JP2024047894A - Air conditioners - Google Patents

Air conditioners Download PDF

Info

Publication number
JP2024047894A
JP2024047894A JP2022153657A JP2022153657A JP2024047894A JP 2024047894 A JP2024047894 A JP 2024047894A JP 2022153657 A JP2022153657 A JP 2022153657A JP 2022153657 A JP2022153657 A JP 2022153657A JP 2024047894 A JP2024047894 A JP 2024047894A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
gas
expansion valve
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022153657A
Other languages
Japanese (ja)
Inventor
智充 山口
恵介 三苫
誠心 沖野
裕介 土井
道明 中西
峻也 楠本
優好 平沢
泰明 兼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2022153657A priority Critical patent/JP2024047894A/en
Priority to PCT/JP2023/034137 priority patent/WO2024070853A1/en
Publication of JP2024047894A publication Critical patent/JP2024047894A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Abstract

【課題】高い冷凍効率のもとで、より安定的に運用することが可能な空気調和機を提供する。【解決手段】空気調和機は、冷凍機油を含む冷媒を圧縮する圧縮機と、圧縮機から吐出された冷媒と外気とを熱交換する室外熱交換器と、室外熱交換器を経由した冷媒を順次減圧させる第一膨張弁及び第二膨張弁と、膨張弁を経由した冷媒と外気とを熱交換し、冷媒を圧縮機に供給する室内熱交換器と、を備え、第一膨張弁と第二膨張弁との間に設けられた気液分離機構をさらに備え、気液分離機構は、第一膨張弁を経由した冷媒が導入される貯留部と、貯留部の底部から液相分を回収して圧縮機に導入可能な第一還流部と、を有する。【選択図】図1[Problem] To provide an air conditioner that can be operated more stably with high refrigeration efficiency. [Solution] The air conditioner includes a compressor that compresses a refrigerant containing refrigerating machine oil, an outdoor heat exchanger that exchanges heat between the refrigerant discharged from the compressor and outside air, a first expansion valve and a second expansion valve that sequentially reduce the pressure of the refrigerant that has passed through the outdoor heat exchanger, and an indoor heat exchanger that exchanges heat between the refrigerant that has passed through the expansion valves and outside air and supplies the refrigerant to the compressor, and further includes a gas-liquid separation mechanism provided between the first expansion valve and the second expansion valve, the gas-liquid separation mechanism having a storage section into which the refrigerant that has passed through the first expansion valve is introduced, and a first reflux section that can recover the liquid phase portion from the bottom of the storage section and introduce it to the compressor. [Selected Figure] Figure 1

Description

本開示は、空気調和機に関する。 This disclosure relates to an air conditioner.

空気調和機の一種として、ガスインジェクションを用いたものが種々実用化されている。ガスインジェクション方式の空気調和機では、蒸発器を経て気化したガス冷媒の一部を冷媒回路の中途から取り出して圧縮機に還流させる構成が採られる。下記特許文献1には、気液分離機構内で生じた液冷媒とガス冷媒のうち、ガス冷媒を圧縮機に戻す構成が開示されている。 Various types of air conditioners that use gas injection have been put into practical use. Gas injection air conditioners are configured so that a portion of the gas refrigerant that has evaporated through the evaporator is extracted from the middle of the refrigerant circuit and returned to the compressor. The following Patent Document 1 discloses a configuration in which, of the liquid refrigerant and gas refrigerant generated in the gas-liquid separation mechanism, the gas refrigerant is returned to the compressor.

ここで、圧縮機の各部を潤滑する冷凍機油は、冷媒中に溶け込んで冷媒回路を循環している。上記の気液分離機構を用いた構成では、冷凍機油の大部分が液冷媒とともに分離されて当該気液分離機内に貯留されたままとなる。 Here, the refrigeration oil that lubricates each part of the compressor is dissolved in the refrigerant and circulates through the refrigerant circuit. In the configuration using the gas-liquid separation mechanism described above, most of the refrigeration oil is separated together with the liquid refrigerant and remains stored in the gas-liquid separator.

また、上記の他、圧縮機の下流側に設けられたオイルセパレータによって冷凍機油を冷媒から分離して、圧縮機に戻す構成も考えられる。 In addition to the above, a configuration is also possible in which the refrigeration oil is separated from the refrigerant by an oil separator installed downstream of the compressor and returned to the compressor.

特開2002-81779号公報JP 2002-81779 A

しかしながら、上記特許文献1に係る装置のように冷凍機油の大部分が液冷媒に溶け込んで気液分離機構に貯留されている場合、冷凍機油を本来必要とする圧縮機に当該冷凍機油が到達しない可能性がある。また、オイルセパレータを用いた場合には、圧縮機に戻る冷凍機油とともに冷媒の一部も還流してしまうため、空気調和機の冷凍効率が低下する可能性がある。このため、高い冷凍効率のもとで、より安定的に運用することが可能な空気調和機に対する要請が高まっていた。 However, when most of the refrigeration oil is dissolved in the liquid refrigerant and stored in the gas-liquid separation mechanism, as in the device of Patent Document 1, there is a possibility that the refrigeration oil will not reach the compressor that actually requires it. In addition, when an oil separator is used, some of the refrigerant will also be refluxed along with the refrigeration oil that returns to the compressor, which may reduce the refrigeration efficiency of the air conditioner. For this reason, there has been a growing demand for air conditioners that can be operated more stably with high refrigeration efficiency.

本開示は上記課題を解決するためになされたものであって、高い冷凍効率のもとで、より安定的に運用することが可能な空気調和機を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide an air conditioner that can be operated more stably with high refrigeration efficiency.

