伝導無機フィラー:マトリックス樹脂=50:50~60:40の構成比であり、大きい絶縁性粒状熱伝導無機フィラーが立方晶窒化ホウ素で、小さい絶縁性粒状熱伝導無機フィラーが六方晶窒化ホウ素、窒化ケイ素、窒化アルミニウム、合成ダイヤモンド、ナノダイヤモンド、酸化アルミニウム、酸化マグネシウム、タルクのいずれかであり、2種類の絶縁性粒状熱伝導無機フィラー混合体積比率が、大きい粒子:小さい粒子=5:1~1:1である有機無機放熱材料である。 The thermally conductive organic-inorganic composite of the present invention is an organic-inorganic heat dissipation material composed of two types of insulating granular inorganic fillers with different particle sizes and a matrix resin, in which the volume ratio of the blended amounts is insulating granular thermally conductive inorganic filler:matrix resin = 50:50 to 60:40, the larger insulating granular thermally conductive inorganic filler is cubic boron nitride, the smaller insulating granular thermally conductive inorganic filler is any one of hexagonal boron nitride, silicon nitride, aluminum nitride, synthetic diamond, nanodiamond, aluminum oxide, magnesium oxide, and talc, and the mixed volume ratio of the two types of insulating granular thermally conductive inorganic fillers is large particles:small particles = 5:1 to 1:1.

本発明に用いる大小の絶縁性粒状熱伝導無機フィラーはいずれも粒状粒子である。本発明の粒状粒子は、粒子の長径と短径の比が2以下である略球状、略正多面体状、塊状等の粒子であり、板状、鱗片状、繊維状、棒状等の粒子の長径と短径の比が2以上の粒子は含まない。 The large and small insulating granular thermally conductive inorganic fillers used in the present invention are all granular particles. The granular particles of the present invention are particles that are approximately spherical, approximately regular polyhedral, blocky, etc., with a ratio of the long axis to the short axis of the particle being 2 or less, and do not include plate-like, scale-like, fibrous, rod-like, etc. particles with a ratio of the long axis to the short axis of 2 or more.

本発明の熱伝導性有機無機コンポジットは、熱硬化性樹脂あるいは熱可塑性樹脂のいずれかと、絶縁性粒状熱伝導無機フィラーで構成される高密度と高熱伝導性を有する熱伝導性有機無機コンポジットであって、絶縁性粒状熱伝導無機フィラー同士の接触頻度が向上した伝熱経路を有しており、熱伝導率が5W/m/K以上、好ましくは、6W/m/K以上、より好ましくは、10W/m/K以上である。 The thermally conductive organic-inorganic composite of the present invention is a thermally conductive organic-inorganic composite having high density and high thermal conductivity, which is composed of either a thermosetting resin or a thermoplastic resin and an insulating granular thermally conductive inorganic filler, has a heat transfer path with improved contact frequency between the insulating granular thermally conductive inorganic fillers, and has a thermal conductivity of 5 W/m/K or more, preferably 6 W/m/K or more, and more preferably 10 W/m/K or more.

前記大きい絶縁性粒状熱伝導無機フィラーの粒径は、200~500μmであり、好ましくは300~450μmである。また、前記小さい絶縁性粒状熱伝導無機フィラーの粒径は、2~30μmであり、好ましくは3~20μmである。 The particle size of the large insulating granular thermally conductive inorganic filler is 200 to 500 μm, preferably 300 to 450 μm. The particle size of the small insulating granular thermally conductive inorganic filler is 2 to 30 μm, preferably 3 to 20 μm.

前記絶縁性粒状熱伝導無機フィラーは、配合量が多くなるほどマトリックス樹脂との混合あるいは混錬が難しく、有機溶媒を添加して混合あるいは混錬する必要がある。また、加圧成形、押出成形、射出成形、ロールプレス成形、ブレード成形、熱プレス成形など、加圧することによってフィラーを詰め込む必要がある。そのため十分に脱気しなければ気泡が残ることや、押し込むことによりフィラー粒子に欠陥や破損が生じてその熱物性を損ない、熱伝導性有機無機コンポジットの熱伝導率が期待するほど伸びない可能性がある。本発明では粒径の大きく異なるフィラー粒子を加えることによって、大きな粒子間の隙間を小さな粒子が埋め、絶縁性粒状熱伝導無機フィラー同士の接触頻度の向上により伝熱経路形成を実現できることに利点がある。 The insulating granular thermally conductive inorganic filler is more difficult to mix or knead with the matrix resin as the amount of the filler is increased, and it is necessary to add an organic solvent before mixing or kneading. In addition, the filler must be packed in by applying pressure, such as by pressure molding, extrusion molding, injection molding, roll press molding, blade molding, or heat press molding. Therefore, if the filler is not sufficiently degassed, air bubbles may remain, and the filler particles may be defective or damaged by being pressed in, impairing their thermal properties, and the thermal conductivity of the thermally conductive organic-inorganic composite may not increase as much as expected. In the present invention, by adding filler particles with significantly different particle sizes, the small particles fill the gaps between the large particles, and the insulating granular thermally conductive inorganic fillers have the advantage of being able to form a heat transfer path by increasing the frequency of contact between them.

本発明の有機無機放熱材の、絶縁性粒状熱伝導無機フィラーの配合量は、体積比で絶縁性粒状熱伝導無機フィラー:マトリックス樹脂=50:50~60:40の構成比であることが好ましい。 The amount of insulating granular thermally conductive inorganic filler in the organic/inorganic heat dissipation material of the present invention is preferably a volume ratio of insulating granular thermally conductive inorganic filler:matrix resin = 50:50 to 60:40.

コンポジット系の熱伝導率の予測モデル式としてBruggemanのモデル式が挙げられる。この式は、フィラー形状を球体と仮定し、フィラーがコンポジット中に占める体積分率に対する熱伝導率を求めることができる。Bruggemanのモデル式は以下に示す通りである。
1-V=(λ-λ)/(λ-λ)*(λ/λ1/3
ここで、Vはフィラーの体積、λはコンポジットの熱伝導率、λはフィラーの熱伝導率、λはマトリックス樹脂の熱伝導率である。
The Bruggeman model formula can be used as a model formula for predicting the thermal conductivity of a composite system. This formula assumes that the filler has a spherical shape, and can calculate the thermal conductivity relative to the volume fraction of the filler in the composite. The Bruggeman model formula is as follows:
1-V=(lambda c -lambda f )/(lambda m -lambda f )*(lambda m /lambda c ) 1/3
Here, V is the volume of the filler, λ c is the thermal conductivity of the composite, λ f is the thermal conductivity of the filler, and λ m is the thermal conductivity of the matrix resin.

