JP2024054700A - Manufacturing method of coil springs - Google Patents

Manufacturing method of coil springs Download PDF

Info

Publication number
JP2024054700A
JP2024054700A JP2022161108A JP2022161108A JP2024054700A JP 2024054700 A JP2024054700 A JP 2024054700A JP 2022161108 A JP2022161108 A JP 2022161108A JP 2022161108 A JP2022161108 A JP 2022161108A JP 2024054700 A JP2024054700 A JP 2024054700A
Authority
JP
Japan
Prior art keywords
current
formed material
gripping member
heating
coil spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022161108A
Other languages
Japanese (ja)
Inventor
和也 竹田
剛 永安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2022161108A priority Critical patent/JP2024054700A/en
Priority to PCT/JP2022/043557 priority patent/WO2024075314A1/en
Publication of JP2024054700A publication Critical patent/JP2024054700A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Resistance Heating (AREA)
  • Wire Processing (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

【課題】コイルばねの品質のばらつきを低減することができるコイルばねの製造方法を提供すること。【解決手段】本発明に係るコイルばねの製造方法は、線材からなる母材を処理してなるコイルばねの製造方法であって、母材に対して冷間成形を行って、螺旋状をなす成形材を作製する冷間成形ステップと、成形材に対して焼入れを施す焼入れステップと、焼入れ後の成形材に対して通電加熱によって焼戻しを施す通電焼戻しステップと、を含み、通電焼戻しステップは、成形材への加熱開始から所定時間経過時までの第1通電期間と、所定時間経過時から加熱終了までの第2通電期間が設定され、第2通電期間における成形材の温度の上昇率は、第1通電期間における成形材の温度の上昇率よりも低い。【選択図】図1[Problem] To provide a manufacturing method of a coil spring capable of reducing the variation in quality of the coil springs. [Solution] The manufacturing method of the coil spring according to the present invention is a manufacturing method of a coil spring by processing a base material made of wire, and includes a cold forming step of cold forming the base material to produce a formed material having a spiral shape, a quenching step of quenching the formed material, and an electric tempering step of tempering the quenched formed material by electric heating, in which a first electric current period is set from the start of heating the formed material to the lapse of a predetermined time, and a second electric current period is set from the lapse of the predetermined time to the end of heating, and the rate of increase in temperature of the formed material during the second electric current period is lower than the rate of increase in temperature of the formed material during the first electric current period. [Selected Figure] Figure 1

Description

本発明は、コイルばねの製造方法に関するものである。 The present invention relates to a method for manufacturing a coil spring.

従来、コイルばねを作製する工程では、熱間成形や冷間成形が採用される。このうち、熱間成形は、太い線材の成形が可能であるが、成形する形状の自由度が小さい。一方、冷間成形は、成形する形状の自由度が高いものの、太い線材の成形が困難であった。形状の自由度が高く、かつ太い線材の成形が可能な技術として、線材を冷間成形した後、焼入れ、焼戻し等の熱処理を行う技術が知られている(例えば、特許文献1を参照)。特許文献1では、冷間成形後のコイル状成形物(ワーク)の両端に電極を取り付けて通電することによって、熱処理を行う。 Conventionally, hot forming and cold forming are used in the process of manufacturing coil springs. Of these, hot forming allows for the forming of thick wire rods, but the degree of freedom in the shape of the formed wire rods is small. On the other hand, cold forming allows for a high degree of freedom in the shape of the formed wire rods, but it is difficult to form thick wire rods. As a technology that allows for a high degree of freedom in the shape of the formed wire rods and allows for the forming of thick wire rods, a technology is known in which the wire rods are cold formed and then heat treated, such as quenching and tempering, is performed (see, for example, Patent Document 1). In Patent Document 1, heat treatment is performed by attaching electrodes to both ends of the coil-shaped formed product (workpiece) after cold forming and passing electricity through them.

特許第5574772号公報Patent No. 5574772

ところで、通電による熱処理時、ワークを短時間で加熱しようとすると、ワークに投入する電力量が大きくなり、ワークが目標温度に達するタイミングで通電を停止しても、ワークの温度が上昇し続けてしまう場合があった。この場合、加熱温度がワーク間でばらつき、作製されるコイルばねの品質もばらつくおそれがあった。 However, when attempting to heat a workpiece in a short period of time during heat treatment by passing an electric current through it, the amount of electric power input to the workpiece increases, and even if the current is stopped when the workpiece reaches the target temperature, the temperature of the workpiece may continue to rise. In this case, the heating temperature may vary between workpieces, and the quality of the coil springs produced may also vary.

本発明は、上記に鑑みてなされたものであって、コイルばねの品質のばらつきを低減することができるコイルばねの製造方法を提供することを目的とする。 The present invention has been made in consideration of the above, and aims to provide a method for manufacturing coil springs that can reduce the variation in quality of coil springs.

上述した課題を解決し、目的を達成するために、本発明に係るコイルばねの製造方法は、線材からなる母材を処理してなるコイルばねの製造方法であって、前記母材に対して冷間成形を行って、螺旋状をなす成形材を作製する冷間成形ステップと、前記成形材に対して焼入れを施す焼入れステップと、前記焼入れ後の成形材に対して通電加熱によって焼戻しを施す通電焼戻しステップと、を含み、前記通電焼戻しステップは、前記成形材への加熱開始から所定時間経過時までの第1通電期間と、前記所定時間経過時から加熱終了までの第2通電期間が設定され、前記第2通電期間における前記成形材の温度の上昇率は、前記第1通電期間における前記成形材の温度の上昇率よりも低い、ことを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the manufacturing method of the coil spring according to the present invention is a manufacturing method of a coil spring by processing a base material made of wire, and includes a cold forming step of cold forming the base material to produce a formed material having a spiral shape, a quenching step of quenching the formed material, and an electric tempering step of tempering the quenched formed material by electric heating, and the electric tempering step is characterized in that a first electric period from the start of heating the formed material to the lapse of a predetermined time and a second electric period from the lapse of the predetermined time to the end of heating are set, and the rate of increase in temperature of the formed material during the second electric period is lower than the rate of increase in temperature of the formed material during the first electric period.

また、本発明に係るコイルばねの製造方法は、上記発明において、前記第1および第2通電期間では、電流値または電圧値を制御し、前記通電焼戻しステップは、前記第2通電期間の電流値/電圧値を、前記第1通電期間の電流値/電圧値よりも小さくする、ことを特徴とする。 The coil spring manufacturing method according to the present invention is characterized in that, in the above invention, the current value or voltage value is controlled during the first and second current-flow periods, and the current-flow tempering step makes the current value/voltage value during the second current-flow period smaller than the current value/voltage value during the first current-flow period.