上記課題を解決するために、本開示に係る空気調和機は、冷凍機油を含む冷媒を圧縮する圧縮機と、前記圧縮機から吐出された冷媒と外気とを熱交換する室外熱交換器と、前記室外熱交換器を経由した前記冷媒を順次減圧させる第一膨張弁及び第二膨張弁と、前記第一膨張弁、及び前記第二膨張弁のいずれか一方を経由した冷媒と外気とを熱交換し、前記冷媒を前記圧縮機に供給する室内熱交換器と、を備え、前記第一膨張弁と前記第二膨張弁との間に設けられた気液分離機構をさらに備え、前記気液分離機構は、前記第一膨張弁を経由した冷媒が導入される貯留部と、前記貯留部の底部から液相分を回収して前記圧縮機に導入可能な第一還流部と、を有する。 In order to solve the above problems, the air conditioner according to the present disclosure includes a compressor that compresses a refrigerant containing refrigeration oil, an outdoor heat exchanger that exchanges heat between the refrigerant discharged from the compressor and outside air, a first expansion valve and a second expansion valve that sequentially reduce the pressure of the refrigerant that has passed through the outdoor heat exchanger, and an indoor heat exchanger that exchanges heat between the refrigerant that has passed through either the first expansion valve or the second expansion valve and outside air and supplies the refrigerant to the compressor, and further includes a gas-liquid separation mechanism provided between the first expansion valve and the second expansion valve, and the gas-liquid separation mechanism has a storage section into which the refrigerant that has passed through the first expansion valve is introduced, and a first reflux section that can recover a liquid phase portion from the bottom of the storage section and introduce it to the compressor.

本開示によれば、高い冷凍効率のもとで、より安定的に運用することが可能な空気調和機を提供することができる。 This disclosure makes it possible to provide an air conditioner that can be operated more stably with high refrigeration efficiency.

本開示の第一実施形態に係る空気調和機の冷媒回路を示す模式図である。1 is a schematic diagram showing a refrigerant circuit of an air conditioner according to a first embodiment of the present disclosure. 本開示の第二実施形態に係る空気調和機の冷媒回路を示す模式図である。FIG. 4 is a schematic diagram showing a refrigerant circuit of an air conditioner according to a second embodiment of the present disclosure.

<第一実施形態>
(空気調和機の構成)
以下、本開示の第一実施形態に係る空気調和機1について、図1を参照して説明する。本実施形態に係る空気調和機1は、例えば家屋等の建築物や、自動車等の輸送機械に設置されて、室内の温度を指定された値に調節するための装置である。
First Embodiment
(Configuration of the air conditioner)
An air conditioner 1 according to a first embodiment of the present disclosure will be described below with reference to Fig. 1. The air conditioner 1 according to this embodiment is a device that is installed in a building such as a house or in transportation machinery such as an automobile, for adjusting the indoor temperature to a specified value.

図1に示すように、空気調和機1は、冷凍サイクル10と、四方弁20と、気液分離機構30と、を備える。冷凍サイクル10は、当該冷凍サイクル10のそれぞれの機器(後述)を順次流通する冷媒を圧縮したり膨張させたりすることで、室内の空気と冷媒、及び室外の空気と冷媒との間で熱交換を行うための回路である。 As shown in FIG. 1, the air conditioner 1 includes a refrigeration cycle 10, a four-way valve 20, and a gas-liquid separation mechanism 30. The refrigeration cycle 10 is a circuit for performing heat exchange between the indoor air and the refrigerant, and between the outdoor air and the refrigerant, by compressing and expanding the refrigerant that flows sequentially through each device (described below) of the refrigeration cycle 10.

(冷凍サイクルの構成)
冷凍サイクル10は、室内熱交換器11と、室内ファン12と、室外熱交換器13と、室外ファン14と、圧縮機15と、第一膨張弁17と、第二膨張弁18と、第一流路41と、第二流路42と、圧縮機流路43と、を有する。
(Configuration of refrigeration cycle)
The refrigeration cycle 10 has an indoor heat exchanger 11, an indoor fan 12, an outdoor heat exchanger 13, an outdoor fan 14, a compressor 15, a first expansion valve 17, a second expansion valve 18, a first flow path 41, a second flow path 42, and a compressor flow path 43.

室内熱交換器11は、第一流路41上に配置されている。第一流路41は、後述する四方弁20と気液分離機構30との間を接続する流路である。第一流路41の内部には冷媒が充填されている。室内熱交換器11は、第一流路41内を流通する冷媒と室内の空気との間で熱交換をさせる。室内熱交換器11は、例えばフィンアンドチューブ方式の熱交換器である。室内熱交換器11の近傍には室内ファン12が設けられている。室内ファン12を運転することで、室内の空気が室内熱交換器11に強制的に供給される。 The indoor heat exchanger 11 is disposed on the first flow path 41. The first flow path 41 is a flow path that connects between the four-way valve 20 and the gas-liquid separation mechanism 30, which will be described later. The inside of the first flow path 41 is filled with a refrigerant. The indoor heat exchanger 11 exchanges heat between the refrigerant flowing through the first flow path 41 and the indoor air. The indoor heat exchanger 11 is, for example, a fin-and-tube type heat exchanger. An indoor fan 12 is provided near the indoor heat exchanger 11. By operating the indoor fan 12, the indoor air is forcibly supplied to the indoor heat exchanger 11.

第一流路41上における室内熱交換器11よりも気液分離機構30側の位置には、第二膨張弁18が配置されている。第二膨張弁18は例えば電磁膨張弁であり、外部から送信された電気信号によって開度が調整される。第二膨張弁18は、冷房運転時に、第一流路41内を流れる冷媒を膨張させてその圧力を下げるために用いられる。 A second expansion valve 18 is disposed on the first flow path 41 at a position closer to the gas-liquid separation mechanism 30 than the indoor heat exchanger 11. The second expansion valve 18 is, for example, an electromagnetic expansion valve, and its opening is adjusted by an electrical signal sent from the outside. The second expansion valve 18 is used to expand the refrigerant flowing in the first flow path 41 during cooling operation, thereby reducing its pressure.

