JP2024048961A - 基板評価方法及び基板処理装置 - Google Patents
基板評価方法及び基板処理装置 Download PDFInfo
- Publication number
- JP2024048961A JP2024048961A JP2022155159A JP2022155159A JP2024048961A JP 2024048961 A JP2024048961 A JP 2024048961A JP 2022155159 A JP2022155159 A JP 2022155159A JP 2022155159 A JP2022155159 A JP 2022155159A JP 2024048961 A JP2024048961 A JP 2024048961A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- trench
- absorbance spectrum
- phonons
- infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 636
- 238000000034 method Methods 0.000 title claims abstract description 87
- 238000000862 absorption spectrum Methods 0.000 claims abstract description 200
- 238000005259 measurement Methods 0.000 claims abstract description 127
- 238000011156 evaluation Methods 0.000 claims abstract description 121
- 230000003287 optical effect Effects 0.000 claims abstract description 34
- 238000004566 IR spectroscopy Methods 0.000 claims abstract description 25
- 238000009795 derivation Methods 0.000 claims abstract description 24
- 238000004458 analytical method Methods 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims description 140
- 230000010287 polarization Effects 0.000 claims description 82
- 238000001228 spectrum Methods 0.000 claims description 64
- 239000011149 active material Substances 0.000 claims description 40
- 238000012844 infrared spectroscopy analysis Methods 0.000 claims description 16
- 230000001678 irradiating effect Effects 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 10
- 125000004429 atom Chemical group 0.000 claims description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 2
- 239000010408 film Substances 0.000 description 248
- 230000008569 process Effects 0.000 description 71
- 230000015572 biosynthetic process Effects 0.000 description 62
- 238000010586 diagram Methods 0.000 description 47
- 239000007789 gas Substances 0.000 description 42
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 31
- 238000001514 detection method Methods 0.000 description 25
- 238000012546 transfer Methods 0.000 description 25
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 24
- 229910052710 silicon Inorganic materials 0.000 description 24
- 239000010703 silicon Substances 0.000 description 24
- 238000005530 etching Methods 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 12
- 230000008859 change Effects 0.000 description 10
- 238000003860 storage Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000007723 transport mechanism Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000001028 reflection method Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
本開示は、基板評価方法及び基板処理装置に関するものである。
特許文献1は、ウエハ上に形成された絶縁薄膜に、赤外分光法を適用して観測されるLOフォノンの波数、スペクトル・ピークの半値幅、吸収面積から絶縁薄膜を評価する技術を開示する。
本開示は、基板に形成された異方性の構造物の状態を検出する技術を提供する。
本開示の一態様による基板評価方法は、測定工程と、導出工程とを有する。測定工程は、異方性の構造物が形成された基板に対して赤外分光法による分析を行い、LO(Longitudinal Optical)フォノン、TO(Transverse Optical)フォノンの少なくともの一方のピークを含む波数範囲の吸光度スペクトルを測定する。導出工程は、測定された吸光度スペクトルから構造物に関する評価情報を導出する。
本開示によれば、基板に形成された異方性の構造物の状態を検出できる。
以下、図面を参照して本願の開示する基板評価方法及び基板処理装置の実施形態について詳細に説明する。なお、本実施形態により、開示する基板評価方法及び基板処理装置が限定されるものではない。
半導体デバイスの製造において、半導体ウエハ等の基板には、異方性の構造物が形成される場合がある。異方性の構造物としては、例えば、トレンチ(溝)などが挙げられる。半導体デバイスの製造では、異方性の構造物が形成された基板に対して、膜を成膜する成膜処理や、表面の膜のエッチングするエッチング処理などの基板処理が行われる。半導体デバイスの製造では、微細化が進み、異方性の構造物の状態を精度よく把握することが重要である。
そこで、基板に形成された異方性の構造物の状態を検出する技術が期待されている。
[第1実施形態]
[成膜装置の構成]
次に、第1実施形態について説明する。最初に、本開示の基板処理装置の一例について説明する。以下では、本開示の基板処理装置を成膜装置100とし、成膜装置100により、基板処理として成膜を行う場合を主な例として説明する。図1は、第1実施形態に係る成膜装置100の概略構成の一例を示す概略断面図である。成膜装置100は、1つの実施形態において、基板Wに対して成膜を行う装置である。図1に示す成膜装置100は、気密に構成され、電気的に接地電位とされたチャンバ1を有している。このチャンバ1は、円筒状とされ、例えば表面に陽極酸化被膜を形成されたアルミニウム、ニッケル等から構成されている。チャンバ1内には、載置台2が設けられている。
[成膜装置の構成]
次に、第1実施形態について説明する。最初に、本開示の基板処理装置の一例について説明する。以下では、本開示の基板処理装置を成膜装置100とし、成膜装置100により、基板処理として成膜を行う場合を主な例として説明する。図1は、第1実施形態に係る成膜装置100の概略構成の一例を示す概略断面図である。成膜装置100は、1つの実施形態において、基板Wに対して成膜を行う装置である。図1に示す成膜装置100は、気密に構成され、電気的に接地電位とされたチャンバ1を有している。このチャンバ1は、円筒状とされ、例えば表面に陽極酸化被膜を形成されたアルミニウム、ニッケル等から構成されている。チャンバ1内には、載置台2が設けられている。
載置台2は、例えばアルミニウム、ニッケル等の金属により形成されている。載置台2の上面には、半導体ウエハ等の基板Wが載置される。載置台2は、載置された基板Wを水平に支持する。載置台2の下面は、導電性材料により形成された支持部材4に電気的に接続されている。載置台2は、支持部材4によって支持されている。支持部材4は、チャンバ1の底面で支持されている。支持部材4の下端は、チャンバ1の底面に電気的に接続されており、チャンバ1を介して接地されている。支持部材4の下端は、載置台2とグランド電位との間のインピーダンスを下げるように調整された回路を介してチャンバ1の底面に電気的に接続されていてもよい。
載置台2には、ヒータ5が内蔵されており、載置台2に載置される基板Wをヒータ5によって所定の温度に加熱することができる。載置台2は、冷媒を流通させるための流路(図示せず)が内部に形成され、チャンバ1の外部に設けられたチラーユニットによって温度制御された冷媒が流路内に循環供給されてもよい。ヒータ5による加熱と、チラーユニットから供給された冷媒による冷却とにより、載置台2は、基板Wを所定の温度に制御してもよい。なお、載置台2は、ヒータ5を搭載せず、チラーユニットから供給される冷媒のみで基板Wの温度制御を行ってもよい。
なお、載置台2には、電極が埋め込まれていてもよい。この電極に供給された直流電圧によって発生した静電気力により、載置台2は、上面に載置された基板Wを吸着させることができる。
載置台2は、基板Wを昇降するためのリフターピン6が設けられている。成膜装置100では、基板Wを搬送する場合や、基板Wに対して赤外分光法による分析を行う場合、載置台2からリフターピン6を突出させ、リフターピン6で基板Wを裏面から支持して基板Wを載置台2から上昇させる。図2は、第1実施形態に係る成膜装置100において基板Wを載置台2から上昇させた状態を示す図である。成膜装置100には、基板Wが搬送される。例えば、チャンバ1の側壁には、基板Wを搬入出するための不図示の搬入出口が設けられている。この搬入出口には、当該搬入出口を開閉するゲートバルブが設けられている。基板Wを搬入出する際、ゲートバルブは、開状態とされる。基板Wは、搬送室内の搬送機構(図示せず)により搬入出口からチャンバ1内に搬入される。成膜装置100は、チャンバ1外に設けられた昇降機構(図示せず)を制御してリフターピン6を上昇させて搬送機構から基板Wを受け取る。成膜装置100は、搬送機構の退出後、昇降機構を制御してリフターピン6を下降させて基板Wを載置台2に載置する。
載置台2の上方であってチャンバ1の内側面には、略円盤状に形成されたシャワーヘッド16が設けられている。シャワーヘッド16は、セラミックス等の絶縁部材45を介して、載置台2の上部に支持されている。これにより、チャンバ1とシャワーヘッド16とは、電気的に絶縁されている。シャワーヘッド16は、例えばニッケル等の導電性の金属により形成されている。
シャワーヘッド16は、天板部材16aと、シャワープレート16bとを有する。天板部材16aは、チャンバ1内を上側から塞ぐように設けられている。シャワープレート16bは、天板部材16aの下方に、載置台2に対向するように設けられている。天板部材16aには、ガス拡散空間16cが形成されている。天板部材16aとシャワープレート16bは、ガス拡散空間16cに向けて開口する多数のガス吐出孔16dが分散して形成されている。