前述のBruggemanのモデル式からは熱伝導性無機フィラー添加量が50vol%以下では高い熱伝導率を望むことが難しく、熱伝導性無機フィラーの熱伝導率の影響も小さい。熱伝導性無機フィラーを70vol%、80vol%と大量に加えると、熱伝導性無機フィラーの熱特性が支配的になるものの(図4)、分散や混錬を行うに必要な樹脂が圧倒的に不足するため溶媒を追加する必要があり、その後のプロセスで脱溶媒工程が加わることで工程が複雑になり、樹脂が少ない分コンポジットとしての強度低下を招くことが懸念されるため、熱伝導性無機フィラーの添加量は60vol%程度が有効な限界値と言える。 According to the Bruggeman model formula mentioned above, it is difficult to achieve high thermal conductivity when the amount of thermally conductive inorganic filler added is 50 vol% or less, and the effect of the thermal conductivity of the thermally conductive inorganic filler is also small. When a large amount of thermally conductive inorganic filler is added, such as 70 vol% or 80 vol%, the thermal properties of the thermally conductive inorganic filler become dominant (Figure 4), but there is an overwhelming shortage of resin required for dispersion and kneading, so solvent must be added, and the process becomes complicated by the addition of a desolvation process in the subsequent process, and there is a concern that the strength of the composite will decrease due to the small amount of resin, so it can be said that the effective limit for the amount of thermally conductive inorganic filler added is around 60 vol%.

本発明に用いる絶縁性粒状熱伝導無機フィラーの大きさは、大きい絶縁性粒状熱伝導無機フィラーの粒径が200~500μm、好ましくは300~450μmであり、小さい絶縁性粒状熱伝導無機フィラーの粒径が2~30μm、好ましくは3~20μmである。また、2種類の絶縁性粒状熱伝導無機フィラー混合体積比率は、大きい粒子:小さい粒子=5:1~1:1が好ましい。
前記のような粒径の絶縁性粒状熱伝導無機フィラーを単独で加えるのではなく、前記の配合比に従って2種類の粒子を混ぜることにより、粒子間接点が増加して高い熱伝導率を有する有機無機放熱材料を得ることができる。
The size of the insulating granular thermally conductive inorganic filler used in the present invention is such that the particle size of the large insulating granular thermally conductive inorganic filler is 200 to 500 μm, preferably 300 to 450 μm, and the particle size of the small insulating granular thermally conductive inorganic filler is 2 to 30 μm, preferably 3 to 20 μm. The mixing volume ratio of the two types of insulating granular thermally conductive inorganic fillers is preferably large particles:small particles=5:1 to 1:1.
By mixing two types of particles according to the above-mentioned compounding ratio, rather than adding the insulating granular thermally conductive inorganic filler having the particle size described above alone, the interparticle contacts are increased, and an organic/inorganic heat dissipation material having high thermal conductivity can be obtained.

前記樹脂を例示すると、熱硬化性の場合、フェノール樹脂、ポリイミド、エポキシ樹脂、ユリア樹脂、メラミン樹脂、シリコーン樹脂であり、熱可塑性の場合、ポリビニルアルコール、ポリビニルブチラール、アクリル樹脂などが挙げられる。 Examples of the resin include thermosetting resins such as phenol resin, polyimide resin, epoxy resin, urea resin, melamine resin, and silicone resin, and thermoplastic resins such as polyvinyl alcohol, polyvinyl butyral, and acrylic resin.

本発明の熱伝導性有機無機コンポジット材料は、鋳込み成型時の鋳型の形状を変えることにより、各種形状の放熱材、例えば薄板からバルク体まで成形可能である。また、本発明の熱伝導性有機無機コンポジット材料の厚さは、1mm以上、好ましくは2mm以上である。厚さの上限は、バルク材の用途の厚みに合わせて制限なく製造することができるが、通常は数十cm以下である。 The thermally conductive organic-inorganic composite material of the present invention can be molded into various shapes of heat dissipation materials, for example, from thin plates to bulk bodies, by changing the shape of the mold used during casting. The thermally conductive organic-inorganic composite material of the present invention has a thickness of 1 mm or more, preferably 2 mm or more. The upper limit of the thickness can be manufactured without restriction according to the thickness of the bulk material used, but is usually several tens of centimeters or less.

図1は、本発明の実施例に関わる熱伝導性有機無機コンポジットのコンセプトを説明する概略図である。図中○(大粒子)1つが●(小粒子)100個分に相当する。図は単一のフィラー4個を樹脂と混ぜたときに得られる接点よりも、○(大粒子)1個分を●(小粒子)100個に置き換えたときに得られる接点では、その数が増えることを表現している。前記絶縁性粒状熱伝導無機フィラーが、図1に示したコンセプトに従って、大きな粒子の隙間を小さな粒子が埋めることにより伝熱経路のネットワークを形成し、高熱伝導率化が図れている。 Figure 1 is a schematic diagram explaining the concept of a thermally conductive organic-inorganic composite according to an embodiment of the present invention. In the diagram, one large particle (○) corresponds to 100 small particles (●). The diagram shows that the number of contacts obtained when one large particle (○) is replaced with 100 small particles (●) is greater than the number of contacts obtained when four single fillers are mixed with resin. The insulating granular thermally conductive inorganic filler forms a network of heat transfer paths by filling the gaps between the large particles with small particles according to the concept shown in Figure 1, thereby achieving high thermal conductivity.

図2は有機無機放熱材料のバルク体を法線方向から観察した2次電子像である。図中の上段がSEI像、下段がLEI像で、LEI像はより一層試料表面の凹凸が明瞭に確認される。図1のコンセプト通り、大きな粒子の隙間を小さな粒子が埋めているため、小さな粒子を含む試料表面は滑らかになっており、伝熱経路を形成していることが確認できる。 Figure 2 shows secondary electron images of a bulk organic/inorganic heat dissipation material observed from the normal direction. The top row in the figure is an SEI image, and the bottom row is an LEI image; the LEI image shows the unevenness of the sample surface even more clearly. As per the concept in Figure 1, small particles fill the gaps between larger particles, making the sample surface containing the small particles smooth, and it can be confirmed that a heat transfer path is formed.

次に、本発明の熱伝導性有機無機コンポジット材料の製造方法について説明する。
まず、粒径が異なる2種類の絶縁性粒状無機フィラーを体積比率で粒径が大きい絶縁性粒状無機フィラー:粒径が小さい絶縁性粒状熱伝導無機フィラー=5:1~1:1となるように均一に混合して配合する(工程1)。
次に、前記工程1で配合した絶縁性粒状無機フィラーとマトリックス樹脂を体積比で絶縁性粒状熱伝導無機フィラー:マトリックス樹脂=50:50~60:40の配合比で混合して混練する(工程2)。
前記工程2で得られた混練生成物を成型容器に鋳込み加熱・硬化する(工程3)。
Next, a method for producing the thermally conductive organic-inorganic composite material of the present invention will be described.
First, two types of insulating granular inorganic filler having different particle sizes are uniformly mixed and blended in a volume ratio of larger particle size insulating granular inorganic filler to smaller particle size insulating granular thermally conductive inorganic filler of 5:1 to 1:1 (step 1).
Next, the insulating granular inorganic filler and the matrix resin blended in step 1 are mixed and kneaded in a volume ratio of insulating granular thermally conductive inorganic filler:matrix resin=50:50 to 60:40 (step 2).
The kneaded product obtained in step 2 is poured into a molding vessel and heated and hardened (step 3).

用いる樹脂は、熱硬化性の場合、フェノール樹脂、ポリイミド、エポキシ樹脂、ユリア樹脂、メラミン樹脂、シリコーン樹脂であり、熱可塑性の場合、ポリビニルアルコール、ポリビニルブチラール、アクリル樹脂などが挙げられる。 The resins used are phenolic resin, polyimide, epoxy resin, urea resin, melamine resin, and silicone resin for thermosetting resins, and polyvinyl alcohol, polyvinyl butyral, acrylic resin, etc. for thermoplastic resins.