室外熱交換器13は、第二流路42上に配置されている。第二流路42は、四方弁20と気液分離機構30との間を接続する流路であって、上記の第一流路41とは別に設けられた流路である。第二流路42の内部には冷媒が充填されている。室外熱交換器13は、第二流路42内を流通する冷媒と室外の空気との間で熱交換をさせる。室外熱交換器13は、例えばフィンアンドチューブ方式の熱交換器である。室外熱交換器13の近傍には室外ファン14が設けられている。室外ファン14を運転することで、室外の空気が室外熱交換器13に強制的に供給される。 The outdoor heat exchanger 13 is disposed on the second flow path 42. The second flow path 42 is a flow path that connects the four-way valve 20 and the gas-liquid separation mechanism 30, and is a flow path provided separately from the first flow path 41. The second flow path 42 is filled with a refrigerant. The outdoor heat exchanger 13 exchanges heat between the refrigerant flowing through the second flow path 42 and the outdoor air. The outdoor heat exchanger 13 is, for example, a fin-and-tube type heat exchanger. An outdoor fan 14 is provided near the outdoor heat exchanger 13. By operating the outdoor fan 14, outdoor air is forcibly supplied to the outdoor heat exchanger 13.

第二流路42上における室外熱交換器13よりも気液分離機構30側の位置には、第一膨張弁17が配置されている。第一膨張弁17は例えば電磁膨張弁であり、外部から送信された電気信号によって開度が調整される。第一膨張弁17は、暖房運転時に、第二流路42内を流れる冷媒を膨張させてその圧力を下げるために用いられる。 A first expansion valve 17 is disposed on the second flow path 42 at a position closer to the gas-liquid separation mechanism 30 than the outdoor heat exchanger 13. The first expansion valve 17 is, for example, an electromagnetic expansion valve, and its opening is adjusted by an electrical signal sent from the outside. The first expansion valve 17 is used to expand the refrigerant flowing in the second flow path 42 during heating operation, thereby reducing its pressure.

圧縮機15は、圧縮機流路43上に設けられている。圧縮機流路43は、四方弁20の一の開口部と他の一の開口部とを接続する流路であって、上述の第一流路41、及び第二流路42とは異なる他の流路である。圧縮機15は、圧縮機流路43中のガス冷媒を圧縮して高温高圧のガス冷媒を生成する。圧縮機15として具体的には、スクロール圧縮機やロータリ圧縮機が好適に用いられる。 The compressor 15 is provided on the compressor flow path 43. The compressor flow path 43 is a flow path that connects one opening of the four-way valve 20 to another opening, and is a flow path different from the first flow path 41 and the second flow path 42 described above. The compressor 15 compresses the gas refrigerant in the compressor flow path 43 to generate high-temperature, high-pressure gas refrigerant. Specifically, a scroll compressor or a rotary compressor is preferably used as the compressor 15.

(四方弁の構成)
四方弁20は、上記の第一流路41、第二流路42、及び圧縮機流路43の接続状態を切り替えることで、冷媒の流通方向を切り替える。四方弁20の開通状態を切り替えることで、暖房運転、及び冷房運転の切り替えが可能とされている。図1中では、冷房運転時における四方弁20の開通状態を示している。具体的には、圧縮機15から吐出された高圧冷媒が第二流路42を経て室外熱交換器13に直接流れるように、四方弁20の開通状態が設定されている。
(Configuration of four-way valve)
The four-way valve 20 switches the flow direction of the refrigerant by switching the connection state of the first flow path 41, the second flow path 42, and the compressor flow path 43. By switching the open state of the four-way valve 20, it is possible to switch between heating operation and cooling operation. Fig. 1 shows the open state of the four-way valve 20 during cooling operation. Specifically, the open state of the four-way valve 20 is set so that the high-pressure refrigerant discharged from the compressor 15 flows directly to the outdoor heat exchanger 13 via the second flow path 42.

(気液分離機構の構成)
上記の第一膨張弁17と第二膨張弁18との間(つまり、第一流路41と第二流路42との間)には、気液分離機構30が設けられている。気液分離機構30は、貯留部31と、第一還流部32と、第一調整弁33と、第二還流部34と、を有する。
(Configuration of gas-liquid separation mechanism)
Between the first expansion valve 17 and the second expansion valve 18 (i.e., between the first flow path 41 and the second flow path 42), a gas-liquid separation mechanism 30 is provided. The gas-liquid separation mechanism 30 has a storage section 31, a first reflux section 32, a first adjustment valve 33, and a second reflux section 34.

貯留部31は、冷媒が貯留される密閉容器であり、第一膨張弁17を経由した冷媒が当該貯留部31に導入される。貯留部31の内部では、冷媒のうちの液相分が底部に貯留され、気相分が上部に滞留する。つまり、貯留部31の内部で冷媒の気液分離が行われる。なお、冷媒には、圧縮機15の各部の潤滑に用いられる冷凍機油が含まれている。気液分離機構30では、この冷凍機油の大部分が液相分として貯留部31の底部に貯留された状態となる。 The storage section 31 is a sealed container in which the refrigerant is stored, and the refrigerant that has passed through the first expansion valve 17 is introduced into the storage section 31. Inside the storage section 31, the liquid phase of the refrigerant is stored at the bottom, and the gas phase is retained at the top. In other words, gas-liquid separation of the refrigerant is performed inside the storage section 31. The refrigerant contains refrigeration oil used to lubricate each part of the compressor 15. In the gas-liquid separation mechanism 30, most of this refrigeration oil is stored as a liquid phase at the bottom of the storage section 31.