天板部材16aには、ガス拡散空間16cへ各種のガスを導入するためのガス導入口16eが形成されている。ガス導入口16eには、ガス供給路15aが接続されている。ガス供給路15aには、ガス供給部15が接続されている。
ガス供給部15は、成膜に用いる各種のガスのガス供給源にそれぞれ接続されたガス供給ラインを有している。各ガス供給ラインは、成膜のプロセスに対応して適宜分岐し、開閉バルブなどのバルブや、マスフローコントローラなどの流量制御器など、ガスの流量を制御する制御機器が設けられている。ガス供給部15は、各ガス供給ラインに設けられた開閉バルブや流量制御器などの制御機器を制御することにより、各種のガスの流量の制御が可能とされている。
ガス供給部15は、ガス供給路15aに成膜に用いる各種のガスを供給する。例えば、ガス供給部15は、成膜の原料ガスをガス供給路15aに供給する。また、ガス供給部15は、パージガスや原料ガスと反応する反応ガスをガス供給路15aに供給する。ガス供給路15aに供給されたガスは、ガス拡散空間16cで拡散されて各ガス吐出孔16dから吐出される。
シャワープレート16bの下面と載置台2の上面とによって囲まれた空間は、成膜処理が行われる処理空間をなす。また、シャワープレート16bは、載置台2と対になり、処理空間に容量結合プラズマ(CCP)を形成するための電極板として構成されている。シャワーヘッド16には、整合器11を介して高周波電源10が接続されている。シャワーヘッド16を介して処理空間に供給されたガスに高周波電源10から高周波電力(RF電力)が印加されることで、処理空間にプラズマが形成される。なお、高周波電源10は、シャワーヘッド16に接続される代わりに載置台2に接続され、シャワーヘッド16が接地されるようにしてもよい。本実施形態では、シャワーヘッド16、ガス供給部15、高周波電源10などの成膜を実施する部分が、基板Wに基板処理を実施する基板処理部に対応する。本実施形態では、基板処理部により、基板Wに対して、基板処理として、成膜処理を行う。
チャンバ1の底部には、排気口71が形成されている。排気口71には、排気管72を介して排気装置73が接続されている。排気装置73は、真空ポンプや圧力調整バルブを有する。排気装置73は、真空ポンプや圧力調整バルブを作動させることにより、チャンバ1内を所定の真空度まで減圧、調整できる。
本実形態に係る成膜装置100は、チャンバ1内の基板Wに対して赤外分光法(IR:infrared spectroscopy)による分析を行い、基板Wに形成された構造物に関する評価情報を導出する。赤外分光法には、基板Wに赤外光を照射し、基板Wを透過した光(透過光)を測定する手法(透過法)と、基板Wを反射した光(反射光)を測定する手法(反射法)がある。図1に示した成膜装置100は、基板Wを透過した透過光を測定する構成とした場合の例を示している。チャンバ1は、載置台2を介して相対する側壁に、窓80a、窓80bが設けられている。窓80aは、側壁の高い位置に設けられている。窓80bは、側壁の低い位置に設けられている。窓80a、窓80bは、例えば石英などの赤外光に対して透過性を有する部材がはめ込まれ、封止されている。窓80aの外側には、赤外光を照射する照射部81が設けられている。窓80bの外側には、赤外光を検出可能な検出部82が設けられている。
透過法による赤外分光法の分析を行う場合、成膜装置100は、図2に示したように、載置台2からリフターピン6を突出させ、基板Wを載置台2から上昇させる。窓80a及び照射部81は、照射部81から照射された赤外光が窓80aを介して、上昇させた基板Wの上面に照射されるように位置が調整されている。また、窓80b及び検出部82は、上昇させた基板Wを透過した赤外光による透過光が窓80bを介して検出部82に入射するように位置が調整されている。
照射部81は、照射した赤外光が窓80aを介して、上昇させた基板Wの中央付近の所定の領域に当たるように配置されている。検出部82は、基板Wの所定の領域を透過した透過光が窓80bを介して入射するよう配置されている。
本実形態に係る成膜装置100は、赤外分光法により、基板Wを透過した透過光の波数毎の吸光度を求めることで、基板Wに形成された構造物に関する評価情報を導出する。具体的には、成膜装置100は、フーリエ変換赤外分光法により、基板Wを透過した透過光の波数毎の吸光度を求めることで、基板Wに形成されたトレンチに関する評価情報を導出する。
照射部81は、赤外光を発する光源や、ミラー、レンズ等の光学素子を内蔵し、干渉させた赤外光を照射可能とされている。例えば、照射部81は、光源で発生した赤外光が外部へ出射されるまでの光路の中間部分を、ハーフミラー等で2つの光路に分光し、一方の光路長を、他方の光路長に対して変動させて光路差を変えて干渉させて、光路差の異なる様々な干渉波の赤外光を照射する。また、照射部81は、例えば、偏光子等の光学素子を光路に設けて、照射する赤外光の偏光を制御可能とされている。なお、照射部81は、光源を複数設け、それぞれの光源の赤外光を光学素子で制御して、光路差の異なる様々な干渉波の赤外光を照射可能としてもよい。
検出部82は、基板Wを透過した様々な干渉波の赤外光による透過光の信号強度を検出する。本実施形態では、照射部81、検出部82などの赤外分光法の測定を実施する部分が本開示の計測部に対応する。
上記のように構成された成膜装置100は、制御部60によって、その動作が統括的に制御される。制御部60には、ユーザインターフェース61と、記憶部62とが接続されている。
ユーザインターフェース61は、工程管理者が成膜装置100を管理するためにコマンドの入力操作を行うキーボード等の操作部や、成膜装置100の稼動状態を可視化して表示するディスプレイ等の表示部から構成されている。ユーザインターフェース61は、各種の動作を受け付ける。例えば、ユーザインターフェース61は、プラズマ処理の開始を指示する所定操作を受け付ける。
記憶部62には、成膜装置100で実行される各種処理を制御部60の制御にて実現するためのプログラム(ソフトウエア)や、処理条件、プロセスパラメータ等のデータが格納されている。例えば、記憶部62は、相関情報62aを記憶する。なお、プログラムやデータは、コンピュータで読み取り可能なコンピュータ記録媒体(例えば、ハードディスク、CD、フレキシブルディスク、半導体メモリ等)などに格納された状態のものを利用してもよい。或いは、プログラムやデータは、他の装置から、例えば専用回線を介して随時伝送させてオンラインで利用したりすることも可能である。
相関情報62aは、吸光度スペクトルと基板Wに形成された異方性の構造物との相関関係を示すデータである。相関情報62aの詳細は、後述する。
制御部60は、例えば、プロセッサ、メモリ等を備えるコンピュータである。制御部60は、ユーザインターフェース61からの指示等に基づいてプログラムやデータを記憶部62から読み出して成膜装置100の各部を制御することで、後述する基板処理を実行する。
制御部60は、データの入出力を行う不図示のインタフェースを介して、照射部81及び検出部82と接続され、各種の情報を入出力する。制御部60は、照射部81及び検出部82を制御する。例えば、照射部81は、制御部60からの制御情報に基づいて、光路差の異なる様々な干渉波を照射する。また、制御部60は、検出部82により検出された赤外光の信号強度のデータが入力する。
ここで、図1及び図2では、透過法による赤外分光法の分析が可能なように、成膜装置100を、基板Wを透過した透過光を測定する構成とした場合の例を説明した。しかし、成膜装置100は、反射法による赤外分光法の分析が可能なように構成してもよい。図3は、第1実施形態に係る成膜装置100の他の一例を示す概略構成図である。図3に示した成膜装置100は、基板Wを反射した反射光を測定する構成とした場合の例を示している。
図3に示す成膜装置100では、チャンバ1の側壁の載置台2を介して対向した位置に、窓80a、窓80bが設けられている。窓80aの外側には、赤外光を照射する照射部81が設けられている。窓80bの外側には、赤外光を検出可能な検出部82が設けられている。窓80a及び照射部81は、照射部81から照射された赤外光が窓80aを介して基板Wに照射されるように位置が調整されている。また、窓80b及び検出部82は、基板Wで反射された赤外光が窓80bを介して検出部82に入射するように位置が調整されている。また、チャンバ1の側壁には窓80a、窓80bと異なる位置に、基板Wを搬入出するための不図示の搬入出口が設けられている。この搬入出口には、当該搬入出口を開閉するゲートバルブが設けられている。
照射部81は、照射した赤外光が窓80aを介して基板Wの中央付近の所定の領域に当たるように配置されている。検出部82は、基板Wの所定の領域で反射された赤外光が窓80bを介して入射するよう配置されている。このように、図3に示す成膜装置100は、反射法による赤外分光法の分析が可能とされている。
第1実施形態に係る成膜装置100は、照射部81から基板Wに入射する光の入射角及び照射位置を変更可能に構成してもよい。例えば、図1及び図3では、不図示の駆動機構により、照射部81を上下方向に移動可能及び回転可能に構成して、照射部81から基板Wに入射する光の入射角及び照射位置を変更可能に構成している。
次に、第1実施形態に係る成膜装置100により、基板Wに対して基板処理として成膜処理を実施する流れを簡単に説明する。不図示の搬送アーム等の搬送機構により基板Wが載置台2に載置される。基板Wは、異方性の構造物としてトレンチが形成されている。成膜装置100は、基板Wに対して成膜処理を実施する場合、排気装置73により、チャンバ1内を減圧する。成膜装置100は、ガス供給部15から成膜に用いる各種のガスを供給してシャワーヘッド16からチャンバ1内に処理ガスを導入する。そして、成膜装置100は、高周波電源10から高周波電力を供給して処理空間にプラズマを生成し、基板Wに対して、成膜を実施する。
図4は、第1実施形態に係る基板Wの一例を示す図である。基板Wには、異方性の構造物が形成されている。例えば、基板Wは、異方性の構造物として複数のトレンチ92によるパターン90が形成されている。図4には、各トレンチ92による凹部90aの断面が示されている。図4は、トレンチ92を有するパターン90にプラズマALDにより膜91を成膜した状態を模式的に示している。例えば、図4では、基板Wに形成されたトレンチ92に膜91が成膜されている。
ところで、半導体デバイスの製造では、微細化が進み、基板Wに形成された異方性の構造物の状態を精度よく把握することが重要である。例えば、基板Wに形成されたトレンチ92の状態を精度よく把握することが求められている。
従来から基板Wの状態を分析する技術としては、例えば、フーリエ変換赤外分光法(FT-IR:Fourier transform Infrared spectroscopy)などの赤外分光法がある。FT-IR分析では、基板Wに赤外光を照射し、基板Wを透過又は反射した赤外光を検出して、波数毎の赤外光の吸光度を示す吸光度スペクトルを求める。
ここで、FT-IR分析におけるフォノン(phonon)の影響について説明する。図5A及び図5Bは、フラットな基板におけるフォノンの影響を説明する図である。図5A及び図5Bは、フラットなシリコン基板95に赤外光を測定光として入射した場合を示している。シリコン基板95は、表面に膜96が成膜されている。膜96は、赤外活性の材料を含んでいる。FT-IR分析では、シリコン基板95を透過又は反射した赤外光を検出して、波数毎の赤外光の吸光度を示す吸光度スペクトルを求める。図5Aでは、フラットなシリコン基板95に対して垂直方向から赤外光を測定光として入射した場合を示している。図5Aのように測定光を垂直方向から入射した場合、測定光の電場は、シリコン基板95の表面平行方向のみとなる。この場合、シリコン基板95の表面の膜96の表面平行成分であるTO(Transverse Optical:横光学)フォノンが観測される。図5Bは、フラットなシリコン基板95に対して斜め方向から赤外光を測定光として入射した場合を示している。図5Bのように測定光を斜め方向から入射した場合、測定光の電場は、シリコン基板95に対して斜め方向となる。この場合、測定光の電場のシリコン基板95に対する表面平行成分により、シリコン基板95の表面の膜96の表面平行成分であるTOフォノンが観測される。また、測定光の電場のシリコン基板95に対する表面垂直成分により、シリコン基板95の表面の膜96の垂直平行成分であるLO(Longitudinal Optical:縦光学)フォノンが観測される。