フィラーと樹脂とを混合する場合、樹脂の種類によって以下のような方法で混合することができる。樹脂を溶媒に溶かしてフィラーを添加して混合する(レゾール型フェノール樹脂、ポリビニルアルコール、ポリビニルブチラール、アクリル樹脂など)。液状の樹脂にてフィラーを添加して混合する(ユリア樹脂、メラミン樹脂など)。硬化剤を添加した原料のモノマーにフィラーを添加して混合する(ポリイミド、エポキシ樹脂、シリコーン樹脂など)。樹脂とフィラーの混合は、フィラーと樹脂を十分に馴染ませるため、混練によるのが好ましい。 When mixing filler and resin, the following methods can be used depending on the type of resin. Dissolve the resin in a solvent and add the filler before mixing (resole-type phenolic resin, polyvinyl alcohol, polyvinyl butyral, acrylic resin, etc.). Add the filler to liquid resin and mix (urea resin, melamine resin, etc.). Add the filler to raw monomer material with added hardener and mix (polyimide, epoxy resin, silicone resin, etc.). It is preferable to mix the resin and filler by kneading in order to thoroughly blend the filler and resin.

得られた混合物(混練生成物)は、成型するために鋳型に流し込み、加熱することにより樹脂を硬化させて、鋳込み成型で各種形状の放熱材を製造することができる。
鋳込み成型に使用する鋳型は、150℃以上の熱処理に耐え、剥離可能であるならばテフロン(登録商標)製、シリコーン製、金属製のいずれであってもよい。
The resulting mixture (kneaded product) is poured into a mold for molding, and heated to harden the resin, allowing heat dissipating materials of various shapes to be produced by cast molding.
The mold used for the slip casting may be made of any of Teflon (registered trademark), silicone, and metal, so long as it can withstand heat treatment at 150° C. or higher and is releasable.

前記のような製法により、大きい粒子絶縁性粒状熱伝導無機フィラーの隙間を小さい粒子絶縁性粒状熱伝導無機フィラーで埋めることにより、伝熱経路を形成することで高い熱伝導率を発現した有機無機放熱材料を作製することができる。
すなわち、本発明の有機無機放熱材料の製造方法は、異サイズの絶縁性粒状熱伝導無機フィラーを利用して、図1に示した概念図のように隙間なく粒子が埋まることで、図2のような内部組織を形成して、絶縁性粒状熱伝導無機フィラー1種で構成される有機無機放熱材料より高熱伝導率化した有機無機放熱材料とすることができていると推察される。
By using the above-described manufacturing method, the gaps between the large-particle insulating granular thermally conductive inorganic filler particles are filled with the small-particle insulating granular thermally conductive inorganic filler particles, thereby forming a heat transfer path, and thus an organic/inorganic heat dissipation material exhibiting high thermal conductivity can be produced.
In other words, the manufacturing method of the organic/inorganic heat dissipating material of the present invention utilizes insulating granular thermally conductive inorganic fillers of different sizes, so that the particles are filled without any gaps as shown in the conceptual diagram of Figure 1, thereby forming an internal structure as shown in Figure 2, and it is presumed that this makes it possible to produce an organic/inorganic heat dissipating material with higher thermal conductivity than an organic/inorganic heat dissipating material composed of only one type of insulating granular thermally conductive inorganic filler.

(放熱材の嵩密度の測定)
実施例及び比較例に示す作製した放熱材の嵩密度は、アルキメデス法により算出した。
(放熱材の熱伝導率)
実施例及び比較例に示す作製した放熱材の熱伝導率は、ネッチ・ジャパン製:LFA467を用いて熱拡散率の評価を行い、下記式(1)により求めた。
(熱伝導率)=(熱拡散率)×(比熱)×(密度) (1)
なお、式(1)の比熱は、物質固有の物性値であることから、混合則の計算式より求めた。
また、密度は実測の密度である。
(Measurement of bulk density of heat dissipation material)
The bulk density of the heat dissipating materials prepared in the examples and comparative examples was calculated by Archimedes' method.
(Thermal conductivity of heat dissipation material)
The thermal conductivity of the heat dissipating materials prepared in the examples and comparative examples was calculated by evaluating the thermal diffusivity using LFA467 manufactured by Netzsch Japan and by the following formula (1).
(Thermal conductivity) = (Thermal diffusivity) × (Specific heat) × (Density) (1)
The specific heat in formula (1) is a physical property value inherent to a substance, and was therefore calculated using the alligation rule.
The density is an actually measured density.

<実施例1>
立方晶窒化ホウ素(株式会社グローバルダイヤモンド:FBN-300)と六方晶窒化ホウ素(デンカ株式会社:SGPSグレード)、エポキシ樹脂の体積比が50:10:40になるように、立方晶窒化ホウ素を3.48g、六方晶窒化ホウ素を0.45g、エポキシ樹脂を0.92g秤量した。エポキシ樹脂は主剤(日本化薬株式会社:GAN)と硬化剤(新日本化薬株式会社:リカシッドMH-700G)を10:8の重量比で混合した総重量である。初めに、エポキシ樹脂主剤と硬化剤を混合し、それに立方晶窒化ホウ素と六方晶窒化ホウ素の混合粉末を加えてよく馴染ませた。次に、立方晶窒化ホウ素と六方晶窒化ホウ素混合粉末とエポキシ樹脂の混合物を直径10mmφ、深さ2mmのシリコンゴム製錠剤成形型枠に充填した。その後乾燥機内で155℃、1時間の条件で硬化し、ペレット状の放熱材を得た。実測密度は1.90g/cm、熱伝導率は10.57W/m/Kであった。
Example 1
3.48g of cubic boron nitride (Global Diamond Co., Ltd.: FBN-300), 0.45g of hexagonal boron nitride, and 0.92g of epoxy resin were weighed out so that the volume ratio of cubic boron nitride (Denka Co., Ltd.: SGPS grade) to epoxy resin was 50:10:40. The epoxy resin was the total weight of the main agent (Nippon Kayaku Co., Ltd.: GAN) and the hardener (Shin Nippon Kayaku Co., Ltd.: Rikacid MH-700G) mixed in a weight ratio of 10:8. First, the epoxy resin main agent and the hardener were mixed, and the mixed powder of cubic boron nitride and hexagonal boron nitride was added thereto and allowed to blend well. Next, the mixture of the cubic boron nitride and hexagonal boron nitride mixed powder and epoxy resin was filled into a silicone rubber tablet molding mold with a diameter of 10 mmφ and a depth of 2 mm. The mixture was then cured in a dryer at 155° C. for 1 hour to obtain a pellet-shaped heat dissipation material, which had a measured density of 1.90 g/cm 3 and a thermal conductivity of 10.57 W/m/K.