また、本発明に係るコイルばねの製造方法は、上記発明において、前記通電焼戻しステップは、前記焼入れ後の成形材の一端を把持する第1通電部材と、前記焼入れ後の成形材の他端を把持する第2通電部材とによって前記成形材の両端が把持された状態で通電され、前記第1および第2通電部材は、前記成形材の外周側に位置する第1把持部材と、前記成形材の内周側に位置し、前記第1把持部材とによって前記成形材を挟み込む第2把持部材であって、前記成形材と接触する面の曲率半径が、前記成形材の内周のなす曲率半径よりも小さく、前記第1把持部材とによって前記成形材を挟み込む第2把持部材と、によって前記成形材を把持する、ことを特徴とする。 The manufacturing method of the coil spring according to the present invention is characterized in that, in the above invention, the current tempering step applies current to the formed material in a state where both ends of the formed material are gripped by a first current-carrying member that grips one end of the formed material after quenching and a second current-carrying member that grips the other end of the formed material after quenching, and the first and second current-carrying members are a first gripping member located on the outer periphery of the formed material and a second gripping member located on the inner periphery of the formed material and sandwiching the formed material between the first gripping member, the radius of curvature of the surface that contacts the formed material is smaller than the radius of curvature of the inner periphery of the formed material, and the formed material is gripped by the second gripping member that sandwiches the formed material between the first gripping member.

また、本発明に係るコイルばねの製造方法は、上記発明において、前記焼入れステップの前に行われ、前記冷間成形後の成形材に対して通電加熱を行う通電加熱ステップ、をさらに含むことを特徴とする。 The method for manufacturing a coil spring according to the present invention is characterized in that, in the above invention, it further includes an electrical heating step that is performed before the quenching step, and that electrically heats the formed material after the cold forming.

本発明によれば、コイルばねの品質のばらつきを低減することができるという効果を奏する。 The present invention has the effect of reducing the variation in quality of coil springs.

図1は、本発明の一実施の形態に係る製造方法によって作製されるコイルばねの構成を示す図である。FIG. 1 is a diagram showing the structure of a coil spring produced by a manufacturing method according to an embodiment of the present invention. 図2は、本発明の一実施の形態に係るコイルばねの製造方法を説明するための図である。FIG. 2 is a diagram for explaining a method for manufacturing a coil spring according to an embodiment of the present invention. 図3は、通電加熱時における電流値と、成形材の温度との時間変化について説明するための図である。FIG. 3 is a diagram for explaining the change over time in the current value and the temperature of the formed material during electrical heating. 図4は、変形例1に係る通電加熱について説明するための図である。FIG. 4 is a diagram for explaining electrical heating according to the first modification. 図5は、図4に示す矢視A方向からみた図である。FIG. 5 is a view seen from the direction of the arrow A shown in FIG. 図6は、変形例2に係る通電加熱について説明するための図である。FIG. 6 is a diagram for explaining electrical heating according to the second modification. 図7は、変形例3に係る通電加熱について説明するための図である。FIG. 7 is a diagram for explaining electrical heating according to the third modification.

以下、添付図面を参照して本発明を実施するための形態(以下、「実施の形態」という)を説明する。なお、図面は模式的なものであって、各部分の厚みと幅との関係、それぞれの部分の厚みの比率などは現実のものとは異なる場合があり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれる場合がある。 Below, a mode for carrying out the present invention (hereinafter referred to as "embodiment") will be described with reference to the attached drawings. Note that the drawings are schematic, and the relationship between the thickness and width of each part, the thickness ratio of each part, etc. may differ from the actual ones, and the drawings may include parts with different dimensional relationships and ratios.

(実施の形態)
本発明の一実施の形態に係る製造方法によって作製されるコイルばねの構成を示す図である。コイルばね1は、線材を螺旋状に巻回することによって作製される。コイルばね1は、例えば、金属や合金からなる線材を用いて作製される。
(Embodiment)
1 is a diagram showing the configuration of a coil spring manufactured by a manufacturing method according to an embodiment of the present invention. The coil spring 1 is manufactured by spirally winding a wire material. The coil spring 1 is manufactured using, for example, a wire material made of a metal or an alloy.

続いて、コイルばね1の製造方法について、図2~図4を参照して説明する。図2は、本発明の一実施の形態に係るコイルばねの製造方法を説明するための図である。コイルばね1は、母材を加工することによって作製される。 Next, a method for manufacturing the coil spring 1 will be described with reference to Figs. 2 to 4. Fig. 2 is a diagram for explaining a method for manufacturing a coil spring according to one embodiment of the present invention. The coil spring 1 is produced by processing a base material.

まず、線材からなる母材100(図2の(a)参照)に対し、伸線加工を施して、伸線材101を得る(図2の(b)参照)。この際、母材100(伸線材101)には熱処理は施されず、伸線機を用いて、例えばダイスを通過させることによって線材の径を細くすることによって、設計した径の線材(伸線材101)を得る。 First, a wire material 100 (see FIG. 2(a)) is drawn to obtain a drawn wire material 101 (see FIG. 2(b)). At this time, the wire material 100 (drawn wire material 101) is not subjected to heat treatment, and a wire drawing machine is used to reduce the diameter of the wire material, for example by passing it through a die, to obtain a wire material (drawn wire material 101) with a designed diameter.

その後、冷間成形によって伸線材101を成形する(図2の(c)参照)。具体的には、巻線機200を用いて伸線材101を巻回する。この巻線機200は、例えば、巻回ピンや、切断ツールを備え、伸線材101を巻回ピンに接触させて成形するとともに、切断ツールによって伸線材101を所定の長さで切断する。 Then, the drawn wire material 101 is shaped by cold forming (see FIG. 2(c)). Specifically, the drawn wire material 101 is wound using a winding machine 200. This winding machine 200 includes, for example, a winding pin and a cutting tool, and shapes the drawn wire material 101 by contacting it with the winding pin, and cuts the drawn wire material 101 to a predetermined length using the cutting tool.

伸線材101を巻回、切断して得られる成形材102に対し、通電加熱を行う(図2の(d)参照)。通電加熱は、成形材102の一端に第1通電部材211、他端に第2通電部材212を取り付け、該第1通電部材211および第2通電部材212に電流を流すことによって成形材102に通電する。この通電によって熱が発生し、成形材102が加熱される。
第1通電部材211および第2通電部材212は、制御装置210の制御のもと、部材の移動(成形材102の把持)や通電が制御される。
The formed material 102 obtained by winding and cutting the drawn wire 101 is subjected to electrical heating (see FIG. 2(d)). In electrical heating, a first current-carrying member 211 is attached to one end of the formed material 102, and a second current-carrying member 212 is attached to the other end, and an electric current is passed through the first current-carrying member 211 and the second current-carrying member 212 to pass the electric current through the formed material 102. Heat is generated by this current passage, and the formed material 102 is heated.
The first current-carrying member 211 and the second current-carrying member 212 are controlled by the control device 210 in terms of movement of the members (gripping of the molding material 102) and electrical conduction.

