JP2024047932A - Soft magnetic foil and its manufacturing method - Google Patents

Soft magnetic foil and its manufacturing method Download PDF

Info

Publication number
JP2024047932A
JP2024047932A JP2022153710A JP2022153710A JP2024047932A JP 2024047932 A JP2024047932 A JP 2024047932A JP 2022153710 A JP2022153710 A JP 2022153710A JP 2022153710 A JP2022153710 A JP 2022153710A JP 2024047932 A JP2024047932 A JP 2024047932A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic foil
foil
columnar crystals
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022153710A
Other languages
Japanese (ja)
Inventor
祐也 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2022153710A priority Critical patent/JP2024047932A/en
Publication of JP2024047932A publication Critical patent/JP2024047932A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

【課題】製造性に優れ且つ渦電流損失を抑制でき高周波透磁率に優れたFe-Ni系合金からなる軟磁性箔体及びその製造方法の提供。【解決手段】Feに35~80質量%のNiを含むFe-Ni系合金からなる軟磁性箔体である。厚さ方向に[111]軸を配向させた柱状結晶からなる内部組織を有し、直流比透磁率を3500以上かつ減衰周波数を150kHz以上とすることを特徴とする。軟磁性箔体の製造方法は、Feに35~80質量%のNiを含むFe-Ni系合金を溶融させて回転する冷却ロールの上に与えて連続した帯状箔体に凝固させる軟磁性箔体の製造方法である。厚さ方向に[111]軸を配向させた柱状結晶からなる内部組織を有し、厚さ方向断面における柱状結晶の[111]軸の配向度が90以上とするように冷却ロールの回転を制御することを特徴とする。【選択図】 図2[Problem] To provide a soft magnetic foil made of an Fe-Ni alloy that is excellent in manufacturability, suppresses eddy current loss, and has excellent high-frequency magnetic permeability, and a method for manufacturing the same. [Solution] A soft magnetic foil made of an Fe-Ni alloy containing 35 to 80 mass % Ni in Fe. The soft magnetic foil has an internal structure made of columnar crystals with the [111] axis oriented in the thickness direction, and is characterized by a DC relative magnetic permeability of 3500 or more and an attenuation frequency of 150 kHz or more. A method for manufacturing a soft magnetic foil is to melt an Fe-Ni alloy containing 35 to 80 mass % Ni in Fe, apply it to a rotating cooling roll, and solidify it into a continuous belt-shaped foil. The soft magnetic foil has an internal structure made of columnar crystals with the [111] axis oriented in the thickness direction, and is characterized by controlling the rotation of the cooling roll so that the orientation degree of the [111] axis of the columnar crystals in a cross section in the thickness direction is 90 or more. [Selected Figure] Figure 2

Description

本発明は、Fe-Ni系合金からなる軟磁性箔体及びその製造方法に関する。 The present invention relates to a soft magnetic foil made of an Fe-Ni alloy and a method for manufacturing the same.

電子回路におけるノイズ抑制部品であるCMC(Common Mode Choke-coil:コモンモードチョークコイル)には、ノイズ周波数に応じてパーマロイ(Fe-Ni系合金)やソフトフェライトなどの材料が用いられる。例えば、100kHzを超えるような高周波帯では、飽和磁束密度は低いが、高い電気抵抗を有するソフトフェライトが多く使用されている。一方、ソフトフェライトは温度上昇に伴って磁気特性を劣化させるため、より磁気特性の温度安定性の高いパーマロイの利用も考慮できる。 Common mode choke coils (CMCs), which are noise suppression components in electronic circuits, use materials such as permalloy (an Fe-Ni alloy) and soft ferrite depending on the noise frequency. For example, in high frequency bands over 100 kHz, soft ferrite, which has a low saturation magnetic flux density but high electrical resistance, is often used. On the other hand, since the magnetic properties of soft ferrite deteriorate with increasing temperature, the use of permalloy, which has magnetic properties with higher temperature stability, can also be considered.

