JP2024052261A - Method for processing fiber-reinforced resin member and composite member - Google Patents

Method for processing fiber-reinforced resin member and composite member Download PDF

Info

Publication number
JP2024052261A
JP2024052261A JP2022158853A JP2022158853A JP2024052261A JP 2024052261 A JP2024052261 A JP 2024052261A JP 2022158853 A JP2022158853 A JP 2022158853A JP 2022158853 A JP2022158853 A JP 2022158853A JP 2024052261 A JP2024052261 A JP 2024052261A
Authority
JP
Japan
Prior art keywords
fiber
reinforced resin
resin member
bending
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022158853A
Other languages
Japanese (ja)
Inventor
晶拡 西野
和也 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2022158853A priority Critical patent/JP2024052261A/en
Publication of JP2024052261A publication Critical patent/JP2024052261A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

【課題】繊維強化樹脂部材を曲げ加工する際に繊維強化樹脂部材の座屈を抑制することができる繊維強化樹脂部材の加工方法及び複合部材を提供する。【解決手段】熱可塑性樹脂及び強化繊維を含む繊維強化樹脂部材を曲げ加工する方法であって、金属層16と繊維強化樹脂部材12に対して剥離可能な粘着層14との積層構造を有する座屈抑制部材18が粘着層により繊維強化樹脂部材に貼り付けられた複合部材10を得る工程と、座屈抑制部材の少なくとも一部が繊維強化樹脂部材が曲げ加工される部分の圧縮側で曲がるように、加熱された複合部材を曲げ加工する工程と、曲げ加工された複合部材から座屈抑制部材を除去する工程と、を含む繊維強化樹脂部材の加工方法及びそれに用いる複合部材。【選択図】図2[Problem] To provide a method for processing a fiber-reinforced resin member and a composite member capable of suppressing buckling of the fiber-reinforced resin member when the fiber-reinforced resin member is bent. [Solution] A method for bending a fiber-reinforced resin member containing a thermoplastic resin and reinforcing fibers, the method includes the steps of obtaining a composite member 10 in which a buckling suppression member 18 having a laminated structure of a metal layer 16 and an adhesive layer 14 that is peelable from a fiber-reinforced resin member 12 is attached to the fiber-reinforced resin member by the adhesive layer, bending the heated composite member such that at least a portion of the buckling suppression member is bent on the compression side of the portion of the fiber-reinforced resin member that is bent, and removing the buckling suppression member from the bent composite member, and a composite member used therein. [Selected Figure] Figure 2

Description

本開示は、繊維強化樹脂部材の加工方法及び複合部材に関する。 This disclosure relates to a method for processing fiber-reinforced resin components and composite components.

ガラス繊維や炭素繊維などの強化繊維とマトリックス樹脂からなる繊維強化樹脂(FRP)が、金属部材の代替材料として期待されている。金属部材はロールフォーミングなどの2次加工による任意の賦形が可能であり、FRPに対しても部材の生産性の観点などから2次加工性についての要求は今後高まっていくものと予想される。 Fiber-reinforced plastic (FRP), which is made of reinforcing fibers such as glass fiber or carbon fiber and a matrix resin, is expected to be an alternative material to metal components. Metal components can be shaped as desired through secondary processing such as roll forming, and it is expected that the demand for secondary processability of FRP will also increase in the future from the perspective of component productivity.

繊維強化樹脂を用いた様々な材料や加工方法が提案されている。
例えば、特許文献1では、金属材シート層と樹脂一体化繊維シート層とが一体化された積層板であって、前記樹脂一体化繊維シート層は、炭素繊維と熱可塑性のマトリックス樹脂とを含み、前記積層板は、前記金属材シート層と前記樹脂一体化繊維シート層の間に配置された熱可塑性樹脂シート層を含み、前記熱可塑性樹脂シート層は応力緩和層である、金属-繊維強化樹脂積層板が開示されている。特許文献1では、応力緩和層導入により、反りの低減や金属層の剥離が抑制されることが記載されている。
Various materials and processing methods using fiber-reinforced resins have been proposed.
For example, Patent Document 1 discloses a metal-fiber reinforced resin laminate in which a metal sheet layer and a resin-integrated fiber sheet layer are integrated, the resin-integrated fiber sheet layer includes carbon fiber and a thermoplastic matrix resin, the laminate includes a thermoplastic resin sheet layer disposed between the metal sheet layer and the resin-integrated fiber sheet layer, and the thermoplastic resin sheet layer is a stress relaxation layer. Patent Document 1 describes that the introduction of the stress relaxation layer reduces warping and suppresses peeling of the metal layer.

特許文献2では、強化繊維の各構成繊維糸を糸長方向に揃えて棒状に束ねた芯材が、熱可塑性樹脂又は現場重合型熱可塑エポキシ樹脂のマトリックス樹脂に埋設されて一体化している複合強化棒と、該複合強化棒よりも短尺の筒状体で、且つその筒内径が前記複合強化棒の棒径よりも大にして、加熱により長さ方向よりも径方向に大きく収縮する熱収縮チューブと、を具備し、該熱収縮チューブが、前記複合強化棒に遊嵌されて、該複合強化棒の曲げ加工部位に配設されるようにした熱収縮チューブ付き複合強化棒が開示されている。特許文献2では、熱収縮チューブを加工位置に配置することで、繊維強化樹脂の曲げ加工時に強化繊維がバラけて剥離状態になることや、強化繊維が剥離して繊維強化複合材にシワや変形が発生することを防止することが記載されている。 Patent Document 2 discloses a composite reinforcing rod with a heat-shrinkable tube, which includes a core material in which each constituent fiber thread of the reinforcing fiber is aligned in the thread length direction and bundled into a rod shape, and is embedded and integrated in a matrix resin of a thermoplastic resin or an in-situ polymerized thermoplastic epoxy resin, and a heat-shrinkable tube that is a cylindrical body shorter than the composite reinforcing rod and has an inner diameter larger than the rod diameter of the composite reinforcing rod, and shrinks more in the radial direction than in the longitudinal direction when heated, and the heat-shrinkable tube is loosely fitted into the composite reinforcing rod and disposed at the bending processing portion of the composite reinforcing rod. Patent Document 2 describes that by arranging the heat-shrinkable tube at the processing position, it is possible to prevent the reinforcing fibers from coming apart and becoming peeled off during bending of the fiber-reinforced resin, and to prevent the reinforcing fibers from peeling off and causing wrinkles and deformation in the fiber-reinforced composite material.

特許文献3では、熱可塑性樹脂を含有するマトリクス樹脂及び強化繊維材料を有する繊維強化樹脂材料が少なくとも一方の面に配置された金属板を、前記繊維強化樹脂材料単独では形状を保持できない所定の温度に加熱した後、所定の形状を有する金型を介して所定の圧力を印加して前記金型の前記所定の形状に倣った形状に一体加工する一体加工工程と、一体加工された前記金属板及び前記繊維強化樹脂材料を、前記繊維強化樹脂材料の形状が定まりきっていない所定の温度で前記金型から離型する離型工程と、を含み、前記熱可塑性樹脂は、ガラス転移温度Tgを有する、ポリカーボネートを除く非晶性樹脂であり、前記一体加工工程における加熱温度は、非晶性の前記熱可塑性樹脂の分解温度よりも低温、かつ、(Tg+50)~(Tg+200)℃の温度範囲の温度であり、前記離型工程における離型温度は、非晶性の前記熱可塑性樹脂の分解温度よりも低温、かつ、(Tg+20)~(Tg+200)℃の温度範囲の温度である、金属-熱可塑性繊維強化樹脂材料複合部材の加工方法が開示されている。 Patent Document 3 discloses a method for processing a metal-thermoplastic fiber-reinforced resin material composite member, which includes an integral processing step in which a metal plate having a matrix resin containing a thermoplastic resin and a fiber-reinforced resin material having a reinforcing fiber material arranged on at least one surface is heated to a predetermined temperature at which the fiber-reinforced resin material alone cannot maintain its shape, and then a predetermined pressure is applied through a mold having a predetermined shape to integrally process the metal plate and the fiber-reinforced resin material into a shape that follows the predetermined shape of the mold, and a demolding step in which the integrally processed metal plate and the fiber-reinforced resin material are released from the mold at a predetermined temperature at which the shape of the fiber-reinforced resin material is not yet fully determined, the thermoplastic resin being an amorphous resin other than polycarbonate that has a glass transition temperature Tg, the heating temperature in the integral processing step being lower than the decomposition temperature of the amorphous thermoplastic resin and in a temperature range of (Tg+50) to (Tg+200)°C, and the demolding temperature in the demolding step being lower than the decomposition temperature of the amorphous thermoplastic resin and in a temperature range of (Tg+20) to (Tg+200)°C.

特開2022-78876号公報JP 2022-78876 A 特開2020-70506号公報JP 2020-70506 A 特開2022-33907号公報JP 2022-33907 A

熱可塑性樹脂をマトリックスとする繊維強化樹脂部材を曲げ加工する場合、加工位置の厚み方向の変位量に差を生じるために強化繊維が座屈して成形体の強度が低下する。図11は、繊維強化樹脂部材を曲げ加工した部分の座屈の一例を示している。図11に示されるように、繊維強化樹脂部材22の曲げ加工時に座屈すると、曲げ加工された部分の圧縮側(曲げ加工時に圧縮応力が加わる側)の一部が盛り上がった形状24に変形する。 When bending a fiber-reinforced resin member with a thermoplastic resin matrix, the reinforcing fibers buckle due to differences in the amount of displacement in the thickness direction at the processing position, reducing the strength of the molded product. Figure 11 shows an example of buckling in a bent portion of a fiber-reinforced resin member. As shown in Figure 11, when a fiber-reinforced resin member 22 buckles during bending, a part of the compression side of the bent portion (the side to which compressive stress is applied during bending) is deformed into a raised shape 24.

特許文献1に開示されている技術は、積層板を曲げ加工することや、金属層を取り除いて使用することは想定されていない。
特許文献2に開示されている技術は、熱収縮チューブは柔軟性を持つために加工による変形量が大きいと座屈を抑制できない。
特許文献3に開示されている技術は、金属板と繊維強化樹脂材料を直接接合して複合部材の一体化と賦形を一括で行い、複合部材のリサイクル時の分別を想定し、マトリックス樹脂を加水分解させることによって金属部材を剥離することが記載されているが、金属板を取り除いて使用することは想定されていない。
The technique disclosed in Patent Document 1 does not assume bending of the laminated plate or use with the metal layer removed.
The technique disclosed in Patent Document 2 is unable to prevent buckling of the heat shrinkable tube if the tube is significantly deformed by processing since the heat shrinkable tube has flexibility.
The technology disclosed in Patent Document 3 describes a method of directly bonding a metal plate and a fiber-reinforced resin material to integrate and shape the composite component in a single step, and peeling off the metal component by hydrolyzing the matrix resin, assuming separation during recycling of the composite component. However, it is not assumed that the metal plate will be removed and the composite component will be used again.

本開示は、繊維強化樹脂部材を曲げ加工する際に繊維強化樹脂部材の座屈を抑制することができる繊維強化樹脂部材の加工方法及びそれに用いる複合部材を提供することを課題とする。 The objective of the present disclosure is to provide a method for processing a fiber-reinforced resin member that can suppress buckling of the fiber-reinforced resin member when bending the fiber-reinforced resin member, and a composite member used therein.