第一還流部32は、貯留部31の底部と、圧縮機15の入口側との間を接続している。第一還流部32は、貯留部31の底部から、上記の冷凍機油を含む冷媒の液相分を回収して圧縮機15に導入する。第一還流部32の中途位置には、第一調整弁33が設けられている。第一調整弁33は、例えば流量調整弁である。第一調整弁33の開度を調整することによって、第一還流部32を流通する冷媒の液相分の流量が変化する。 The first reflux section 32 connects the bottom of the storage section 31 and the inlet side of the compressor 15. The first reflux section 32 recovers the liquid phase of the refrigerant, including the refrigeration oil, from the bottom of the storage section 31 and introduces it into the compressor 15. A first adjustment valve 33 is provided at a midpoint of the first reflux section 32. The first adjustment valve 33 is, for example, a flow rate adjustment valve. By adjusting the opening degree of the first adjustment valve 33, the flow rate of the liquid phase of the refrigerant flowing through the first reflux section 32 changes.

第二還流部34は、貯留部31の底部と、第二膨張弁18との間を接続しており、上述の第一通路の一部を形成している。第二還流部34は、貯留部31の底部から冷媒の液相分を回収して、第一流路41上に導入する。第一流路41に導かれた冷媒の液相分は、第二膨張弁18を介して室内熱交換器11に供給される。 The second reflux section 34 connects the bottom of the storage section 31 and the second expansion valve 18, and forms part of the first passage described above. The second reflux section 34 recovers the liquid phase of the refrigerant from the bottom of the storage section 31 and introduces it into the first flow path 41. The liquid phase of the refrigerant introduced into the first flow path 41 is supplied to the indoor heat exchanger 11 via the second expansion valve 18.

(作用効果)
次いで、空気調和機1の動作について説明する。なお、ここでは代表的に冷房運転時の動作を説明する。空気調和機1の冷房運転時には、冷媒は各部を図1中の矢印に即して流通する。まず圧縮機15で圧縮された冷媒(気相)は、高温高圧の気相冷媒となる。その後、冷媒は、四方弁20を通過して室外熱交換器13に導入される。室外熱交換器13では、室外の空気と冷媒との間で熱交換が行われる。これにより、冷媒は高圧の気液混相状態となる。その後、この冷媒は、第二流路42上の第一膨張弁17を通過する。なお、冷房運転時には第一膨張弁17は全開状態とされており、当該第一膨張弁17を通過しても冷媒の圧力に変化は生じない。
(Action and Effect)
Next, the operation of the air conditioner 1 will be described. Note that here, the operation during cooling operation will be described as a representative example. During cooling operation of the air conditioner 1, the refrigerant flows through each part in accordance with the arrows in FIG. 1. First, the refrigerant (gas phase) compressed by the compressor 15 becomes a high-temperature, high-pressure gas phase refrigerant. The refrigerant then passes through the four-way valve 20 and is introduced into the outdoor heat exchanger 13. In the outdoor heat exchanger 13, heat exchange occurs between the outdoor air and the refrigerant. As a result, the refrigerant becomes a high-pressure gas-liquid mixed phase state. Then, the refrigerant passes through the first expansion valve 17 on the second flow path 42. Note that during cooling operation, the first expansion valve 17 is fully open, and the pressure of the refrigerant does not change even when it passes through the first expansion valve 17.

第一膨張弁17を通過した冷媒は、気液分離機構30で気相分と液相分とに分離される。液相分は貯留部31の底部に貯留され、気相分は貯留部31の上部に滞留した状態となる。液相分の一部である冷凍機油は、上述の第一還流部32を通じて圧縮機15に導入される。冷凍機油は、圧縮機15の各部の潤滑に用いられる。貯留部31に貯留された液相分の他の一部は、第二還流部34を通じて第一流路41に導入される。第一流路41上で第二膨張弁18を通過することで、冷媒の圧力が低下して低温低圧の液冷媒となる。その後、室内熱交換器11で室内の空気と冷媒との熱交換が行われる。これにより、冷媒の温度が上がるとともに室内の空気の温度は低下する。また、冷媒は低圧の気相状態となる。その後、四方弁20を通じて、圧縮機流路43に流入した冷媒は、圧縮機15で再び圧縮される。上記のサイクルが連続的に生じることで、空気調和機1の冷房運転が行われる。 The refrigerant that has passed through the first expansion valve 17 is separated into a gas phase and a liquid phase by the gas-liquid separation mechanism 30. The liquid phase is stored at the bottom of the storage section 31, and the gas phase is stored at the top of the storage section 31. Refrigeration oil, which is a part of the liquid phase, is introduced into the compressor 15 through the first reflux section 32 described above. The refrigeration oil is used to lubricate each part of the compressor 15. The other part of the liquid phase stored in the storage section 31 is introduced into the first flow path 41 through the second reflux section 34. By passing through the second expansion valve 18 on the first flow path 41, the pressure of the refrigerant decreases and it becomes a low-temperature, low-pressure liquid refrigerant. Then, heat exchange between the indoor air and the refrigerant is performed in the indoor heat exchanger 11. As a result, the temperature of the refrigerant increases and the temperature of the indoor air decreases. The refrigerant also becomes a low-pressure gas phase state. Then, the refrigerant that flows into the compressor flow path 43 through the four-way valve 20 is compressed again by the compressor 15. The above cycle occurs continuously, causing the air conditioner 1 to perform cooling operation.

ところで、空気調和機1の一種として、ガスインジェクションを用いたものが種々実用化されている。ガスインジェクション方式の空気調和機1では、蒸発器を経て気化したガス冷媒の一部を冷媒回路の中途から取り出して圧縮機15に還流させる構成が採られる。具体的には、気液分離機構30内で生じた液冷媒とガス冷媒のうち、ガス冷媒のみを圧縮機15に戻す構成が挙げられる。ここで、圧縮機15の各部を潤滑する冷凍機油は、冷媒中に溶け込んで冷媒回路を循環している。上記の気液分離機構30を用いた構成では、冷凍機油の大部分が液冷媒とともに分離されて当該気液分離機内に貯留されたままとなる。 By the way, various types of air conditioners 1 that use gas injection have been put into practical use. In gas injection air conditioners 1, a configuration is adopted in which a portion of the gas refrigerant that has vaporized through the evaporator is taken from the middle of the refrigerant circuit and returned to the compressor 15. Specifically, of the liquid refrigerant and gas refrigerant generated in the gas-liquid separation mechanism 30, only the gas refrigerant is returned to the compressor 15. Here, the refrigeration oil that lubricates each part of the compressor 15 is dissolved in the refrigerant and circulates through the refrigerant circuit. In the configuration using the gas-liquid separation mechanism 30, most of the refrigeration oil is separated together with the liquid refrigerant and remains stored in the gas-liquid separator.