例えば、特許文献1では、パーマロイからなる高周波用ノイズフィルタ用の軟磁性金属箔の製造方法が開示されている。熱間圧延材であるコイルから厚さ20μm程度の軟磁性金属箔が引き出され、圧延装置の圧延ロールにより厚さが3~14μm程度になるまで圧延しコイルに巻回する。その後、700~1100℃の温度で10~65秒間加熱して結晶粒の大きさを大きくし、磁気特性の調整を図るとしている。 For example, Patent Document 1 discloses a method for manufacturing soft magnetic metal foil made of permalloy for use in high-frequency noise filters. Soft magnetic metal foil with a thickness of about 20 μm is drawn out from a coil of hot-rolled material, and is rolled by the rolling rolls of a rolling mill until the thickness is about 3 to 14 μm, and then wound into a coil. It is then heated at a temperature of 700 to 1100°C for 10 to 65 seconds to increase the size of the crystal grains and adjust the magnetic properties.

特開2009-114511号公報JP 2009-114511 A

上記したような、Fe-Ni系合金からなるパーマロイは、MoやCu、Cr等を添加することでより透磁率を高めることができるが、一方で、箔体への圧延が難しくなる。また、パーマロイはソフトフェライト対比で、温度安定性が高い一方、電気抵抗が低く、高周波帯での使用には、渦電流損失を抑制することが必要となる。 As mentioned above, permalloy, which is made of an Fe-Ni alloy, can have its magnetic permeability increased by adding Mo, Cu, Cr, etc., but this makes it difficult to roll into foil. In addition, permalloy has high temperature stability compared to soft ferrite, but its electrical resistance is low, and for use in high frequency bands, it is necessary to suppress eddy current loss.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、製造性に優れ且つ渦電流損失を抑制でき高周波透磁率に優れたFe-Ni系合金からなる軟磁性箔体及びその製造方法を提供することにある。 The present invention was made in consideration of the above circumstances, and its purpose is to provide a soft magnetic foil made of an Fe-Ni alloy that is easy to manufacture, suppresses eddy current loss, and has excellent high-frequency magnetic permeability, and a method for manufacturing the same.

本発明による軟磁性箔体は、Feに35~80質量%のNiを含むFe-Ni系合金からなる軟磁性箔体であって、厚さ方向に[111]軸を配向させた柱状結晶からなる内部組織を有し、直流比透磁率を3500以上かつ減衰周波数を150kHz以上とすることを特徴とする。 The soft magnetic foil according to the present invention is a soft magnetic foil made of an Fe-Ni alloy containing 35 to 80 mass % Ni in Fe, and is characterized by having an internal structure made of columnar crystals with the [111] axis oriented in the thickness direction, a DC relative permeability of 3500 or more, and an attenuation frequency of 150 kHz or more.

かかる特徴によれば、鍛造法によらずいわゆる単ロール法で箔体を製造できるから製造性に優れ、渦電流損失を抑制し高周波透磁率に優れた軟磁性箔体とできるのである。 This feature allows the foil to be manufactured using the so-called single roll method rather than a forging method, resulting in a soft magnetic foil with excellent manufacturability, reduced eddy current loss, and excellent high-frequency magnetic permeability.

本発明による軟磁性箔体の製造方法は、Feに35~80wt%のNiを含むFe-Ni系合金を溶融させて回転する冷却ロールの上に与えて連続した帯状箔体に凝固させる軟磁性箔体の製造方法であって、厚さ方向に[111]軸を配向させた柱状結晶からなる内部組織を有し、厚さ方向断面における前記柱状結晶の[111]軸の配向度が90以上とするように前記冷却ロールの回転を制御することを特徴とする。 The method for manufacturing soft magnetic foil according to the present invention is a method for manufacturing soft magnetic foil in which an Fe-Ni alloy containing 35 to 80 wt % Ni in Fe is melted and placed on a rotating cooling roll to solidify into a continuous strip-shaped foil, and is characterized in that the foil has an internal structure consisting of columnar crystals with the [111] axis oriented in the thickness direction, and the rotation of the cooling roll is controlled so that the degree of orientation of the [111] axis of the columnar crystals in the thickness direction cross section is 90 or more.