上記課題を解決するための手段には、以下の態様が含まれる。
<1> 熱可塑性樹脂及び強化繊維を含む繊維強化樹脂部材を曲げ加工する方法であって、
金属層と前記繊維強化樹脂部材に対して剥離可能な粘着層との積層構造を有する座屈抑制部材が前記粘着層により前記繊維強化樹脂部材に貼り付けられた複合部材を得る工程と、
前記座屈抑制部材の少なくとも一部が前記繊維強化樹脂部材が曲げ加工される部分の圧縮側で曲がるように、加熱された前記複合部材を曲げ加工する工程と、
前記曲げ加工された前記複合部材から前記座屈抑制部材を除去する工程と、
を含む繊維強化樹脂部材の加工方法。
<2> 前記粘着層は、厚みが2mm以下、前記金属層は、厚みが0.05mm以上である<1>に記載の繊維強化樹脂部材の加工方法。
<3> 前記複合部材を曲げ加工する工程において、前記複合部材を前記熱可塑性樹脂のガラス転移温度以上の温度に加熱された状態で5.0mm以上の曲率半径で曲げ加工する<1>又は<2>に記載の繊維強化樹脂部材の加工方法。
<4> 前記複合部材における前記繊維強化樹脂部材と前記座屈抑制部材との接着強度が、4N/mm以下である<1>~<3>のいずれか1つに記載の繊維強化樹脂部材の加工方法。
<5> 前記金属層が、銅、アルミニウム、及びステンレスの少なくとも1種を含む金属層である<1>~<4>のいずれか1つに記載の繊維強化樹脂部材の加工方法。
<6> 前記熱可塑性樹脂は、ガラス転移温度が60℃以上の非晶質熱可塑性樹脂である<1>~<5>のいずれか1つに記載の繊維強化樹脂部材の加工方法。
<7> 熱可塑性樹脂及び強化繊維を含む繊維強化樹脂部材と、
金属層と前記繊維強化樹脂部材に対して剥離可能な粘着層との積層構造を有し、前記粘着層により前記繊維強化樹脂部材に貼り付けられた座屈抑制部材と、
を含み、<1>~<6>のいずれか1つに記載の繊維強化樹脂部材の加工方法に用いる複合部材。
Means for solving the above problems include the following aspects.
<1> A method for bending a fiber-reinforced resin member containing a thermoplastic resin and reinforcing fibers,
obtaining a composite member in which a buckling suppression member having a laminated structure of a metal layer and an adhesive layer peelable from the fiber reinforced resin member is attached to the fiber reinforced resin member by the adhesive layer;
Bending the heated composite member such that at least a portion of the buckling suppression member is bent on the compression side of the portion of the fiber reinforced resin member that is bent;
removing the buckling restraint member from the bent composite member;
A method for processing a fiber-reinforced resin member comprising the steps of:
<2> The method for processing a fiber-reinforced resin member according to <1>, wherein the adhesive layer has a thickness of 2 mm or less, and the metal layer has a thickness of 0.05 mm or more.
<3> In the step of bending the composite member, the composite member is heated to a temperature equal to or higher than the glass transition temperature of the thermoplastic resin and bent with a curvature radius of 5.0 mm or more. The method for processing a fiber-reinforced resin member according to <1> or <2>.
<4> The method for processing a fiber-reinforced resin member according to any one of <1> to <3>, wherein an adhesive strength between the fiber-reinforced resin member and the buckling suppression member in the composite member is 4 N/mm or less.
<5> The method for processing a fiber-reinforced resin member according to any one of <1> to <4>, wherein the metal layer is a metal layer containing at least one of copper, aluminum, and stainless steel.
<6> The method for processing a fiber-reinforced resin member according to any one of <1> to <5>, wherein the thermoplastic resin is an amorphous thermoplastic resin having a glass transition temperature of 60° C. or higher.
<7> A fiber-reinforced resin member containing a thermoplastic resin and a reinforcing fiber,
A buckling suppression member having a laminated structure of a metal layer and an adhesive layer that is peelable from the fiber reinforced resin member, and attached to the fiber reinforced resin member by the adhesive layer;
A composite member used in the method for processing a fiber-reinforced resin member according to any one of <1> to <6>.

本開示によれば、繊維強化樹脂部材を曲げ加工する際に繊維強化樹脂部材の座屈を抑制することができる繊維強化樹脂部材の加工方法及びそれに用いる複合部材が提供される。 The present disclosure provides a method for processing a fiber-reinforced resin member that can suppress buckling of the fiber-reinforced resin member when bending the fiber-reinforced resin member, and a composite member used therein.

本開示における複合部材の層構成の一例を示す概略部分断面図である。FIG. 2 is a schematic partial cross-sectional view showing an example of a layer structure of a composite member according to the present disclosure. 本開示に係る繊維強化樹脂部材の加工方法の一例を示す概略図である。1 is a schematic diagram showing an example of a method for processing a fiber-reinforced resin member according to the present disclosure. FIG. 曲げ加工後の繊維強化樹脂部材の反りを示す概略図である。4 is a schematic diagram showing warpage of a fiber reinforced resin member after bending. FIG. 曲げ加工後の繊維強化樹脂部材の端部における層間ずれを示す概略図である。4 is a schematic diagram showing interlayer displacement at an end portion of a fiber-reinforced resin member after bending. FIG. 繊維強化樹脂部材と座屈抑制部材との接着強度の測定方法を示す概略図である。5 is a schematic diagram showing a method for measuring the adhesive strength between a fiber-reinforced resin member and a buckling suppression member. FIG. 金型を用いた曲げ加工方法の一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of a bending method using a die. 実施例において手曲げ加工で用いた複合部材の構成を示す概略図である。FIG. 2 is a schematic diagram showing the configuration of a composite member used in manual bending in the examples. 曲げ角度を示す概略図である。FIG. 2 is a schematic diagram showing a bending angle. 条件を変更して手曲げ加工を行った後のCFRPの曲げ強度及び曲げ弾性率を示す図である。FIG. 13 is a diagram showing the bending strength and bending modulus of CFRP after manual bending under different conditions. 実施例においてV字曲げ加工で用いた金型の要部を示す概略図である。FIG. 2 is a schematic diagram showing a main part of a die used in V-bending in the examples. 繊維強化樹脂部材を曲げ加工した場合に圧縮側に生じる座屈の一例を示す概略図である。4 is a schematic diagram showing an example of buckling that occurs on the compression side when a fiber-reinforced resin member is bent; FIG.

以下、本開示の一例である実施形態について説明する。
なお、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書中に段階的に記載されている数値範囲において、ある段階的な数値範囲の上限値は、他の段階的な記載の数値範囲の上限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。また、ある段階的な数値範囲の下限値は、他の段階的な記載の数値範囲の下限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。
また、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
Hereinafter, an embodiment that is an example of the present disclosure will be described.
In this specification, a numerical range expressed using "to" means a range that includes the numerical values before and after "to" as the lower and upper limits.
In the present specification, the upper limit of a certain numerical range may be replaced by the upper limit of another numerical range, or may be replaced by a value shown in an example. The lower limit of a certain numerical range may be replaced by the lower limit of another numerical range, or may be replaced by a value shown in an example.
In addition, the term "process" includes not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved.

本開示に係る繊維強化樹脂部材の加工方法は、熱可塑性樹脂及び強化繊維を含む繊維強化樹脂部材を曲げ加工する方法であって、金属層と繊維強化樹脂部材に対して剥離可能な粘着層とが積層された構造を有する座屈抑制部材が、粘着層により繊維強化樹脂部材に貼り付けられた複合部材を得る工程(貼り付け工程)と、座屈抑制部材の少なくとも一部が、繊維強化樹脂部材が曲げ加工される部分の圧縮側で曲がるように、加熱された複合部材を曲げ加工する工程(曲げ加工工程)と、曲げ加工された複合部材から座屈抑制部材を除去する工程(除去工程)とを含む。 The processing method for a fiber-reinforced resin member according to the present disclosure is a method for bending a fiber-reinforced resin member containing a thermoplastic resin and reinforcing fibers, and includes a step (attaching step) of obtaining a composite member in which a buckling suppression member having a structure in which a metal layer and an adhesive layer that can be peeled off from the fiber-reinforced resin member are laminated to the fiber-reinforced resin member by the adhesive layer, a step (bending step) of bending the heated composite member so that at least a portion of the buckling suppression member bends on the compression side of the portion of the fiber-reinforced resin member that is bent, and a step (removal step) of removing the buckling suppression member from the bent composite member.

図1は、本開示に係る繊維強化樹脂部材の加工方法で用いる複合部材の層構成の一例を概略的に示している。図2は、図1に示す層構成を有する複合部材を用いた本開示に係る繊維強化樹脂部材の加工方法の一例を概略的に示している。
図1に示すように、複合部材10は、板状の繊維強化樹脂部材12の両面にそれぞれ金属層16と粘着層14とが積層されてなる座屈抑制部材18A,18Bが粘着層14によって貼り付けられている。
例えば、図2(A)に示すように、複合部材10の中央部分を丸棒の治具30に押し当てた状態とし、複合部材10の両端付近を反対側から力Fを加えて曲げ加工を行う。これにより、繊維強化樹脂部材12の座屈の発生を抑えて曲げ加工することができる。曲げ加工後は、図2(B)に示すように、繊維強化樹脂部材12から粘着層14を剥離して各座屈抑制部材18A,18Bを除去する。これにより、曲げ加工部分における座屈が抑制された繊維強化樹脂部材22を得ることができる。
以下、各工程について具体的に説明する。なお、以下の説明において符号を省略する場合がある。また、座屈抑制部材18A,18Bを座屈抑制部材18と記す場合がある。
Fig. 1 is a schematic diagram showing an example of a layer structure of a composite member used in a processing method for a fiber-reinforced resin member according to the present disclosure. Fig. 2 is a schematic diagram showing an example of a processing method for a fiber-reinforced resin member according to the present disclosure using a composite member having the layer structure shown in Fig. 1.
As shown in FIG. 1, the composite member 10 includes a plate-shaped fiber-reinforced resin member 12 and buckling suppression members 18A, 18B, each of which is formed by laminating a metal layer 16 and an adhesive layer 14, attached to both sides of the plate-shaped fiber-reinforced resin member 12 by the adhesive layer 14.
For example, as shown in Fig. 2(A), the central portion of the composite member 10 is pressed against a round bar jig 30, and a force F is applied from the opposite side to the vicinity of both ends of the composite member 10 to perform bending. This makes it possible to perform bending while suppressing the occurrence of buckling of the fiber reinforced resin member 12. After bending, as shown in Fig. 2(B), the adhesive layer 14 is peeled off from the fiber reinforced resin member 12 to remove the buckling suppression members 18A, 18B. This makes it possible to obtain a fiber reinforced resin member 22 in which buckling is suppressed in the bent portions.
Each step will be described in detail below. In the following description, reference numerals may be omitted. The buckling suppression members 18A and 18B may be referred to as the buckling suppression member 18.

[貼り付け工程]
まず、金属層16と繊維強化樹脂部材に対して剥離可能な粘着層14とが積層された構造を有する座屈抑制部材18が、粘着層14により繊維強化樹脂部材12に貼り付けられた複合部材10を得る。
[Attachment process]
First, a composite member 10 is obtained in which a buckling suppression member 18 having a structure in which a metal layer 16 and an adhesive layer 14 that can be peeled off from a fiber-reinforced resin member are laminated together and attached to a fiber-reinforced resin member 12 by the adhesive layer 14.

図1に示す複合部材10は、板状の繊維強化樹脂部材12の両面に座屈抑制部材18が貼り付けられているが、座屈抑制部材は繊維強化樹脂部材12の曲げ加工される部分の圧縮側、すなわち、図2において繊維強化樹脂部材12の治具30と接する側にのみ座屈抑制部材18Aが貼り付けられた構造でもよい。
以下、繊維強化樹脂部材及び座屈抑制部材についてそれぞれ説明する。
The composite member 10 shown in Figure 1 has buckling suppression members 18 attached to both sides of a plate-shaped fiber-reinforced resin member 12, but the buckling suppression member may also be a structure in which buckling suppression member 18A is attached only to the compression side of the portion of the fiber-reinforced resin member 12 that is to be bent, i.e., the side of the fiber-reinforced resin member 12 that comes into contact with the jig 30 in Figure 2.
The fiber reinforced resin member and the buckling suppression member will be described below.

<繊維強化樹脂部材>
繊維強化樹脂部材12は、マトリックス樹脂である熱可塑性樹脂と強化繊維を含む繊維強化熱可塑性樹脂で構成されている。
<Fiber reinforced resin member>
The fiber reinforced resin member 12 is composed of a thermoplastic resin that is a matrix resin and a fiber reinforced thermoplastic resin that contains reinforcing fibers.

(熱可塑性樹脂)
繊維強化樹脂部材のマトリックス樹脂である熱可塑性樹脂は特に限定されず、例えば、フェノキシ樹脂、アクリル系樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ABS樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン(ポリエチレン、ポリプロピレン他)などが挙げられる。
(Thermoplastic resin)
The thermoplastic resin that is the matrix resin of the fiber reinforced resin member is not particularly limited, and examples thereof include phenoxy resin, acrylic resin, polyamide resin, polyvinyl chloride resin, polystyrene resin, ABS resin, polyacetal resin, polycarbonate resin, polyester resin, polyurethane resin, polyolefin (polyethylene, polypropylene, etc.), etc.