成形材102の通電加熱後、この成形材102に焼入れを施す(図2の(e)参照)。水溶性焼入れ剤222を収容した槽221に成形材102を浸漬させる。この際、水溶性焼入れ剤は、適切な熱処理品質を得られるように温度ならびに濃度を管理している。成形材102の水溶性焼入れ剤222への浸漬によって、焼入れが施された成形材103が得られる。なお、水溶性焼入れ剤222に代えて油を用いてもよい。 After the formed material 102 is electrically heated, the formed material 102 is quenched (see FIG. 2(e)). The formed material 102 is immersed in a tank 221 containing a water-soluble quenching agent 222. At this time, the temperature and concentration of the water-soluble quenching agent are controlled so as to obtain an appropriate heat treatment quality. By immersing the formed material 102 in the water-soluble quenching agent 222, a quenched formed material 103 is obtained. Note that oil may be used instead of the water-soluble quenching agent 222.

焼入れ後、成形材103に対し、焼戻しのための通電加熱(通電焼戻し)を行う(図2の(f)参照)。通電焼戻しは、成形材103の一端に第1通電部材231、他端に第2通電部材232を取り付け、該第1通電部材231および第2通電部材232に電流を流すことによって成形材103に通電する。この通電によって熱が発生し、成形材103が加熱される。通電焼戻しでは、成形材103を所定の硬さとするために再加熱するための通電条件が設定される。
第1通電部材231および第2通電部材232は、制御装置230の制御のもと、部材の移動(成形材103の把持)や通電が制御される。
After quenching, the formed material 103 is subjected to electrical heating for tempering (electrical tempering) (see FIG. 2(f)). In electrical tempering, a first electrical member 231 is attached to one end of the formed material 103, and a second electrical member 232 is attached to the other end, and an electric current is passed through the first electrical member 231 and the second electrical member 232 to pass an electric current through the formed material 103. This electrical current generates heat, and the formed material 103 is heated. In electrical tempering, electrical current conditions are set for reheating the formed material 103 to a predetermined hardness.
The first current-carrying member 231 and the second current-carrying member 232 are controlled by the control device 230 in terms of movement of the members (gripping of the molding material 103) and electrical conduction.

ここで、通電焼戻し時(図2の(f)参照)に行う通電加熱について、図3を参照して説明する。なお、焼入れ前の成形材102への通電加熱を行う場合(図2の(d)参照)も同様に加熱を行うことができる。 Here, the electrical heating performed during electrical tempering (see FIG. 2(f)) will be described with reference to FIG. 3. Note that electrical heating can also be performed in the same way when electrical heating is performed on the formed material 102 before quenching (see FIG. 2(d)).

図3は、通電加熱時における電流値と、成形材103の温度との時間変化の一例について説明するための図である。図3において、実線は電流値を示し、破線は成形材103の温度を示す。このため、破線の傾きが、成形材103の温度上昇率を示す。 Figure 3 is a diagram for explaining an example of the change over time in the current value and the temperature of the molding material 103 during electrical heating. In Figure 3, the solid line indicates the current value, and the dashed line indicates the temperature of the molding material 103. Therefore, the slope of the dashed line indicates the rate of temperature rise of the molding material 103.

制御装置230は、例えば、図3に示すような二段階で電流値を変化させ、成形材103の温度を上昇させる。この際、制御装置230の制御期間として、大きく分けて、通電開始から所定時間経過時まで電流値I2で通電させる第1通電期間S1と、第1通電期間よりも小さい電流値I1で通電させる第2通電期間S2とが設定される。図3では、通電開始(t0)から時間t1までを第1通電期間、時間t1から時間t2までを第2通電期間とする。本通電加熱において、第2通電期間では、温度上昇率が、第1通電期間の温度上昇率よりも小さく、成形材103の温度が相対的に緩やかに上昇する。 The control device 230 changes the current value in two stages, for example, as shown in FIG. 3, to raise the temperature of the molding material 103. In this case, the control period of the control device 230 is roughly divided into a first current-carrying period S1 in which current is passed at a current value I2 from the start of current-carrying until a predetermined time has elapsed, and a second current-carrying period S2 in which current is passed at a current value I1 smaller than that of the first current-carrying period. In FIG. 3, the first current-carrying period is from the start of current-carrying (t0) to time t1, and the second current-carrying period is from time t1 to time t2. In this current-carrying heating, the temperature rise rate in the second current-carrying period is smaller than the temperature rise rate in the first current-carrying period, and the temperature of the molding material 103 rises relatively slowly.

制御装置230は、第1通電期間に大電流を流すことで、予め設定した温度T1であって、加熱(例えば加熱終了温度に対して50℃低い温度)まで一気に昇温させ、第2通電期間に小電流(例えば第1通電期間の電流値に対して1kA低い電流値)で、加熱終了温度T2まで徐々に昇温させることで、加熱終了時の温度を安定させる。図3において、第1通電期間と第2通電期間との加熱時間の比率はおよそ2:1である。なお、設定する電流値、各期間の加熱時間は、材料径や目標加熱時間により決定される。
ここで、電流値I(A)は、下式(1)に示す計算式に基づいて設定することができる。例えば、式(1)で求めた値、またはこの値に基づいて電流値が決定される。

Figure 2024054700000002
S:成形材103の断面積(mm2)、ΔT:温度差(℃)、t:加熱時間(sec)、α:定数
なお、温度差ΔTは、加熱開始前の成形材103の温度と温度T1との差、または温度T1と温度T2との差を示し、各期間(第1通電期間S1または第2通電期間S2)に応じて変わる。具体的には、第1通電期間S1における温度差ΔTは、加熱開始前の成形材103の温度と温度T1との差であり、第2通電期間T2における温度差ΔTは、温度T1と温度T2との差である。 The control device 230 applies a large current during the first current application period to raise the temperature to a preset temperature T1 (for example, a temperature 50°C lower than the heating end temperature) in one go, and then applies a small current (for example, a current value 1 kA lower than the current value during the first current application period) during the second current application period to gradually raise the temperature to the heating end temperature T2, thereby stabilizing the temperature at the end of heating. In Fig. 3, the ratio of the heating time during the first current application period to the heating time during the second current application period is approximately 2:1. The current value and the heating time during each period are determined by the material diameter and the target heating time.
Here, the current value I (A) can be set based on the calculation formula shown in the following formula (1). For example, the current value is determined by the value calculated by formula (1) or based on this value.
Figure 2024054700000002
S: cross-sectional area of molded material 103 ( mm2 ), ΔT: temperature difference (°C), t: heating time (sec), α: constant. Note that the temperature difference ΔT indicates the difference between the temperature of molded material 103 before heating starts and temperature T1, or the difference between temperature T1 and temperature T2, and changes depending on each period (first current-flow period S1 or second current-flow period S2). Specifically, the temperature difference ΔT in the first current-flow period S1 is the difference between the temperature of molded material 103 before heating starts and temperature T1, and the temperature difference ΔT in the second current-flow period T2 is the difference between temperature T1 and temperature T2.