かかる特徴によれば、鍛造法よりも製造性に優れるいわゆる単ロール法で、渦電流損失を抑制し高周波透磁率に優れた軟磁性箔体を製造できるのである。 Due to these characteristics, it is possible to produce soft magnetic foils with excellent high-frequency permeability and reduced eddy current loss using the so-called single roll method, which has superior manufacturability compared to forging methods.

軟磁性箔体の斜視図である。FIG. 本発明の実施例による軟磁性箔体のRD-ND平面での断面のEBSD写真である。3 is an EBSD photograph of a cross section in the RD-ND plane of a soft magnetic foil according to an embodiment of the present invention. 比較例による箔体のRD-ND平面での断面のEBSD写真である。4 is an EBSD photograph of a cross section in the RD-ND plane of a foil body according to a comparative example. 製造試験で得られた軟磁性箔体の合金の成分組成の表である。1 is a table showing the alloy composition of soft magnetic foils obtained in a manufacturing test. 製造試験における製造条件と得られた軟磁性箔体の形状及び配向度の一覧表である。1 is a table showing manufacturing conditions in a manufacturing test and the shapes and degrees of orientation of the obtained soft magnetic foil bodies. 製造試験において得られた軟磁性箔体の磁気特性の表である。1 is a table showing magnetic properties of soft magnetic foils obtained in a production test.

本発明の例による軟磁性箔体及びその製造方法について、図1乃至図3を用いて説明する。 The soft magnetic foil according to the present invention and its manufacturing method will be described with reference to Figs. 1 to 3.

本実施例における軟磁性箔体は、Feに35~80質量%のNiを含む成分組成を有するFe-Ni系合金からなる。かかる成分組成において、Cu及び/又はMoを、それぞれ1.0~6.0質量%、3.0~6.0質量%の範囲で更に含んでもよい。また、かかる成分組成において、Mnを0.4~0.6質量%の範囲で更に含んでもよい。なお、Niの含有量は、75~80質量%の範囲内であることが好ましい。また、Cuを添加する場合に、その含有量は、2.0~4.0質量%の範囲内であることが好ましく、Moを添加する場合に、その含有量は、4.0~5.0質量%の範囲内であることが好ましい。 The soft magnetic foil in this embodiment is made of an Fe-Ni alloy having a composition containing 35 to 80 mass% Ni in Fe. This composition may further contain Cu and/or Mo in the ranges of 1.0 to 6.0 mass% and 3.0 to 6.0 mass%, respectively. This composition may further contain Mn in the range of 0.4 to 0.6 mass%. The Ni content is preferably in the range of 75 to 80 mass%. When Cu is added, the content is preferably in the range of 2.0 to 4.0 mass%, and when Mo is added, the content is preferably in the range of 4.0 to 5.0 mass%.

上記した成分組成となるよう調整した合金は、いわゆる単ロール法によって箔体とされる。すなわち、かかる合金を溶融させた溶湯を回転する冷却ロールの上に与え凝固させて、連続した帯状箔体を得るのである。このとき、冷却ロールと溶湯の温度、溶湯の時間当たりの供給量、冷却ロールの周速などの条件によって得られる箔体の厚さが変化し、内部の金属組織にも影響を与える。本実施例においては、冷却ロールの回転によって周速を制御し、後述するような厚さや内部組織を有する箔体を得られるように調整する。 The alloy adjusted to have the above-mentioned composition is made into a foil by the so-called single roll method. That is, the alloy is melted and poured onto a rotating chill roll where it solidifies to obtain a continuous strip-shaped foil. At this time, the thickness of the foil obtained varies depending on conditions such as the temperature of the chill roll and the molten metal, the amount of molten metal supplied per hour, and the peripheral speed of the chill roll, and this also affects the internal metal structure. In this embodiment, the peripheral speed is controlled by the rotation of the chill roll, and adjustments are made to obtain a foil with the thickness and internal structure described below.