図5Cは、フラットなシリコン基板95における吸光度スペクトルの一例を示す図である。図5Cには、膜96が成膜されたフラットなシリコン基板95のFT-IR分析を行って吸光度スペクトルを求めた結果の一例が示されている。線L51は、フラットなシリコン基板95に対して入射角を0度として、測定光として赤外光を垂直方向から入射した場合を示している。線L52は、フラットなシリコン基板95に対して入射角を60度として、測定光として赤外光を斜め方向から入射した場合を示している。また、図5Cには、SiNのLOフォノン、TOフォノンのピークとなる波数の位置が示されている。線L51に示すように、フラットなシリコン基板95に対して測定光を垂直方向から入射した場合、SiNのTOフォノンが観測される。一方、線L52に示すように、フラットなシリコン基板95に対して測定光を斜め方向から入射した場合、SiNのTOフォノンと、LOフォノンが観測される。
図6A及び図6Bは、トレンチ92が形成された基板Wにおけるフォノンの影響を説明する図である。基板Wは、パターン90としてトレンチ92が形成され、トレンチ92に膜91が成膜されている。図6Aには、「Side view」としてトレンチ92の断面が示されており、「Top view」としてトレンチ92の上面が示されている。トレンチ92は、「Top view」に示すように、上下方向に複数並んで形成されている。図6Aは、基板Wに赤外光を測定光として垂直方向から入射した場合を示している。図6Aでは、測定光の偏光をトレンチ92に対して垂直方向とした場合(Vertical to trench)と、測定光の偏光をトレンチ92に対して平行方向とした場合(Parallel to trench)をそれぞれ示している。測定光の偏光は、例えば、偏光子等の光学素子を測定光の経路に設けて制御する。「Vertical to trench」の「Top view」の欄には、測定光の偏光が矢印によりトレンチ92に対して垂直方向に示されている。「Parallel to trench」の「Top view」の欄には、測定光の偏光が矢印によりトレンチ92に対して平行方向に示されている。トレンチ92が形成された基板Wでは、測定光の偏光をトレンチ92に対して垂直方向とした場合(Vertical to trench)、基板Wの表面の膜91のTOフォノンとLOフォノンが観測される。また、トレンチ92が形成された基板Wでは、測定光の偏光をトレンチ92に対して平行方向とした場合(Parallel to trench)、基板Wの表面の膜91のTOフォノンが観測される。
図6Bには、トレンチ92が形成され、トレンチ92に膜91が成膜された基板WのFT-IR分析を行って吸光度スペクトルを求めた結果の一例が示されている。吸光度スペクトルは、波数毎の赤外光の吸光度を示している。入射角は、0度つまり、表面に対して垂直に光を入射している。線L61は、偏光を制御していない無偏光とした場合(No)の吸光度スペクトルである。線L62は、測定光の偏光をトレンチ92に対して平行方向とした場合(Parallel to trench)の吸光度スペクトルである。線L63は、測定光の偏光をトレンチ92に対して垂直方向とした場合(Vertical to trench)の吸光度スペクトルである。このように、測定光の偏光によって吸光度スペクトルの形状が変化する。偏光を制御していない無偏光の場合、測定光はトレンチ92に対する垂直と平行の両方の偏光成分を有する。このため、無偏光の測定光によるFT-IR分析では、TOフォノンとLOフォノンの両方が観測される。
FT-IRの偏光解析の際の基板Wに対して測定光の入射角は、何れの角度としてもよい。例えば、基板Wに対して測定光を垂直入射し、基板Wを透過又は反射した赤外光を検出して、吸光度スペクトルを求めてもよい。また、基板Wに対して測定光を斜め入射し、基板Wを透過又は反射した赤外光を検出して、吸光度スペクトルを求めてもよい。図7Aは、基板Wに対する測定光の入射角の一例を示す図である。図7Aでは、基板Wに対して測定光を入射角0°で垂直入射した場合と、測定光を基板Wに対して入射角45°で斜め入射した場合を示している。図7Bは、吸光度スペクトルの一例を示す図である。図7Bには、測定光を基板Wに対して入射角0°で垂直入射した場合(0deg)と、測定光を基板Wに対して入射角45°で斜め入射した場合(45deg)の吸光度スペクトルが示されている。測定光は、トレンチに対して平行偏光(P偏光)の測定光と、それに対して垂直偏光(S偏光)の測定光を個別に入射させた。測定光の偏光は、例えば、偏光子等の光学素子を測定光の経路に設けることで制御する。「P_45deg」は、トレンチに対して平行偏光の測定光を入射角45°で斜め入射した場合の吸光度スペクトルを示している。「s_45deg」は、トレンチに対する平行偏光に対して垂直な偏光の測定光を入射角45°で斜め入射した場合の吸光度スペクトルを示している。「P_0deg」は、トレンチに対して平行偏光の測定光を入射角0°で垂直入射した場合の吸光度スペクトルを示している。「s_0deg」は、トレンチに対する平行偏光に対して垂直な偏光の測定光を入射角0°で垂直入射した場合の吸光度スペクトルを示している。入射角45°の斜め入射と入射角0°の垂直入射では、ピークの強度に違いがあるが、吸光度スペクトルが類似した形状となっている。よって、FT-IRの偏光解析の際の基板Wに対して測定光の入射角は、何れの角度としてもよい。
ここで、発明者は、異方性の構造物が形成された基板Wに対して赤外分光法による分析により得られた吸光度スペクトルで観測されるTOフォノンやLOフォノンと、異方性の構造物の状態には相関関係があることを見出した。
基板Wに形成された異方性の構造物と、吸光度スペクトルで観測されるTOフォノンやLOフォノンの相関関係について説明する。本実施形態では、異方性の構造物をトレンチ92とする。
最初に、トレンチ92の開口幅を変えた基板Wに対してFT-IR分析を行った結果を説明する。本実施形態では、例えば、図4に示したように、トレンチ92の上部付近での最も狭い部分の幅GWをトレンチ92の開口幅とする。以下の分析では、基板Wに対して赤外活性の材料を成膜する成膜前と成膜後のそれぞれで基板Wの吸光度スペクトルを測定する。最初に、トレンチ92が形成された基板WにFT-IR分析を行い、吸光度スペクトルを測定する。次に、基板Wに赤外活性の材料を成膜する。赤外活性の材料としては、例えば、SiN、SiO、SiC、AlO、HfO、ZrOなどが挙げられる。次に、赤外活性の材料を成膜した基板WにFT-IR分析を行って、吸光度スペクトルを測定する。そして、赤外活性の材料の成膜前の基板Wで測定した強度スペクトルと成膜後の基板Wで測定した強度スペクトルから吸光度スペクトルを算出する。以下では、例えば、図4に示したようなトレンチ92が形成された基板Wに下地膜を成膜してパターン90の厚さを変えることでトレンチ92の開口幅を順に変え、それぞれ上記の手順により吸光度スペクトルを算出した。基板Wには、赤外活性の材料としてSiNをプラズマALDにより成膜して、例えば、図4に示したようにトレンチ92に膜91を形成した。膜91の膜厚は、0.1nm~10000nmの範囲とし、より好ましくは0.5nm~150nmの範囲とし、さらに好ましくは1nm~15nmとする。
図8A及び図8Bは、第1実施形態に係る吸光度スペクトルの一例を示す図である。図8A及び図8Bには、トレンチ92の開口幅(Gap Width)を7nm、9nm、13nm、50nmとしたそれぞれ基板Wに上記の分析を行って抽出した吸光度スペクトルの一例が示されている。また、図8A及び図8Bには、フラットなシリコン基板95(Flat)に上記の分析を行って抽出した吸光度スペクトルの一例が示されている。図8Aには、600-1400cm-1の波数の範囲の吸光度スペクトルが示されている。図8Bには、2600-3600cm-1の波数の範囲の吸光度スペクトルが示されている。吸光度スペクトルは、成膜前の基板Wの強度スペクトルと成膜後の基板Wの強度スペクトルを用いて解析することで、膜91による赤外光の吸光度の変化を示している。すなわち、吸光度スペクトルは、主に膜91の情報を有している。また、図8Aには、SiNのLOフォノン、TOフォノンのピークとなる波数の位置が示されている。図8Bには、SiN膜および基板Wの下地膜に含まれるNHについてピークとなる波数の位置が示されている。
図8A及び図8Bに示すように、トレンチ92の開口幅が7nm、9nm、13nm、50nmのそれぞれ基板Wでは、吸光度スペクトルが変化する。特に、SiNのLOフォノンのピーク強度は、大きく変化する。一方、フラットなシリコン基板95(Flat)では、SiNのLOフォノンの強度が小さい。
SiNのLOフォノン、TOフォノンの少なくとも一方の強度は、トレンチ92の開口幅と相関関係がある。
図9A及び図9Bは、第1実施形態に係る相関関係の一例を示す図である。図9Aには、トレンチ92の開口幅が7nm、9nm、13nm、50nmのそれぞれの基板W、及びフラットなシリコン基板95(Bare-Si)について、I(SiNLO)/I(SiNTO)の値が示されている。I(SiNLO)/I(SiNTO)の値は、吸光度スペクトルのSiNのLOフォノンのピーク強度(I(SiNLO))をSiNのTOフォノンのピーク強度(I(SiNTO))で割った値である。図9Aに示すように、I(SiNLO)/I(SiNTO)の値は、トレンチ92の開口幅が狭くなるほど増加している。I(SiNLO)/I(SiNTO)の値とトレンチ92の開口幅には、相関関係がある。
図9Bには、トレンチ92の開口幅が7nm、9nm、13nm、50nmのそれぞれ基板W、及びフラットなシリコン基板95(Bare-Si)について、I(NH)/I(SiNTO)の値が示されている。I(NH)/I(SiNTO)の値は、吸光度スペクトルのNHのピーク強度(I(NH))をSiNのTOフォノンのピーク強度(I(SiNTO))で割った値である。図9Bに示すように、I(NH)/I(SiNTO)の値は、トレンチ92の開口幅が狭くなるほど増加する傾向がある。I(NH)/I(SiNTO)の値とトレンチ92の開口幅には、相関関係がある。なお、図9Bでは、トレンチ92の開口幅が13nmの場合の(NH)/I(SiNTO)の値が大きくなっている。この理由は、トレンチ92の開口幅を変えるために成膜した下地膜にNHが含まれたことによる影響と考えられる。
図9A及び図9Bのような相関関係が発生する理由は、次にように考えられる。トレンチ92の開口幅が狭くなると、対向するトレンチ92の側面間の距離が狭くなり、側面に成膜されたSiN膜間で振動相互作用が生じ、同期して振動するためと考えられる。
そこで、第1実施形態に係る基板評価方法では、以下のように、基板Wに形成されたトレンチ92の開口幅を導出する。
最初に、第1実施形態に係る基板評価方法では、開口幅が異なるトレンチ92が形成された複数の基板Wに用意する。なお、トレンチ92が形成された1枚の基板Wに下地膜を成膜することで、トレンチ92の開口幅が順次変えてもよい。第1実施形態に係る基板評価方法では、各基板Wに赤外活性の材料(例えば、SiN)を成膜する前後でFT-IR分析を行い、成膜前の基板Wと成膜後の基板Wの強度スペクトルを測定する。そして、第1実施形態に係る基板評価方法では、トレンチ92の開口幅が異なる基板Wごとに、成膜前の基板Wの強度スペクトルと成膜後の基板Wの強度スペクトルから吸光度スペクトルを算出する。そして、第1実施形態に係る基板評価方法では、トレンチ92の開口幅が異なる各基板Wの吸光度スペクトルからSiNのLOフォノン、TOフォノンの少なくとも一方の強度を観測し、トレンチ92の開口幅との相関関係を示す相関情報62aを求める。例えば、第1実施形態に係る基板評価方法では、吸光度スペクトルのSiNのLOフォノンのピーク強度をSiNのTOフォノンのピーク強度で割った値(I(SiNLO)/I(SiNTO))と、トレンチ92の開口幅との相関情報62aを求める。あるいは、第1実施形態に係る基板評価方法では、吸光度スペクトルのNHのピーク強度をSiNのTOフォノンのピーク強度で割った値(I(NH)/I(SiNTO))と、トレンチ92の開口幅との相関情報62aを求める。第1実施形態に係る成膜装置100は、相関情報62aを記憶部62に記憶する。