制御装置230は、例えば、所定の位置に成形材103に配置し、第1通電部材231および第2通電部材232の各把持部材を移動させることによって成形材103の一端部および他端部をそれぞれ把持させる。その後、制御装置230は、送電線を介して第1通電部材231または第2通電部材232に電流を流す。第1通電部材231および第2通電部材232と、成形材103との間では、接触箇所を介して電流が流れる。この際に発生する熱によって、成形材103が加熱される。 The control device 230 is placed on the forming material 103 at a predetermined position, for example, and grips one end and the other end of the forming material 103 by moving the gripping members of the first current-carrying member 231 and the second current-carrying member 232. The control device 230 then passes a current through the first current-carrying member 231 or the second current-carrying member 232 via the power transmission line. A current flows between the first current-carrying member 231 and the second current-carrying member 232 and the forming material 103 through the contact points. The heat generated at this time heats the forming material 103.

上述した流れで母材100を処理することによって、図1に示すコイルばね1が作製される。
ここで、伸線加工の前後に焼鈍処理を施すようにしてもよい。また、母材の状態において線径が設計したものである場合には、伸線加工を行わずに、母材100に対して冷間成形を行うことが可能である。
By processing the base material 100 in the above-described manner, the coil spring 1 shown in FIG. 1 is produced.
Here, annealing may be performed before or after the wire drawing process. Also, if the wire diameter is as designed in the base material state, it is possible to perform cold forming on the base material 100 without performing the wire drawing process.

以上説明した本発明の実施の形態では、熱処理(ここでは少なくとも通電焼戻し)を行う際に、二段階で電流値を変えて、成形材103の温度が加熱終了温度に近付くと温度上昇率を低下させる制御を行う。加熱終了前に温度上昇を低下させることによって、加熱停止後の成形材103の温度上昇が抑制される。本実施の形態によれば、コイルばねの品質のばらつきを低減することができる。 In the embodiment of the present invention described above, when performing heat treatment (here, at least electric tempering), the current value is changed in two stages, and control is performed to reduce the rate of temperature rise as the temperature of the formed material 103 approaches the heating end temperature. By reducing the temperature rise before the heating ends, the temperature rise of the formed material 103 after heating stops is suppressed. According to this embodiment, it is possible to reduce the variation in the quality of the coil spring.

また、本実施の形態によれば、通電焼戻しを行うことによって、炉を用いて焼戻しする場合と比して、焼戻しに要する時間を短縮することができ、また、二酸化炭素排出量を削減することができる。 In addition, according to this embodiment, by performing electric tempering, the time required for tempering can be shortened compared to tempering using a furnace, and carbon dioxide emissions can also be reduced.

なお、通電加熱時の温度制御は、上述した実施の形態のような二段階の電流値制御に限らない。例えば、図3では、通電開始のタイミングで最大の電流値とする例を示したが、通電開始から電流値を徐々に上昇させるようにしてもよい。また、第1通電期間と第2通電期間との間の電流切り替え時、段階的に電流値を小さくするようにしてもよい。この際の昇温は、加熱処理のタクトタイムに合わせて設定される。
また、電流をオンオフ制御させることによって、加熱温度を調整するようにしてもよい。例えば、第1通電期間よりも第2通電期間の方が、オンの期間が短いか、オフの期間が長い。なお、電流のオンオフ制御については、例えば、特許第6077790号公報の制御方法を採用することができる。
The temperature control during electrical heating is not limited to the two-stage current value control as in the above-described embodiment. For example, while Fig. 3 shows an example in which the maximum current value is set at the timing of starting electrical current, the current value may be gradually increased from the start of electrical current. Also, when switching the current between the first electrical current period and the second electrical current period, the current value may be decreased in stages. The temperature rise in this case is set in accordance with the tact time of the heating process.
The heating temperature may be adjusted by controlling the current on and off. For example, the on period of the second current supply period is shorter than the first current supply period, or the off period is longer. For the on and off control of the current, the control method disclosed in Japanese Patent No. 6077790 can be adopted.

(変形例1)
次に、本実施の形態の変形例1について、図4および図5を参照して説明する。図4は、変形例1に係る通電加熱について説明するための図である。図5は、図4に示す矢視A方向からみた図である。変形例1では、通電加熱を行う通電部材の構成について説明する。変形例1では、通電部材の構成以外は実施の形態と同様であるため、説明を省略する。なお、図4において、実施の形態と同一の構成要素には同一の符号が付してある。
(Variation 1)
Next, a first modified example of the present embodiment will be described with reference to Figs. 4 and 5. Fig. 4 is a diagram for explaining the electric heating according to the first modified example. Fig. 5 is a diagram seen from the direction of the arrow A shown in Fig. 4. In the first modified example, the configuration of the current-carrying member that performs the electric heating will be described. In the first modified example, the configuration of the current-carrying member is the same as in the embodiment, except for the configuration of the current-carrying member, and therefore the description will be omitted. In Fig. 4, the same components as in the embodiment are denoted by the same reference numerals.