最後に、箔体に熱処理を行って焼鈍する。後述するように、得られる軟磁性箔体では、厚さ方向に伸びた柱状結晶を得るが、ここでは得られた柱状結晶を維持するように比較的低温で熱処理を行う。すなわち、焼鈍の効果を得られるよう、500℃以上とすることが好ましく、一方で、再結晶を防止するよう950℃以下とすることが好ましい。典型的には800℃×3時間の熱処理とすることができる。 Finally, the foil is heat-treated to anneal it. As described below, the resulting soft magnetic foil has columnar crystals extending in the thickness direction, but here the heat treatment is performed at a relatively low temperature to maintain the columnar crystals. That is, to obtain the annealing effect, it is preferable to set the temperature to 500°C or higher, while it is preferable to set the temperature to 950°C or lower to prevent recrystallization. Typically, the heat treatment can be performed at 800°C for 3 hours.

図1に示すように、このようにして得られた本実施例による軟磁性箔体1は、圧延方向(RD:Rolling Direction)に長く、横方向(TD:Transversal Direction)を幅とし、RD-TD面の法線方向(ND:Normal Diredtion)を厚さ方向とする帯状体である。 As shown in FIG. 1, the soft magnetic foil 1 according to this embodiment obtained in this manner is a strip-shaped body that is long in the rolling direction (RD), wide in the transverse direction (TD), and has a thickness direction normal to the RD-TD plane (ND).

図2を併せて参照すると、軟磁性箔体1は、冷却ロールに接触したロール面2の近傍に微細な球状の結晶粒によるチル晶11を形成し、チル晶11からフリー面3に向けて厚さ方向に伸びた柱状の結晶からなる柱状結晶12を形成した内部組織を有する。柱状結晶12は、主に厚さ方向に[111]軸を配向させており、厚さ方向断面における[111]軸の配向度が90以上となるように調整される。ここで、配向度Aは、電子線後方散乱回折(EBSD)法による解析におけるデータ数をi、磁化困難軸である[111]軸の方向と厚さ方向(ND方向)とのなす角をθとして、次の(式1)で表される。なお、今回、データ数iは40万点とした。 Referring also to FIG. 2, the soft magnetic foil 1 has an internal structure in which chill crystals 11 made of fine spherical crystal grains are formed near the roll surface 2 in contact with the cooling roll, and columnar crystals 12 made of columnar crystals extending in the thickness direction from the chill crystals 11 toward the free surface 3. The columnar crystals 12 are mainly oriented along the [111] axis in the thickness direction, and the orientation degree of the [111] axis in the thickness direction cross section is adjusted to be 90 or more. Here, the orientation degree A is expressed by the following (Equation 1), where i is the number of data in the analysis by the electron backscatter diffraction (EBSD) method, and θ is the angle between the direction of the [111] axis, which is the hard magnetization axis, and the thickness direction (ND direction). In this case, the number of data i was set to 400,000 points.

Figure 2024047932000002
Figure 2024047932000002

つまり、このような内部組織を得られるように、冷却ロールの回転の制御や、熱処理温度の調整を行うのである。そして得られた軟磁性箔体1によれば、磁気特性として直流透磁率を3500超、減衰周波数を150kHz以上とすることができる。ここで、減衰周波数は、直流透磁率対比で交流透磁率を90%まで減衰させるときの周波数とする。 In other words, the rotation of the cooling roll is controlled and the heat treatment temperature is adjusted to obtain this internal structure. The resulting soft magnetic foil 1 can have magnetic properties such as a DC permeability of over 3500 and a damping frequency of 150 kHz or more. Here, the damping frequency is the frequency at which the AC permeability is damped to 90% compared to the DC permeability.