繊維強化樹脂部材に含まれる熱可塑性樹脂は、1種単独でもよいし、2種以上が混合されたものでもよい。
熱可塑性樹脂は、強化繊維と一体化させて繊維強化樹脂部材を形成する観点、繊維強化樹脂部材を曲げ加工し易くする観点などから、ガラス転移温度(Tg)が60℃以上の非晶質熱可塑性樹脂であることが好ましく、Tgが90~250℃の非晶質熱可塑性樹脂であることがより好ましく、Tgが90~160℃の非晶質熱可塑性樹脂が繊維強化樹脂部材に含まれる熱可塑性樹脂の50質量%以上であることがさらに好ましい。
結晶質熱可塑性樹脂もTg(例えばナイロン6であればTg:60℃)を有するが、融点に到達するまでは結晶性が維持されるために流動性が低く、曲げなどの2次加工ができない。また、融点を超えると流動性が非常に大きくなるために2次加工性は上がるものの、樹脂の流れ出しや成形加工の精度を出すことが難しい。一方、非晶質熱可塑性樹脂はTgが低いと低温で繊維強化樹脂部材を加工しやすくはなるが、その一方で加工した部材が比較的低温で変形しやすく、使用できる箇所が限られてしまう。かかる観点から、好ましくはTgが60℃以上、特に90~250℃の範囲内である非晶質熱可塑性樹脂が好ましい。なお、本開示における熱可塑性樹脂のTgは、示差走査熱量測定装置を用い、10℃/分の昇温条件で、20~280℃の範囲内の温度で測定し、セカンドスキャンのピーク値より計算された数値である。
The thermoplastic resin contained in the fiber reinforced resin member may be one type alone or a mixture of two or more types.
From the viewpoint of forming a fiber-reinforced resin member by integrating it with the reinforcing fibers and from the viewpoint of making it easier to bend the fiber-reinforced resin member, the thermoplastic resin is preferably an amorphous thermoplastic resin having a glass transition temperature (Tg) of 60 ° C. or more, more preferably an amorphous thermoplastic resin having a Tg of 90 to 250 ° C., and even more preferably an amorphous thermoplastic resin having a Tg of 90 to 160 ° C. that accounts for 50 mass% or more of the thermoplastic resin contained in the fiber-reinforced resin member.
Crystalline thermoplastic resins also have a Tg (for example, Tg of nylon 6 is 60°C), but since the crystallinity is maintained until the melting point is reached, the fluidity is low and secondary processing such as bending cannot be performed. In addition, when the melting point is exceeded, the fluidity becomes very large, so the secondary processability increases, but it is difficult to achieve the accuracy of the resin flow and molding. On the other hand, if the Tg of an amorphous thermoplastic resin is low, it becomes easier to process fiber-reinforced resin members at low temperatures, but on the other hand, the processed members are easily deformed at relatively low temperatures, and the places where they can be used are limited. From this perspective, amorphous thermoplastic resins having a Tg of 60°C or more, particularly in the range of 90 to 250°C, are preferable. The Tg of the thermoplastic resin in this disclosure is a value calculated from the peak value of the second scan measured using a differential scanning calorimeter at a temperature range of 20 to 280°C under a heating condition of 10°C/min.

繊維強化樹脂部材に含まれる熱可塑性樹脂は、強度、強化繊維との親和性、金属層の接着性などの観点から、フェノキシ樹脂が好ましい。
ここで「フェノキシ樹脂」とは、2価フェノール化合物とエピハロヒドリンとの縮合反応、あるいは2価フェノール化合物と2官能エポキシ樹脂との重付加反応から得られる線形の高分子であり、非晶質の熱可塑性樹脂である。
The thermoplastic resin contained in the fiber reinforced resin member is preferably a phenoxy resin from the viewpoints of strength, affinity with the reinforcing fibers, adhesion to the metal layer, and the like.
Here, the "phenoxy resin" is a linear polymer obtained by a condensation reaction between a dihydric phenol compound and an epihalohydrin, or a polyaddition reaction between a dihydric phenol compound and a difunctional epoxy resin, and is an amorphous thermoplastic resin.

フェノキシ樹脂の平均分子量は、重量平均分子量(Mw)として、例えば10,000~200,000の範囲内であるが、複合部材の強度、作業性、加工性の観点から、好ましくは20,000~100,000の範囲内であり、より好ましくは30,000~80,000の範囲内である。フェノキシ樹脂のMwが低すぎると複合部材の強度が劣り、高すぎると作業性や加工性に劣るものとなり易い。なお、Mwはゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレン検量線を用いて換算した値を示す。 The average molecular weight of the phenoxy resin is, for example, in the range of 10,000 to 200,000 as the weight average molecular weight (Mw), but from the viewpoint of the strength, workability, and processability of the composite material, it is preferably in the range of 20,000 to 100,000, and more preferably in the range of 30,000 to 80,000. If the Mw of the phenoxy resin is too low, the strength of the composite material will be poor, and if it is too high, the workability and processability will tend to be poor. The Mw is measured by gel permeation chromatography (GPC) and is shown as a value converted using a standard polystyrene calibration curve.

フェノキシ樹脂は、溶液中あるいは無溶媒下にて原料化合物から公知の方法で製造されるが、無溶媒下で製造されるフェノキシ樹脂のうち、原料化合物をin situで重合させて得られるフェノキシ樹脂については、現場重合型フェノキシ樹脂もしくは熱可塑性エポキシ樹脂とも呼称される。 Phenoxy resins are produced by known methods from raw material compounds in solution or without solvent, but among the phenoxy resins produced without solvent, those obtained by polymerizing the raw material compounds in situ are also called in-situ polymerized phenoxy resins or thermoplastic epoxy resins.

フェノキシ樹脂と現場重合型フェノキシ樹脂は、いずれも2官能フェノール化合物と2官能エポキシ樹脂による直鎖状のポリマーであるということは同じであるが、フェノキシ樹脂は分子量及び分子量分布が一定範囲内に制御され、加熱してもそれ以上重合が進まないのに対して、現場重合型フェノキシ樹脂は、加熱により分子量の増加が確認されることが異なる。
本開示では、繊維強化樹脂部材のマトリックス樹脂として、溶液中で製造したフェノキシ樹脂、無溶媒下で製造されたフェノキシ樹脂、現場重合型フェノキシ樹脂のいずれであっても使用することができる。
Phenoxy resin and in situ polymerization type phenoxy resin are both linear polymers made of a difunctional phenol compound and a difunctional epoxy resin. However, the molecular weight and molecular weight distribution of phenoxy resin are controlled within a certain range, and polymerization does not proceed further even when heated, whereas an increase in the molecular weight of in situ polymerization type phenoxy resin is confirmed by heating.
In the present disclosure, any of phenoxy resins produced in a solution, phenoxy resins produced without a solvent, and in-situ polymerized phenoxy resins can be used as the matrix resin of the fiber-reinforced resin member.

フェノキシ樹脂の製造に用いる2価フェノール化合物としては、例えば以下に例示するが、2官能であれば下記に示す限りではない。ビスフェノールA、ビスフェノールF(以上、日鉄ケミカル&マテリアル株式会社製)、ビスフェノールフルオレン、ビスクレゾ-ルフルオレン(以上、大阪ガスケミカル株式会社製)、Bis-E、Bis-Z、BisOC-FL、BisP-AP、BisP-CDE、BisP-HTG、BisP-MIBK、BisP-3MZ、SBOC、Bis25X-F(以上、本州化学工業株式会社製)、ビスフェノールSなどのビスフェノール類や、ハイドロキノン、メチルハイドロキノン、ジブチルハイドロキノン、レゾルシン、メチルレゾルシン、カテコール、メチルカテコールなどのベンゼンジオール類や、ナフタレンジオールなどのナフタレンジオール類や、ビフェノール、ジメチルビフェノール、テトラメチルビフェノールなどのビフェノール類などがあり、これらの内、ビスフェノール化合物類又はビフェノール化合物類が好ましい。
なお、これら2価フェノール化合物は単独でも、2種以上を組合わせて使用してもよい。
Examples of dihydric phenol compounds used in the production of the phenoxy resin are shown below, but as long as they are bifunctional, they are not limited to those shown below. Examples of the bisphenols include bisphenol A, bisphenol F (all manufactured by Nippon Steel Chemical & Material Co., Ltd.), bisphenol fluorene, biscresol fluorene (all manufactured by Osaka Gas Chemical Co., Ltd.), Bis-E, Bis-Z, BisOC-FL, BisP-AP, BisP-CDE, BisP-HTG, BisP-MIBK, BisP-3MZ, SBOC, Bis25X-F (all manufactured by Honshu Chemical Industry Co., Ltd.), and bisphenol S; benzene diols such as hydroquinone, methyl hydroquinone, dibutyl hydroquinone, resorcin, methyl resorcin, catechol, and methyl catechol; naphthalenediols such as naphthalenediol; and biphenols such as biphenol, dimethyl biphenol, and tetramethyl biphenol. Of these, bisphenol compounds or biphenol compounds are preferred.
These dihydric phenol compounds may be used alone or in combination of two or more kinds.

また、フェノキシ樹脂の製造に用いる2官能エポキシ樹脂類としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールアセトフェノン型エポキシ樹脂、ジフェニルスルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、などのビスフェノール型エポキシ樹脂や、ビフェノール型エポキシ樹脂、ジフェニルジシクロペンタジエン型エポキシ樹脂、アルキレングリコール型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂及びこれらのメチル基による置換体を挙げることができ、ビスフェノール型エポキシ樹脂およびビフェノール型エポキシ樹脂及びこれらのメチル基による置換体が好ましい。
なお、これら2価エポキシ樹脂は単独でも、2種以上を組合わせて使用してもよい。
Examples of bifunctional epoxy resins used in the production of the phenoxy resin include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenolacetophenone type epoxy resin, diphenyl sulfide type epoxy resin, diphenyl ether type epoxy resin, and bisphenol fluorene type epoxy resin; biphenol type epoxy resin, diphenyldicyclopentadiene type epoxy resin, alkylene glycol type epoxy resin, dihydroxynaphthalene type epoxy resin, dihydroxybenzene type epoxy resin, and methyl group-substituted products thereof; and bisphenol type epoxy resin, biphenol type epoxy resin, and methyl group-substituted products thereof are preferred.
These difunctional epoxy resins may be used alone or in combination of two or more.

フェノキシ樹脂の製造に際しては反応触媒(重合触媒)を使用する。反応触媒は、エポキシ基とフェノール性水酸基との反応を進めるような触媒能を持つ化合物であればどのようなものでもよく、アルカリ金属化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩、環状アミン類、イミダゾール類などが挙げられ、中でもトリフェニルフォスフィン(TPP)、トリ-o-トリルホスフィン(TOTP)やトリス(p-メトキシフェニル)ホスフィン(TPAP)等の有機リン化合物、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール(TB-Z)等のイミダゾール類の使用が好ましい。
なお、これらの触媒は単独で使用してもよく、2種類以上を併用してもよい。
A reaction catalyst (polymerization catalyst) is used in the production of phenoxy resin. The reaction catalyst may be any compound having catalytic ability to promote the reaction between an epoxy group and a phenolic hydroxyl group, and examples of the reaction catalyst include alkali metal compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts, cyclic amines, and imidazoles. Among these, it is preferable to use organic phosphorus compounds such as triphenylphosphine (TPP), tri-o-tolylphosphine (TOTP), and tris(p-methoxyphenyl)phosphine (TPAP), and imidazoles such as 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole (TB-Z).
These catalysts may be used alone or in combination of two or more kinds.

フェノキシ樹脂の重合には反応遅延剤を用いることもできる。2液混合の際に前駆体組成物を均一液状化するとともに粘度をできるだけ低下させる必要性から、しばしば加温されるため、反応を遅らせて低粘度な状態を維持させることが好ましく、トリ-n-ブチルボレート、トリ-n-オクチルボレート、トリ-n-ドデシルボレート等のトリアルキルボレート類、トリフェニルボレート等のトアリールボレート類が反応遅延剤として使用される。これらは、1種または2種以上を組み合わせて用いられる。 A reaction retarder can also be used in the polymerization of phenoxy resin. When mixing the two liquids, the precursor composition is often heated in order to homogenize it and reduce its viscosity as much as possible. It is therefore preferable to slow down the reaction and maintain a low viscosity state, and trialkyl borates such as tri-n-butyl borate, tri-n-octyl borate, and tri-n-dodecyl borate, and triaryl borates such as triphenyl borate are used as reaction retarders. These are used either alone or in combination of two or more.

フェノキシ樹脂を溶液中で製造する場合、その反応溶媒としては、反応を阻害しないものであれば特に限定されず、例えば、ベンゼン、トルエン、キシレン、メタノール、アルコール、ブチルアルコール、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、ブチロラクトン、ジオキサン、テトラヒドロフラン、アセトフェノン、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホランなどの有機溶媒が挙げられ、これらを複数組み合わせた、または有機溶媒と無機系溶媒(水など)との混合溶媒であってもよい。 When the phenoxy resin is produced in a solution, the reaction solvent is not particularly limited as long as it does not inhibit the reaction, and examples of the reaction solvent include organic solvents such as benzene, toluene, xylene, methanol, alcohol, butyl alcohol, methyl ethyl ketone, cyclopentanone, cyclohexanone, butyrolactone, dioxane, tetrahydrofuran, acetophenone, N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, and sulfolane, and may be a combination of two or more of these, or a mixed solvent of an organic solvent and an inorganic solvent (such as water).

重合反応は、使用する触媒が分解しない程度の反応温度で行う。反応温度は、50~240℃、反応圧力は通常、常圧であり、反応熱の除去が必要な場合は、使用する溶剤のフラッシュ蒸発・凝縮還流法、間接冷却法、またはこれらの併用法により行われる。
また、メチルエチルケトンのような低沸点溶媒を使用する場合には、オートクレーブを使用して高圧下で反応を行うことで反応温度を確保することもできる。
The polymerization reaction is carried out at a temperature at which the catalyst used does not decompose, i.e., 50 to 240°C, and the reaction pressure is usually normal pressure. When it is necessary to remove the heat of reaction, the reaction is carried out by flash evaporation/condensation reflux method of the solvent used, indirect cooling method, or a combination of these methods.
When a low boiling point solvent such as methyl ethyl ketone is used, the reaction temperature can be ensured by carrying out the reaction under high pressure using an autoclave.