第1実施形態に係る成膜装置100は、トレンチ92が形成された基板Wに成膜を行い、成膜後の基板Wのトレンチ92の状態をインラインで検出する。具体的には、基板Wが成膜装置100に搬送され、基板Wが載置台2に載置される。成膜装置100は、基板Wの吸光度スペクトルを計測する。その後、成膜装置100は、基板Wに対して赤外活性の材料(例えば、SiN)の成膜処理を実施する。成膜装置100は、成膜処理を実施した基板Wの吸光度スペクトルを計測する。
第1実施形態に係る成膜装置100は、成膜処理前の強度スペクトルと、成膜処理後の強度スペクトルからトレンチ92に関する評価情報を導出する。例えば、制御部60は、成膜処理前の強度スペクトルと成膜処理後の強度スペクトルから吸光度スペクトルを算出する。制御部60は、記憶部62に記憶した相関情報62aに基づき、算出された吸光度スペクトルから基板Wのトレンチ92の開口幅を導出する。例えば、制御部60は、吸光度スペクトルからI(NH)/I(SiNTO)の値、または、I(NH)/I(SiNTO)の値を求める。制御部60は、記憶部62に記憶した相関情報62aに基づき、I(NH)/I(SiNTO)の値、または、I(NH)/I(SiNTO)の値から基板Wのトレンチ92の開口幅を導出する。
このように、第1実施形態に係る成膜装置100は、基板Wに形成されたトレンチ92の開口幅を導出できる。また、第1実施形態に係る成膜装置100は、トレンチ92の開口幅をインラインで検出できるため、検出された開口幅に応じて、成膜処理にフィードバック制御を行うこともできる。例えば、成膜装置100は、検出された開口幅が規定範囲に満たない場合、膜91の成膜処理を再度実施することで膜91の開口幅を規定範囲に制御することができる。
第1実施形態では、基板処理を成膜処理とし、成膜前の基板Wの強度スペクトルと成膜後の基板Wの強度スペクトルから吸光度スペクトルを算出し、吸光度スペクトルからトレンチ92の開口幅を検出する例を説明した。しかし、これに限定されるものではない。基板処理は、エッチング処理、改質処理など半導体デバイスを製造する半導体製造工程に係る任意の処理であってもよい。例えば、エッチング処理前の基板Wとエッチング処理後の基板Wの強度スペクトルを測定する。そして、エッチング前の基板Wの強度スペクトルとエッチング後の基板Wの強度スペクトルから吸光度スペクトルを算出し、吸光度スペクトルからトレンチ92の開口幅を検出してもよい。
基板処理による微細加工前後で吸光度スペクトルに変化が発生する場合、微細加工前後でFT-IR分析を行ってもよい。図10Aは、第1実施形態に係る基板評価方法の処理を含む基板処理の流れの一例を説明する図である。基板W11は、基板処理前の基板Wを示している。基板W11は、任意の材料内に、赤外活性の材料の層が形成されている。任意の材料は、赤外活性の材料であってもよく、赤外非活性の材料であってもよい。図10Aに示す基板処理では、基板W11に対して、FT-IR分析を行い、基板処理前の基板Wの強度スペクトルを測定する。次に、図10Aに示す基板処理では、基板W11に対して、基板処理により微細加工を行う。例えば、基板W11にエッチング処理を行い、トレンチ92を形成する。基板W12は、基板処理後の基板Wを示している。基板W12は、トレンチ92が赤外活性の材料の層より下層まで形成されている。このため、基板処理前後で強度スペクトルに変化が発生する。次に、図10Aに示す基板処理では、基板W12に対して、FT-IR分析を行い、基板処理後の基板W12の強度スペクトルを測定する。基板処理前の基板W11の強度スペクトルと基板処理後の基板W12の強度スペクトルから吸光度スペクトルを算出し、吸光度スペクトルからトレンチ92の開口幅を導出する。これにより、トレンチ92の開口幅を非破壊で検出できる。
また、基板処理による微細加工前後で吸光度スペクトルに変化が発生しない場合は、次のように処理を行ってもよい。図10Bは、第1実施形態に係る基板評価方法の処理を含む基板処理の流れの一例を説明する図である。基板W21は、基板処理前の基板Wを示している。基板W21は、任意の材料内に、赤外活性の材料の層が形成されている。任意の材料は、赤外活性の材料であってもよく、赤外非活性の材料であってもよい。ここでは、任意の材料は、赤外非活性の材料とする。図10Bに示す基板処理では、基板W21に対して、基板処理により微細加工を行う。例えば、基板W21にエッチング処理を行い、トレンチ92を形成する。基板W22は、基板処理後の基板Wを示している。基板W22は、トレンチ92が赤外活性の材料の層まで到達していない。このため、基板処理前後で吸光度スペクトルに共鳴吸収ピークの変化が発生しない。図10Bに示す基板処理では、基板W22に対して、FT-IR分析を行い、基板W22の強度スペクトルを測定する。そして、図10Bに示す基板処理では、吸光度スペクトルにおける共鳴吸収ピークが変化するよう基板W22を加工する。例えば、基板W22に赤外活性の材料の膜91を成膜、あるいは、トレンチ92が赤外活性の材料の層より下層に到達するまで基板W22をエッチングする。基板W23は、トレンチ92に膜91を成膜した基板Wを示している。基板W24は、赤外活性の材料の層より下層までトレンチ92をエッチングした基板Wを示している。図10Bに示す基板処理では、加工後の基板W23又は基板W24に対して、FT-IR分析を行い、基板処理後の基板W23又は基板W24の強度スペクトルを測定する。加工前の基板W22の強度スペクトルと、加工後の基板W23又は基板W24の強度スペクトルから吸光度スペクトルを算出し、吸光度スペクトルからトレンチ92の開口幅を検出する。これにより、トレンチ92の開口幅を非破壊で検出できる。
また、成膜装置100は、照射部81から照射する測定光の光量に経時的な変化などにより、基板Wから測定される吸光度スペクトルに変化が発生する場合がある。このような場合でも、第1実施形態に係る基板評価方法は、吸光度スペクトルを抽出することで、主に膜91による情報を抽出でき、トレンチ92の開口幅を安定して導出できる。なお、吸光度スペクトルが安定して測定され、且つ、吸光度スペクトルのSiNのLOフォノン、TOフォノンの強度とトレンチ92の開口幅と相関関係がある場合、第1実施形態に係る基板評価方法は、成膜前の基板Wの強度スペクトル又は成膜後の基板Wの強度スペクトルからトレンチ92の開口幅を導出してもよい。
また、第1実施形態では、基板処理を成膜処理とし、成膜前の基板Wの強度スペクトルと成膜後の基板Wの強度スペクトルから吸光度スペクトルを算出し、吸光度スペクトルからトレンチ92の開口幅を導出する例を説明した。しかし、これに限定されるものではない。基板処理は、エッチング処理、レジスト塗布処理、リソグラフィ処理、アニール処理など半導体デバイスを製造する半導体製造工程に係る任意の処理であってもよい。例えば、エッチング処理前の基板Wとエッチング処理後の基板Wの強度スペクトルを測定し、エッチング前の基板Wの強度スペクトルとエッチング後の基板Wの強度スペクトルから吸光度スペクトルを算出する。これにより、エッチング後のトレンチ92の開口幅を導出できる。
また、第1実施形態では、異方性の構造物をトレンチ92とした例を説明した。しかし、これに限定されるものではない。異方性の構造物は、基板Wに凹凸などが異方性で形成された構造物であれば、何れであってもよい。異方性の構造物は、平滑な側面が少なくとも1つの方向に形成された構造物であることが好ましい。基板Wには、同様のパターンの異方性の構造物が並んで複数形成されていることが好ましい。
次に、第1実施形態に係る基板評価方法の処理を含む基板処理の流れを説明する。図11は、第1実施形態に係る基板処理の流れの一例を示すフローチャートである。
トレンチ92が形成された基板Wが不図示の搬送アーム等の搬送機構により載置台2に載置される。成膜装置100は、チャンバ1内を減圧する(ステップS10)。例えば、制御部60は、排気装置73を制御し、排気装置73により、チャンバ1内を減圧する。
次に、成膜装置100は、基板処理前の基板Wの吸光度スペクトルを計測する(ステップS11)。例えば、制御部60は、照射部81を制御し、照射部81から基板Wに対して赤外光を照射し、基板Wを透過した透過光又は反射した反射光を検出部82で検出する。制御部60は、検出部82により検出したデータから、基板Wの吸光度スペクトルを求める。
次に、成膜装置100は、基板Wに対して基板処理を実施する(ステップS12)。例えば、制御部60は、ガス供給部15、高周波電源10を制御し、プラズマALDにより基板Wの表面に膜91を成膜する。
次に、成膜装置100は、基板処理後の基板Wの吸光度スペクトルを計測する(ステップS13)。例えば、制御部60は、照射部81を制御し、照射部81から基板Wに対して赤外光を照射し、基板Wを透過した透過光又は反射した反射光を検出部82で検出する。制御部60は、検出部82により検出したデータから、基板Wの吸光度スペクトルを求める。
次に、成膜装置100は、成膜処理前の吸光度スペクトルと成膜処理後の吸光度スペクトルからトレンチ92に関する評価情報を導出する(ステップS14)。例えば、制御部60は、成膜処理前の強度スペクトルと成膜処理後の強度スペクトルから吸光度スペクトルを算出する。制御部60は、吸光度スペクトルからI(NH)/I(SiNTO)の値、または、I(NH)/I(SiNTO)の値を求める。制御部60は、記憶部62に記憶した相関情報62aに基づき、I(NH)/I(SiNTO)の値、または、I(NH)/I(SiNTO)の値から基板Wに形成されたトレンチ92の開口幅を導出する。
次に、成膜装置100は、導出したトレンチ92に関する評価情報を出力し(ステップS15)、処理を終了する。例えば、制御部60は、導出したトレンチ92の開口幅をユーザインターフェース61に出力する。これにより、工程管理者は、トレンチ92の開口をリアルタイムに把握できる。なお、制御部60は、トレンチ92に関する評価情報を他の装置に出力してもよい。また、制御部60は、トレンチ92に関する評価情報を記憶部62や、外部の記憶装置に出力して格納してもよい。
以上のように、第1実施形態に係る基板評価方法は、測定工程(ステップS11、ステップS13)と、導出工程(ステップS14)とを有する。測定工程は、異方性の構造物が形成された基板Wに対して赤外分光法による分析を行い、LOフォノン、TOフォノンの少なくともの一方のピークを含む波数範囲の吸光度スペクトルを測定する。導出工程は、測定された吸光度スペクトルから構造物に関する評価情報を導出する。これにより、第1実施形態に係る基板評価方法は、基板Wに形成された異方性の構造物の状態を検出できる。
また、構造物は、基板Wに形成されたトレンチ92とする。これにより、第1実施形態に係る基板評価方法は、基板Wに形成されたトレンチ92の状態を検出できる。
また、トレンチ92は、赤外活性の材料による膜91が形成されている。導出工程は、吸光度スペクトルから赤外活性の材料のLOフォノンとTOフォノンのピーク強度を求め、LOフォノンとTOフォノンのピーク強度から、評価情報としてトレンチ92の開口幅を導出する。これにより、第1実施形態に係る基板評価方法は、基板Wに形成されたトレンチ92の開口幅を検出できる。
また、赤外活性の材料は、SiNである。これにより、第1実施形態に係る基板評価方法は、基板Wに形成されたトレンチ92の開口幅を検出できる。
また、第1実施形態に係る基板評価方法は、基板Wに基板処理を実施する基板処理工程(ステップS12)をさらに有する。測定工程は、基板処理前測定工程(ステップS11)と、基板処理後測定工程(ステップS13)とを有する。基板処理前測定工程は、基板処理工程による基板処理前の基板Wに対して赤外分光法による分析を行い、基板処理前の強度スペクトルを測定する。基板処理後測定工程は、基板処理工程による基板処理後の基板Wに対して赤外分光法による分析を行い、基板処理後の強度スペクトルを測定する。導出工程は、基板処理前測定工程により測定された基板処理前の強度スペクトルと、基板処理後測定工程により測定された基板処理後の強度スペクトルから構造物に関する評価情報を導出する。これにより、第1実施形態に係る基板評価方法は、基板処理された異方性の構造物の状態を検出できる。
また、基板処理工程は、基板Wに赤外活性の材料を成膜する、又は基板Wに含まれる赤外活性の材料を露出する基板処理としてエッチング処理やアッシング処理などを実施する。導出工程は、基板処理前の強度スペクトルと、基板処理後の強度スペクトルから吸光度スペクトルを算出し、吸光度スペクトルから赤外活性の材料のLOフォノンとTOフォノンの少なくとも一方のピーク強度を求め、少なくとも一方のピーク強度から、構造物に関する評価情報を導出する。これにより、第1実施形態に係る基板評価方法は、基板処理された異方性の構造物の状態を検出できる。