軟磁性箔体1は、上記したように柱状結晶を得ることで結晶粒を比較的小さく維持し得て、渦電流損失を抑制し、高い高周波透磁率を得ることができる。これによって、例えば、箔体の厚さを15μmとするときに、最大約1.5MHzまでの高周波域においてフェライト以上の透磁率を得ることが可能となる。なお、厚さを45μm以下とすることで、比較的高い高周波透磁率を得ることができて好適である。 As described above, by obtaining columnar crystals, the soft magnetic foil 1 can maintain the crystal grains relatively small, suppressing eddy current losses and achieving high high-frequency permeability. As a result, for example, when the foil thickness is 15 μm, it is possible to obtain a permeability equal to or greater than that of ferrite in the high-frequency range up to a maximum of approximately 1.5 MHz. It is preferable to set the thickness to 45 μm or less, since a relatively high high-frequency permeability can be obtained.

なお、図3に示すように、950℃を超える熱処理によって再結晶を生じて柱状結晶を維持できなかった場合、柱状結晶に比べて粗大な結晶粒からなる内部組織となり、上記した磁気特性を得ることが難しくなる。例えば、粗大な結晶粒によって渦電流損失を増大させてしまい、高周波透磁率を低下させてしまう。 As shown in Figure 3, if recrystallization occurs due to heat treatment above 950°C and the columnar crystals cannot be maintained, the internal structure will be made up of coarse crystal grains compared to the columnar crystals, making it difficult to obtain the magnetic properties described above. For example, the coarse crystal grains will increase eddy current loss and reduce high-frequency permeability.

[製造試験]
上記した製造方法によって軟磁性箔体1を得て、磁気特性を調査した結果について図4乃至図6を用いて説明する。
[Production testing]
The soft magnetic foil 1 was obtained by the above-mentioned manufacturing method, and the magnetic properties were examined. The results will be described with reference to FIGS.

図4に示すように、本製造試験には、質量%で、Niを77.4%、Cuを3.5%、Mnを0.5%、Moを4.5%含有するFe-Ni系合金を用いた。 As shown in Figure 4, an Fe-Ni alloy containing, by mass%, 77.4% Ni, 3.5% Cu, 0.5% Mn, and 4.5% Mo was used for this manufacturing test.

図5に示すロール周速で、上記のFe-Ni系合金による溶湯を単ロール法で箔体とした。ロール周速を高くするほど得られる箔体の厚さが減少することが判る。50μm未満の比較的小さな厚さの連続帯を得たのは、ロール周速を18m/s以上とした場合であった。そして、厚さが72μmとなった比較例2においては、連続帯の形状を得られずにフレーク状となってしまった。そのため、比較例2では、形状の良否としては不良と判断され「×」を記録された。なお、その他の実施例、比較例においては帯状の箔体を得ることができたので、形状の良否としては良好と判定し「〇」を記録した。 At the roll circumferential speed shown in Figure 5, the above molten Fe-Ni alloy was made into a foil by the single roll method. It can be seen that the thickness of the obtained foil decreases as the roll circumferential speed increases. A continuous band with a relatively small thickness of less than 50 μm was obtained when the roll circumferential speed was 18 m/s or more. In Comparative Example 2, where the thickness was 72 μm, a continuous band shape was not obtained and the shape became flake-like. Therefore, in Comparative Example 2, the shape was judged to be poor and an "X" was recorded. Note that in the other examples and comparative examples, a band-shaped foil could be obtained, so the shape was judged to be good and an "O" was recorded.

図6に示すように、得られた箔体について直流比透磁率、減衰周波数を測定し、高周波透磁率についての良否について判定した。直流比透磁率は、インピーダンス・アナライザE4990A(キーサイト・テクノロジー社製)を用いて測定される印加磁界4.0A/mにおけるインダクタンスから算出した。高周波透磁率の良否については、直流比透磁率で3500超、減衰周波数で150kHz以上の両者を満たす場合に良好と判定し、「〇」を記録し、それ以外の場合に不良と判定し「×」を記録した。 As shown in Figure 6, the DC relative permeability and attenuation frequency of the obtained foil body were measured, and the high frequency permeability was judged to be good or bad. The DC relative permeability was calculated from the inductance at an applied magnetic field of 4.0 A/m measured using an impedance analyzer E4990A (manufactured by Keysight Technologies). Regarding the quality of the high frequency permeability, if both the DC relative permeability was over 3500 and the attenuation frequency was 150 kHz or more, it was judged to be good and recorded as "◯", otherwise it was judged to be bad and recorded as "X".