<実施例2>
立方晶窒化ホウ素(株式会社グローバルダイヤモンド:FBN-300)と六方晶窒化ホウ素(デンカ株式会社:SGPSグレード)、エポキシ樹脂の体積比が40:20:40になるように、立方晶窒化ホウ素を2.78g、六方晶窒化ホウ素を0.90g、エポキシ樹脂を0.92g秤量した。エポキシ樹脂は主剤(日本化薬株式会社:GAN)と硬化剤(新日本化薬株式会社:リカシッドMH-700G)を10:8の重量比で混合した総重量である。初めに、エポキシ樹脂主剤と硬化剤を混合し、それに立方晶窒化ホウ素と六方晶窒化ホウ素の混合粉末を加えてよく馴染ませた。次に、立方晶窒化ホウ素と六方晶窒化ホウ素混合粉末とエポキシ樹脂の混合物を直径10mmφ、深さ2mmのシリコンゴム製錠剤成形型枠に充填した。その後乾燥機内で155℃、1時間の条件で硬化し、ペレット状の放熱材を得た。実測密度は1.81g/cm、熱伝導率は8.95W/m/Kであった。
Example 2
2.78 g of cubic boron nitride (Global Diamond Co., Ltd.: FBN-300), 0.90 g of hexagonal boron nitride, and 0.92 g of epoxy resin were weighed out so that the volume ratio of cubic boron nitride (Global Diamond Co., Ltd.: SGPS grade) to hexagonal boron nitride (Denka Co., Ltd.: SGPS grade) and epoxy resin was 40:20:40. The epoxy resin was the total weight of the main agent (Nippon Kayaku Co., Ltd.: GAN) and the hardener (Shin Nippon Kayaku Co., Ltd.: Rikacid MH-700G) mixed in a weight ratio of 10:8. First, the epoxy resin main agent and the hardener were mixed, and the mixed powder of cubic boron nitride and hexagonal boron nitride was added thereto and allowed to blend well. Next, the mixture of the cubic boron nitride and hexagonal boron nitride mixed powder and epoxy resin was filled into a silicone rubber tablet molding mold with a diameter of 10 mmφ and a depth of 2 mm. The mixture was then cured in a dryer at 155° C. for 1 hour to obtain a pellet-shaped heat dissipation material, which had a measured density of 1.81 g/cm 3 and a thermal conductivity of 8.95 W/m/K.

<実施例3>
立方晶窒化ホウ素(株式会社グローバルダイヤモンド:FBN-300)と六方晶窒化ホウ素(デンカ株式会社:SGPSグレード)、エポキシ樹脂の体積比が30:30:40になるように、立方晶窒化ホウ素を2.09g、六方晶窒化ホウ素を1.36g、エポキシ樹脂を0.92g秤量した。エポキシ樹脂は主剤(日本化薬株式会社:GAN)と硬化剤(新日本化薬株式会社:リカシッドMH-700G)を10:8の重量比で混合した総重量である。初めに、エポキシ樹脂主剤と硬化剤を混合し、それに立方晶窒化ホウ素と六方晶窒化ホウ素の混合粉末を加えてよく馴染ませた。次に、立方晶窒化ホウ素と六方晶窒化ホウ素混合粉末とエポキシ樹脂の混合物を直径10mmφ、深さ2mmのシリコンゴム製錠剤成形型枠に充填した。その後乾燥機内で155℃、1時間の条件で硬化し、ペレット状の放熱材を得た。実測密度は1.83g/cm、熱伝導率は6.56W/m/Kであった。
Example 3
2.09g of cubic boron nitride (Global Diamond Co., Ltd.: FBN-300), 1.36g of hexagonal boron nitride, and 0.92g of epoxy resin were weighed out so that the volume ratio of cubic boron nitride (Global Diamond Co., Ltd.: SGPS grade), epoxy resin was 30:30:40. The epoxy resin was the total weight of the main agent (Nippon Kayaku Co., Ltd.: GAN) and the hardener (Shin Nippon Kayaku Co., Ltd.: Rikacid MH-700G) mixed in a weight ratio of 10:8. First, the epoxy resin main agent and the hardener were mixed, and the mixed powder of cubic boron nitride and hexagonal boron nitride was added thereto and allowed to blend well. Next, the mixture of the cubic boron nitride and hexagonal boron nitride mixed powder and epoxy resin was filled into a silicone rubber tablet molding mold with a diameter of 10 mmφ and a depth of 2 mm. The mixture was then cured in a dryer at 155° C. for 1 hour to obtain a pellet-shaped heat dissipating material, which had a measured density of 1.83 g/cm 3 and a thermal conductivity of 6.56 W/m/K.

<実施例4>
立方晶窒化ホウ素(株式会社グローバルダイヤモンド:FBN-300)と窒化アルミニウム(古河電子株式会社:AlN-f05-A01グレード)、エポキシ樹脂の体積比が50:10:40になるように、立方晶窒化ホウ素を3.48g、窒化アルミニウムを0.65g、エポキシ樹脂を0.92g秤量した。エポキシ樹脂は主剤(日本化薬株式会社:GAN)と硬化剤(新日本化薬株式会社:リカシッドMH-700G)を10:8の重量比で混合した総重量である。初めに、エポキシ樹脂主剤と硬化剤を混合し、それに立方晶窒化ホウ素と窒化アルミニウムの混合粉末を加えてよく馴染ませた。次に、立方晶窒化ホウ素と窒化アルミニウム混合粉末とエポキシ樹脂の混合物を直径10mmφ、深さ2mmのシリコンゴム製錠剤成形型枠に充填した。その後乾燥機内で155℃、1時間の条件で硬化し、ペレット状の放熱材を得た。実測密度は2.61g/cm、熱伝導率は11.65W/m/Kであった。
Example 4
3.48g of cubic boron nitride (Global Diamond Co., Ltd.: FBN-300), 0.65g of aluminum nitride, and 0.92g of epoxy resin were weighed out so that the volume ratio of cubic boron nitride (Furukawa Electronics Co., Ltd.: AlN-f05-A01 grade) and epoxy resin was 50:10:40. The epoxy resin was the total weight of the main agent (Nippon Kayaku Co., Ltd.: GAN) and the hardener (Shin Nippon Kayaku Co., Ltd.: Rikacid MH-700G) mixed in a weight ratio of 10:8. First, the epoxy resin main agent and the hardener were mixed, and the mixed powder of cubic boron nitride and aluminum nitride was added thereto and allowed to blend well. Next, the mixture of cubic boron nitride, aluminum nitride mixed powder, and epoxy resin was filled into a silicone rubber tablet molding mold with a diameter of 10 mmφ and a depth of 2 mm. It was then cured in a dryer at 155°C for 1 hour to obtain a pellet-shaped heat dissipation material. The measured density was 2.61 g/cm 3 , and the thermal conductivity was 11.65 W/m/K.