本方法で得られたフェノキシ樹脂はそのままワニスとして、または蒸発器等を用いた脱溶媒処理をすることにより、溶媒を含まない固形状の樹脂とされる。 The phenoxy resin obtained by this method can be used as a varnish as is, or can be made into a solvent-free solid resin by removing the solvent using an evaporator, etc.

その後、フェノキシ樹脂は、ワニス状態であれば強化繊維にそのまま含浸させたのちに乾燥工程を経てプリプレグ化され、固形状の樹脂であれば、溶融状態で強化繊維基材に含浸ダイなどを用いて含浸されてプリプレグ化される。
さらに、固形状の樹脂を繊維やフィルム、パウダー化して、強化繊維と混織(コミングルド法)したり、フィルムと強化繊維基材を重ねてロールプレス機などにより加圧含浸(フィルムスタック法)したり、粉体塗工法を用いて強化繊維基材に塗工されることでセミプレグと呼称されるFRP成形材料に加工してもよい。
Thereafter, if the phenoxy resin is in a varnish state, it is directly impregnated into the reinforcing fibers and then dried to form a prepreg. If the phenoxy resin is in a solid state, it is impregnated into the reinforcing fiber substrate in a molten state using an impregnation die or the like to form a prepreg.
Furthermore, the solid resin may be made into fibers, films, or powder and woven together with reinforcing fibers (commingled method), or a film and a reinforcing fiber substrate may be layered and pressurized and impregnated using a roll press or the like (film stack method), or the solid resin may be coated onto a reinforcing fiber substrate using a powder coating method to process the resin into an FRP molding material known as semi-preg.

一方、フェノキシ樹脂を無溶媒下にて製造する場合は、原料化合物と反応触媒を混合して前駆体組成物とし、これを加熱により重付加反応させることによって行う。このとき、原料や反応触媒の混合状態を最適化させるために予め加熱融解させた原料を混合してもよいし、最大で10質量%程度のシクロヘキサノンやメチルエチルケトン等の溶剤を添加させてもよい。 On the other hand, when phenoxy resin is produced without a solvent, the raw material compounds and the reaction catalyst are mixed to form a precursor composition, which is then heated to cause a polyaddition reaction. At this time, in order to optimize the mixture state of the raw materials and the reaction catalyst, the raw materials may be mixed with those that have been heated and melted in advance, or a solvent such as cyclohexanone or methyl ethyl ketone may be added in an amount of up to about 10% by mass.

無溶媒下でのフェノキシ樹脂の製造も溶媒中でのフェノキシ樹脂の製造方法と大きく条件が変わるものではないが、反応器などを使わずにin situでフェノキシ樹脂を得ることができる現場重合型フェノキシ樹脂は、その重合度合いを任意の範囲で調整することができ、オリゴマーの状態で強化繊維基材に含浸させてプリプレグを作製することができるため、好ましいフェノキシ樹脂である。
一般的に高分子量体(ポリマー)を強化繊維基材に含浸するためにはそのままであれば高温高圧が必要となるため、含浸不良によるボイドの発生や強化繊維の折損などが起きやすく、溶剤を使用する場合は残留溶媒によるボイドの発生が起こりやすいが、オリゴマーの場合はポリマーよりも溶融粘度が低いので、加熱溶融で容易に強化繊維基材に含浸することができる。
The conditions for producing a phenoxy resin without a solvent are not significantly different from those for producing a phenoxy resin in a solvent. However, in situ polymerization type phenoxy resin, which can produce a phenoxy resin in situ without using a reactor or the like, is a preferred phenoxy resin because its degree of polymerization can be adjusted within a desired range and it can be impregnated into a reinforcing fiber substrate in the oligomer state to produce a prepreg.
Generally, high temperatures and high pressures are required to impregnate a high molecular weight substance (polymer) into a reinforcing fiber substrate, which can easily cause voids due to poor impregnation or breakage of the reinforcing fibers. When a solvent is used, voids are likely to occur due to residual solvent. However, oligomers have a lower melt viscosity than polymers, so they can be easily impregnated into a reinforcing fiber substrate by heating and melting.

強化繊維への含浸は、ミキサーやニーダーを用いて原料化合物と反応触媒を混合した前駆体組成物を重量平均分子量(Mw)が100~6000程度の範囲となるまで重合を進めたのちに行われ、含浸ダイ等を用いて40~80℃にて加熱溶融した状態で強化繊維基材に直接含浸させたり、離型紙などにオリゴマーをキャストしてフィルム化したものをロールプレス機等で温度70~130℃、線圧5~25kg/cmにて強化繊維基材に含浸する(フィルムスタック法)ことでプリプレグに加工される。
このとき、必要に応じて、強化繊維を一方向に引き揃えた強化繊維基材を用いて繊維方向が一方向に揃ったプリプレグを作製してもよい。
Impregnation into reinforcing fibers is carried out after polymerizing a precursor composition obtained by mixing raw material compounds and a reaction catalyst using a mixer or kneader until the weight average molecular weight (Mw) is in the range of about 100 to 6000, and the precursor composition is heated and melted at 40 to 80°C using an impregnation die or the like and directly impregnated into a reinforcing fiber substrate, or the oligomer is cast onto release paper or the like to form a film, which is then impregnated into a reinforcing fiber substrate at a temperature of 70 to 130°C and a linear pressure of 5 to 25 kg/cm using a roll press or the like (film stack method) to process into a prepreg.
In this case, if necessary, a prepreg having fibers aligned in one direction may be produced using a reinforcing fiber base material having reinforcing fibers aligned in one direction.

(強化繊維)
繊維強化樹脂部材12に含まれる強化繊維は特に限定されず、連続繊維でもよいし、短繊維でもよいが、好ましくは連続繊維である。
繊維強化樹脂部材12は、連続繊維を用いたものであれば、強化繊維の繊維方向が一方向に揃ったUDプリプレグや強化繊維が縦横に交差するクロス材の積層体や、引抜成形品でもよく、短繊維を用いたものであれば、短冊状のUDプリプレグを堆積させたランダムマットや抄造法で作成されたフェルトなど、繊維が面方向に配向している短繊維強化樹脂部材が良い。
(Reinforced Fiber)
The reinforcing fibers contained in the fiber reinforced resin member 12 are not particularly limited and may be continuous fibers or short fibers, but are preferably continuous fibers.
The fiber reinforced resin member 12 may be a UD prepreg in which the fiber direction of the reinforcing fibers is aligned in one direction, a laminate of cross material in which the reinforcing fibers cross vertically and horizontally, or a pultrusion molded product if continuous fibers are used, and a short fiber reinforced resin member in which the fibers are oriented in the planar direction, such as a random mat made by piling up rectangular UD prepregs or felt made by a papermaking method, is preferable if short fibers are used.

強度、熱可塑性樹脂との親和性などの観点から、例えば、炭素繊維、ボロン繊維、シリコンカーバイド繊維、ガラス繊維、アラミド繊維などが好ましく、炭素繊維がより好ましい。炭素繊維は、一般的に、ポリアクリロニトリルを原料とするPAN系と、コールタールピッチや石油ピッチを原料とするピッチ系に分類される。本開示で用いる炭素繊維は、PAN系、ピッチ系のいずれも使用可能であり、目的や用途に応じて、これらを単独で使用してもよいし、併用してもよい。 From the viewpoint of strength, affinity with thermoplastic resin, and the like, for example, carbon fiber, boron fiber, silicon carbide fiber, glass fiber, aramid fiber, and the like are preferred, and carbon fiber is more preferred. Carbon fibers are generally classified into PAN-based fibers made from polyacrylonitrile and pitch-based fibers made from coal tar pitch or petroleum pitch. Either PAN-based or pitch-based carbon fibers can be used in the present disclosure, and these may be used alone or in combination depending on the purpose and application.

炭素繊維の径は、例えば5~10μmである。また、炭素繊維の長さは、例えば10mm以上であればよいが、連続繊維であることが望ましい。 The diameter of the carbon fiber is, for example, 5 to 10 μm. The length of the carbon fiber may be, for example, 10 mm or more, but it is preferable that the fiber is continuous.

また、繊維強化樹脂部材における繊維体積含有率(Vf)は特に限定されないが、Vfが低過ぎると強化繊維による強度の向上が不足し、高過ぎると曲げ加工をし難くなる可能性がある。そのため繊維強化樹脂部材におけるVfは、例えば、40~60%とすることが好ましい。 The fiber volume content (Vf) of the fiber-reinforced resin member is not particularly limited, but if Vf is too low, the strength improvement due to the reinforcing fibers will be insufficient, and if it is too high, bending may become difficult. Therefore, it is preferable that Vf of the fiber-reinforced resin member is, for example, 40 to 60%.

繊維強化樹脂部材12は、1層の繊維強化樹脂層で構成されていてもよいし、2層以上の繊維強化樹脂層で構成されていてもよい。
例えば、強化繊維の繊維方向が一方向に揃った一方向繊維強化樹脂層が2層以上積層されており、厚さ方向に隣接する一方向繊維強化樹脂層間で繊維方向が異なる積層構造としてもよい。例えば、3層の一方向繊維強化樹脂層を積層して繊維強化樹脂部材を構成する場合、繊維強化樹脂部材の長手方向に対する各層の繊維方向をそれぞれ0°、90°、0°、あるいは、90°、0°、90°として一体化させた積層構造とすることで、長手方向及び幅方向の両方向に強度が向上した繊維強化樹脂部材とすることができる。なお、積層する一方向繊維強化樹脂層の層数、隣接する一方向繊維強化樹脂層間で繊維方向をずらす程度(角度差)は特に限定されず、用途、要求される機械特性に応じて選択することができる。
The fiber reinforced resin member 12 may be composed of one fiber reinforced resin layer, or may be composed of two or more fiber reinforced resin layers.
For example, a laminated structure may be formed in which two or more unidirectional fiber-reinforced resin layers in which the fiber direction of the reinforcing fibers is aligned in one direction are laminated, and the fiber direction is different between adjacent unidirectional fiber-reinforced resin layers in the thickness direction. For example, when a fiber-reinforced resin member is formed by laminating three unidirectional fiber-reinforced resin layers, the fiber directions of each layer relative to the longitudinal direction of the fiber-reinforced resin member are integrated into a laminated structure at 0°, 90°, 0°, or 90°, 0°, 90°, respectively, to form a fiber-reinforced resin member having improved strength in both the longitudinal and width directions. Note that the number of unidirectional fiber-reinforced resin layers to be laminated and the degree of shifting of the fiber direction between adjacent unidirectional fiber-reinforced resin layers (angle difference) are not particularly limited and can be selected according to the application and the required mechanical properties.

図3は、曲げ加工後の繊維強化樹脂部材の反りを示す概略図である。図3に示すように、繊維強化樹脂部材の中央部分を曲げ加工した場合、曲げ加工部分の両側は点線で示すように直線形状22Aに近いほど好ましいが、曲げ加工された方向とは反対側に反った形状22Bとなり易い。しかし、繊維強化樹脂層が2層以上積層された繊維強化樹脂部材を曲げ加工した場合、曲げ角度に応じて各層がずれることで反りが抑制される。図4は、曲げ加工後の繊維強化樹脂部材22の端部における層間ずれを概略的に示している。曲げ加工により各層12A,12B,12Cの層間ずれが生じると、繊維強化樹脂部材22の端部が積層方向に対して傾斜した形状となる。このような層間ずれが生じることで、曲げ加工部分以外での反りの発生が抑制される。 Figure 3 is a schematic diagram showing the warping of a fiber-reinforced resin member after bending. As shown in Figure 3, when the center part of a fiber-reinforced resin member is bent, it is preferable that both sides of the bent part are as close to a straight line shape 22A as shown by the dotted line, but they tend to be warped in the opposite direction to the bending direction 22B. However, when a fiber-reinforced resin member having two or more fiber-reinforced resin layers is bent, the layers are displaced according to the bending angle, thereby suppressing warping. Figure 4 shows a schematic diagram of interlayer slippage at the end of the fiber-reinforced resin member 22 after bending. When interlayer slippage occurs between the layers 12A, 12B, and 12C due to bending, the end of the fiber-reinforced resin member 22 becomes inclined with respect to the stacking direction. The occurrence of such interlayer slippage suppresses the occurrence of warping in areas other than the bent part.

繊維強化樹脂部材12の厚みは特に限定されず、用途、要求される機械特性などに応じて選択することができる。例えば、2.0~9.0mmである。 The thickness of the fiber-reinforced resin member 12 is not particularly limited and can be selected according to the application, required mechanical properties, etc. For example, it is 2.0 to 9.0 mm.

繊維強化樹脂部材12の形状も特に限定されず、板状、帯状、棒状、柱状、パイプ状、断面がT形などの異形断面を有する形状など、任意の形状であってよい。 The shape of the fiber-reinforced resin member 12 is not particularly limited, and may be any shape, such as a plate, strip, rod, column, pipe, or a shape having an irregular cross section such as a T-shape.