[第2実施形態]
次に、第2実施形態について説明する。第2実施形態に係る成膜装置100の構成は、図1~図3に示した第1実施形態に係る成膜装置100と同様のため、説明を省略する。
次に、第2実施形態について説明する。第2実施形態に係る成膜装置100の構成は、図1~図3に示した第1実施形態に係る成膜装置100と同様のため、説明を省略する。
ところで、基板Wは、異方性の構造物が形成されることで、基板Wに入射する測定光の偏光に対して異方性が生じ、吸光度スペクトルのTOフォノンやLOフォノンのピーク強度に変化が観測される。図12は、基板Wの偏光依存性を説明する図である。図12には、基板W31~W33が1行目から3行目に示されている。1行目の基板W31は、トレンチ92が形成された基板Wである。2行目の基板W32は、複数のホール94が均等に形成された基板Wである。3行目の基板W33は、表面にフラットな膜96が成膜されたフラットなシリコン基板95である。
「Top view」は、基板W31~W33の上面を概略的に示している。「Side view」は、基板W31~W33の断面を概略的に示している。「IR spectra」は、基板W31~W33について、Side wiewを入射面とし、測定光をP偏光の測定光とした場合(P)と、S偏光の測定光とした場合(S)と、無偏光の測定光とした場合(No)の吸光度スペクトルを概略的に示している。吸光度スペクトルは、基板W31~W33に対して測定光を垂直入射して計測している。
1行目に示した基板W31は、トレンチ92が並んで形成されているため、パターン形状に面内等方性がない。これにより、基板W31は、P偏光の測定光とS偏光の測定光と無偏光の測定光で吸光度スペクトルの波形が異なり、偏光依存性を有する。基板W31は、後述するような偏光制御により、LOフォノンとTOフォノンを分離できる。
2行目に示した基板W32は、ホール94が縦横に均等に形成されており、ホール94の形状が真円であるため、パターン形状に面内等方性がある。これにより、基板W32は、P偏光の測定光とS偏光の測定光と無偏光の測定光で吸光度スペクトルの波形が類似した形状となり、偏光依存性がない。基板W32は、LOフォノンとTOフォノンの両方を観測できるが、偏光だけではLOフォノンとTOフォノンを分離できない。
3行目に示したフラットな基板W33は、上面が平坦に形成されているため、面内等方性がある。フラットな基板W33は、P偏光の測定光とS偏光の測定光と無偏光の測定光で吸光度スペクトルの波形が類似した形状となり、偏光依存性がない。フラットな基板W33は、TOフォノンのみが観測される。
トレンチ92が形成された基板W31は、図6A及び図6Bにて説明したように、測定光の偏光によって吸光度スペクトルの形状が変化する。基板W31は、測定光の偏光をトレンチ92に対して垂直方向とした場合(Vertical to trench)、基板Wの表面の膜91のTOフォノンとLOフォノンが観測される。また、基板W31は、測定光の偏光をトレンチ92に対して平行方向とした場合(Parallel to trench)、基板Wの表面の膜91のTOフォノンが観測される。
第2実施形態に係る基板評価方法では、以下のように、基板Wのトレンチ92に形成された膜91の膜質を評価する。
図13A及び図13Bは、第2実施形態に係る基板評価方法による膜質の評価の一例を説明する図である。第2実施形態に係る基板評価方法では、トレンチ92が形成された基板W31に膜91の成膜を行い、成膜後の基板Wに対してFT-IR分析を行って吸光度スペクトルを計測する。具体的には、基板Wが成膜装置100に搬送され、基板W31が載置台2に載置される。成膜装置100は、基板W31に対してプラズマALDにより赤外活性の材料(例えば、SiN)の成膜処理を実施し、膜91を成膜する。成膜装置100は、成膜処理を実施した基板W31の吸光度スペクトルを計測する。成膜装置100は、測定光の偏光をトレンチ92に対して平行方向(平行偏光)として基板Wの吸光度スペクトルを計測する。測定光の偏光をトレンチ92に対して平行方向とすることにより、基板W31の吸光度スペクトルは、TOフォノンを観測できる。
また、第2実施形態に係る基板評価方法では、フラットな基板W33に、膜91の成膜と同様の条件で、膜96の成膜を行い、成膜後のフラットな基板W33に対してFT-IR分析を行って吸光度スペクトルを計測する。具体的には、フラットな基板W33が成膜装置100に搬送され、フラットな基板W33が載置台2に載置される。成膜装置100は、フラットな基板W33に対して、膜91の成膜と同様の条件で、赤外活性の材料(例えば、SiN)の成膜処理を実施し、膜96を成膜する。成膜装置100は、成膜処理を実施したフラットな基板W33に対してFT-IR分析を行って吸光度スペクトルを計測する。フラットな基板W33の吸光度スペクトルは、TOフォノンを観測できる。
なお、図7A及び図7Bにて説明したように、FT-IR分析での測定光の入射角は、何れの角度としてもよい。例えば、基板W31、W33に対して測定光を垂直入射し、基板Wを透過又は反射した赤外光を検出して、吸光度スペクトルを求めてもよい。また、基板W31、W33に対して測定光を斜め入射し、基板Wを透過又は反射した赤外光を検出して、吸光度スペクトルを求めてもよい。
第2実施形態に係る基板評価方法では、トレンチ92が形成された基板W31の吸光度スペクトルとフラットな基板W33の吸光度スペクトルを比較し、基板W31に形成された膜91の膜質を評価する。
例えば、第2実施形態に係る基板評価方法では、トレンチ92が形成された基板W31のトレンチ92と平行偏光での吸光度スペクトルとフラットな基板W33の吸光度スペクトルとを比較し、比較結果に基づき、トレンチ92に形成された膜91の膜質を導出する。具体的には、制御部60は、トレンチ92が形成された基板W31の平行偏光での吸光度スペクトルとフラットな基板W33の吸光度スペクトルのそれぞれのTOフォノンのピーク強度を特定する。制御部60は、トレンチ92が形成された基板W31の平行偏光での吸光度スペクトルとフラットな基板W33の吸光度スペクトルを、それぞれTOフォノンのピーク強度の値により規格化する。制御部60は、トレンチ92が形成された基板W31の規格化した平行偏光の吸光度スペクトルとフラットな基板W33の規格化した吸光度スペクトルを比較する。図13Bには、トレンチ92が形成された基板W31(Trench)の規格化した平行偏光の吸光度スペクトルと、フラットな基板W33(Flat)の規格化した吸光度スペクトルが示されている。図13Bでは、トレンチ92が形成された基板W31(Trench)の方がフラットな基板W33(Flat)よりもTOフォノンのピーク波形の半値幅が広い。また、トレンチ92が形成された基板W31(Trench)の方がフラットな基板W33(Flat)よりもNHの面積強度が大きい。このことから、基板W31に形成された膜91は、フラットな基板W33に形成された膜96よりも構造乱れが大きく、不純物も多いため、膜質が悪いと推定できる。
制御部60は、フラットな基板W33の規格化したトレンチ92と平行偏光の吸光度スペクトルに対するトレンチ92が形成された基板W31の規格化した吸光度スペクトルのずれ量に応じて膜91の膜質を評価する。例えば、制御部60は、TOフォノンのピーク波形の半値幅や、NHの面積強度が大きいほど膜質が悪いものとして膜91の膜質を評価する。このように第2実施形態に係る基板評価方法は、トレンチ92に形成された膜91の膜質を検出できる。
また、第2実施形態に係る基板評価方法では、以下のように、偏光制御を行って吸光度スペクトルを計測することで、TOフォノンの信号とLOフォノンの信号を分離できる。図14A及び図14Bは、第2実施形態に係るTOフォノンの信号とLOフォノンの信号の分離を説明する図である。第2実施形態に係る基板評価方法では、トレンチ92が形成された基板W31に膜91の成膜を行い、成膜後の基板Wに対してFT-IR分析を行って吸光度スペクトルを計測する。具体的には、トレンチ92が形成された基板Wが成膜装置100に搬送され、基板W31が載置台2に載置される。成膜装置100は、基板W31に対してプラズマALDにより赤外活性の材料(例えば、SiN)の成膜処理を実施し、膜91を成膜する。成膜装置100は、成膜処理を実施した基板W31に対してFT-IR分析を行って吸光度スペクトルを計測する。成膜装置100は、偏光制御を行い、測定光の偏光をトレンチ92に対して平行方向(平行偏光)として基板W31の吸光度スペクトルを計測する。また、成膜装置100は、偏光制御を行い、測定光の偏光をトレンチ92に対して垂直方向(垂直偏光)として基板W31の吸光度スペクトルを計測する。測定光の偏光をトレンチ92に対して平行方向とした平行偏光で計測することにより、基板W31の吸光度スペクトルは、TOフォノンが観測される。また、測定光の偏光をトレンチ92に対して垂直方向とした垂直偏光で計測することにより、基板W31の吸光度スペクトルは、TOフォノンやLOフォノンが観測される。図14Aには、矩形のトレンチ92が形成された基板W31の断面が概略的に示されている。垂直偏光では、トレンチ92の上面部分(Top)、及び底面部分(Bottom)の膜91からTOフォノンが発生し、トレンチ92の側面部分(Side)の膜91からLOフォノンが発生する。トレンチ92のアスペクト比がわかれば、TOフォノンとLOフォノンと信号強度比を算出できる。トレンチ92のアスペクト比は、基板W31に製造する半導体の設計情報や、基板W31を実際に観測することで特定できる。トレンチ92に膜91を同等の膜厚で均等に成膜する場合、トレンチ92のアスペクト比が定まると、トレンチ92に形成された膜91の上面部分(Top)、底面部分(Bottom)、側面部分(Side)の体積比が定まる。体積比は、(Top,Side,Bottom)=(a,b,c)とする。
垂直偏光とした測定光によるFT-IR分析では、TOフォノン/LOフォノンの強度比は、(a+c)/2bとなる。
平行偏光として測定した基板W31の吸光度スペクトルの平行偏光信号には、トレンチ92の上面部分、底面部分、及び側面部分の膜91から発生するTOフォノンの信号が含まれる。トレンチ92の上面部分、及び底面部分と側面部分の体積比から、トレンチ92の上面部分、及び底面部分の膜91から発生するTOフォノンの信号は、平行偏光信号×(a+c)/2bとなる。
垂直偏光として測定した基板W31の吸光度スペクトルの垂直偏光信号には、トレンチ92の上面部分、及び底面部分の膜91から発生するLOフォノンの信号と、トレンチ92の側面部分の膜91から発生するLOフォノンの信号が含まれる。LOフォノンの信号は、以下の(1)式から算出できる。
LOフォノンの信号=垂直偏光信号-平行偏光信号×(a+c)/2b (1)
図14Bには、垂直偏光(Vertical)として測定した吸光度スペクトルと、平行偏光(Parallel)として測定した吸光度スペクトルが示されている。また、図14Bには、(1)式によるLOフォノンの信号(LO)による吸光度スペクトルが示されている。このようにTOフォノンの信号とLOフォノンの信号を分離することにより、トレンチ92の上面部分(Top)及び底面部分(Bottom)の信号と、側面部分(Side)の信号を分離できる。
なお、同様の考えで解析をすれば、無偏光や斜入射での吸光度スペクトルの信号からでもLOフォノンの信号を抽出できる。また、今回は矩形のトレンチを例にしたが、台形、屈曲形状など複雑なトレンチパターンにも適用可能である。また、グローバルフィッティングや多変量解析を用いてもTOフォノンの信号とLOフォノンの信号を分離できる。
図15A及び図15Bは、第2実施形態に係る基板評価方法による膜質の評価の一例を説明する図である。成膜装置100は、上述のような偏光制御を行って分離したTOフォノンの信号とLOフォノンの信号の少なくとも一方からトレンチ92に関する評価情報を導出する。例えば、制御部60は、分離したトレンチ92のLOフォノンの信号と、フラットな基板W33のLOフォノンの信号を比較する。フラットな基板W33のLOフォノンの信号は、フラットな基板W33に対して異なる入射角で斜め方向から赤外光を測定光として入射して強度スペクトルをそれぞれ計測し、異なる入射角の吸光度スペクトルを算出する。図15Aには、入射角が10°の場合(10 deg)の吸光度スペクトルと、入射角が45°の場合(45 deg)の吸光度スペクトルが示されている。例えば、入射角が45°の吸光度スペクトルと入射角が10°の吸光度スペクトルとの差分をフラットな基板W33のLOフォノンの信号とする。成膜装置100は、フラットな基板W33のLOフォノンの信号のデータを記憶部62に記憶する。フラットな基板W33のLOフォノンの信号のデータは、成膜装置100においてフラットな基板W33に対してFT-IR分析を行って求めてよく、他の装置においてフラットな基板W33に対してFT-IR分析を行って求めてもよい。