第1通電部材231は、第1把持部材231aと、第2把持部材231bとを有し、成形材103の一端側に位置する。
第1把持部材231aは、角柱状をなし、成形材103の外周側に位置する。第1把持部材231aは、成形材103と接触する側の面が平面状をなす平面部2311を有する。なお、第1把持部材231aは、成形材103と接する面が平面をなしていれば、他の部分が、円柱状や、他の多角形状をなすものであってもよい。
第2把持部材231bは、円柱状をなし、成形材103の内周側に位置する。第2把持部材231bの側面2312(外周面)のなす曲率半径は、成形材103の内周のなす曲率半径よりも小さい。ここで、成形材103の内周のなす曲率半径とは、成形材103の軸方向(巻回の軸方向)からみた平面視(図5参照)における成形材103の内周のなす曲率半径に相当する。第2把持部材231bの側面のなす曲率半径を、適用し得る成形材103の内周のなす曲率半径よりも小さくすることによって、様々な種類の成形材103に適用できる。
The first current-carrying member 231 has a first gripping member 231 a and a second gripping member 231 b , and is located on one end side of the molding material 103 .
The first gripping member 231a has a rectangular column shape and is located on the outer periphery of the molded material 103. The first gripping member 231a has a flat portion 2311 having a flat surface on the side that contacts the molded material 103. Note that as long as the surface of the first gripping member 231a that contacts the molded material 103 is flat, other portions of the first gripping member 231a may be cylindrical or have another polygonal shape.
The second gripping member 231b is cylindrical and is located on the inner periphery of the molded material 103. The radius of curvature of the side surface 2312 (outer periphery) of the second gripping member 231b is smaller than the radius of curvature of the inner periphery of the molded material 103. Here, the radius of curvature of the inner periphery of the molded material 103 corresponds to the radius of curvature of the inner periphery of the molded material 103 in a plan view (see FIG. 5) seen from the axial direction (winding axial direction) of the molded material 103. By making the radius of curvature of the side surface of the second gripping member 231b smaller than the radius of curvature of the inner periphery of the applicable molded material 103, it can be applied to various types of molded materials 103.

第1把持部材231aおよび第2把持部材231bは、制御装置230の制御のもと、図示しない送電線を介して送電される。また、第1把持部材231aは、制御装置230のもと、第2把持部材231bに対して近付く方向、または離れる方向に移動可能である。第2把持部材231bは、制御装置230のもと、第1把持部材231aに対して近付く方向、または離れる方向に移動可能である。なお、成形材103の巻回の径に対応させるために、第2把持部材を第1把持部材側に移動可能な構成としてもよいし、成形材103の巻き数等に対応させるために、第1通電部材231および第2通電部材232が互いに近付く方向、互いに遠ざかる方向に移動可能な構成してもよい。 The first gripping member 231a and the second gripping member 231b are supplied with electricity through a power transmission line (not shown) under the control of the control device 230. The first gripping member 231a can be moved toward or away from the second gripping member 231b under the control of the control device 230. The second gripping member 231b can be moved toward or away from the first gripping member 231a under the control of the control device 230. The second gripping member may be configured to be movable toward the first gripping member in order to correspond to the diameter of the turns of the formed material 103, or the first current-carrying member 231 and the second current-carrying member 232 may be configured to be movable toward or away from each other in order to correspond to the number of turns of the formed material 103, etc.

第2通電部材232は、第1把持部材232aと、第2把持部材232bとを有し、成形材103の他端側に位置する。
第1把持部材232aは、角柱状をなし、成形材103の外周側に位置する。第1把持部材232aは、成形材103と接触する側の面が平面状をなす平面部2321を有する。なお、第1把持部材232aは、成形材103と接触する側の面が平面状をなしていれば、他の部分が、円柱状や、他の多角形状をなすものであってもよい。
第2把持部材232bは、円柱状をなし、成形材103の内周側に位置する。第2把持部材232bの側面2322(外周面)のなす曲率半径は、成形材103の内周のなす曲率半径よりも小さい。
The second current-carrying member 232 has a first gripping member 232 a and a second gripping member 232 b , and is located on the other end side of the molded material 103 .
The first gripping member 232a has a rectangular column shape and is located on the outer periphery of the molded material 103. The first gripping member 232a has a flat portion 2321 having a flat surface on the side that contacts the molded material 103. Note that as long as the surface on the side that contacts the molded material 103 is flat, the other portions of the first gripping member 232a may be cylindrical or have another polygonal shape.
The second gripping member 232b has a cylindrical shape and is located on the inner periphery side of the molded material 103. The radius of curvature of a side surface 2322 (outer periphery) of the second gripping member 232b is smaller than the radius of curvature of the inner periphery of the molded material 103.

第1通電部材231および第2通電部材232は、制御装置230の制御のもと、図示しない送電線を介して通電が制御される。また、第1把持部材232aおよび第2把持部材232bは、制御装置230のもと、移動可能である。 The first current-carrying member 231 and the second current-carrying member 232 are controlled by the control device 230 via a power transmission line (not shown). The first gripping member 232a and the second gripping member 232b are movable under the control of the control device 230.

以上説明した本変形例1では、実施の形態と同様に、熱処理(ここでは少なくとも通電焼戻し)を行う際に、二段階で電流値を変えて、成形材103の温度が加熱終了温度に近付くと温度上昇率を低下させる制御を行うことによって、コイルばねの品質のばらつきを低減することができる。 In the above-described first modified example, similar to the embodiment, when performing heat treatment (here, at least electric tempering), the current value is changed in two stages, and the temperature rise rate is controlled to decrease as the temperature of the formed material 103 approaches the heating end temperature, thereby reducing the variation in the quality of the coil spring.

また、本変形例1によれば、成形材103を把持する把持部材の一方(ここでは外周側)を平面、他方(ここでは内周側)を曲面とし、かつこの他方の曲面のなす曲率半径を、成形材103の内周のなす曲率半径よりも小さくすることによって、成形材103(コイルばね1)の形状によらず確実に把持し、通電させることができる。本変形例1によれば、複数種の形状のコイルばねを作製する際の生産性の低下を抑制することができる。 In addition, according to this modified example 1, one side (here, the outer periphery) of the gripping member that grips the formed material 103 is flat and the other side (here, the inner periphery) is curved, and the radius of curvature of the other curved surface is made smaller than the radius of curvature of the inner periphery of the formed material 103, so that the formed material 103 (coil spring 1) can be securely gripped and current can be passed through it regardless of its shape. According to this modified example 1, it is possible to suppress a decrease in productivity when manufacturing coil springs of multiple shapes.

(変形例2)
次に、本実施の形態の変形例2について、図6を参照して説明する。図6は、変形例2に係る通電加熱について説明するための図である。変形例2では、通電加熱を行う通電部材の構成が実施の形態に係る通電部材と異なる。変形例2では、通電部材の構成以外は実施の形態と同様であるため、説明を省略する。なお、図6において、実施の形態等と同一の構成要素には同一の符号が付してある。
(Variation 2)
Next, a second modified example of the present embodiment will be described with reference to Fig. 6. Fig. 6 is a diagram for explaining the electrical heating according to the second modified example. In the second modified example, the configuration of the current-carrying member that performs the electrical heating is different from that of the current-carrying member according to the embodiment. In the second modified example, the configuration of the current-carrying member is the same as in the embodiment, and therefore the description will be omitted. In Fig. 6, the same components as in the embodiment are denoted by the same reference numerals.