<座屈抑制部材>
座屈抑制部材18は、金属層16と粘着層14とが積層された構造を有する。座屈抑制部材18を繊維強化樹脂部材12が曲げ加工される部分の少なくとも圧縮側に配置されるように粘着層14により繊維強化樹脂部材12に貼り付けられる。
座屈抑制部材18における金属層16と粘着層14はそれぞれ1層以上積層されていればよく、金属層16と粘着層14がそれぞれ交互に2層以上(合計4層以上)積層された構造でもよい。
<Buckling suppression member>
The buckling suppression member 18 has a structure in which a metal layer 16 and an adhesive layer 14 are laminated together. The buckling suppression member 18 is attached to the fiber reinforced resin member 12 by the adhesive layer 14 so as to be disposed on at least the compression side of the portion of the fiber reinforced resin member 12 that is to be bent.
The buckling suppression member 18 may have at least one metal layer 16 and at least one adhesive layer 14 laminated thereon, and may have a structure in which two or more metal layers 16 and two or more adhesive layers 14 are alternately laminated thereon (a total of four or more layers).

(金属層)
金属層16は、座屈抑制部材18の剛性、曲げ加工後の形状保持に大きく影響する。かかる観点から、金属層16は積層されている粘着層14とともに曲げたときに塑性変形して座屈抑制部材自体が塑性変形する層であることが好ましい。
また、金属層16は、複合部材10を曲げ加工する際の繊維強化樹脂部材12の座屈抑制の観点から、単位幅(mm)あたりの曲げ剛性が500Nmm以上であることが好ましい。なお、金属層16の単位幅あたりの曲げ剛性が高すぎると、曲げ加工し難くなるため、金属層16の単位幅あたりの曲げ剛性は1500Nmm以下であることが好ましい。
金属層16の単位幅あたりの曲げ剛性は、JIS Z2241:2011に基づき引張試験を行ってヤング率を測定し、以下の式(1)、(2)から算出することができる。
(Metal Layer)
The metal layer 16 significantly affects the rigidity of the buckling suppression member 18 and the shape retention after bending. From this viewpoint, it is preferable that the metal layer 16 is a layer that undergoes plastic deformation when bent together with the laminated adhesive layer 14, causing the buckling suppression member itself to undergo plastic deformation.
Moreover, the metal layer 16 preferably has a bending stiffness per unit width (mm) of 500 Nmm or more from the viewpoint of suppressing buckling of the fiber reinforced resin member 12 when bending the composite member 10. If the bending stiffness per unit width of the metal layer 16 is too high, bending becomes difficult, so the bending stiffness per unit width of the metal layer 16 is preferably 1500 Nmm or less.
The bending rigidity per unit width of the metal layer 16 can be calculated from the following formulas (1) and (2) by measuring the Young's modulus through a tensile test based on JIS Z2241:2011.


金属層16を構成する金属材料は特に限定されないが、剛性、曲げ加工性、材料コストなどの観点から、銅、アルミニウム、及びステンレスの少なくとも1種を含む金属層であることが好ましい。例えば、アルミニウムを含む金属層は、アルミニウム合金の金属層でもよい。
金属層16は形状記憶合金で構成されてもよい。複合部材10を曲げ加工することで、繊維強化樹脂部材12とともに座屈抑制部材18も曲げられる。金属層16が形状記憶合金で構成されていれば、曲げ加工後に複合部材10から剥離した座屈抑制部材18を加熱して曲げ加工前の形状に容易に戻すことができるため、繰り返し使用することができる。
The metal material constituting the metal layer 16 is not particularly limited, but is preferably a metal layer containing at least one of copper, aluminum, and stainless steel from the viewpoints of rigidity, bending workability, material cost, etc. For example, the metal layer containing aluminum may be a metal layer of an aluminum alloy.
The metal layer 16 may be made of a shape memory alloy. By bending the composite member 10, the buckling suppression member 18 is also bent together with the fiber reinforced resin member 12. If the metal layer 16 is made of a shape memory alloy, the buckling suppression member 18 that has been peeled off from the composite member 10 after bending can be easily returned to its shape before bending by heating, and can be used repeatedly.

金属層16の厚みは、材質にもよるが、複合部材10を曲げ加工する際の座屈抑制、剥離防止、曲げ容易性、曲げ加工後の形状保持性などの観点から、金属層16として、例えば、アルミ材を用いる場合、厚みは0.05~1.2mmが挙げられる。
なお、座屈抑制部材18は、例えば、アルミニウム層と粘着層とが積層されたアルミニウムテープを重ねたものでよい。座屈抑制部材18が2層以上の金属層を含む場合は、金属層の合計の厚みが上記範囲内であることが挙げられる。
The thickness of the metal layer 16 depends on the material, but from the standpoint of suppressing buckling when bending the composite member 10, preventing peeling, ease of bending, and shape retention after bending, for example, when an aluminum material is used as the metal layer 16, the thickness can be 0.05 to 1.2 mm.
The buckling suppression member 18 may be, for example, an aluminum tape in which an aluminum layer and an adhesive layer are laminated. When the buckling suppression member 18 includes two or more metal layers, the total thickness of the metal layers may be within the above range.

(粘着層)
粘着層14は、金属層16とともに座屈抑制部材18を構成し、繊維強化樹脂部材12に対して剥離可能に接着する層である。粘着層14は、粘着剤単独であってもよく、粘着剤と基材の複数層で構成されていてもよいが、曲げ加工する観点から弾性を有することが好ましい。粘着層14を構成する材料は、例えば、粘着剤であればゴム、エラストマー、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤などが挙げられる。また、基材については、例えば、ポリプロピレンやポリエチレンテレフタレート、ポリ塩化ビニル、ポリイミドなどの樹脂フィルムや不織布、フォームが挙げられる。
さらに、粘着層14は、例えば、繊維強化樹脂部材12に接着する樹脂と発泡剤を含み、曲げ加工後に加熱して発泡させることで繊維強化樹脂部材12から剥離することができる層としてもよい。
(Adhesive layer)
The adhesive layer 14 constitutes the buckling suppression member 18 together with the metal layer 16, and is a layer that is peelably adhered to the fiber-reinforced resin member 12. The adhesive layer 14 may be composed of an adhesive alone, or may be composed of multiple layers of an adhesive and a substrate, but is preferably elastic from the viewpoint of bending processing. Examples of materials that constitute the adhesive layer 14 include adhesives such as rubber, elastomers, acrylic adhesives, urethane adhesives, and silicone adhesives. Examples of substrates include resin films such as polypropylene, polyethylene terephthalate, polyvinyl chloride, and polyimide, as well as nonwoven fabrics and foams.
Furthermore, the adhesive layer 14 may be, for example, a layer that contains a resin that adheres to the fiber-reinforced resin member 12 and a foaming agent, and that can be peeled off from the fiber-reinforced resin member 12 by heating and foaming after bending processing.

粘着層14の厚みは、材質や構成にもよるが、複合部材10を曲げ加工する際の繊維強化樹脂部材12の座屈抑制、剥離防止、曲げ容易性、曲げ加工後の形状保持性などの観点から、0.1mm~2mmが挙げられる。なお、座屈抑制部材18が金属層16と粘着層14とが交互に積層されて2層以上の粘着層を含む場合、粘着層の合計の厚みが上記範囲内であることが挙げられるが、繊維強化樹脂部材12と直接接触している粘着層の厚みが0.1~2mmあることが好ましい。
また、粘着層14は、繊維強化樹脂部材12の座屈抑制、剥離防止、曲げ容易性などの観点から、弾性率が500MPa以下であることが好ましい。
粘着層14の弾性率は、JIS Z7127:1999 プラスチック-引張特性の試験方法- 第3部:フィルム及びシートの試験条件に準拠して、万能試験機を用いて引張弾性率として測定される。
The thickness of the adhesive layer 14 varies depending on the material and configuration, but may be 0.1 mm to 2 mm from the viewpoints of buckling suppression, peeling prevention, ease of bending, shape retention after bending, etc. of the fiber reinforced resin member 12 when bending the composite member 10. When the buckling suppression member 18 includes two or more adhesive layers in which the metal layers 16 and the adhesive layers 14 are alternately laminated, the total thickness of the adhesive layers may be within the above range, but it is preferable that the thickness of the adhesive layer in direct contact with the fiber reinforced resin member 12 is 0.1 to 2 mm.
In addition, from the viewpoints of suppressing buckling of the fiber reinforced resin member 12, preventing peeling, and ease of bending, it is preferable that the adhesive layer 14 has an elastic modulus of 500 MPa or less.
The elastic modulus of the adhesive layer 14 is measured as the tensile elastic modulus using a universal testing machine in accordance with JIS Z7127:1999 Plastics-Test methods for tensile properties-Part 3: Test conditions for films and sheets.

座屈抑制部材18は、繊維強化樹脂部材12が曲げ加工される部分の少なくとも圧縮側に配置されるように粘着層14により繊維強化樹脂部材12に貼り付けられる。
図1及び図2に示すように、繊維強化樹脂部材12が板状である場合、座屈抑制部材18は繊維強化樹脂部材12の両面に貼り付けられてもよいし、片面に貼り付けられてもよい。また、座屈抑制部材18は、繊維強化樹脂部材12の両面又は片面の全面に設けられていてもよいし、繊維強化樹脂部材12が曲げ加工される部分を含む一部に貼り付けられていてもよい。
繊維強化樹脂部材12を曲げ加工する部分が予め決まっている場合は、繊維強化樹脂部材12を曲げ加工する部分の圧縮側に座屈抑制部材18が貼り付けられていればよい。
なお、繊維強化樹脂部材12の両面全体に座屈抑制部材18を貼り付けた複合部材10であれば、繊維強化樹脂部材12を曲げ加工する位置、曲げ方向が限定されず、作業性が向上するほか、曲げ加工における繊維強化樹脂部材12の座屈だけでなく、反りも効果的に抑制することができる。
The buckling suppression member 18 is attached to the fiber reinforced resin member 12 by the adhesive layer 14 so as to be disposed on at least the compression side of the portion of the fiber reinforced resin member 12 that is to be bent.
1 and 2, when the fiber reinforced resin member 12 is in a plate shape, the buckling suppression member 18 may be attached to both sides or one side of the fiber reinforced resin member 12. In addition, the buckling suppression member 18 may be provided on the entire surface of both sides or one side of the fiber reinforced resin member 12, or may be attached to a part of the fiber reinforced resin member 12 including a portion that is to be bent.
When the portion of the fiber reinforced resin member 12 to be bent is predetermined, the buckling suppression member 18 may be attached to the compression side of the portion of the fiber reinforced resin member 12 to be bent.
Furthermore, in the case of a composite member 10 in which buckling suppression members 18 are attached to both sides of the fiber-reinforced resin member 12, the position and bending direction of the fiber-reinforced resin member 12 are not limited, improving workability and effectively suppressing not only buckling but also warping of the fiber-reinforced resin member 12 during bending.

金属層16と粘着層14が積層されている座屈抑制部材18を粘着層14により繊維強化樹脂部材12に貼り付けてもよいし、繊維強化樹脂部材12に粘着層14を貼り付けた後、粘着層14に金属層16としての金属板などを貼り付けてもよい。例えば、前者では、アルミ層と粘着層とが一体となっているアルミ粘着テープなどを用いてもよく、後者では、アルミ板を両面粘着テープを介して繊維強化樹脂部材に貼り付けてもよい。粘着層14として、例えば、アクリル系両面テープ、ウレタン系両面テープ、シリコーン系両面テープなどが挙げられる。市販として、例えば、日東電工株式会社製 Nitto HYPERJOINT(登録商標)シリーズ、スリーエムジャパン株式会社製 接着剤転写テープ 468MP、株式会社寺岡製作所製 カプトン(登録商標)両面テープ760H #25などが挙げられる。
なお、座屈抑制部材18における金属層16と粘着層14の積層数は限定されず、例えばアルミ粘着テープを2枚以上積層して剛性を高めた座屈抑制部材を用いてもよい。
The buckling suppression member 18, in which the metal layer 16 and the adhesive layer 14 are laminated, may be attached to the fiber-reinforced resin member 12 by the adhesive layer 14, or after the adhesive layer 14 is attached to the fiber-reinforced resin member 12, a metal plate as the metal layer 16 may be attached to the adhesive layer 14. For example, in the former case, an aluminum adhesive tape in which the aluminum layer and the adhesive layer are integrated may be used, and in the latter case, an aluminum plate may be attached to the fiber-reinforced resin member via a double-sided adhesive tape. Examples of the adhesive layer 14 include acrylic double-sided tape, urethane double-sided tape, and silicone double-sided tape. Examples of commercially available adhesive layers include Nitto HYPERJOINT (registered trademark) series manufactured by Nitto Denko Corporation, Adhesive Transfer Tape 468MP manufactured by 3M Japan Co., Ltd., and Kapton (registered trademark) double-sided tape 760H #25 manufactured by Teraoka Seisakusho Co., Ltd.
The number of layers of metal layers 16 and adhesive layers 14 in buckling suppression member 18 is not limited, and a buckling suppression member having increased rigidity by, for example, laminating two or more sheets of aluminum adhesive tape may be used.