<実施例5>
立方晶窒化ホウ素(株式会社グローバルダイヤモンド:FBN-300)と窒化アルミニウム(古河電子株式会社:AlN-f05-A01グレード)、エポキシ樹脂の体積比が40:20:40になるように、立方晶窒化ホウ素を2.78g、窒化アルミニウムを1.30g、エポキシ樹脂を0.92g秤量した。エポキシ樹脂は主剤(日本化薬株式会社:GAN)と硬化剤(新日本化薬株式会社:リカシッドMH-700G)を10:8の重量比で混合した総重量である。初めに、エポキシ樹脂主剤と硬化剤を混合し、それに立方晶窒化ホウ素と窒化アルミニウムの混合粉末を加えてよく馴染ませた。次に、立方晶窒化ホウ素と窒化アルミニウム混合粉末とエポキシ樹脂の混合物を直径10mmφ、深さ2mmのシリコンゴム製錠剤成形型枠に充填した。その後乾燥機内で155℃、1時間の条件で硬化し、ペレット状の放熱材を得た。実測密度は2.68g/cm、熱伝導率は10.13W/m/Kであった。
Example 5
2.78 g of cubic boron nitride (Global Diamond Co., Ltd.: FBN-300), 1.30 g of aluminum nitride, and 0.92 g of epoxy resin were weighed out so that the volume ratio of cubic boron nitride (Furukawa Electronics Co., Ltd.: AlN-f05-A01 grade) and epoxy resin was 40:20:40. The epoxy resin was the total weight of the main agent (Nippon Kayaku Co., Ltd.: GAN) and the hardener (Shin Nippon Kayaku Co., Ltd.: Rikacid MH-700G) mixed in a weight ratio of 10:8. First, the epoxy resin main agent and the hardener were mixed, and the mixed powder of cubic boron nitride and aluminum nitride was added thereto and allowed to blend well. Next, the mixture of cubic boron nitride, aluminum nitride mixed powder, and epoxy resin was filled into a silicone rubber tablet molding mold with a diameter of 10 mmφ and a depth of 2 mm. It was then cured in a dryer at 155°C for 1 hour to obtain a pellet-shaped heat dissipation material. The measured density was 2.68 g/cm 3 , and the thermal conductivity was 10.13 W/m/K.

<実施例6>
立方晶窒化ホウ素(株式会社グローバルダイヤモンド:FBN-300)と窒化アルミニウム(古河電子株式会社:AlN-f05-A01グレード)、エポキシ樹脂の体積比が30:30:40になるように、立方晶窒化ホウ素を2.09g、窒化アルミニウムを1.96g、エポキシ樹脂を0.92g秤量した。エポキシ樹脂は主剤(日本化薬株式会社:GAN)と硬化剤(新日本化薬株式会社:リカシッドMH-700G)を10:8の重量比で混合した総重量である。初めに、エポキシ樹脂主剤と硬化剤を混合し、それに立方晶窒化ホウ素と窒化アルミニウムの混合粉末を加えてよく馴染ませた。次に、立方晶窒化ホウ素と窒化アルミニウム混合粉末とエポキシ樹脂の混合物を直径10mmφ、深さ2mmのシリコンゴム製錠剤成形型枠に充填した。その後乾燥機内で155℃、1時間の条件で硬化し、ペレット状の放熱材を得た。実測密度は2.63g/cm、熱伝導率は7.67W/m/Kであった。
Example 6
2.09g of cubic boron nitride (Global Diamond Co., Ltd.: FBN-300), 1.96g of aluminum nitride, and 0.92g of epoxy resin were weighed out so that the volume ratio of cubic boron nitride (Furukawa Electronics Co., Ltd.: AlN-f05-A01 grade) and epoxy resin was 30:30:40. The epoxy resin was the total weight of the main agent (Nippon Kayaku Co., Ltd.: GAN) and the hardener (Shin Nippon Kayaku Co., Ltd.: Rikacid MH-700G) mixed in a weight ratio of 10:8. First, the epoxy resin main agent and the hardener were mixed, and the mixed powder of cubic boron nitride and aluminum nitride was added thereto and allowed to blend well. Next, the mixture of cubic boron nitride, aluminum nitride mixed powder, and epoxy resin was filled into a silicone rubber tablet molding mold with a diameter of 10 mmφ and a depth of 2 mm. It was then cured in a dryer at 155°C for 1 hour to obtain a pellet-shaped heat dissipation material. The measured density was 2.63 g/cm 3 , and the thermal conductivity was 7.67 W/m/K.

<比較例1、比較例3>
立方晶窒化ホウ素とエポキシ樹脂が体積比で60:40となるように、立方晶窒化ホウ素(株式会社グローバルダイヤモンド:FBN-300)を4.18g、エポキシ樹脂を0.92gそれぞれ秤量した。エポキシ樹脂は主剤(日本化薬株式会社:GAN)と硬化剤(新日本理化株式会社:リカシッドMH-700G)を10:8の重量比で混合した総重量である。初めに、エポキシ樹脂主剤と硬化剤を混合し、それに立方晶窒化ホウ素粉末を加えてよく馴染ませた。次に、立方晶窒化ホウ素粉末とエポキシ樹脂混合物を直径10mmφ、深さ2mmのシリコンゴム製錠剤成形型枠に充填した。その後乾燥機内で155℃、1時間の条件で硬化し、ペレット状の放熱材を得た。
得られた放熱材の実測密度は1.97g/cm、熱伝導率は4.17W/m/Kであった。
<Comparative Example 1 and Comparative Example 3>
Cubic boron nitride (Global Diamond Co., Ltd.: FBN-300) was weighed out at 4.18 g, and epoxy resin was weighed out at 0.92 g, so that the volume ratio of cubic boron nitride to epoxy resin was 60:40. The epoxy resin was the total weight of the main agent (Nippon Kayaku Co., Ltd.: GAN) and the hardener (Shin Nippon Rika Co., Ltd.: Rikacid MH-700G) mixed at a weight ratio of 10:8. First, the epoxy resin main agent and the hardener were mixed, and cubic boron nitride powder was added thereto and allowed to blend well. Next, the cubic boron nitride powder and epoxy resin mixture were filled into a silicone rubber tablet molding mold with a diameter of 10 mmφ and a depth of 2 mm. Then, the mixture was cured in a dryer at 155°C for 1 hour to obtain a pellet-shaped heat dissipation material.
The measured density of the obtained heat dissipation material was 1.97 g/cm 3 , and the thermal conductivity was 4.17 W/m/K.

<比較例2、比較例5>
六方晶窒化ホウ素(デンカ株式会社:SGPSグレード)、エポキシ樹脂の体積比が60:40になるように、立方晶窒化ホウ素を4.18g、エポキシ樹脂を0.92g秤量した。エポキシ樹脂は主剤(日本化薬株式会社:GAN)と硬化剤(新日本化薬株式会社:リカシッドMH-700G)を10:8の重量比で混合した総重量である。初めに、エポキシ樹脂主剤と硬化剤を混合し、それに立方晶窒化ホウ素と六方晶窒化ホウ素の混合粉末を加えてよく馴染ませた。次に、六方晶窒化ホウ素粉末とエポキシ樹脂混合物を直径10mmφ、深さ2mmのシリコンゴム製錠剤成形型枠に充填した。その後乾燥機内で155℃、1時間の条件で硬化し、ペレット状の放熱材を得た。実測密度は1.30g/cm、熱伝導率は2.90W/m/Kであった。
<Comparative Examples 2 and 5>
4.18 g of cubic boron nitride and 0.92 g of epoxy resin were weighed out so that the volume ratio of hexagonal boron nitride (Denka Co., Ltd.: SGPS grade) and epoxy resin was 60:40. The epoxy resin was a total weight of a mixture of a base agent (Nippon Kayaku Co., Ltd.: GAN) and a hardener (Shin Nippon Kayaku Co., Ltd.: Rikacid MH-700G) in a weight ratio of 10:8. First, the epoxy resin base agent and the hardener were mixed, and a mixed powder of cubic boron nitride and hexagonal boron nitride was added thereto and allowed to blend well. Next, the hexagonal boron nitride powder and epoxy resin mixture were filled into a silicone rubber tablet molding mold with a diameter of 10 mmφ and a depth of 2 mm. Then, the mixture was cured in a dryer at 155°C for 1 hour to obtain a pellet-shaped heat dissipation material. The measured density was 1.30 g/cm 3 and the thermal conductivity was 2.90 W/m/K.