これらの結果から、得られる箔体の厚さが増すほどに、配向度が低下する傾向にあり、直流比透磁率及び減衰周波数の双方も低下する傾向にあることが判った。また、今回の結果において、45μm以下の厚さとなる実施例1~5であれば、高周波透磁率を良好とし得ることが判った。 These results show that as the thickness of the resulting foil increases, the degree of orientation tends to decrease, and both the DC relative permeability and the attenuation frequency also tend to decrease. Furthermore, the results show that in Examples 1 to 5, which have a thickness of 45 μm or less, good high-frequency permeability can be achieved.

以上、本発明の代表的な実施例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。 Although the representative embodiments of the present invention have been described above, the present invention is not necessarily limited to these, and a person skilled in the art will be able to find various alternative embodiments and modifications without departing from the spirit of the present invention or the scope of the appended claims.

1 軟磁性箔体
2 ロール面
3 フリー面
11 チル晶
12 柱状結晶

Reference Signs List 1 Soft magnetic foil 2 Roll surface 3 Free surface 11 Chill crystal 12 Columnar crystal

Claims (10)

Feに35~80質量%のNiを含むFe-Ni系合金からなる軟磁性箔体であって、
厚さ方向に[111]軸を配向させた柱状結晶からなる内部組織を有し、直流比透磁率を3500以上かつ減衰周波数を150kHz以上とすることを特徴とする軟磁性箔体。
A soft magnetic foil made of an Fe-Ni alloy containing 35 to 80 mass % Ni in Fe,
A soft magnetic foil having an internal structure made of columnar crystals with the [111] axis oriented in the thickness direction, and characterized in that it has a DC relative permeability of 3500 or more and an attenuation frequency of 150 kHz or more.
厚さ方向断面における前記柱状結晶の[111]軸の配向度が90以上であることを特徴とする請求項1記載の軟磁性箔体。 The soft magnetic foil according to claim 1, characterized in that the degree of orientation of the [111] axis of the columnar crystals in the thickness direction cross section is 90 or more. 前記内部組織は一方の主面近傍のチル晶から他方の主面へ向けた前記柱状結晶からなることを特徴とする請求項2記載の軟磁性箔体。 The soft magnetic foil according to claim 2, characterized in that the internal structure is made up of columnar crystals extending from chill crystals near one main surface toward the other main surface. 45μm以下の厚さであることを特徴とする請求項1乃至3のうちの1つに記載の軟磁性箔体。 A soft magnetic foil according to any one of claims 1 to 3, characterized in that it has a thickness of 45 μm or less. 前記Fe-Ni系合金は、Cu及び/又はMoを、それぞれ1.0~6.0wt%、3.0~6.0wt%の範囲で更に含むことを特徴とする請求項4記載の軟磁性箔体。 The soft magnetic foil according to claim 4, characterized in that the Fe-Ni alloy further contains Cu and/or Mo in the ranges of 1.0 to 6.0 wt% and 3.0 to 6.0 wt%, respectively. 前記Fe-Ni系合金は、Mnを0.4~0.6wt%の範囲で更に含むことを特徴とする請求項5記載の軟磁性箔体。 The soft magnetic foil according to claim 5, characterized in that the Fe-Ni alloy further contains Mn in the range of 0.4 to 0.6 wt%. Feに35~80質量%のNiを含むFe-Ni系合金を溶融させて回転する冷却ロールの上に与えて連続した帯状箔体に凝固させる軟磁性箔体の製造方法であって、
厚さ方向に[111]軸を配向させた柱状結晶からなる内部組織を有し、厚さ方向断面における前記柱状結晶の[111]軸の配向度を90以上とするように前記冷却ロールの回転を制御することを特徴とする軟磁性箔体の製造方法。
A method for producing a soft magnetic foil, comprising melting an Fe-Ni alloy containing 35 to 80 mass % Ni in Fe, applying the melted alloy to a rotating cooling roll, and solidifying the melted alloy into a continuous belt-shaped foil, comprising the steps of:
A method for producing a soft magnetic foil, characterized in that the soft magnetic foil has an internal structure consisting of columnar crystals with their [111] axes oriented in the thickness direction, and the rotation of the cooling roll is controlled so that the orientation degree of the [111] axes of the columnar crystals in a cross section in the thickness direction is 90 or more.
直流比透磁率を3500以上かつ減衰周波数を150kHz以上とするように前記冷却ロールの回転を制御することを特徴とする請求項7記載の軟磁性箔体の製造方法。 The method for manufacturing a soft magnetic foil according to claim 7, characterized in that the rotation of the cooling roll is controlled so that the DC relative permeability is 3500 or more and the damping frequency is 150 kHz or more. 前記Fe-Ni系合金は、Cu及び/又はMoを、それぞれ1.0~6.0wt%、3.0~6.0wt%の範囲で更に含むことを特徴とする請求項8記載の軟磁性箔体の製造方法。 The method for producing a soft magnetic foil according to claim 8, characterized in that the Fe-Ni alloy further contains Cu and/or Mo in the ranges of 1.0 to 6.0 wt % and 3.0 to 6.0 wt %, respectively. 前記Fe-Ni系合金は、Mnを0.4~0.6wt%の範囲で更に含むことを特徴とする請求項9記載の軟磁性箔体の製造方法。 The method for manufacturing a soft magnetic foil according to claim 9, characterized in that the Fe-Ni alloy further contains Mn in the range of 0.4 to 0.6 wt%.
JP2022153710A 2022-09-27 2022-09-27 Soft magnetic foil and its manufacturing method Pending JP2024047932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022153710A JP2024047932A (en) 2022-09-27 2022-09-27 Soft magnetic foil and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022153710A JP2024047932A (en) 2022-09-27 2022-09-27 Soft magnetic foil and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2024047932A true JP2024047932A (en) 2024-04-08