しかしながら、上記のように冷凍機油の大部分が液冷媒に溶け込んで気液分離機構30に貯留されている場合、冷凍機油を本来必要とする圧縮機15に当該冷凍機油が到達しない可能性がある。そこで、本実施形態では、上述の各構成を採っている。 However, if most of the refrigeration oil is dissolved in the liquid refrigerant and stored in the gas-liquid separation mechanism 30 as described above, there is a possibility that the refrigeration oil will not reach the compressor 15 that actually requires it. Therefore, in this embodiment, the above-mentioned configurations are adopted.

上記構成によれば、気液分離機構30によって分離された液相成分が、第一還流部32を通じて圧縮機15に導入される。これにより、液相分に含まれた冷凍機油を、圧縮機15の各部で潤滑油として無駄なく使用することが可能となる。その結果、圧縮機15の動作の円滑性が長期にわたって維持されるため、当該圧縮機15をより安定的に運用することが可能となる。圧縮機15の運用性が向上することで、空気調和機1としての性能も向上させることができる。 According to the above configuration, the liquid phase component separated by the gas-liquid separation mechanism 30 is introduced into the compressor 15 through the first reflux section 32. This allows the refrigeration oil contained in the liquid phase component to be used as a lubricant in each part of the compressor 15 without waste. As a result, the smooth operation of the compressor 15 is maintained for a long period of time, allowing the compressor 15 to be operated more stably. By improving the operability of the compressor 15, the performance of the air conditioner 1 can also be improved.

さらに、上記構成によれば、第一還流部32上には第一調整弁33が設けられている。この第一調整弁33の開度を調整することによって、第一還流部32を流通する液相分の流量を予め定められた値のもとで一定に維持することができる。また、必要に応じて液相分の供給をゼロにすることもできる。これにより、圧縮機15の使用状況に応じて液相分に含まれる冷凍機油の供給量を適正化することができる。したがって、環境や仕様に応じた幅広い運転条件のもとで、空気調和機1を運転することが可能となる。 Furthermore, according to the above configuration, a first adjustment valve 33 is provided on the first reflux section 32. By adjusting the opening degree of this first adjustment valve 33, the flow rate of the liquid phase component flowing through the first reflux section 32 can be maintained constant at a predetermined value. In addition, the supply of the liquid phase component can be reduced to zero as necessary. This makes it possible to optimize the supply amount of refrigeration oil contained in the liquid phase component according to the usage status of the compressor 15. Therefore, it becomes possible to operate the air conditioner 1 under a wide range of operating conditions according to the environment and specifications.

また、上記構成では、第二還流部34によって冷媒の液相分が室内熱交換器11に導入される。ここで、室内熱交換器11に冷媒の液相分ではなく気相分が流通する場合、液相分に比べて圧力損失が大きくなってしまうことが知られている。この傾向はフィンアンドチューブ方式の熱交換器では特に顕著である。上記構成によれば、気液分離された冷媒のうちの液相分が、第二還流部34によって室内熱交換器11に導入される。これにより、室内熱交換器11での圧力損失が抑制される。その結果、室内熱交換器11を円滑に冷媒が通過し続けるため、空気調和機1全体をより効率よく運転することが可能となる。 In addition, in the above configuration, the liquid phase of the refrigerant is introduced into the indoor heat exchanger 11 by the second reflux section 34. Here, it is known that when the gas phase of the refrigerant flows through the indoor heat exchanger 11 instead of the liquid phase, the pressure loss becomes larger than that of the liquid phase. This tendency is particularly noticeable in fin-and-tube type heat exchangers. According to the above configuration, the liquid phase of the refrigerant that has been separated into gas and liquid is introduced into the indoor heat exchanger 11 by the second reflux section 34. This suppresses the pressure loss in the indoor heat exchanger 11. As a result, the refrigerant continues to pass smoothly through the indoor heat exchanger 11, making it possible to operate the entire air conditioner 1 more efficiently.

以上、本開示の第一実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。また、上記第一実施形態では、空気調和機1の冷房運転時についてのみ説明した。しかしながら、暖房運転時においては、圧縮機流路43を除く第一流路41、第二流路42の冷媒の流通方向が反対になる。また、暖房運転時において、気液分離機構30では、第二膨張弁18を経由して第二還流部34から貯留部31に冷媒が流入し、第一還流部32を通じて冷媒の液相分が圧縮機15に送られる。 The above describes the first embodiment of the present disclosure. Various changes and modifications can be made to the above configuration without departing from the gist of the present disclosure. In the above first embodiment, only the cooling operation of the air conditioner 1 has been described. However, during heating operation, the flow direction of the refrigerant in the first flow path 41 and the second flow path 42, excluding the compressor flow path 43, is reversed. During heating operation, in the gas-liquid separation mechanism 30, the refrigerant flows from the second reflux section 34 to the storage section 31 via the second expansion valve 18, and the liquid phase portion of the refrigerant is sent to the compressor 15 through the first reflux section 32.

<第二実施形態>
続いて、本開示の第二実施形態について、図2を参照して説明する。なお、上記第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図2に示すように、本実施形態では、気液分離機構130の構成が第一実施形態とは異なっている。具体的には、気液分離機構130は、上記第一実施形態の気液分離機構30の各構成に加えて、第三還流部131と、第二調整弁132と、をさらに有している。
Second Embodiment
Next, a second embodiment of the present disclosure will be described with reference to Fig. 2. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. As shown in Fig. 2, in this embodiment, the configuration of the gas-liquid separation mechanism 130 is different from that in the first embodiment. Specifically, the gas-liquid separation mechanism 130 further includes a third reflux section 131 and a second adjustment valve 132 in addition to the components of the gas-liquid separation mechanism 30 in the first embodiment.