制御部60は、トレンチ92のLOフォノンの吸光度スペクトルと、フラットな基板W33のLOフォノンの吸光度スペクトルを比較し、比較結果に基づき、トレンチ92に形成された膜91の膜質を導出する。例えば、制御部60は、分離したトレンチ92のLOフォノンの信号が示す吸光度スペクトルと、フラットな基板W33のLOフォノンの信号が示す吸光度スペクトルを、それぞれLOフォノンのピーク強度の値により規格化する。制御部60は、トレンチ92のLOフォノンの規格化した吸光度スペクトルと、フラットな基板W33のLOフォノンの規格化した吸光度スペクトルを比較する。図15Bには、分離したトレンチ92のLOフォノンの規格化した吸光度スペクトル(Trench)と、フラットな基板W33のLOフォノンの規格化した吸光度スペクトル(Flat)が示されている。トレンチ92のLOフォノンの吸光度スペクトルは、トレンチ92の側面部分の膜91の状態を示している。
図15Bでは、トレンチ92のLOフォノンの吸光度スペクトル(Trench)は、フラットな基板W33のLOフォノンの吸光度スペクトル(Flat)とピーク波数やスペクトル幅が異なる。このことから、トレンチ92の側面部分の膜91の組成がフラットな基板W33の膜96と異なることが分かる。
制御部60は、フラットな基板W33のLOフォノンの吸光度スペクトルに対するトレンチ92のLOフォノンの吸光度スペクトルのずれ量に応じて、トレンチ92の側面部分の膜91の膜質を評価する。例えば、制御部60は、ずれ量が大きいほど膜質が悪いものとしてトレンチ92の側面部分の膜91の膜質を評価する。このように第2実施形態に係る基板評価方法は、トレンチ92の側面部分の膜91の膜質を導出できる。
図15Bでは、トレンチ92のLOフォノンの信号とフラットな基板W33のLOフォノンの信号を比較する例を説明した。しかし、これに限定されるものではない。トレンチ92のTOフォノンの信号を分離し、トレンチ92のTOフォノンの信号とフラットな基板W33のLOフォノンの信号と比較することで、トレンチ92の上面部分及び底面部分の膜91の膜質を評価できる。
また、FT-IR分析では、基板Wの平面に近い方向から測定光を入射してもよい。図16は、第2実施形態に係る基板Wに対する測定光の入射角の一例を示す図である。図16には、トレンチ92が形成された基板Wが示されている。FT-IR分析において、測定光を基板Wの平面に近い方向から測定光を入射する。測定光は、基板Wの平面から30°以内で入射することが好ましく、基板Wの平面から10°以内で入射することがより好ましい。トレンチ92が形成された基板Wは、測定光を基板Wの平面に近い方向から入射することでトレンチ92の上面部分及び底面部分からLOフォノンの信号が得られ、トレンチ92の側面部分からTOフォノンの信号が得られる。図14Bでは、トレンチ92の側面部分の信号としてLOフォノンの信号を抽出していたが、同様の演算を行うことにより、トレンチ92の側面部分の信号としてTOフォノンの信号を抽出することもできる。
次に、第2実施形態に係る基板評価方法の処理を含む基板処理の流れを説明する。図17は、第2実施形態に係る基板処理の流れの一例を示すフローチャートである。
トレンチ92が形成された基板Wが不図示の搬送アーム等の搬送機構により載置台2に載置される。成膜装置100は、チャンバ1内を減圧する(ステップS20)。例えば、制御部60は、排気装置73を制御し、排気装置73により、チャンバ1内を減圧する。
成膜装置100は、基板Wに対して基板処理を実施する(ステップS21)。例えば、制御部60は、ガス供給部15、高周波電源10を制御し、プラズマALDにより基板Wの表面に膜91を成膜する。
次に、成膜装置100は、基板処理後の基板Wの異なる二つの偏光の強度スペクトルを計測する(ステップS22)。例えば、制御部60は、照射部81を制御し、照射部81から基板Wに対して異なる二つの偏光で赤外光を個別に照射し、基板Wを透過した透過光又は反射した反射光を検出部82で検出する。制御部60は、検出部82により検出したデータから、基板Wの異なる二つの偏光の強度スペクトルを求める。
次に、成膜装置100は、基板Wの異なる二つの偏光の強度スペクトルと事前に記憶された基板処理前の強度スペクトルから、吸光度スペクトルを算出する。その吸光度スペクトルからTOフォノンの信号とLOフォノンの信号を分離する(ステップS23)。例えば、制御部60は、異なる二つの偏光の差分スペクトルを、トレンチ92に形成した膜91の体積比(Top,Side,Bottom)に基づいて、TOフォノンの信号とLOフォノンの信号を分離する。
次に、成膜装置100は、分離したTOフォノンの信号とLOフォノンの信号の少なくとも一方からトレンチ92に関する評価情報を導出する(ステップS24)。例えば、制御部60は、分離したトレンチ92のLOフォノンの信号と、フラットな基板W33のLOフォノンの信号を比較し、比較結果に基づき、トレンチ92の側面部分の膜91の膜質を導出する。
次に、成膜装置100は、導出したトレンチ92に関する評価情報を出力し(ステップS25)、処理を終了する。例えば、制御部60は、導出したトレンチ92の側面部分の膜91の膜質をユーザインターフェース61に出力する。これにより、工程管理者は、トレンチ92の側面部分の膜91の状態をリアルタイムに把握できる。なお、制御部60は、トレンチ92に関する評価情報を他の装置に出力してもよい。また、制御部60は、トレンチ92に関する評価情報を記憶部62や、外部の記憶装置に出力して格納してもよい。
これにより、成膜装置100は、基板Wに形成されたトレンチ92の側面部分の膜91の状態を検出できる。
なお、第2実施形態では、膜91を成膜した成膜後の基板W31に対して偏光制御を行って異なる二つの偏光の強度スペクトルを計測し、異なる二つの偏光の強度スペクトルより算出した吸光度スペクトルから、トレンチ92に関する評価情報を導出する例を説明した。しかし、これに限定されるものではない。第2実施形態は、第1実施形態と同様に、膜91を成膜する成膜前の基板W31と成膜後の基板W31の強度スペクトルを計測してもよい。そして、第2実施形態は、成膜前の基板Wの強度スペクトルと成膜後の基板Wの強度スペクトルから吸光度スペクトルを算出し、トレンチ92に関する評価情報を導出してもよい。例えば、成膜装置100は、膜91を成膜する成膜前の基板W31と成膜後の基板W31に対してそれぞれ偏光制御を行い、異なる二つの偏光の吸光度スペクトルをそれぞれ計測する。制御部60は、垂直偏光と平行偏光でそれぞれ、成膜前の基板Wの強度スペクトルと成膜後の基板Wの強度スペクトルから吸光度スペクトルを算出する。制御部60は、異なる二つの偏光の吸光度スペクトルをトレンチ92に形成した膜91の体積比(Top,Side,Bottom)に基づいて、TOフォノンの信号とLOフォノンの信号を分離する。制御部60は、分離したTOフォノンの信号とLOフォノンの信号の少なくとも一方による吸光度スペクトルと、フラットな基板W33のLOフォノンとTOフォノンの少なくとも一方による吸光度スペクトルとを比較してトレンチ92に関する評価情報を導出する。
以上のように、第2実施形態に係る基板評価方法は、測定工程(ステップS22)と、導出工程(ステップS23)とを有する。測定工程は、異方性の構造物が形成された基板W(基板W31)に対して赤外分光法による分析を行い、LOフォノン、TOフォノンの少なくともの一方のピークを含む波数範囲の吸光度スペクトルを測定する。導出工程は、測定された吸光度スペクトルから構造物に関する評価情報を導出する。これにより、第2実施形態に係る基板評価方法は、基板Wに形成された異方性の構造物の状態を検出できる。
また、構造物は、基板Wに形成されたトレンチ92とする。測定工程は、トレンチ92に対して平行偏光の赤外光を基板W(基板W31)に照射して強度スペクトルを測定する。導出工程は、測定された平行偏光での吸光度スペクトルとフラットな基板W33に対する赤外分光法による分析により得られた吸光度スペクトルとを比較してトレンチ92に関する評価情報を導出する。これにより、第2実施形態に係る基板評価方法は、トレンチ92の膜質に関する評価情報を導出できる。
また、構造物は、基板Wに形成されたトレンチ92とする。測定工程は、第1の偏光測定工程と、第2の偏光測定工程とを有する。これら二つの測定工程では異なる二つの偏光を用いて強度スペクトルを測定する。例えば、第1の偏光測定工程は、第1の偏光として、トレンチ92に対して平行偏光の赤外光を基板W(基板W31)に照射して吸光度スペクトルを測定する。第2の偏光測定工程は、第1の偏光に対して垂直な第2の偏光の赤外光を基板W(基板W31)に照射して吸光度スペクトルを測定する。導出工程は、第1の偏光測定工程により測定された偏光での吸光度スペクトルと第2の偏光測定工程により測定された偏光での吸光度スペクトルとトレンチ92のアスペクト比からLOフォノン及びTOフォノンの少なくとも一方による吸光度スペクトルを導出する。これにより、第2実施形態に係る基板評価方法は、LOフォノン及びTOフォノンの吸光度スペクトルを分離できる。
また、導出工程は、導出した少なくとも一方による吸光度スペクトルと、フラットな基板W33に対する赤外分光法による分析により得られたLOフォノンとTOフォノンの少なくとも一方による吸光度スペクトルとを比較してトレンチ92に関する評価情報を導出する。これにより、第2実施形態に係る基板評価方法は、トレンチ92の上面部分及び底面部分と側面部分の膜質に関する評価情報をそれぞれ導出できる。
以上、実施形態について説明してきたが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。実に、上述した実施形態は、多様な形態で具現され得る。また、上述した実施形態は、請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
例えば、上記の実施形態では、照射部81を上下方向に移動可能及び回転可能に構成して、基板Wに入射する赤外光の入射角を変更可能に構成した場合を説明したが、これに限定されない。例えば、照射部81から照射される赤外光の光路や、検出部82に入射する赤外光の光路にミラー、レンズ等の光学素子を設け、光学素子により基板Wに入射する赤外光の入射角を変更可能に構成してもよい。
また、上記の実施形態では、基板Wの中央付近で赤外光を透過もしくは反射させて基板Wの中央付近のトレンチ92の状態を検出する場合を説明したが、これに限定されない。例えば、チャンバ1内に赤外光を反射するミラー、レンズ等の光学素子を設け、光学素子により基板Wの中央付近、周辺付近など複数の個所に照射し、それぞれの個所で透過光又は反射光を検出して基板Wの複数の個所それぞれの基板処理された基板Wのトレンチ92の状態を検出してもよい。
また、上記の実施形態では、本開示の基板処理装置を、チャンバを1つ有するシングルチャンバータイプの成膜装置100とした場合を例に説明したが、これに限定されるものではない。本開示の基板処理装置は、チャンバを複数有するマルチチャンバタイプの成膜装置であってもよい。
図18は、実施形態に係る成膜装置200の他の一例を示す概略構成図である。図18に示すように、成膜装置200は、4つのチャンバ201~204を有するマルチチャンバタイプの成膜装置である。成膜装置200では、4つのチャンバ201~204においてそれぞれプラズマALDを実施する。
チャンバ201~チャンバ204は、平面形状が七角形をなす真空搬送室301の4つの壁部にそれぞれゲートバルブGを介して接続されている。真空搬送室301内は、真空ポンプにより排気されて所定の真空度に保持される。真空搬送室301の他の3つの壁部には3つのロードロック室302がゲートバルブG1を介して接続されている。ロードロック室302を挟んで真空搬送室301の反対側には大気搬送室303が設けられている。3つのロードロック室302は、ゲートバルブG2を介して大気搬送室303に接続されている。ロードロック室302は、大気搬送室303と真空搬送室301との間で基板Wを搬送する際に、大気圧と真空との間で圧力を制御するものである。