変形例2に係る第1通電部材231Aおよび第2通電部材232Aは、実施の形態と同様に、制御装置230の制御のもと、部材の移動(成形材103の把持)や通電が制御される。 In the first current-carrying member 231A and the second current-carrying member 232A in the second modified example, the movement of the members (grasping of the molding material 103) and the current flow are controlled under the control of the control device 230, as in the embodiment.

第1通電部材231Aは、第1把持部材231cと、第2把持部材231bとを有し、成形材103の一端側に位置する。
第1把持部材231cは、角柱状をなし、成形材103の外周側に位置する。第1把持部材231cは、成形材103と接触する側の面の一部が凹状に湾曲した湾曲面2313を有する。この湾曲面2313を形成する壁面がなす曲率半径は、成形材103の線材径よりも大きいことが好ましい。
また、第1把持部材231cは、制御装置230のもと、第2把持部材231bに対して近付く方向、または離れる方向に移動可能である。なお、第1把持部材231cは、成形材103と接する面の一部が凸状に湾曲した湾曲面をなしていれば、他の部分が、円柱状や、他の多角形状をなすものであってもよい。
The first current-carrying member 231A has a first gripping member 231c and a second gripping member 231b, and is located on one end side of the molding material 103.
The first gripping member 231c has a rectangular column shape and is located on the outer periphery of the formed material 103. The first gripping member 231c has a curved surface 2313 in which a part of the surface on the side that comes into contact with the formed material 103 is curved concavely. It is preferable that the radius of curvature of the wall surface that forms this curved surface 2313 is larger than the wire diameter of the formed material 103.
Moreover, the first gripping member 231c can be moved toward or away from the second gripping member 231b under the control of the control device 230. Note that as long as a portion of the surface of the first gripping member 231c that contacts the molding material 103 is a curved surface that is curved in a convex shape, the other portion may be cylindrical or have another polygonal shape.

第2通電部材232Aは、第1把持部材232cと、第2把持部材232bとを有し、成形材103の一端側に位置する。
第1把持部材232cは、角柱状をなし、成形材103の外周側に位置する。第1把持部材232cは、成形材103と接触する側の面の一部が凹状に湾曲した湾曲面2323を有する。この湾曲面2323を形成する壁面がなす曲率半径は、成形材103の線材径よりも大きいことが好ましい。
また、第1把持部材232cは、制御装置230のもと、第2把持部材232bに対して近付く方向、または離れる方向に移動可能である。なお、第2把持部材232cは、成形材103と接する面の一部が凸状に湾曲した湾曲面をなしていれば、他の部分が、円柱状や、他の多角形状をなすものであってもよい。
The second current-carrying member 232A has a first gripping member 232c and a second gripping member 232b, and is located on one end side of the molded material 103.
The first gripping member 232c has a rectangular column shape and is located on the outer periphery of the formed material 103. The first gripping member 232c has a curved surface 2323 in which a part of the surface on the side that comes into contact with the formed material 103 is curved concavely. It is preferable that the radius of curvature of the wall surface that forms this curved surface 2323 is larger than the wire diameter of the formed material 103.
Moreover, the first gripping member 232c can be moved toward or away from the second gripping member 232b under the control of the control device 230. Note that as long as a portion of the surface of the second gripping member 232c that comes into contact with the molding material 103 is a curved surface that is curved in a convex shape, the other portion may be cylindrical or have another polygonal shape.

第1通電部材231Aおよび第2通電部材232Aは、制御装置230の制御のもと、図示しない送電線を介して通電が制御される。 The first current-carrying member 231A and the second current-carrying member 232A are controlled by the control device 230 via a power transmission line (not shown).

制御装置230は、例えば、所定の位置に成形材103に配置し、第1通電部材231Aおよび第2通電部材232Aの各把持部材を移動させることによって成形材103の一端部および他端部をそれぞれ把持させる。その後、制御装置230は、送電線を介して第1通電部材231Aおよび第2通電部材232Aに電流を流す。第1通電部材231Aおよび第2通電部材232Aと、成形材103との間では、接触箇所を介して電流が流れる。この際に発生する熱によって、成形材103が加熱される。 The control device 230 is placed on the formed material 103 at a predetermined position, and grips one end and the other end of the formed material 103 by moving the gripping members of the first current-carrying member 231A and the second current-carrying member 232A, respectively. The control device 230 then passes a current through the first current-carrying member 231A and the second current-carrying member 232A via the power transmission line. A current flows between the first current-carrying member 231A and the second current-carrying member 232A and the formed material 103 through the contact points. The heat generated at this time heats the formed material 103.

以上説明した本変形例2では、実施の形態と同様に、熱処理(ここでは少なくとも通電焼戻し)を行う際に、二段階で電流値を変えて、成形材103の温度が加熱終了温度に近付くと温度上昇率を低下させる制御を行うことによって、コイルばねの品質のばらつきを低減することができる。 In the second modified example described above, as in the embodiment, when performing heat treatment (here, at least electric tempering), the current value is changed in two stages, and the temperature rise rate is controlled to decrease as the temperature of the formed material 103 approaches the heating end temperature, thereby reducing the variation in the quality of the coil spring.

また、本変形例2によれば、第1把持部材231c、232cにおいて、成形材103と接触する面に凹状の湾曲面2313、2323をそれぞれ形成し、各湾曲面において成形材103を把持するようにしたので、一層確実に成形材103を把持することができる。 In addition, according to this modified example 2, the first gripping members 231c, 232c are each formed with a concave curved surface 2313, 2323 on the surface that comes into contact with the molding material 103, and the molding material 103 is gripped by each curved surface, so that the molding material 103 can be gripped more reliably.

(変形例3)
次に、本実施の形態の変形例3について、図7を参照して説明する。図7は、変形例3に係る通電加熱について説明するための図である。変形例3では、通電加熱を行う通電部材の構成が実施の形態に係る通電部材と異なる。変形例3では、通電部材の構成以外は実施の形態と同様であるため、説明を省略する。なお、図7において、実施の形態等と同一の構成要素には同一の符号が付してある。
(Variation 3)
Next, a third modification of the present embodiment will be described with reference to Fig. 7. Fig. 7 is a diagram for explaining the electric heating according to the third modification. In the third modification, the configuration of the current-carrying member that performs the electric heating is different from that of the current-carrying member according to the embodiment. In the third modification, the configuration of the current-carrying member is the same as in the embodiment, and therefore the description will be omitted. In Fig. 7, the same components as in the embodiment are denoted by the same reference numerals.