第三還流部131は、貯留部31と圧縮機15の入口側との間を接続している。第三還流部131は、貯留部31の上部から冷媒の気相分を回収して圧縮機15に導入する。第三還流部131の中途位置には、第二調整弁132が設けられている。第二調整弁132は、例えば流量調整弁である。第二調整弁132の開度を調整することによって、第三還流部131を流通する冷媒の気相分の流量が変化する。 The third reflux section 131 connects the storage section 31 and the inlet side of the compressor 15. The third reflux section 131 recovers the gas phase of the refrigerant from the upper part of the storage section 31 and introduces it into the compressor 15. A second adjustment valve 132 is provided in the middle of the third reflux section 131. The second adjustment valve 132 is, for example, a flow rate adjustment valve. By adjusting the opening degree of the second adjustment valve 132, the flow rate of the gas phase of the refrigerant flowing through the third reflux section 131 changes.

(作用効果)
上記構成によれば、気液分離機構30によって分離された気相分が、第三還流部131を通じて圧縮機15に導入される。これにより、圧縮機15内に供給される冷媒の量が増加し、空気調和機1としての成績係数(能力/消費電力)を向上させることが可能となる。
(Action and Effect)
According to the above configuration, the gas phase component separated by the gas-liquid separation mechanism 30 is introduced into the compressor 15 through the third reflux section 131. This increases the amount of refrigerant supplied to the compressor 15, making it possible to improve the coefficient of performance (capacity/power consumption) of the air conditioner 1.

さらに、上記構成によれば、第二調整弁132の開度を調整することによって、第三還流部131を流通する気相分の流量を予め定められた値のもとで一定に維持することができる。また、必要に応じて気相分の供給をゼロにすることもできる。これにより、圧縮機15に供給される冷媒の気相分の量を運転状態に応じて適正化することができる。その結果、環境や仕様に応じた幅広い運転条件のもとで、空気調和機1を運転することが可能となる。 Furthermore, according to the above configuration, by adjusting the opening degree of the second adjustment valve 132, the flow rate of the gas phase refrigerant flowing through the third reflux section 131 can be maintained constant at a predetermined value. In addition, the supply of the gas phase refrigerant can be set to zero as necessary. This allows the amount of gas phase refrigerant supplied to the compressor 15 to be optimized according to the operating state. As a result, it becomes possible to operate the air conditioner 1 under a wide range of operating conditions according to the environment and specifications.

以上、本開示の第二実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。また、上記第二実施形態では、空気調和機1の冷房運転時についてのみ説明した。しかしながら、暖房運転時においては、圧縮機流路43を除く第一流路41、第二流路42の冷媒の流通方向が反対になる。また、暖房運転時において、気液分離機構130では、第二膨張弁18を経由して第二還流部34から貯留部31に冷媒が流入し、第一還流部32を通じて冷媒の液相分が圧縮機15に送られる。 The above describes the second embodiment of the present disclosure. Note that various changes and modifications can be made to the above configuration without departing from the gist of the present disclosure. In addition, in the above second embodiment, only the cooling operation of the air conditioner 1 has been described. However, during heating operation, the flow direction of the refrigerant in the first flow path 41 and the second flow path 42, excluding the compressor flow path 43, is reversed. Also, during heating operation, in the gas-liquid separation mechanism 130, the refrigerant flows from the second reflux section 34 into the storage section 31 via the second expansion valve 18, and the liquid phase portion of the refrigerant is sent to the compressor 15 through the first reflux section 32.

<付記>
各実施形態に記載の空気調和機1は、例えば以下のように把握される。
<Additional Notes>
The air conditioner 1 described in each embodiment can be understood, for example, as follows.

(1)第1の態様に係る空気調和機1は、冷凍機油を含む冷媒を圧縮する圧縮機15と、前記圧縮機15から吐出された冷媒と外気とを熱交換する室外熱交換器13と、前記室外熱交換器13を経由した前記冷媒を順次減圧させる第一膨張弁17及び第二膨張弁18と、前記膨張弁を経由した冷媒と外気とを熱交換し、前記冷媒を前記圧縮機15に供給する室内熱交換器11と、を備え、前記第一膨張弁17と前記第二膨張弁18との間に設けられた気液分離機構30をさらに備え、前記気液分離機構30は、前記第一膨張弁17及び前記第二膨張弁18のいずれか一方を経由した冷媒が導入される貯留部31と、前記貯留部31の底部から液相分を回収して前記圧縮機15に導入可能な第一還流部32と、を有する。 (1) The air conditioner 1 according to the first aspect includes a compressor 15 that compresses a refrigerant containing refrigerating machine oil, an outdoor heat exchanger 13 that exchanges heat between the refrigerant discharged from the compressor 15 and outside air, a first expansion valve 17 and a second expansion valve 18 that sequentially reduce the pressure of the refrigerant that has passed through the outdoor heat exchanger 13, and an indoor heat exchanger 11 that exchanges heat between the refrigerant that has passed through the expansion valves and outside air and supplies the refrigerant to the compressor 15. The air conditioner 1 further includes a gas-liquid separation mechanism 30 provided between the first expansion valve 17 and the second expansion valve 18. The gas-liquid separation mechanism 30 has a storage section 31 into which the refrigerant that has passed through either the first expansion valve 17 or the second expansion valve 18 is introduced, and a first reflux section 32 that can recover a liquid phase portion from the bottom of the storage section 31 and introduce it into the compressor 15.