大気搬送室303のロードロック室302が取り付けられた壁部とは反対側の壁部には基板Wを収容するキャリア(FOUP等)Cを取り付ける3つのキャリア取り付けポート305が設けられている。また、大気搬送室303の側壁には、基板Wのアライメントを行うアライメントチャンバ304が設けられている。大気搬送室303内には清浄空気のダウンフローが形成されるようになっている。
真空搬送室301内には、搬送機構306が設けられている。搬送機構306は、チャンバ201~チャンバ204、ロードロック室302に対して基板Wを搬送する。搬送機構306は、独立に移動可能な2つの搬送アーム307a,307bを有している。
大気搬送室303内には、搬送機構308が設けられている。搬送機構308は、キャリアC、ロードロック室302、アライメントチャンバ304に対して基板Wを搬送するようになっている。
成膜装置200は、制御部310を有している。成膜装置200は、制御部310によって、その動作が統括的に制御される。制御部310には、記憶部311が接続されている。
記憶部311には、成膜装置200で実行される各種処理を制御部310の制御にて実現するためのプログラム(ソフトウエア)や、処理条件、プロセスパラメータ等のデータが格納されている。例えば、記憶部311は、相関情報62aを記憶する。
このように構成された成膜装置200では、基板Wを赤外分光法により測定する計測部85をチャンバ201~チャンバ204以外に設けてもよい。例えば、成膜装置200は、基板Wを赤外分光法により測定する計測部85を、真空搬送室301、ロードロック室302、大気搬送室303、及びアライメントチャンバ304の何れかに設ける。図19及び図20は、実施形態に係る計測部85の概略構成の一例を示す図である。図19は、反射法による赤外分光法の分析が可能なように構成した場合を示している。図20は、透過法による赤外分光法の分析が可能なように構成した場合を示している。計測部85は、光を照射する照射部81と、光を検出可能な検出部82とを有する。照射部81及び検出部82は、真空搬送室301、ロードロック室302、大気搬送室303、及びアライメントチャンバ304などの筐体86の外部に配置されている。照射部81及び検出部82には、光ファイバなどの導光部材87a、87bが接続されている。導光部材87a、87bの端部は、筐体86内に配置されている。照射部81が出力された赤外光は、導光部材87aの端部から出力される。図19では、導光部材87aの端部は、基板Wに対して所定の入射角(例えば、45°)で赤外光が入射するように配置されている。導光部材87aの端部は、基板Wを反射した赤外光が入射するように配置されている。図20では、導光部材87aの端部は、基板Wに対して垂直に赤外光が入射するように配置されている。基板Wが載置されるステージ88は、赤外光が入射する位置に貫通穴88aが形成されている。導光部材87aの端部は、貫通穴88aの上側に配置されている。図20では、基板Wに入射した赤外光が貫通穴88aを通過して導光部材87bの端部に入射する。導光部材87bの端部に入射した赤外光は、導光部材87bを介して検出部82で検出される。計測部85は、基板Wの分光計測を行う。制御部310は、検出部82が受光した赤外光から基板Wの吸光度スペクトルを計測する。制御部310は、相関情報62aに基づき、計測された吸光度スペクトルから基板処理を実施された基板Wに形成された異方性の構造物に関する評価情報を導出する。例えば、制御部310は、基板Wに形成されたトレンチ92に関する評価情報を導出する。これにより、成膜装置200においても、基板Wに形成された異方性の構造物の状態を検出できる。
また、上述の通り、本開示の基板処理装置は、シングルチャンバやチャンバを複数有するマルチチャンバタイプの基板処理装置を例に開示してきたが、このかぎりではない。例えば、本開示の基板処理装置は、複数枚の基板を一括で処理可能なバッチタイプの基板処理装置であってもよいし、カルーセル式のセミバッチタイプの基板処理装置であってもよい。
なお、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
なお、以上の実施形態に関し、さらに以下の付記を開示する。
(付記1)
異方性の構造物が形成された基板に対して赤外分光法による分析を行い、LO(Longitudinal Optical)フォノン、TO(Transverse Optical)フォノンの少なくともの一方のピークを含む波数範囲の吸光度スペクトルを測定する測定工程と、
測定された吸光度スペクトルから前記構造物に関する評価情報を導出する導出工程と、
を有する基板評価方法。
異方性の構造物が形成された基板に対して赤外分光法による分析を行い、LO(Longitudinal Optical)フォノン、TO(Transverse Optical)フォノンの少なくともの一方のピークを含む波数範囲の吸光度スペクトルを測定する測定工程と、
測定された吸光度スペクトルから前記構造物に関する評価情報を導出する導出工程と、
を有する基板評価方法。
(付記2)
前記構造物は、前記基板に形成されたトレンチとする
付記1に記載の基板評価方法。
前記構造物は、前記基板に形成されたトレンチとする
付記1に記載の基板評価方法。
(付記3)
前記トレンチは、赤外活性の材料による膜が形成され、
前記導出工程は、前記吸光度スペクトルから前記赤外活性の材料のLOフォノンとTOフォノンのピーク強度を求め、LOフォノンとTOフォノンのピーク強度から、前記評価情報として前記トレンチの開口幅を導出する
付記2に記載の基板評価方法。
前記トレンチは、赤外活性の材料による膜が形成され、
前記導出工程は、前記吸光度スペクトルから前記赤外活性の材料のLOフォノンとTOフォノンのピーク強度を求め、LOフォノンとTOフォノンのピーク強度から、前記評価情報として前記トレンチの開口幅を導出する
付記2に記載の基板評価方法。
(付記4)
前記赤外活性の材料は、Si原子とN原子を含有する材料である
付記3に記載の基板評価方法。
前記赤外活性の材料は、Si原子とN原子を含有する材料である
付記3に記載の基板評価方法。
(付記5)
前記基板に基板処理を実施する基板処理工程をさらに有し、
前記測定工程は、
前記基板処理工程による基板処理前の前記基板に対して赤外分光法による分析を行い、基板処理前の強度スペクトルを測定する基板処理前測定工程と、
前記基板処理工程による基板処理後の前記基板に対して赤外分光法による分析を行い、基板処理後の強度スペクトルを測定する基板処理後測定工程とを有し、
前記導出工程は、前記基板処理前測定工程により測定された基板処理前の前記強度スペクトルと、前記基板処理後測定工程により測定された基板処理後の前記強度スペクトルから前記構造物に関する評価情報を導出する
付記1~4の何れか1つに記載の基板評価方法。
前記基板に基板処理を実施する基板処理工程をさらに有し、
前記測定工程は、
前記基板処理工程による基板処理前の前記基板に対して赤外分光法による分析を行い、基板処理前の強度スペクトルを測定する基板処理前測定工程と、
前記基板処理工程による基板処理後の前記基板に対して赤外分光法による分析を行い、基板処理後の強度スペクトルを測定する基板処理後測定工程とを有し、
前記導出工程は、前記基板処理前測定工程により測定された基板処理前の前記強度スペクトルと、前記基板処理後測定工程により測定された基板処理後の前記強度スペクトルから前記構造物に関する評価情報を導出する
付記1~4の何れか1つに記載の基板評価方法。
(付記6)
前記基板処理工程は、前記基板に赤外活性の材料を成膜する、又は前記基板に含まれる赤外活性の材料を露出する基板処理を実施し、
前記導出工程は、前記基板処理前の前記強度スペクトルと、前記基板処理後の前記強度スペクトルから吸光度スペクトルを算出し、前記吸光度スペクトルから前記赤外活性の材料のLOフォノンとTOフォノンの少なくとも一方のピーク強度を求め、少なくとも一方のピーク強度から、構造物に関する評価情報を導出する
付記5に記載の基板評価方法。
前記基板処理工程は、前記基板に赤外活性の材料を成膜する、又は前記基板に含まれる赤外活性の材料を露出する基板処理を実施し、
前記導出工程は、前記基板処理前の前記強度スペクトルと、前記基板処理後の前記強度スペクトルから吸光度スペクトルを算出し、前記吸光度スペクトルから前記赤外活性の材料のLOフォノンとTOフォノンの少なくとも一方のピーク強度を求め、少なくとも一方のピーク強度から、構造物に関する評価情報を導出する
付記5に記載の基板評価方法。
(付記7)
前記構造物は、前記基板に形成されたトレンチとし、
前記測定工程は、前記トレンチに対して平行偏光の赤外光を前記基板に照射して吸光度スペクトルを測定し、
前記導出工程は、測定された平行偏光での吸光度スペクトルとフラットな基板に対する赤外分光法による分析により得られた吸光度スペクトルとを比較して前記トレンチに関する評価情報を導出する
付記1~6の何れか1つに記載の基板評価方法。
前記構造物は、前記基板に形成されたトレンチとし、
前記測定工程は、前記トレンチに対して平行偏光の赤外光を前記基板に照射して吸光度スペクトルを測定し、
前記導出工程は、測定された平行偏光での吸光度スペクトルとフラットな基板に対する赤外分光法による分析により得られた吸光度スペクトルとを比較して前記トレンチに関する評価情報を導出する
付記1~6の何れか1つに記載の基板評価方法。
(付記8)
前記構造物は、前記基板に形成されたトレンチとし、
前記測定工程は、
第1の偏光の赤外光を前記基板に照射して強度スペクトルを測定する第1の偏光測定工程と、
前記トレンチに対して前記第1の偏光とは異なる第2偏光の赤外光を前記基板に照射して吸光度スペクトルを測定する第2の偏光測定工程とを有し、
前記導出工程は、前記第1の偏光測定工程により測定された前記第1の偏光での強度スペクトルと前記第2の偏光測定工程により測定された前記第2の偏光での強度スペクトルと前記トレンチのアスペクト比からLOフォノン及びTOフォノンの少なくとも一方による吸光度スペクトルを導出する
付記1~6の何れか1つに記載の基板評価方法。
前記構造物は、前記基板に形成されたトレンチとし、
前記測定工程は、
第1の偏光の赤外光を前記基板に照射して強度スペクトルを測定する第1の偏光測定工程と、
前記トレンチに対して前記第1の偏光とは異なる第2偏光の赤外光を前記基板に照射して吸光度スペクトルを測定する第2の偏光測定工程とを有し、
前記導出工程は、前記第1の偏光測定工程により測定された前記第1の偏光での強度スペクトルと前記第2の偏光測定工程により測定された前記第2の偏光での強度スペクトルと前記トレンチのアスペクト比からLOフォノン及びTOフォノンの少なくとも一方による吸光度スペクトルを導出する
付記1~6の何れか1つに記載の基板評価方法。
(付記9)
前記第1の偏光と前記第2の偏光は直交している
付記8に記載の基板評価方法。
前記第1の偏光と前記第2の偏光は直交している
付記8に記載の基板評価方法。
(付記10)
前記第1の偏光または前記第2の偏光がトレンチに対して平行偏光である
付記8に記載の基板評価方法。
前記第1の偏光または前記第2の偏光がトレンチに対して平行偏光である
付記8に記載の基板評価方法。
(付記11)
前記導出工程は、導出した少なくとも一方による吸光度スペクトルと、フラットな基板に対する赤外分光法による分析により得られたLOフォノンとTOフォノンの少なくとも一方による吸光度スペクトルとを比較して前記トレンチに関する評価情報を導出する
付記8に記載の基板評価方法。
前記導出工程は、導出した少なくとも一方による吸光度スペクトルと、フラットな基板に対する赤外分光法による分析により得られたLOフォノンとTOフォノンの少なくとも一方による吸光度スペクトルとを比較して前記トレンチに関する評価情報を導出する
付記8に記載の基板評価方法。
(付記12)
前記測定工程は、前記基板に対して赤外光を垂直入射して赤外分光法による分析を行う
付記1~11の何れか1つに記載の基板評価方法。
前記測定工程は、前記基板に対して赤外光を垂直入射して赤外分光法による分析を行う
付記1~11の何れか1つに記載の基板評価方法。
(付記13)
前記測定工程は、前記基板に対して赤外光を前記基板の平面に近い方向から入射して赤外分光法による分析を行う
付記1~11の何れか1つに記載の基板評価方法。
前記測定工程は、前記基板に対して赤外光を前記基板の平面に近い方向から入射して赤外分光法による分析を行う