変形例3に係る第1通電部材231Bおよび第2通電部材232Bは、実施の形態と同様に、制御装置230の制御のもと、部材の移動(成形材103の把持)や通電が制御される。 In the first current-carrying member 231B and the second current-carrying member 232B in the third modified example, the movement of the members (grasping of the molding material 103) and the flow of electricity are controlled under the control of the control device 230, as in the embodiment.

第1通電部材231Bは、第1把持部材231dと、第2把持部材231bとを有し、成形材103の一端側に位置する。
第1把持部材231dは、角柱状をなし、成形材103の外周側に位置する。第1把持部材231dは、成形材103と接触する側の面の一部がV字状の溝形状をなす溝部2314を有する。溝部2314の形成領域(形成幅および深さ)は、第1把持部材231dと第2把持部材231bとが接触しないような形成領域が設定される。なお、第1把持部材231dは、成形材103と接する面の一部がV字状の溝形状をなしていれば、他の部分が、円柱状や、他の多角形状をなすものであってもよい。
また、第1把持部材231dは、制御装置230のもと、第2把持部材231bに対して近付く方向、または離れる方向に移動可能である。
The first current-carrying member 231B has a first gripping member 231d and a second gripping member 231b, and is located on one end side of the molding material 103.
The first gripping member 231d has a rectangular column shape and is located on the outer periphery of the molding material 103. The first gripping member 231d has a groove portion 2314 in which a part of the surface that contacts the molding material 103 is a V-shaped groove. The formation area (forming width and depth) of the groove portion 2314 is set so that the first gripping member 231d and the second gripping member 231b do not contact each other. Note that the first gripping member 231d may have a cylindrical shape or another polygonal shape as long as a part of the surface that contacts the molding material 103 is a V-shaped groove.
Further, the first gripping member 231d is movable under the control of the control device 230 in a direction toward or away from the second gripping member 231b.

第2通電部材232Bは、第1把持部材232dと、第2把持部材232bとを有し、成形材103の一端側に位置する。
第1把持部材232dは、角柱状をなし、成形材103の外周側に位置する。第1把持部材232dは、成形材103と接触する側の面の一部がV字状の溝形状をなす溝部2324を有する。この溝部2324の形成領域(形成幅および深さ)は、第1把持部材232dと第2把持部材232bとが接触しないような形成領域が設定される。なお、第1把持部材232dは、成形材103と接する面が平面をなしていれば、他の部分が、円柱状や、他の多角形状をなすものであってもよい。
また、第1把持部材232dは、制御装置230のもと、第2把持部材232bに対して近付く方向、または離れる方向に移動可能である。
The second current-carrying member 232B has a first gripping member 232d and a second gripping member 232b, and is located on one end side of the molded material 103.
The first gripping member 232d has a rectangular column shape and is located on the outer periphery of the molded material 103. The first gripping member 232d has a groove portion 2324 in which a part of the surface on the side that contacts the molded material 103 is a V-shaped groove. The formation area (forming width and depth) of this groove portion 2324 is set so that the first gripping member 232d and the second gripping member 232b do not contact each other. Note that the first gripping member 232d may have other parts that are cylindrical or polygonal as long as the surface that contacts the molded material 103 is flat.
Further, the first gripping member 232d is movable under the control of the control device 230 in a direction toward or away from the second gripping member 232b.

第1通電部材231Bおよび第2通電部材232Bは、制御装置230の制御のもと、図示しない送電線を介して通電が制御される。 The current supply to the first current-carrying member 231B and the second current-carrying member 232B is controlled via a power transmission line (not shown) under the control of the control device 230.

制御装置230は、例えば、所定の位置に成形材103に配置し、第1通電部材231Bおよび第2通電部材232Bの各把持部材を移動させることによって成形材103の一端部および他端部をそれぞれ把持させる。その後、制御装置230は、送電線を介して第1通電部材231Bおよび第2通電部材232Bに電流を流す。第1通電部材231Bおよび第2通電部材232Bと、成形材103との間では、接触箇所を介して電流が流れる。この際に発生する熱によって、成形材103が加熱される。 The control device 230 is placed on the formed material 103 at a predetermined position, for example, and grips one end and the other end of the formed material 103 by moving the gripping members of the first current-carrying member 231B and the second current-carrying member 232B. The control device 230 then passes current through the first current-carrying member 231B and the second current-carrying member 232B via the power transmission line. Current flows through the contact points between the first current-carrying member 231B and the second current-carrying member 232B and the formed material 103. The heat generated at this time heats the formed material 103.

以上説明した本変形例3では、実施の形態と同様に、熱処理(ここでは少なくとも通電焼戻し)を行う際に、二段階で電流値を変えて、成形材103の温度が加熱終了温度に近付くと温度上昇率を低下させる制御を行うことによって、コイルばねの品質のばらつきを低減することができる。 In the third modified example described above, as in the embodiment, when performing heat treatment (here, at least electric tempering), the current value is changed in two stages, and the temperature rise rate is controlled to decrease as the temperature of the formed material 103 approaches the heating end temperature, thereby reducing the variation in the quality of the coil spring.

また、本変形例3によれば、第1把持部材231d、232dにおいて、成形材103と接触する面に溝部2314、2324をそれぞれ形成し、各溝部において成形材103を把持するようにしたので、一層確実に成形材103を把持することができる。 In addition, according to this modified example 3, grooves 2314, 2324 are formed on the surfaces of the first gripping members 231d, 232d that come into contact with the molding material 103, respectively, and the molding material 103 is gripped in each groove, so that the molding material 103 can be gripped more reliably.

ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態によってのみ限定されるべきものではない。 So far, we have explained the form for implementing the present invention, but the present invention should not be limited to only the above-mentioned embodiment.

このように、本発明はここでは記載していない様々な実施の形態等を含みうるものであり、特許請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。 As such, the present invention may include various embodiments not described here, and various design changes may be made without departing from the technical ideas specified in the claims.

以上説明したように、本発明に係るコイルばねの製造方法は、コイルばねの品質のばらつきを低減するのに好適である。 As described above, the manufacturing method of the coil spring according to the present invention is suitable for reducing the variation in the quality of the coil spring.