上記構成によれば、気液分離機構30によって分離された液相成分が、第一還流部32を通じて圧縮機15に導入される。これにより、液相分に含まれた冷凍機油が圧縮機15の各部で潤滑油として機能する。その結果、圧縮機15をより安定的に運用することが可能となる。 According to the above configuration, the liquid phase component separated by the gas-liquid separation mechanism 30 is introduced into the compressor 15 through the first reflux section 32. This allows the refrigeration oil contained in the liquid phase component to function as a lubricant in each part of the compressor 15. As a result, the compressor 15 can be operated more stably.

(2)第2の態様に係る空気調和機1は、(1)の空気調和機1であって、前記気液分離機構30は、前記第一還流部32に設けられ、前記液相分の流量を調整可能な第一調整弁33をさらに有する。 (2) The air conditioner 1 according to the second aspect is the air conditioner 1 according to (1), in which the gas-liquid separation mechanism 30 is provided in the first reflux section 32 and further includes a first adjustment valve 33 capable of adjusting the flow rate of the liquid phase component.

上記構成によれば、第一調整弁33の開度を調整することによって、第一還流部32を流通する液相分の流量を予め定められた値のもとで一定に維持することができる。また、必要に応じて液相分の供給をゼロにすることもできる。これにより、環境や仕様に応じた幅広い運転条件のもとで、空気調和機1を運転することが可能となる。 According to the above configuration, the flow rate of the liquid phase flowing through the first reflux section 32 can be kept constant at a predetermined value by adjusting the opening degree of the first adjustment valve 33. In addition, the supply of the liquid phase can be reduced to zero as necessary. This makes it possible to operate the air conditioner 1 under a wide range of operating conditions according to the environment and specifications.

(3)第3の態様に係る空気調和機1は、(1)又は(2)の空気調和機1であって、前記気液分離機構30は、前記貯留部31の底部から前記液相分を回収して、前記第二膨張弁18を介して前記室内熱交換器11に導入可能な第二還流部34をさらに有する。 (3) The air conditioner 1 according to the third aspect is the air conditioner 1 according to (1) or (2), and the gas-liquid separation mechanism 30 further has a second reflux section 34 that can recover the liquid phase from the bottom of the storage section 31 and introduce it into the indoor heat exchanger 11 via the second expansion valve 18.

ここで、室内熱交換器11に冷媒の気相分が流通する場合、液相分に比べて圧力損失が大きくなってしまうことが知られている。上記構成によれば、気液分離された冷媒のうちの液相分が、第二還流部34によって室内熱交換器11に導入される。これにより、室内熱交換器11での圧力損失が抑制され、空気調和機1をより効率よく運転することが可能となる。 It is known that when the gas phase of the refrigerant flows through the indoor heat exchanger 11, the pressure loss is greater than that of the liquid phase. With the above configuration, the liquid phase of the refrigerant that has been separated into gas and liquid is introduced into the indoor heat exchanger 11 by the second reflux section 34. This suppresses pressure loss in the indoor heat exchanger 11, making it possible to operate the air conditioner 1 more efficiently.

(4)第4の態様に係る空気調和機1は、(1)から(3)のいずれか一態様に係る空気調和機1であって、前記気液分離機構30は、前記貯留部31の上部から気相分を回収して前記圧縮機15に導入可能な第三還流部131をさらに有する。 (4) The air conditioner 1 according to the fourth aspect is an air conditioner 1 according to any one of the aspects (1) to (3), and the gas-liquid separation mechanism 30 further has a third reflux section 131 capable of recovering the gas phase from the upper part of the storage section 31 and introducing it into the compressor 15.

上記構成によれば、気液分離機構30によって分離された気相分が、第三還流部131を通じて圧縮機15に導入される。これにより、圧縮機15内に供給される冷媒の量が増加し、空気調和機1としての成績係数(能力/消費電力)を向上させることが可能となる。 According to the above configuration, the gas phase separated by the gas-liquid separation mechanism 30 is introduced into the compressor 15 through the third reflux section 131. This increases the amount of refrigerant supplied to the compressor 15, making it possible to improve the coefficient of performance (capacity/power consumption) of the air conditioner 1.

(5)第5の態様に係る空気調和機1は、(4)の空気調和機1であって、前記気液分離機構130は、前記第三還流部131に設けられ、前記気相分の流量を調整可能な第二調整弁132をさらに有する。 (5) The air conditioner 1 according to the fifth aspect is the air conditioner 1 according to (4), in which the gas-liquid separation mechanism 130 is provided in the third reflux section 131 and further includes a second adjustment valve 132 capable of adjusting the flow rate of the gas phase component.

上記構成によれば、第二調整弁132の開度を調整することによって、第二還流部34を流通する気相分の流量を予め定められた値のもとで一定に維持することができる。また、必要に応じて気相分の供給をゼロにすることもできる。これにより、環境や仕様に応じた幅広い運転条件のもとで、空気調和機1を運転することが可能となる。 According to the above configuration, the flow rate of the gas phase flowing through the second reflux section 34 can be kept constant at a predetermined value by adjusting the opening degree of the second adjustment valve 132. In addition, the supply of the gas phase can be reduced to zero as necessary. This makes it possible to operate the air conditioner 1 under a wide range of operating conditions according to the environment and specifications.