繊維強化樹脂部材と座屈抑制部材との接着強度は、4N/mm以下であることが好ましい。繊維強化樹脂部材と座屈抑制部材との接着強度が4N/mm以下であれば、複合部材を所定の形状に曲げ加工した後、座屈抑制部材を剥離して除去し易い。 The adhesive strength between the fiber-reinforced resin member and the buckling suppression member is preferably 4 N/mm or less. If the adhesive strength between the fiber-reinforced resin member and the buckling suppression member is 4 N/mm or less, the buckling suppression member can be easily peeled off and removed after bending the composite member into a specified shape.

なお、繊維強化樹脂部材と座屈抑制部材との接着強度が小さ過ぎると、曲げ加工時に曲げ加工部において剥離して圧縮側に座屈が生じ易くなる。そのため、繊維強化樹脂部材と座屈抑制部材との接着強度は1.0N/mm以上であることが好ましい。 If the adhesive strength between the fiber-reinforced resin member and the buckling suppression member is too small, the material may peel off at the bending section during bending, making it easier for buckling to occur on the compression side. Therefore, it is preferable that the adhesive strength between the fiber-reinforced resin member and the buckling suppression member be 1.0 N/mm or more.

図5は、複合部材における繊維強化樹脂部材と座屈抑制部材との接着強度を測定する方法を示す概略図である。複合部材10の試験サンプルSの端部付近において座屈抑制部材18を繊維強化樹脂部材12から引き剥がし、座屈抑制部材18の引き剥がした部分に円形の孔19をあける。試験サンプルSが水平となるように試験サンプルSの両側を固定冶具44で挟んで固定する。座屈抑制部材18の孔19に引張試験機のフック42を掛けて鉛直方向に引張って繊維強化樹脂部材12から剥離が生じる荷重を測定し、剥離時最大荷重をサンプルSの幅方向単位長さ(mm)当たりの接着強度(N/mm)として算出する。 Figure 5 is a schematic diagram showing a method for measuring the adhesive strength between a fiber-reinforced resin member and a buckling suppression member in a composite member. The buckling suppression member 18 is peeled off from the fiber-reinforced resin member 12 near the end of the test sample S of the composite member 10, and a circular hole 19 is made in the peeled-off portion of the buckling suppression member 18. Both sides of the test sample S are clamped and fixed with a fixing jig 44 so that the test sample S is horizontal. The hook 42 of the tensile tester is hung on the hole 19 of the buckling suppression member 18 and pulled vertically to measure the load at which peeling occurs from the fiber-reinforced resin member 12, and the maximum load at the time of peeling is calculated as the adhesive strength (N/mm) per unit length (mm) in the width direction of the sample S.

座屈抑制部材は、金属層及び粘着層のほかに補強層を有していてもよい。補強層は例えばガラス繊維からなる織布や不織布であり、金属層と粘着層の間に配置される。 The buckling suppression member may have a reinforcing layer in addition to the metal layer and the adhesive layer. The reinforcing layer is, for example, a woven or nonwoven fabric made of glass fiber, and is disposed between the metal layer and the adhesive layer.

また、複合部材10は、曲げ加工温度における複合部材10の曲げ剛性が2.0×10Nmm以下であることが好ましい。繊維強化樹脂部材12と座屈抑制部材18とが一体化された複合部材10の状態で、曲げ加工温度における複合部材10の曲げ剛性が2.0×10Nmm以下であれば、手曲げ加工し易い。複合部材10の曲げ剛性は、例えば、金属層16の材質、厚みなどによって調整することができる。複合部材10の曲げ剛性は、JIS K7074:1988に基づいて万能試験機を用いて試験加工温度にて3点曲げ試験(A法)を行い、以下の式(3)より算出される。 In addition, the composite member 10 preferably has a bending rigidity of 2.0×10 5 Nmm 2 or less at the bending temperature. When the composite member 10 is in a state in which the fiber reinforced resin member 12 and the buckling suppression member 18 are integrated, if the bending rigidity of the composite member 10 at the bending temperature is 2.0×10 5 Nmm 2 or less, the composite member 10 is easy to bend manually. The bending rigidity of the composite member 10 can be adjusted, for example, by the material and thickness of the metal layer 16. The bending rigidity of the composite member 10 is calculated from the following formula (3) by performing a three-point bending test (Method A) at the test processing temperature using a universal testing machine based on JIS K7074:1988.

[曲げ加工工程]
複合部材10を得た後、座屈抑制部材18の少なくとも一部が、繊維強化樹脂部材12が曲げ加工される部分の圧縮側で曲がるように、加熱された複合部材10を曲げ加工する。
曲げ加工を行う手段は特に限定されず、手曲げでもよいし、金型を用いたバッチ式での加工でもよい。ロールフォーミングなどによる機械的な連続加工も可能であり、例えば、曲げ加工の角度が加工始めから加工終わりまでの間で連続的に変化するようにしてもよい。手曲げ加工を行う場合、例えば図2に示すように複合部材10の曲げ加工する部分の圧縮される側を治具30に押し当てた状態とし、複合部材10の両端付近を反対側から手で押して力Fを加えて曲げ加工を行う。これにより所定の位置で所定の角度に曲げ加工することができる。いずれの手段でも、複合部材10を曲げ加工するときに繊維強化樹脂部材12が曲げられる部分の少なくとも圧縮側に座屈抑制部材18が配置された状態で複合部材10の曲げ加工を行う。
[Bending process]
After obtaining the composite member 10, the heated composite member 10 is bent so that at least a portion of the buckling suppression member 18 is bent on the compression side of the portion where the fiber reinforced resin member 12 is bent.
The means for performing the bending process is not particularly limited, and may be manual bending or batch processing using a mold. Continuous mechanical processing such as roll forming is also possible, and for example, the bending angle may be changed continuously from the beginning to the end of processing. When performing manual bending, for example, as shown in FIG. 2, the compressed side of the portion of the composite member 10 to be bent is pressed against a jig 30, and the vicinity of both ends of the composite member 10 is pressed by hand from the opposite side to apply a force F to perform bending. This allows bending to a predetermined angle at a predetermined position. In either case, the composite member 10 is bent in a state in which the buckling suppression member 18 is arranged at least on the compressed side of the portion where the fiber reinforced resin member 12 is bent when bending the composite member 10.

図6は、本開示における複合部材10を金型によりV字形状に曲げ加工を行う一例を概略的に示している。金型は、V形状の凹部を有するダイ(下型)32とダイ32の凹部に適合するV形状の凸部を有するパンチ(上型)34の組み合わせにより構成されている。本開示における複合部材10をダイ32の上に載置し、パンチ34を押し当てることにより複合部材10を曲げ加工する。座屈抑制部材18が繊維強化樹脂部材12の片面のみに配置されている場合は、座屈抑制部材18がパンチ34側となるように複合部材10をダイ32の上に配置する。 Figure 6 shows a schematic example of bending the composite member 10 of the present disclosure into a V-shape using a die. The die is composed of a combination of a die (lower die) 32 having a V-shaped recess and a punch (upper die) 34 having a V-shaped protrusion that fits into the recess of the die 32. The composite member 10 of the present disclosure is placed on the die 32, and the punch 34 is pressed against it to bend the composite member 10. When the buckling suppression member 18 is disposed on only one side of the fiber-reinforced resin member 12, the composite member 10 is disposed on the die 32 so that the buckling suppression member 18 faces the punch 34.

曲げ加工は、複合部材10が加熱された状態で行う。繊維強化樹脂部材12が、マトリックス樹脂である熱可塑性樹脂のガラス転移温度(Tg)以上に加熱された状態で曲げ加工を行うことが好ましく、より好ましくはTg+10~Tg+120℃、さらに好ましくはTg+50~Tg+100℃、最も好ましくはTg+60~Tg+90℃の範囲内に加熱された状態である。
複合部材10をオーブンやヒートガンで予め加熱して曲げ加工を行ってもよいし、金型32,34を加熱した状態で曲げ加工を行ってもよい。
The bending process is performed in a heated state of the composite member 10. The bending process is preferably performed in a state in which the fiber reinforced resin member 12 is heated to a temperature equal to or higher than the glass transition temperature (Tg) of the thermoplastic resin that is the matrix resin, more preferably within a range of Tg+10 to Tg+120°C, even more preferably Tg+50 to Tg+100°C, and most preferably Tg+60 to Tg+90°C.
The composite material 10 may be preheated with an oven or a heat gun before bending, or the bending may be performed while the dies 32, 34 are heated.

曲げ加工の手段に関わらず、曲げ加工によって繊維強化樹脂部材12の座屈を抑制する観点から、繊維強化樹脂部材12と座屈抑制部材18とが一体化された複合部材10は、繊維強化樹脂部材12に含まれる熱可塑性樹脂のガラス転移温度(Tg)以上の温度に加熱された状態で5.0mm以上の曲率半径で曲げ加工を行うことが好ましい。なお、曲率半径の上限は特にないが、1000mm未満であれば本発明の効果が顕著になる。 Regardless of the bending method, from the viewpoint of suppressing buckling of the fiber reinforced resin member 12 by bending, it is preferable to bend the composite member 10 in which the fiber reinforced resin member 12 and the buckling suppression member 18 are integrated with each other at a radius of curvature of 5.0 mm or more while being heated to a temperature equal to or higher than the glass transition temperature (Tg) of the thermoplastic resin contained in the fiber reinforced resin member 12. There is no particular upper limit to the radius of curvature, but the effect of the present invention is more pronounced if it is less than 1000 mm.

[除去工程]
曲げ加工された複合部材10から座屈抑制部材18を除去する。曲げ加工後、複合部材10から座屈抑制部材18を除去することで曲げ加工部における座屈が抑制された繊維強化樹脂部材22を得ることができる。
例えば、曲げ加工後、繊維強化樹脂部材22に貼り付いている粘着層14を繊維強化樹脂部材12から剥離して金属層16とともに座屈抑制部材18全体を除去する。なお、剥離する際、繊維強化樹脂部材22のマトリックス樹脂のTg未満の温度に加熱して粘着層14を軟化させたり、氷点下温度に冷却して剥離し易くなるように操作してもよい。
[Removal process]
The buckling suppression member 18 is removed from the bent composite member 10. By removing the buckling suppression member 18 from the composite member 10 after bending, a fiber-reinforced resin member 22 in which buckling is suppressed in the bent portion can be obtained.
For example, after bending, the adhesive layer 14 attached to the fiber reinforced resin member 22 is peeled off from the fiber reinforced resin member 12 to remove the entire buckling suppression member 18 together with the metal layer 16. When peeling, the adhesive layer 14 may be softened by heating to a temperature below the Tg of the matrix resin of the fiber reinforced resin member 22, or may be cooled to a subzero temperature to facilitate peeling.

[他の工程]
本開示に係る繊維強化樹脂部材の加工方法は、他の工程を含んでもよい。例えば、除去工程の後に、繊維強化樹脂部材を所望の形状に切断する工程や洗浄する工程が挙げられる。
[Other processes]
The method for processing a fiber-reinforced resin member according to the present disclosure may include other steps, such as a step of cutting the fiber-reinforced resin member into a desired shape or a step of cleaning the fiber-reinforced resin member after the removing step.

本開示に係る繊維強化樹脂部材の加工方法によれば、繊維強化樹脂部材の曲げ加工部における座屈が抑制される。そのため、加工後の繊維強化樹脂部材の曲げ強度が加工前の曲げ強度の80%以上に維持された繊維強化樹脂部材を製造することも可能である。 The processing method for fiber-reinforced resin members according to the present disclosure suppresses buckling in the bent portion of the fiber-reinforced resin member. Therefore, it is possible to manufacture a fiber-reinforced resin member in which the bending strength of the processed fiber-reinforced resin member is maintained at 80% or more of the bending strength before processing.

以下、本開示に係る繊維強化樹脂部材の加工方法及び複合部材について実施例を挙げてさらに具体的に説明する。ただし、本開示は、以下の実施例によって限定されるものではない。 The processing method for fiber-reinforced resin members and composite members according to the present disclosure will be described in more detail below with reference to examples. However, the present disclosure is not limited to the following examples.

図7は、実施例で製造した複合部材の構成の一例を概略的に示している。図7に示す複合部材100における繊維強化樹脂部材12は、長手方向Xに対して繊維方向がそれぞれ90°、0°、90°となるようにプリプレグを積層して3層の一方向繊維強化樹脂層12A,12B,12Cが積層された構造を有する炭素繊維強化樹脂板(CFRP)である。炭素繊維強化樹脂板12の両面に、それぞれ粘着層と金属層とが積層された座屈抑制部材18A,18Bが貼り付けられている。
実施例で用いた材料について説明する。
Fig. 7 is a schematic diagram showing an example of the structure of a composite member manufactured in the examples. The fiber-reinforced resin member 12 in the composite member 100 shown in Fig. 7 is a carbon fiber-reinforced resin plate (CFRP) having a structure in which three unidirectional fiber-reinforced resin layers 12A, 12B, and 12C are laminated by laminating prepregs so that the fiber directions are 90°, 0°, and 90°, respectively, with respect to the longitudinal direction X. Buckling suppression members 18A and 18B, each of which is composed of an adhesive layer and a metal layer, are attached to both sides of the carbon fiber-reinforced resin plate 12.
The materials used in the examples will be described.