1 コイルばね
100 母材
101 伸線材
102、103 成形材
200 巻線機
210、230 制御装置
211、231、231A、231B 第1通電部材
212、232、232A、232B 第2通電部材
221 槽
222 水溶性焼入れ剤
231a、231c、231d、232a、232c、232d 第1把持部材
231b、232b 第2把持部材
2311、2321 平面部
2312、2322 側面
2313、2323 湾曲面
2314、2324 溝部
REFERENCE SIGNS LIST 1 Coil spring 100 Base material 101 Drawn wire material 102, 103 Formed material 200 Winding machine 210, 230 Control device 211, 231, 231A, 231B First current-carrying member 212, 232, 232A, 232B Second current-carrying member 221 Tank 222 Water-soluble quenching agent 231a, 231c, 231d, 232a, 232c, 232d First gripping member 231b, 232b Second gripping member 2311, 2321 Planar portion 2312, 2322 Side surface 2313, 2323 Curved surface 2314, 2324 Groove portion

Claims (4)

線材からなる母材を処理してなるコイルばねの製造方法であって、
前記母材に対して冷間成形を行って、螺旋状をなす成形材を作製する冷間成形ステップと、
前記成形材に対して焼入れを施す焼入れステップと、
前記焼入れ後の成形材に対して通電加熱によって焼戻しを施す通電焼戻しステップと、
を含み、
前記通電焼戻しステップは、
前記成形材への加熱開始から所定時間経過時までの第1通電期間と、前記所定時間経過時から加熱終了までの第2通電期間が設定され、
前記第2通電期間における前記成形材の温度の上昇率は、前記第1通電期間における前記成形材の温度の上昇率よりも低い、
ことを特徴とするコイルばねの製造方法。
A method for manufacturing a coil spring by treating a base material made of a wire, comprising the steps of:
a cold forming step of cold forming the base material to produce a spirally formed material;
a quenching step of quenching the formed material;
a current tempering step of tempering the quenched formed material by current heating;
Including,
The electric tempering step includes:
A first current application period from the start of heating the molding material to the lapse of a predetermined time, and a second current application period from the lapse of the predetermined time to the end of heating are set,
A rate of increase in temperature of the molding material during the second current supply period is lower than a rate of increase in temperature of the molding material during the first current supply period.
A method for manufacturing a coil spring comprising the steps of:
前記通電焼戻しステップは、前記第2通電期間の電流値を、前記第1通電期間の電流値よりも小さくする、
ことを特徴とする請求項1に記載のコイルばねの製造方法。
In the current tempering step, a current value in the second current supply period is set to be smaller than a current value in the first current supply period.
2. The method for manufacturing a coil spring according to claim 1.
前記通電焼戻しステップは、
前記焼入れ後の成形材の一端を把持する第1通電部材と、前記焼入れ後の成形材の他端を把持する第2通電部材とによって前記成形材の両端が把持された状態で通電され、
前記第1および第2通電部材は、前記成形材の外周側に位置する第1把持部材と、前記成形材の内周側に位置し、前記第1把持部材とによって前記成形材を挟み込む第2把持部材であって、前記成形材と接触する面の曲率半径が、前記成形材の内周のなす曲率半径よりも小さく、前記第1把持部材とによって前記成形材を挟み込む第2把持部材と、によって前記成形材を把持する、
ことを特徴とする請求項1に記載のコイルばねの製造方法。
The electric tempering step includes:
a first current-carrying member that holds one end of the formed material after quenching and a second current-carrying member that holds the other end of the formed material after quenching, and a current is applied to the formed material while both ends of the formed material are held by the first current-carrying member that holds one end of the formed material after quenching,
The first and second current-carrying members are a first gripping member located on the outer periphery of the formed material, and a second gripping member located on the inner periphery of the formed material and sandwiching the formed material between the first gripping member, and the radius of curvature of the surface that contacts the formed material is smaller than the radius of curvature of the inner periphery of the formed material, and the second gripping member that sandwiches the formed material between the first gripping member and the formed material is gripped by the first gripping member.
The method for manufacturing a coil spring according to claim 1 .
前記焼入れステップの前に行われ、前記冷間成形後の成形材に対して通電加熱を行う通電加熱ステップ、
をさらに含むことを特徴とする請求項1に記載のコイルばねの製造方法。
an electric current heating step, which is performed before the quenching step, for electrically heating the cold-formed material;
The method for manufacturing a coil spring according to claim 1, further comprising:
JP2022161108A 2022-10-05 2022-10-05 Manufacturing method of coil springs Pending JP2024054700A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022161108A JP2024054700A (en) 2022-10-05 2022-10-05 Manufacturing method of coil springs
PCT/JP2022/043557 WO2024075314A1 (en) 2022-10-05 2022-11-25 Coil spring manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022161108A JP2024054700A (en) 2022-10-05 2022-10-05 Manufacturing method of coil springs

Publications (1)

Publication Number Publication Date
JP2024054700A true JP2024054700A (en) 2024-04-17

Family

ID=90707831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022161108A Pending JP2024054700A (en) 2022-10-05 2022-10-05 Manufacturing method of coil springs

Country Status (1)

Country Link
JP (1) JP2024054700A (en)

Similar Documents

Publication Publication Date Title
WO2013099821A1 (en) Spring production method and spring
US20130092675A1 (en) Method and apparatus for electrically heating spring
JP4890416B2 (en) Press working apparatus and press working method in die quench method
JP6194526B2 (en) Method and apparatus for heating plate workpiece and hot press molding method
KR101542969B1 (en) Blank forming device using electric direct heating method and the manufacturing method using this
CN103025897A (en) Method for manufacturing spring and device for heating by passage of electric current
US10260118B2 (en) Post-treating a hardened metal formed part
US6235131B1 (en) System for heat treating coiled springs
JP2024054700A (en) Manufacturing method of coil springs
WO2024075314A1 (en) Coil spring manufacturing method
JP2024054699A (en) Manufacturing method of coil springs
US20210379648A1 (en) Apparatus and method for manufacturing rack bar
JPH08269654A (en) Method for working shape memory alloy member
JPH0768388A (en) After treating method for spot welding
JP5763036B2 (en) Manufacturing method of steel product having fine ferrite grain boundary precipitation type martensite structure
JP2024054698A (en) Manufacturing method of coil spring
JPS6359775B2 (en)
JP6175101B2 (en) Steel products with fine ferrite grain boundary precipitation type martensite structure
JP5108282B2 (en) Metal wire heating device
US20140326207A1 (en) Glow plug and fabrication method for same
JP2008133522A (en) Metal wire heater
JPWO2012147439A1 (en) Manufacturing method of steel product having fine ferrite grain boundary precipitation type martensite structure
JPS57192221A (en) Precise heat-treatment of thin hollow cylindrical body, apparatus therefor, and precisely heat-treated thin hollow cylindrical body obtained thereby
JPS6340304A (en) Manufacture of guide tube of solenoid plunger
RU2071991C1 (en) Method of controlling temperature along strip width at heat treatment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221026