1…空気調和機
10…冷凍サイクル
11…室内熱交換器
12…室内ファン
13…室外熱交換器
14…室外ファン
15…圧縮機
17…第一膨張弁
18…第二膨張弁
20…四方弁
30…気液分離機構
31…貯留部
32…第一還流部
33…第一調整弁
34…第二還流部
41…第一流路
42…第二流路
43…圧縮機流路
130…気液分離機構
131…第三還流部
132…第二調整弁
DESCRIPTION OF SYMBOLS 1...Air conditioner 10...Refrigeration cycle 11...Indoor heat exchanger 12...Indoor fan 13...Outdoor heat exchanger 14...Outdoor fan 15...Compressor 17...First expansion valve 18...Second expansion valve 20...Four-way valve 30...Gas-liquid separation mechanism 31...Storage section 32...First reflux section 33...First adjustment valve 34...Second reflux section 41...First flow path 42...Second flow path 43...Compressor flow path 130...Gas-liquid separation mechanism 131...Third reflux section 132...Second adjustment valve

Claims (5)

冷凍機油を含む冷媒を圧縮する圧縮機と、
前記圧縮機から吐出された冷媒と外気とを熱交換する室外熱交換器と、
前記室外熱交換器を経由した前記冷媒を順次減圧させる第一膨張弁及び第二膨張弁と、
前記第一膨張弁、及び前記第二膨張弁のいずれか一方を経由した冷媒と外気とを熱交換し、前記冷媒を前記圧縮機に供給する室内熱交換器と、
を備え、
前記第一膨張弁と前記第二膨張弁との間に設けられた気液分離機構をさらに備え、
前記気液分離機構は、
前記第一膨張弁を経由した冷媒が導入される貯留部と、
前記貯留部の底部から液相分を回収して前記圧縮機に導入可能な第一還流部と、
を有する空気調和機。
A compressor that compresses a refrigerant including refrigeration oil;
an outdoor heat exchanger that exchanges heat between the refrigerant discharged from the compressor and outside air;
a first expansion valve and a second expansion valve which sequentially reduce the pressure of the refrigerant that has passed through the outdoor heat exchanger;
an indoor heat exchanger that exchanges heat between the refrigerant that has passed through either the first expansion valve or the second expansion valve and outside air, and supplies the refrigerant to the compressor;
Equipped with
A gas-liquid separation mechanism is provided between the first expansion valve and the second expansion valve,
The gas-liquid separation mechanism includes:
a storage section into which the refrigerant that has passed through the first expansion valve is introduced;
a first reflux section capable of recovering a liquid phase component from a bottom of the storage section and introducing the liquid phase component into the compressor;
An air conditioner having the above structure.
前記気液分離機構は、前記第一還流部に設けられ、前記液相分の流量を調整可能な第一調整弁をさらに有する請求項1に記載の空気調和機。 The air conditioner according to claim 1, wherein the gas-liquid separation mechanism further includes a first adjustment valve provided in the first reflux section and capable of adjusting the flow rate of the liquid phase component. 前記気液分離機構は、前記貯留部の底部から前記液相分を回収して、前記第二膨張弁を介して前記室内熱交換器に導入可能な第二還流部をさらに有する請求項1又は2に記載の空気調和機。 The air conditioner according to claim 1 or 2, wherein the gas-liquid separation mechanism further has a second reflux section capable of recovering the liquid phase from the bottom of the storage section and introducing it into the indoor heat exchanger via the second expansion valve. 前記気液分離機構は、前記貯留部の上部から気相分を回収して前記圧縮機に導入可能な第三還流部をさらに有する請求項1に記載の空気調和機。 The air conditioner according to claim 1, wherein the gas-liquid separation mechanism further includes a third reflux section capable of recovering the gas phase from the upper part of the storage section and introducing it into the compressor. 前記気液分離機構は、前記第三還流部に設けられ、前記気相分の流量を調整可能な第二調整弁をさらに有する請求項4に記載の空気調和機。 The air conditioner according to claim 4, wherein the gas-liquid separation mechanism further includes a second adjustment valve provided in the third reflux section and capable of adjusting the flow rate of the gas phase component.
JP2022153657A 2022-09-27 2022-09-27 Air conditioners Pending JP2024047894A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022153657A JP2024047894A (en) 2022-09-27 2022-09-27 Air conditioners
PCT/JP2023/034137 WO2024070853A1 (en) 2022-09-27 2023-09-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022153657A JP2024047894A (en) 2022-09-27 2022-09-27 Air conditioners

Publications (1)

Publication Number Publication Date
JP2024047894A true JP2024047894A (en) 2024-04-08

Family

ID=90477572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022153657A Pending JP2024047894A (en) 2022-09-27 2022-09-27 Air conditioners

Country Status (2)

Country Link
JP (1) JP2024047894A (en)
WO (1) WO2024070853A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469450U (en) * 1977-10-26 1979-05-17
JP2002277079A (en) * 2001-03-21 2002-09-25 Mitsubishi Electric Corp Refrigerating cycle
JP2008057807A (en) * 2006-08-29 2008-03-13 Samsung Electronics Co Ltd Refrigerating cycle, and air conditioner and refrigerator using the same
JP6546813B2 (en) * 2015-08-28 2019-07-17 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Also Published As

Publication number Publication date
WO2024070853A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
US4912937A (en) Air conditioning apparatus
EP1526345B1 (en) Refrigeration equipment
EP1498668B1 (en) Heat source unit of air conditioner and air conditioner
US7574872B2 (en) Capacity-variable air conditioner
WO2024070853A1 (en) Air conditioner
CN112594985A (en) Oil return control method of multifunctional multi-split system with double four-way valves
CN109386983B (en) Two-pipe jet enthalpy-increasing outdoor unit and multi-split system
CN110849019A (en) Heat pump type air conditioning system and control method thereof
KR100743753B1 (en) Refrigerator and controlling method thereof
JP2002277083A (en) Refrigerator
CN211575589U (en) Heat pump type air conditioning system
WO2024070872A1 (en) Air conditioner
JP2000154941A (en) Refrigerator
JP2003106694A (en) Air conditioner
KR100785118B1 (en) Refrigerator
KR100626756B1 (en) Heat pump air-conditioner
CN216204499U (en) Refrigerating system with double-stage compression cycle switching
CN217900144U (en) Heat storage defrosting control system and air conditioner
JP2013113535A (en) Binary refrigerating device
CN215808984U (en) Air conditioning system
CN219367765U (en) Air conditioner outdoor system
CN217785506U (en) Refrigerating system and refrigerating equipment
KR20080032937A (en) Refrigerant circulation system
JPH11304265A (en) Air conditioner
JP2002039637A (en) Freezer and freezing method