付記1~11の何れか1つに記載の基板評価方法。
(付記14)
異方性の構造物が形成された基板に対して赤外分光法による分析を行い、LO(Longitudinal Optical)フォノン、TO(Transverse Optical)フォノンの少なくともの一方のピークを含む波数範囲の吸光度スペクトルを測定する測定部と、
前記測定部により測定された吸光度スペクトルから前記構造物に関する評価情報を導出する導出部と、
を有する基板処理装置。
異方性の構造物が形成された基板に対して赤外分光法による分析を行い、LO(Longitudinal Optical)フォノン、TO(Transverse Optical)フォノンの少なくともの一方のピークを含む波数範囲の吸光度スペクトルを測定する測定部と、
前記測定部により測定された吸光度スペクトルから前記構造物に関する評価情報を導出する導出部と、
を有する基板処理装置。
W 基板
1 チャンバ
2 載置台
10 高周波電源
15 ガス供給部
16 シャワーヘッド
60 制御部
62 記憶部
62a 相関情報
81 照射部
82 検出部
90 パターン
90a 凹部
91 膜
92 トレンチ
95 シリコン基板
96 膜
100 成膜装置
200 成膜装置
201~204 チャンバ
310 制御部
311 記憶部
1 チャンバ
2 載置台
10 高周波電源
15 ガス供給部
16 シャワーヘッド
60 制御部
62 記憶部
62a 相関情報
81 照射部
82 検出部
90 パターン
90a 凹部
91 膜
92 トレンチ
95 シリコン基板
96 膜
100 成膜装置
200 成膜装置
201~204 チャンバ
310 制御部
311 記憶部
Claims (14)
- 異方性の構造物が形成された基板に対して赤外分光法による分析を行い、LO(Longitudinal Optical)フォノン、TO(Transverse Optical)フォノンの少なくともの一方のピークを含む波数範囲の吸光度スペクトルを測定する測定工程と、
測定された吸光度スペクトルから前記構造物に関する評価情報を導出する導出工程と、
を有する基板評価方法。 - 前記構造物は、前記基板に形成されたトレンチとする
請求項1に記載の基板評価方法。 - 前記トレンチは、赤外活性の材料による膜が形成され、
前記導出工程は、前記吸光度スペクトルから前記赤外活性の材料のLOフォノンとTOフォノンのピーク強度を求め、LOフォノンとTOフォノンのピーク強度から、前記評価情報として前記トレンチの開口幅を導出する
請求項2に記載の基板評価方法。 - 前記赤外活性の材料は、Si原子とN原子を含有する材料である
請求項3に記載の基板評価方法。 - 前記基板に基板処理を実施する基板処理工程をさらに有し、
前記測定工程は、
前記基板処理工程による基板処理前の前記基板に対して赤外分光法による分析を行い、基板処理前の強度スペクトルを測定する基板処理前測定工程と、
前記基板処理工程による基板処理後の前記基板に対して赤外分光法による分析を行い、基板処理後の強度スペクトルを測定する基板処理後測定工程とを有し、
前記導出工程は、前記基板処理前測定工程により測定された基板処理前の前記強度スペクトルと、前記基板処理後測定工程により測定された基板処理後の前記強度スペクトルから前記構造物に関する評価情報を導出する
請求項1に記載の基板評価方法。 - 前記基板処理工程は、前記基板に赤外活性の材料を成膜する、又は前記基板に含まれる赤外活性の材料を露出する基板処理を実施し、
前記導出工程は、前記基板処理前の前記強度スペクトルと、前記基板処理後の前記強度スペクトルから吸光度スペクトルを算出し、前記吸光度スペクトルから前記赤外活性の材料のLOフォノンとTOフォノンの少なくとも一方のピーク強度を求め、少なくとも一方のピーク強度から、構造物に関する評価情報を導出する
請求項5に記載の基板評価方法。 - 前記構造物は、前記基板に形成されたトレンチとし、
前記測定工程は、前記トレンチに対して平行偏光の赤外光を前記基板に照射して吸光度スペクトルを測定し、
前記導出工程は、測定された平行偏光での吸光度スペクトルとフラットな基板に対する赤外分光法による分析により得られた吸光度スペクトルとを比較して前記トレンチに関する評価情報を導出する
請求項1に記載の基板評価方法。 - 前記構造物は、前記基板に形成されたトレンチとし、
前記測定工程は、
前記トレンチに対して第1の偏光の赤外光を前記基板に照射して吸光度スペクトルを測定する第1の偏光測定工程と、
前記トレンチに対して前記第1の偏光とは異なる第2の偏光の赤外光を前記基板に照射して吸光度スペクトルを測定する第2の偏光測定工程とを有し、
前記導出工程は、前記第1の偏光測定工程により測定された前記第1の偏光での吸光度スペクトルと前記第2の偏光測定工程により測定された前記第2の偏光での吸光度スペクトルと前記トレンチのアスペクト比からLOフォノン及びTOフォノンの少なくとも一方による吸光度スペクトルを導出する
請求項1に記載の基板評価方法。 - 前記第1の偏光と前記第2の偏光は直交している
請求項8に記載の基板評価方法。 - 前記第1の偏光または前記第2の偏光がトレンチに対して平行偏光である
請求項8に記載の基板評価方法。 - 前記導出工程は、導出した少なくとも一方による吸光度スペクトルと、フラットな基板に対する赤外分光法による分析により得られたLOフォノンとTOフォノンの少なくとも一方による吸光度スペクトルとを比較して前記トレンチに関する評価情報を導出する
請求項8に記載の基板評価方法。 - 前記測定工程は、前記基板に対して赤外光を垂直入射して赤外分光法による分析を行う
請求項1に記載の基板評価方法。 - 前記測定工程は、前記基板に対して赤外光を前記基板の平面に近い方向から入射して赤外分光法による分析を行う
請求項1に記載の基板評価方法。 - 異方性の構造物が形成された基板に対して赤外分光法による分析を行い、LO(Longitudinal Optical)フォノン、TO(Transverse Optical)フォノンの少なくともの一方のピークを含む波数範囲の吸光度スペクトルを測定する測定部と、
前記測定部により測定された吸光度スペクトルから前記構造物に関する評価情報を導出する導出部と、
を有する基板処理装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022155159A JP2024048961A (ja) | 2022-09-28 | 2022-09-28 | 基板評価方法及び基板処理装置 |
PCT/JP2023/033807 WO2024070785A1 (ja) | 2022-09-28 | 2023-09-15 | 基板評価方法及び基板処理装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022155159A JP2024048961A (ja) | 2022-09-28 | 2022-09-28 | 基板評価方法及び基板処理装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024048961A true JP2024048961A (ja) | 2024-04-09 |
Family
ID=90477421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022155159A Pending JP2024048961A (ja) | 2022-09-28 | 2022-09-28 | 基板評価方法及び基板処理装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024048961A (ja) |
WO (1) | WO2024070785A1 (ja) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0563053A (ja) * | 1991-08-30 | 1993-03-12 | Oki Electric Ind Co Ltd | 半導体装置の膜厚測定方法 |
JP2009231654A (ja) * | 2008-03-25 | 2009-10-08 | Covalent Materials Corp | Si基板上の3C−SiC層の結晶性の評価方法 |
US20210116390A1 (en) * | 2019-10-18 | 2021-04-22 | University Of North Texas | Extended infrared spectroscopic wafer characterization metrology |
-
2022
- 2022-09-28 JP JP2022155159A patent/JP2024048961A/ja active Pending
-
2023
- 2023-09-15 WO PCT/JP2023/033807 patent/WO2024070785A1/ja unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024070785A1 (ja) | 2024-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8257546B2 (en) | Method and system for monitoring an etch process | |
JP5468113B2 (ja) | シリコンに対する誘電材料の選択エッチング方法及びシステム | |
KR102172031B1 (ko) | 플라스마 처리 방법, 및 플라스마 처리 장치 | |
KR20110033097A (ko) | Dc 및 rf 하이브리드 처리 시스템 | |
TW200303059A (en) | Method of fault detection for material process system | |
US7723236B2 (en) | Gas setting method, gas setting apparatus, etching apparatus and substrate processing system | |
TWI797331B (zh) | 處理裝置 | |
US20240120187A1 (en) | Plasma processing method and plasma processing apparatus | |
US20080137083A1 (en) | Process monitoring system, process monitoring method, and method for manufacturing semiconductor device | |
KR102592122B1 (ko) | 성막 방법 및 성막 장치 | |
JP2013057660A (ja) | 独立光源を用いたウェハ温度測定のための方法及び装置 | |
JP4660091B2 (ja) | 材料処理システムおよび材料処理システムを特徴づける方法 | |
TW200521416A (en) | Methods and apparatus for in situ substrate temperature monitoring | |
WO2024070785A1 (ja) | 基板評価方法及び基板処理装置 | |
WO2023223845A1 (ja) | 膜厚計測方法及び基板処理装置 | |
WO2023002854A1 (ja) | 基板処理方法及び基板処理装置 | |
WO2023058476A1 (ja) | 測定方法及び基板処理装置 | |
US20210142991A1 (en) | Apparatus with optical cavity for determining process rate | |
WO2023132268A1 (ja) | 判定方法及び基板処理装置 | |
JP2007103604A (ja) | エッチング方法および処理装置 | |
JP2023100573A (ja) | 判定方法及び基板処理装置 | |
WO2022239683A1 (ja) | 基板を処理する装置、及び処理ガスの温度、濃度を測定する方法 | |
JP2024152915A (ja) | 検出方法 | |
KR20220069532A (ko) | 실시간 분광 장치 및 이를 포함한 플라즈마 처리 시스템 | |
TW202433545A (zh) | 電漿監測系統和監測電漿的方法 |