<比較例4>
窒化アルミニウム(古河電子株式会社:AlN-f05-A01グレード)、エポキシ樹脂の体積比が60:40になるように、窒化アルミニウムを3.91g、エポキシ樹脂を0.92g秤量した。エポキシ樹脂は主剤(日本化薬株式会社:GAN)と硬化剤(新日本化薬株式会社:リカシッドMH-700G)を10:8の重量比で混合した総重量である。初めに、エポキシ樹脂主剤と硬化剤を混合し、それに窒化アルミニウム粉末を加えてよく馴染ませた。次に、窒化アルミニウム粉末とエポキシ樹脂の混合物を直径10mmφ、深さ2mmのシリコンゴム製錠剤成形型枠に充填した。その後乾燥機内で155℃、1時間の条件で硬化し、ペレット状の放熱材を得た。実測密度は2.43g/cm、熱伝導率は3.47W/m/Kであった。
<Comparative Example 4>
3.91g of aluminum nitride and 0.92g of epoxy resin were weighed out so that the volume ratio of aluminum nitride (Furukawa Electronics Co., Ltd.: AlN-f05-A01 grade) and epoxy resin was 60:40. The epoxy resin was a total weight of a mixture of a base agent (Nippon Kayaku Co., Ltd.: GAN) and a hardener (Shin Nippon Kayaku Co., Ltd.: Rikacid MH-700G) in a weight ratio of 10:8. First, the epoxy resin base agent and hardener were mixed, and aluminum nitride powder was added thereto to allow them to blend well. Next, the mixture of aluminum nitride powder and epoxy resin was filled into a silicone rubber tablet molding mold with a diameter of 10 mmφ and a depth of 2 mm. It was then cured in a dryer at 155°C for 1 hour to obtain a pellet-shaped heat dissipation material. The measured density was 2.43g/cm 3 and the thermal conductivity was 3.47W/m/K.

<比較例6>
六方晶窒化ホウ素(デンカ株式会社:SGPSグレード)と六方晶窒化ホウ素(昭和電工株式会社:UHP-2Sグレード)、エポキシ樹脂の体積比が50:10:40になるように、前者六方晶窒化ホウ素を2.26g、後者六方晶窒化ホウ素を0.45g、エポキシ樹脂を0.92g秤量した。エポキシ樹脂は主剤(日本化薬株式会社:GAN)と硬化剤(新日本化薬株式会社:リカシッドMH-700G)を10:8の重量比で混合した総重量である。初めに、エポキシ樹脂主剤と硬化剤を混合し、それに立方晶窒化ホウ素と六方晶窒化ホウ素の混合粉末を加えてよく馴染ませた。次に、六方晶窒化ホウ素とナノダイヤモンド混合粉末とエポキシ樹脂の混合物を直径10mmφ、深さ2mmのシリコンゴム製錠剤成形型枠に充填した。その後乾燥機内で155℃、1時間の条件で硬化し、ペレット状の放熱材を得た。実測密度は1.44g/cm、熱伝導率は4.15W/m/Kであった。
<Comparative Example 6>
2.26 g of hexagonal boron nitride (Denka Co., Ltd.: SGPS grade), 0.45 g of hexagonal boron nitride (Showa Denko Co., Ltd.: UHP-2S grade), and 0.92 g of epoxy resin were weighed out so that the volume ratio of hexagonal boron nitride (Denka Co., Ltd.: SGPS grade), hexagonal boron nitride (Showa Denko Co., Ltd.: UHP-2S grade), and epoxy resin was 50:10:40. The epoxy resin was the total weight of the main agent (Nippon Kayaku Co., Ltd.: GAN) and the hardener (Shin Nippon Kayaku Co., Ltd.: Rikacid MH-700G) mixed in a weight ratio of 10:8. First, the epoxy resin main agent and the hardener were mixed, and the mixed powder of cubic boron nitride and hexagonal boron nitride was added to it and allowed to blend well. Next, the mixture of hexagonal boron nitride, nanodiamond mixed powder, and epoxy resin was filled into a silicone rubber tablet molding mold with a diameter of 10 mmφ and a depth of 2 mm. The mixture was then cured in a dryer at 155° C. for 1 hour to obtain a pellet-shaped heat dissipation material, which had a measured density of 1.44 g/cm 3 and a thermal conductivity of 4.15 W/m/K.

<比較例7>
六方晶窒化ホウ素(デンカ株式会社:SGPSグレード)と六方晶窒化ホウ素(昭和電工株式会社:UHP-2Sグレード)、エポキシ樹脂の体積比が40:20:40になるように、前者六方晶窒化ホウ素を1.81g、後者六方晶窒化ホウ素を0.90g、エポキシ樹脂を0.92g秤量した。エポキシ樹脂は主剤(日本化薬株式会社:GAN)と硬化剤(新日本化薬株式会社:リカシッドMH-700G)を10:8の重量比で混合した総重量である。初めに、エポキシ樹脂主剤と硬化剤を混合し、それに立方晶窒化ホウ素と六方晶窒化ホウ素の混合粉末を加えてよく馴染ませた。次に、六方晶窒化ホウ素とナノダイヤモンド混合粉末とエポキシ樹脂の混合物を直径10mmφ、深さ2mmのシリコンゴム製錠剤成形型枠に充填した。その後乾燥機内で155℃、1時間の条件で硬化し、ペレット状の放熱材を得た。実測密度は1.40g/cm、熱伝導率は3.73W/m/Kであった。
<Comparative Example 7>
The volume ratio of hexagonal boron nitride (Denka Co., Ltd.: SGPS grade), hexagonal boron nitride (Showa Denko Co., Ltd.: UHP-2S grade), and epoxy resin was 40:20:40, so that 1.81 g of the former hexagonal boron nitride, 0.90 g of the latter hexagonal boron nitride, and 0.92 g of the latter epoxy resin were weighed. The epoxy resin was the total weight of the main agent (Nippon Kayaku Co., Ltd.: GAN) and the hardener (Shin Nippon Kayaku Co., Ltd.: Rikacid MH-700G) mixed in a weight ratio of 10:8. First, the epoxy resin main agent and the hardener were mixed, and the mixed powder of cubic boron nitride and hexagonal boron nitride was added thereto and allowed to blend well. Next, the mixture of hexagonal boron nitride, nanodiamond mixed powder, and epoxy resin was filled into a silicone rubber tablet molding mold with a diameter of 10 mmφ and a depth of 2 mm. The mixture was then cured in a dryer at 155° C. for 1 hour to obtain a pellet-shaped heat dissipating material, which had a measured density of 1.40 g/cm 3 and a thermal conductivity of 3.73 W/m/K.