Family

ID=90606519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022153710A Pending JP2024047932A (en) 2022-09-27 2022-09-27 Soft magnetic foil and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2024047932A (en)

Similar Documents

Publication Publication Date Title
JP7028290B2 (en) Manufacturing method of nanocrystal alloy magnetic core
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
JP5316921B2 (en) Fe-based soft magnetic alloy and magnetic component using the same
KR100439457B1 (en) Fe-Ni BASED PERMALLOY, METHOD FOR PRODUCING THE SAME AND CASTING SLAB
JP6191908B2 (en) Nanocrystalline soft magnetic alloy and magnetic component using the same
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JPH03219009A (en) Production of fe-base soft-magnetic alloy
JP2710938B2 (en) High saturation magnetic flux density soft magnetic alloy
US20230298788A1 (en) Fe-based nanocrystal soft magnetic alloy and magnetic component
JPWO2015046140A1 (en) Method for producing Fe-based nanocrystalline alloy and method for producing Fe-based nanocrystalline alloy magnetic core
WO2017154561A1 (en) Fe-based alloy composition, soft magnetic material, magnetic member, and electrical/electronic part and instrument
JPH0711396A (en) Fe base soft magnetic alloy
JP2024047932A (en) Soft magnetic foil and its manufacturing method
JP2023124571A (en) Iron-based nanocrystalline soft magnetic alloy magnetic core
JP2006241554A (en) Method for manufacturing non-oriented electromagnetic steel sheet having high magnetic flux density
JP2693059B2 (en) Trance
JPH0277555A (en) Fe-base soft-magnetic alloy
JPH0927412A (en) Cut core and manufacture thereof
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
KR100220874B1 (en) Ultrathin fe-al based soft magnetic alloy and its fabrication method
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same
JP2007103404A (en) Core for common mode choke coil and its manufacturing method
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
KR0140788B1 (en) Ultrathin fe based nanocrystalline alloys and method for preparing ultrathin ribbons
JP3032260B2 (en) Fe-based soft magnetic alloy and method for producing the same