<繊維強化樹脂部材>
[エポキシ樹脂]
A1:ビスフェノールA型液状エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、YD-128)
[フェノール化合物]
B1:ビスフェノールA(日鉄ケミカル&マテリアル株式会社製)
[重合触媒]
C1:トリ-o-トリルホスフィン(北興化学工業株式会社製、商品名:TOTP(登録商標))
[強化繊維基材]
E1:PAN系炭素繊維(東レ株式会社製、T700SC-12K-60E)
<Fiber reinforced resin member>
[Epoxy resin]
A1: Bisphenol A type liquid epoxy resin (manufactured by Nippon Steel Chemical & Material Co., Ltd., YD-128)
[Phenol compounds]
B1: Bisphenol A (manufactured by Nippon Steel Chemical & Material Co., Ltd.)
[Polymerization catalyst]
C1: Tri-o-tolylphosphine (manufactured by Hokko Chemical Industry Co., Ltd., trade name: TOTP (registered trademark))
[Reinforced fiber substrate]
E1: PAN-based carbon fiber (Toray Industries, Inc., T700SC-12K-60E)

<座屈抑制部材>
(金属層)
アルミ板:A5052、0.5mm厚
<Buckling suppression member>
(Metal Layer)
Aluminum plate: A5052, 0.5 mm thick

(粘着層)
アクリル系両面テープ(日東電工株式会社製、商品名:Nitto HYPERJOINT(登録商標) H9004、厚さ:0.4mm)
(Adhesive layer)
Acrylic double-sided tape (manufactured by Nitto Denko Corporation, product name: Nitto HYPERJOINT (registered trademark) H9004, thickness: 0.4 mm)

(金属層+粘着層)
アルミテープ(マクセル株式会社製、商品名:SLIONTEC No.8172、厚さ:0.3mm)
(metal layer + adhesive layer)
Aluminum tape (Maxell, product name: SLIONTEC No. 8172, thickness: 0.3 mm)

(その他)
ガラスクロステープ(スリーエム ジャパン株式会社製、商品名:ガラスクロステープ79、厚さ:0.18mm)
(others)
Glass cloth tape (manufactured by 3M Japan Ltd., product name: Glass Cloth Tape 79, thickness: 0.18 mm)

<繊維強化樹脂部材の作製>
A1:188質量部、B1:112質量部、C1:1質量部を溶解したシクロヘキサノン溶液1質量部をプラネタリーミキサーで混練して前駆体組成物(F1)を得た。
リバースロールコーター方式の樹脂コーティング装置を用いて、前駆体組成物(F1)を、シリコーンを塗布した離型紙上にコーティング温度40℃で均一に塗工し、樹脂目付35g/m、幅1m、長さ100mの前駆体組成物(F1)フィルムとした。
<Production of fiber reinforced resin member>
A precursor composition (F1) was obtained by kneading 1 part by mass of a cyclohexanone solution in which 188 parts by mass of A1, 112 parts by mass of B1, and 1 part by mass of C1 were dissolved, using a planetary mixer.
Using a reverse roll coater type resin coating device, the precursor composition (F1) was uniformly coated on a silicone-coated release paper at a coating temperature of 40°C to obtain a precursor composition (F1) film with a resin basis weight of 35 g/ m2 , a width of 1 m and a length of 100 m.

続いて、強化繊維を一方向に引き揃えた強化繊維基材(E1)を準備し、該基材の両面から前駆体組成物(F1)フィルムで挟み込むようにしてプレスロールを通して温度100℃、線圧20kg/cmにて加熱加圧含浸することによって現場重合型フェノキシ樹脂プリプレグ(G1)を作製した。 Next, a reinforcing fiber substrate (E1) in which the reinforcing fibers were aligned in one direction was prepared, and the substrate was sandwiched between films of the precursor composition (F1) on both sides and impregnated with heat and pressure through a press roll at a temperature of 100°C and a linear pressure of 20 kg/cm to produce an in-situ polymerized phenoxy resin prepreg (G1).

長手方向に対して、現場重合型フェノキシ樹脂プリプレグ(G1)を繊維方向が90°方向で厚みが1.0mmとなるように積層したものを外層とし、繊維方向が0°方向で厚みが3.0mmとなるように積層したものを内層とした厚さ5mmの3層構造積層体を製造した。 A three-layer laminate with a thickness of 5 mm was produced, with the outer layer being an in-situ polymerized phenoxy resin prepreg (G1) laminated so that the fiber direction was 90° to the longitudinal direction and the thickness was 1.0 mm, and the inner layer being laminated so that the fiber direction was 0° to the longitudinal direction and the thickness was 3.0 mm.

この3層積層構造体を、300mmL×16mmWのサイズとなるように裁断して、試験サンプルとして梁状の繊維強化樹脂部材を作製した。
なお、繊維強化樹脂部材の樹脂のTgは、103℃であった。
This three-layer laminate structure was cut to a size of 300 mmL×16 mmW to prepare a beam-shaped fiber-reinforced resin member as a test sample.
The Tg of the resin of the fiber reinforced resin member was 103°C.

〔実施例1〕
(複合部材の作製)
繊維強化樹脂部材の片面に、座屈抑制部材としてアルミテープを3枚重ねて貼り付けて複合部材を作製した。
Example 1
(Preparation of composite members)
A composite member was produced by attaching three layers of aluminum tape as a buckling suppression member to one side of a fiber-reinforced resin member.

(手曲げ加工)
複合部材を140℃に設定した恒温槽内で15分間予熱した後、複合部材のアルミテープ側の中央部分を丸棒の曲げ治具に当てた状態で、治具に対して複合部材の両端を手で押し付けて、図8に示すように曲げ角度α(曲げ加工前の水平形状に対する曲げ加工後の角度)が30度となるまで曲げ加工を行った。
(Hand bending)
The composite member was preheated for 15 minutes in a thermostatic chamber set at 140° C., and then both ends of the composite member were pressed by hand against a round bar bending jig while the central portion of the composite member on the aluminum tape side was placed in contact with the jig, and the composite member was bent until the bending angle α (the angle after bending with respect to the horizontal shape before bending) became 30 degrees, as shown in FIG. 8 .

(座屈抑制部材の除去)
手曲げ加工後、アルミテープを全て剥がして曲げ加工された繊維強化樹脂部材22を得た。
(Removal of buckling suppression members)
After the manual bending process, the aluminum tape was entirely peeled off to obtain a bent fiber reinforced resin member 22 .

〔実施例2〕
繊維強化樹脂部材の両面にそれぞれアルミテープを3枚重ねた座屈抑制部材を貼り付けて複合部材を作製した。実施例1と同様にして複合部材の手曲げ加工を行った後、繊維強化樹脂部材の両面からアルミテープを全て剥がして曲げ加工された繊維強化樹脂部材を得た。
Example 2
A composite member was produced by attaching a buckling suppression member, which was made of three layers of aluminum tape, to both sides of a fiber-reinforced resin member. After manually bending the composite member in the same manner as in Example 1, all of the aluminum tape was peeled off from both sides of the fiber-reinforced resin member to obtain a bent fiber-reinforced resin member.

〔実施例3〕
繊維強化樹脂部材の片面に座屈抑制部材としてアクリル系両面テープを介してアルミ板を貼り付けて複合部材を作製した。複合部材のアルミ板側の中央部分を丸棒の曲げ治具に当てた状態で実施例1と同様に手曲げ加工を行った後、繊維強化樹脂部材からアルミ板とともにアクリル系両面テープを剥がして曲げ加工された繊維強化樹脂部材を得た。
Example 3
A composite member was produced by attaching an aluminum plate as a buckling suppression member to one side of a fiber-reinforced resin member via an acrylic double-sided tape. The central part of the aluminum plate side of the composite member was placed against a round bar bending jig and hand-bent in the same manner as in Example 1. The acrylic double-sided tape was then peeled off together with the aluminum plate from the fiber-reinforced resin member to obtain a bent fiber-reinforced resin member.

〔実施例4〕
繊維強化樹脂部材の両面にそれぞれ座屈抑制部材としてアクリル系両面テープを介してアルミ板を貼り付けて複合部材を作製した。実施例1と同様にして複合部材の手曲げ加工を行った後、繊維強化樹脂部材の両面からアルミ板とともにアクリル系両面テープを剥がして曲げ加工された繊維強化樹脂部材を得た。
Example 4
A composite member was produced by attaching aluminum plates as buckling suppression members to both sides of a fiber-reinforced resin member via acrylic double-sided tape. After manually bending the composite member in the same manner as in Example 1, the acrylic double-sided tape was peeled off together with the aluminum plates from both sides of the fiber-reinforced resin member to obtain a bent fiber-reinforced resin member.

〔比較例1〕
繊維強化樹脂部材に座屈抑制部材を貼り付けずに曲げ加工を行ったこと以外は、実施例1と同様に手曲げ加工を行って曲げ加工された繊維強化樹脂部材を得た。
Comparative Example 1
A bent fiber-reinforced resin member was obtained by performing manual bending in the same manner as in Example 1, except that the bending was performed without attaching a buckling suppression member to the fiber-reinforced resin member.

〔比較例2〕
アルミテープを3枚重ねた座屈抑制部材に代えてガラスクロステープを5枚重ねて繊維強化樹脂部材の片面に貼り付けたこと以外は実施例1と同様に手曲げ加工を行った後、ガラスクロステープを剥離して曲げ加工された繊維強化樹脂部材を得た。
Comparative Example 2
The manual bending process was performed in the same manner as in Example 1, except that five layers of glass cloth tape were stacked and attached to one side of the fiber reinforced resin member instead of the buckling suppression member made of three layers of aluminum tape, and then the glass cloth tape was peeled off to obtain a bent fiber reinforced resin member.

[評価]
加工後の繊維強化樹脂部材について、座屈の有無、反りの有無、層間のずれについて目視について評価した。また、曲げ加工前の強度に対する曲げ加工後の強度の比率(曲げ強度維持率)を測定した。
[evaluation]
The fiber-reinforced resin members after bending were visually evaluated for buckling, warping, and interlayer misalignment. In addition, the ratio of strength after bending to strength before bending (bending strength retention rate) was measured.

(耐座屈発生)
繊維強化樹脂部材の曲げ加工部の圧縮側に凸状の座屈の有無を確認した。
〇:座屈がない
×:座屈がある
(Anti-buckling)
The presence or absence of convex buckling on the compression side of the bent portion of the fiber reinforced resin member was confirmed.
◯: No buckling ×: Buckling

(耐反り発生)
繊維強化樹脂部材の曲げ加工部以外の部分の反りの有無を確認した。繊維強化樹脂部材の曲げ加工部の引張側(引張応力がかかった側)に加工されていない部分に反りの無いストレート部材を当てて繊維強化樹脂部材との隙間が1mm以下であれば反りが抑制されていると判断した。
〇:反りがない
△:反りが抑制されている
×:反りが抑制されていない
(Anti-warping)
The presence or absence of warping in the portions other than the bent portion of the fiber-reinforced resin member was confirmed. When a straight member without warping was placed on the unprocessed portion of the tensile side (the side where tensile stress was applied) of the bent portion of the fiber-reinforced resin member and the gap between the straight member and the bent portion was 1 mm or less, it was determined that warping was suppressed.
◯: No warping △: Warping is suppressed ×: Warping is not suppressed

(層間ずれ)
繊維強化樹脂部材の端部における層間のずれの有無を確認した。繊維強化樹脂部材の3層の層間がずれて端部が厚さ方向に対して直線的に傾斜していれば、均一に層間がずれて理想的に曲げ加工されたと言える。
〇:層間のずれがある
×:層間のずれがない
(Interlayer slippage)
The presence or absence of misalignment between layers at the ends of the fiber-reinforced resin member was confirmed. If the three layers of the fiber-reinforced resin member were misaligned and the ends were inclined linearly in the thickness direction, it could be said that the layers were uniformly misaligned and the bending process was ideal.
○: There is a misalignment between layers ×: There is no misalignment between layers

繊維強化樹脂部材の曲げ加工を以下の条件で曲げ治具に人力で押し付けることにより実施し、評価を行った。
予熱温度:140℃
曲げ治具の半径:15mm
曲げ角度:45°
座屈抑制部材及び複合部材の構成材料、物性、評価結果を表1に示す。なお、物性(曲げ剛性、接着強度、弾性率)は、前述した方法により測定した。
The fiber reinforced resin member was subjected to bending processing by manually pressing it against a bending jig under the following conditions, and evaluation was performed.
Preheat temperature: 140°C
Bending jig radius: 15 mm
Bending angle: 45°
The constituent materials, physical properties, and evaluation results of the buckling suppression member and the composite member are shown in Table 1. The physical properties (flexural rigidity, adhesive strength, elastic modulus) were measured by the methods described above.