<比較例8>
六方晶窒化ホウ素(デンカ株式会社:SGPSグレード)と六方晶窒化ホウ素(昭和電工株式会社:UHP-2Sグレード)、エポキシ樹脂の体積比が30:30:40になるように、前者六方晶窒化ホウ素を1.36g、後者六方晶窒化ホウ素を1.36g、エポキシ樹脂を0.92g秤量した。エポキシ樹脂は主剤(日本化薬株式会社:GAN)と硬化剤(新日本化薬株式会社:リカシッドMH-700G)を10:8の重量比で混合した総重量である。初めに、エポキシ樹脂主剤と硬化剤を混合し、それに立方晶窒化ホウ素と六方晶窒化ホウ素の混合粉末を加えてよく馴染ませた。次に、六方晶窒化ホウ素とナノダイヤモンド混合粉末とエポキシ樹脂の混合物を直径10mmφ、深さ2mmのシリコンゴム製錠剤成形型枠に充填した。その後乾燥機内で155℃、1時間の条件で硬化し、ペレット状の放熱材を得た。実測密度は1.58g/cm、熱伝導率は4.31W/m/Kであった。
<Comparative Example 8>
The volume ratio of hexagonal boron nitride (Denka Co., Ltd.: SGPS grade), hexagonal boron nitride (Showa Denko Co., Ltd.: UHP-2S grade), and epoxy resin was 30:30:40, so that 1.36 g of the former hexagonal boron nitride, 1.36 g of the latter hexagonal boron nitride, and 0.92 g of epoxy resin were weighed. The epoxy resin was the total weight of the main agent (Nippon Kayaku Co., Ltd.: GAN) and the hardener (Shin Nippon Kayaku Co., Ltd.: Rikacid MH-700G) mixed in a weight ratio of 10:8. First, the epoxy resin main agent and the hardener were mixed, and the mixed powder of cubic boron nitride and hexagonal boron nitride was added to it and allowed to blend well. Next, the mixture of hexagonal boron nitride, nanodiamond mixed powder, and epoxy resin was filled into a silicone rubber tablet molding mold with a diameter of 10 mmφ and a depth of 2 mm. The mixture was then cured in a dryer at 155° C. for 1 hour to obtain a pellet-shaped heat dissipation material. The measured density was 1.58 g/cm 3 and the thermal conductivity was 4.31 W/m/K.

<比較例9>
六方晶窒化ホウ素(昭和電工株式会社:UHP-2Sグレード)とエポキシ樹脂の体積比が60:40になるように、六方晶窒化ホウ素を2.71g、エポキシ樹脂を0.92g秤量した。エポキシ樹脂は主剤(日本化薬株式会社:GAN)と硬化剤(新日本化薬株式会社:リカシッドMH-700G)を10:8の重量比で混合した総重量である。初めに、エポキシ樹脂主剤と硬化剤を混合し、それに立方晶窒化ホウ素と六方晶窒化ホウ素の混合粉末を加えてよく馴染ませた。次に、六方晶窒化ホウ素とナノダイヤモンド混合粉末とエポキシ樹脂の混合物を直径10mmφ、深さ2mmのシリコンゴム製錠剤成形型枠に充填した。その後乾燥機内で155℃、1時間の条件で硬化し、ペレット状の放熱材を得た。実測密度は1.25g/cm、熱伝導率は1.66W/m/Kであった。
<Comparative Example 9>
2.71 g of hexagonal boron nitride and 0.92 g of epoxy resin were weighed out so that the volume ratio of hexagonal boron nitride (Showa Denko K.K.: UHP-2S grade) to epoxy resin was 60:40. The epoxy resin was the total weight of the main agent (Nippon Kayaku Co., Ltd.: GAN) and the hardener (Shin Nippon Kayaku Co., Ltd.: Rikacid MH-700G) mixed at a weight ratio of 10:8. First, the epoxy resin main agent and the hardener were mixed, and the mixed powder of cubic boron nitride and hexagonal boron nitride was added to it and mixed well. Next, the mixture of hexagonal boron nitride, nanodiamond mixed powder, and epoxy resin was filled into a silicone rubber tablet molding mold with a diameter of 10 mmφ and a depth of 2 mm. It was then cured in a dryer at 155°C for 1 hour to obtain a pellet-shaped heat dissipation material. The measured density was 1.25 g/cm 3 and the thermal conductivity was 1.66 W/m/K.

実施例、比較例の結果をフィラーの組合せと有機無機放熱材に占めるフィラーの体積比率、作製した放熱材の理論密度、実測密度、相対密度、熱伝導率についてまとめて表1に示した。 The results of the examples and comparative examples are summarized in Table 1 in terms of the filler combinations, the volume ratio of the filler in the organic/inorganic heat dissipation material, the theoretical density, measured density, relative density, and thermal conductivity of the heat dissipation materials produced.

図2に本発明の実施例2及び比較例1、2で作製した有機無機放熱材料の表面観察像(2次電子像)を示す。大粒子が小粒子に置き換わると表面が滑らかになっているのが見て取れ、大粒子の隙間が埋まっているのが分かる。 Figure 2 shows surface observation images (secondary electron images) of the organic-inorganic heat dissipation materials produced in Example 2 of the present invention and Comparative Examples 1 and 2. It can be seen that the surface becomes smooth when the large particles are replaced with small particles, and that the gaps between the large particles are filled.

図3は本発明の実施例及び比較例で作製したすべての有機無機放熱材料のフィラー組成比に対する熱伝導率をプロットしたグラフである。大粒子と小粒子が共存している有機無機放熱材料(実施例)の熱伝導率は、大粒子のみまたは小粒子のみで構成された有機無機放熱材料(比較例)の熱伝導率を上回る結果であり、大粒子、小粒子の共存は、充填度が向上して空隙を減らし、単一粒子のみよりも多くの伝熱経路を形成したことが示唆された。 Figure 3 is a graph plotting thermal conductivity versus filler composition ratio for all organic/inorganic heat dissipation materials prepared in the examples and comparative examples of the present invention. The thermal conductivity of the organic/inorganic heat dissipation materials (examples) in which large and small particles coexist exceeds that of organic/inorganic heat dissipation materials (comparative examples) composed of only large particles or only small particles, suggesting that the coexistence of large and small particles improves the filling degree, reduces voids, and forms more heat transfer paths than a single particle alone.

本発明の有機無機放熱材料は、電子機器や電気器具、二次電池、摺動部材に対し等方的に高い熱伝導率を有する放熱材料として好適である。また大小異サイズのフィラーを混ぜて有機無機放熱材料を作製する従来のアイディアおよび手法をより進化させ、最適な配合比を見出すことで高い熱伝導率が期待される無機粒子を高充填することで伝熱経路が確保され、1種のフィラーから作製される有機無機放熱材料よりも2倍以上高い熱伝導率を発現できる。

The organic inorganic heat dissipation material of the present invention is suitable as a heat dissipation material having isotropic high thermal conductivity for electronic devices, electric appliances, secondary batteries, and sliding members. In addition, by further evolving the conventional idea and method of preparing an organic inorganic heat dissipation material by mixing fillers of different sizes, and finding the optimal compounding ratio, a heat transfer path is secured by highly filling inorganic particles expected to have high thermal conductivity, and a thermal conductivity that is more than twice as high as that of an organic inorganic heat dissipation material prepared from a single type of filler can be achieved.