比較例1、2はいずれも座屈が発生した。比較例2で用いたガラスクロステープは剛性がほとんどないため、座屈が発生したと考えられる。
実施例1~4はいずれも座屈が発生しなかった。
座屈抑制部材としてアルミテープを3枚重ねた座屈抑制部材、又は、アクリル系両面テープとアルミ板を組み合わせた座屈抑制部材を繊維強化樹脂部材の片面(曲げ加工の圧縮側)に貼り付けた実施例1、3では、反りの発生が抑制されており、特に繊維強化樹脂部材の両面に貼り付けた実施例2、4では、反りの発生がなく、最も効果的であった。
Buckling occurred in both Comparative Examples 1 and 2. It is believed that the glass cloth tape used in Comparative Example 2 had almost no rigidity, which is why buckling occurred.
In all of Examples 1 to 4, buckling did not occur.
In Examples 1 and 3, in which a buckling suppression member consisting of three layers of aluminum tape or a buckling suppression member consisting of a combination of acrylic double-sided tape and an aluminum plate was attached to one side (the compression side of the bending process) of the fiber-reinforced resin member, the occurrence of warping was suppressed. In particular, in Examples 2 and 4, in which the members were attached to both sides of the fiber-reinforced resin member, no warping occurred and they were the most effective.

(強度維持率)
実施例4の構成について、曲げ加工後、曲げ戻して平板にしアルミ板を除去し、その後、3点曲げ試験実施して強度と弾性率を確認した。結果を図9に示す。弾性率はどの加工条件でも曲げ加工前のほぼ100%維持された。
一方、強度は曲げ角度が大きいほど下がる傾向があり、比較例1のCFRP単体(アルミ無し)を曲げ角度α45°まで曲げ加工した場合は、曲げ加工前の80%未満に強度が低下したが、複合部材では、曲げ角度αが45°まで曲げ加工しても曲げ加工前の80%以上の強度が維持された。
(Strength retention rate)
For the structure of Example 4, after bending, the specimen was bent back to a flat plate to remove the aluminum plate, and then a three-point bending test was carried out to confirm the strength and elastic modulus. The results are shown in Figure 9. The elastic modulus was maintained at almost 100% of the value before bending under all processing conditions.
On the other hand, the strength tends to decrease as the bending angle increases. When the CFRP alone (without aluminum) of Comparative Example 1 was bent to a bending angle α of 45°, the strength decreased to less than 80% of the strength before bending. However, in the case of the composite member, the strength was maintained at 80% or more of the strength before bending, even when bent to a bending angle α of 45°.

<プレスV字曲げ試験>
図10に示すように、上型(曲げ圧縮側)の曲率半径(r)を9.0mm、下型(曲げ引張側)の曲率半径(r)を10.0mmとした金型を用い、CFRP単体(比較例3)及びCFRPの両面にアクリル系両面テープを介してアルミ板を貼り付けた複合部材(実施例5)のV字(90°)曲げ加工試験を行った。各試験体は、長さ90mm×幅55mm×厚さ5mmのサイズのCFRPを用いた。
<Press V-bend test>
As shown in Fig. 10, a V-shaped (90°) bending test was carried out on a CFRP alone (Comparative Example 3) and a composite member (Example 5) in which aluminum plates were attached to both sides of a CFRP with acrylic double-sided tape, using a mold with an upper mold (bending compression side) having a curvature radius (r) of 9.0 mm and a lower mold (bending tension side) having a curvature radius (r) of 10.0 mm. Each test specimen was a CFRP measuring 90 mm long x 55 mm wide x 5 mm thick.

なお、V字(90°)曲げ加工は、プレス装置の機構を利用した荷重制御は行わずに上型金型の自重のみを単純に付加することで行い、成形品が厚み方向に必要以上に押しつぶされることによって座屈発生箇所が平坦化されてしまわないように、試験体の厚みよりもわずかに大きな厚みのスペーサーを用いた。
プレス加工後は金型をすぐに冷却して試験体を脱型した。試験体として複合部材を用いた実施例5では、脱型後、アルミ板とともにアクリル系両面テープを全て剥離して曲げ加工されたCFRPを得た。
曲げ加工された各CFRPについて、座屈、層間のずれ、反りの有無を観察した。
結果を表2に示す。
The V-shaped (90°) bending process was performed by simply applying the weight of the upper die without using the mechanism of the press machine to control the load, and a spacer with a thickness slightly larger than that of the test specimen was used to prevent the molded product from being crushed more than necessary in the thickness direction, which would result in the buckling area being flattened.
After the pressing, the mold was immediately cooled and the test specimen was demolded. In Example 5, in which a composite member was used as the test specimen, the acrylic double-sided tape was all peeled off together with the aluminum plate after demolding to obtain a bent CFRP.
Each bent CFRP was observed for the presence or absence of buckling, interlayer misalignment, and warping.
The results are shown in Table 2.

表2に示されるように、CFRP単体でプレスV字曲げを行った比較例3では、座屈が発生し、層間のずれがほとんど見られず、反りが生じていた。
一方、CFTPの両面に座屈抑制部材を貼り付けた複合部材でプレスV字曲げを行った実施例5では、座屈防止、層間のずれ、反り防止により加工精度が向上したほか、外観の向上も見られた。
As shown in Table 2, in Comparative Example 3 in which the CFRP alone was subjected to press V-bending, buckling occurred, there was almost no misalignment between the layers, and warping occurred.
On the other hand, in Example 5, in which a composite material having buckling suppression members attached to both sides of the CFTP was subjected to press V-bending, processing accuracy was improved by preventing buckling, misalignment between layers, and warping, and the appearance was also improved.

10 複合部材
12A,12B,12C 一方向繊維強化樹脂層
12 繊維強化樹脂部材
14 粘着層
16 金属層
18 座屈抑制部材
22 繊維強化樹脂部材(曲げ加工後)
10 Composite member 12A, 12B, 12C Unidirectional fiber reinforced resin layer 12 Fiber reinforced resin member 14 Adhesive layer 16 Metal layer 18 Buckling suppression member 22 Fiber reinforced resin member (after bending)

Claims (7)

熱可塑性樹脂及び強化繊維を含む繊維強化樹脂部材を曲げ加工する方法であって、
金属層と前記繊維強化樹脂部材に対して剥離可能な粘着層との積層構造を有する座屈抑制部材が前記粘着層により前記繊維強化樹脂部材に貼り付けられた複合部材を得る工程と、
前記座屈抑制部材の少なくとも一部が前記繊維強化樹脂部材が曲げ加工される部分の圧縮側で曲がるように、加熱された前記複合部材を曲げ加工する工程と、
前記曲げ加工された前記複合部材から前記座屈抑制部材を除去する工程と、
を含む繊維強化樹脂部材の加工方法。
A method for bending a fiber-reinforced resin member containing a thermoplastic resin and reinforcing fibers, comprising:
obtaining a composite member in which a buckling suppression member having a laminated structure of a metal layer and an adhesive layer peelable from the fiber reinforced resin member is attached to the fiber reinforced resin member by the adhesive layer;
Bending the heated composite member such that at least a portion of the buckling suppression member is bent on the compression side of the portion of the fiber reinforced resin member that is bent;
removing the buckling restraint member from the bent composite member;
A method for processing a fiber-reinforced resin member comprising the steps of:
前記粘着層は、厚みが2mm以下、前記金属層は、厚みが0.05mm以上である請求項1に記載の繊維強化樹脂部材の加工方法。 The method for processing a fiber-reinforced resin member according to claim 1, wherein the adhesive layer has a thickness of 2 mm or less, and the metal layer has a thickness of 0.05 mm or more. 前記複合部材を曲げ加工する工程において、前記複合部材を前記熱可塑性樹脂のガラス転移温度以上の温度に加熱された状態で5.0mm以上の曲率半径で曲げ加工する請求項1に記載の繊維強化樹脂部材の加工方法。 The method for processing a fiber-reinforced resin member according to claim 1, wherein in the step of bending the composite member, the composite member is bent with a radius of curvature of 5.0 mm or more while being heated to a temperature equal to or higher than the glass transition temperature of the thermoplastic resin. 前記複合部材における前記繊維強化樹脂部材と前記座屈抑制部材との接着強度が、4N/mm以下である請求項1に記載の繊維強化樹脂部材の加工方法。 The method for processing a fiber-reinforced resin member according to claim 1, wherein the adhesive strength between the fiber-reinforced resin member and the buckling suppression member in the composite member is 4 N/mm or less. 前記金属層が、銅、アルミニウム、及びステンレスの少なくとも1種を含む金属層である請求項1に記載の繊維強化樹脂部材の加工方法。 The method for processing a fiber-reinforced resin member according to claim 1, wherein the metal layer is a metal layer containing at least one of copper, aluminum, and stainless steel. 前記熱可塑性樹脂は、ガラス転移温度が60℃以上の非晶質熱可塑性樹脂である請求項1~請求項5のいずれか1項に記載の繊維強化樹脂部材の加工方法。 The method for processing a fiber-reinforced resin member according to any one of claims 1 to 5, wherein the thermoplastic resin is an amorphous thermoplastic resin having a glass transition temperature of 60°C or higher. 熱可塑性樹脂及び強化繊維を含む繊維強化樹脂部材と、
金属層と前記繊維強化樹脂部材に対して剥離可能な粘着層との積層構造を有し、前記粘着層により前記繊維強化樹脂部材に貼り付けられた座屈抑制部材と、
を含み、請求項1に記載の繊維強化樹脂部材の加工方法に用いる複合部材。

A fiber reinforced resin member containing a thermoplastic resin and reinforcing fibers;
A buckling suppression member having a laminated structure of a metal layer and an adhesive layer that is peelable from the fiber reinforced resin member, and attached to the fiber reinforced resin member by the adhesive layer;
A composite member used in the method for processing a fiber-reinforced resin member according to claim 1.

JP2022158853A 2022-09-30 2022-09-30 Method for processing fiber-reinforced resin member and composite member Pending JP2024052261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022158853A JP2024052261A (en) 2022-09-30 2022-09-30 Method for processing fiber-reinforced resin member and composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022158853A JP2024052261A (en) 2022-09-30 2022-09-30 Method for processing fiber-reinforced resin member and composite member

Publications (1)

Publication Number Publication Date
JP2024052261A true JP2024052261A (en) 2024-04-11

Family

ID=90622732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022158853A Pending JP2024052261A (en) 2022-09-30 2022-09-30 Method for processing fiber-reinforced resin member and composite member

Country Status (1)

Country Link
JP (1) JP2024052261A (en)

Similar Documents

Publication Publication Date Title
JP6440222B2 (en) In-situ polymerization type thermoplastic prepreg, thermoplastic composite and production method thereof
JP5223354B2 (en) Cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
JP2008207544A5 (en)
CN110505958B (en) Fiber-reinforced composite material molded article and method for producing same
EP3603915B1 (en) Self-adhesive prepreg and method for producing same
EP3747937A1 (en) Prepreg and manufacturing method for prepreg molded article
JP2010229211A (en) Prepreg for fiber reinforced composite material and molded product thereof
US6133167A (en) Fibre reinforced resin composite products
US20070010611A1 (en) Method for producing fiber-reinforced thermoplastics plastic and fiber-reinforced thermoplastic prastic
JP2024052261A (en) Method for processing fiber-reinforced resin member and composite member
JP2008208343A (en) Cut prepreg substrate, laminated substrate, fiber reinforced plastics and preparation method of cut prepreg substrate
US6242090B1 (en) Fibre reinforced resin composite products
WO2020196499A1 (en) Matrix resin for fiber-reinforced resins, matrix resin film for fiber-reinforced resins, composite body, prepreg, carbon fiber-reinforced resin molded body and method for producing carbon fiber-reinforced resin molded body
JP6737410B1 (en) Sheet molding compound and fiber reinforced composite material
WO2022260093A1 (en) Unidirectional reinforcing fiber prepreg, fiber-reinforced plastic sheet using same, method for producing fiber-reinforced plastic, and fiber-reinforced plastic
JP2023006522A (en) Composite member
WO2020071170A1 (en) Molding material, fiber-reinforced composite material and method for producing fiber-reinforced composite material
JP2022174669A (en) Carbon fiber-reinforced plastic molding material, unidirectional carbon fiber base material, and carbon fiber-reinforced plastic molding body
TW202241694A (en) Prepreg, molded article, and integrally molded article exhibiting appropriate flexibility and adhesiveness, having excellent shaping to a complex mold surface and having excellent adhesion to the mold surface
JP2023006197A (en) Resin film, prepreg, fiber-reinforced plastic, and resin composition
TW202328311A (en) Tow prepreg and method of producing the same
JP2022152406A (en) Thermal conductivity member
WO2023190322A1 (en) Adhesive sheet
TW202116522A (en) Method for manufacturing molded article
KR20200139128A (en) Prepreg and its manufacturing method