Claims (3)

粒径が異なる2種類の絶縁性粒状無機フィラーとマトリックス樹脂で構成される有機無機放熱材であって、その配合量の体積比が絶縁性粒状熱伝導無機フィラー:マトリックス樹脂=50:50~60:40の構成比であり、大きい絶縁性粒状熱伝導無機フィラーの粒径が200~500μmであり、小さい絶縁性粒状熱伝導無機フィラーの粒径が2~30μmであり、大きい絶縁性粒状熱伝導無機フィラーが立方晶窒化ホウ素で、小さい絶縁性粒状熱伝導無機フィラーが六方晶窒化ホウ素、窒化ケイ素、窒化アルミニウム、合成ダイヤモンド、ナノダイヤモンド、酸化アルミニウム、酸化マグネシウム、タルクのいずれかであり、2種類の絶縁性粒状熱伝導無機フィラー混合体積比率が、大きい粒子:小さい粒子=5:1~1:1である有機無機放熱材料。 An organic inorganic heat dissipation material composed of two types of insulating granular inorganic fillers with different particle sizes and a matrix resin, in which the volume ratio of the blended amounts is insulating granular thermally conductive inorganic filler:matrix resin = 50:50 to 60:40, the particle size of the large insulating granular thermally conductive inorganic filler is 200 to 500 μm, the particle size of the small insulating granular thermally conductive inorganic filler is 2 to 30 μm, the large insulating granular thermally conductive inorganic filler is cubic boron nitride, the small insulating granular thermally conductive inorganic filler is any one of hexagonal boron nitride, silicon nitride, aluminum nitride, synthetic diamond, nanodiamond, aluminum oxide, magnesium oxide, and talc, and the mixed volume ratio of the two types of insulating granular thermally conductive inorganic fillers is large particles:small particles = 5:1 to 1:1. 前記マトリックス樹脂がフェノール樹脂、ポリイミド、エポキシ樹脂、ユリア樹脂、メラミン樹脂、シリコーン樹脂やセルロースナノファイバーのいずれである請求項1に記載の有機無機放熱材料。 The organic/inorganic heat dissipation material according to claim 1, wherein the matrix resin is any one of a phenolic resin, a polyimide, an epoxy resin, a urea resin, a melamine resin, a silicone resin, and a cellulose nanofiber. 粒径が異なる2種類の絶縁性粒状無機フィラーと樹脂で構成される有機無機放熱材料の製造方法であって、粒径が大きい絶縁性粒状無機フィラーである立方晶窒化ホウ素と粒径が小さい絶縁性粒状熱伝導無機フィラーである六方晶窒化ホウ素、窒化ケイ素、窒化アルミニウム、合成ダイヤモンド、ナノダイヤモンド、酸化アルミニウム、酸化マグネシウム、タルクのいずれか1種類の体積比率が5:1~1:1となるように配合する工程(工程1)と、前記工程1で配合した絶縁性粒状無機フィラーとマトリックス樹脂を体積比で絶縁性粒状熱伝導無機フィラー:マトリックス樹脂=50:50~60:40の配合比で混合・混練してする工程(工程2)と、前記工程2で得られた混練生成物を成型容器に鋳込み加熱・硬化する工程(工程3)を含む有機無機放熱材料の製造方法。

A method for producing an organic/inorganic heat dissipating material composed of two types of insulating granular inorganic filler with different particle sizes and a resin, the method comprising the steps of: blending a large-particle insulating granular inorganic filler, i.e., cubic boron nitride, with a small-particle insulating granular thermally conductive inorganic filler, i.e., hexagonal boron nitride, silicon nitride, aluminum nitride, synthetic diamond, nanodiamond, aluminum oxide, magnesium oxide, or talc, in a volume ratio of 5:1 to 1:1 (step 1); mixing and kneading the insulating granular inorganic filler blended in step 1 with a matrix resin in a volume ratio of insulating granular thermally conductive inorganic filler:matrix resin=50:50 to 60:40 (step 2); and casting the kneaded product obtained in step 2 into a molding container and heating and curing it (step 3).

JP2022167567A 2022-10-19 2022-10-19 Thermally conductive organic-inorganic composite material with high inorganic filler loading Pending JP2024060280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022167567A JP2024060280A (en) 2022-10-19 2022-10-19 Thermally conductive organic-inorganic composite material with high inorganic filler loading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022167567A JP2024060280A (en) 2022-10-19 2022-10-19 Thermally conductive organic-inorganic composite material with high inorganic filler loading

Publications (1)

Publication Number Publication Date
JP2024060280A true JP2024060280A (en) 2024-05-02

Family

ID=90828586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022167567A Pending JP2024060280A (en) 2022-10-19 2022-10-19 Thermally conductive organic-inorganic composite material with high inorganic filler loading

Country Status (1)

Country Link
JP (1) JP2024060280A (en)

Similar Documents

Publication Publication Date Title
CN103044904A (en) Special heat-conducting and insulating material for LED (light-emitting diode) lamp holder and preparation method thereof
CN103740092B (en) A kind of high thermal conductivity graphene/nylon composite material and preparation method thereof
JP2005146057A (en) High-thermal-conductivity molding and method for producing the same
KR101886435B1 (en) High radiant heat composites containing hybrid filler containing expended graphite filled with expandable polymeric beads and a fabrication process thereof
Song et al. Thermal conductivity enhancement of alumina/silicone rubber composites through constructing a thermally conductive 3D framework
JP6826544B2 (en) Thermally conductive filler composition, its use and manufacturing method
JP7333914B2 (en) Thermally conductive resin molding and its manufacturing method
JP7267032B2 (en) Filler filling material and its manufacturing method, and high thermal conductivity insulating material and its manufacturing method
JP7220150B2 (en) Low dielectric constant thermal conductive heat dissipation material
CN111511678A (en) Powder composition comprising a first agglomerate and a second agglomerate of inorganic particles and polymer composition comprising a polymer and the powder composition
JP2010285569A (en) Thermoconductive resin material and production method thereof
JP7292941B2 (en) Aluminum nitride composite filler
JP2024060280A (en) Thermally conductive organic-inorganic composite material with high inorganic filler loading
JP2021109825A (en) Heat-conductive filler and heat-conductive composition containing the same
WO2022191238A1 (en) Thermally conductive resin composition and thermally conductive resin material
US8106119B2 (en) Thermally conductive silicone composition
JP2007146189A (en) Highly thermoconductive material
US20090143522A1 (en) Thermally Conductive Silicone Composition
JP2016124908A (en) Resin molded body
WO2019235496A1 (en) Composite particles and production method therefor
Balaji et al. Studies on thermal characterization of hybrid filler polymer composites with Rice husk and Aluminium nitride
JP7308636B2 (en) Composite structure made of aluminum nitride
WO2021241699A1 (en) Cured sheet and method for producing same
JP7438442B1 (en) Boron nitride aggregated particles, sheet member, and method for producing boron nitride aggregated particles
JP7236211B2 (en) Filler, method for producing filler, and method for producing molded product