JP2024047794A - 汚泥処理装置 - Google Patents

汚泥処理装置 Download PDF

Info

Publication number
JP2024047794A
JP2024047794A JP2022153487A JP2022153487A JP2024047794A JP 2024047794 A JP2024047794 A JP 2024047794A JP 2022153487 A JP2022153487 A JP 2022153487A JP 2022153487 A JP2022153487 A JP 2022153487A JP 2024047794 A JP2024047794 A JP 2024047794A
Authority
JP
Japan
Prior art keywords
rotating shaft
pair
impeller
agitating blades
wing members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022153487A
Other languages
English (en)
Inventor
雅伸 大泉
一毅 村橋
安志 中園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2022153487A priority Critical patent/JP2024047794A/ja
Publication of JP2024047794A publication Critical patent/JP2024047794A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

【課題】本開示は、オゾンを濃縮余剰汚泥と効率的に反応させることが可能な汚泥処理装置を説明する。【解決手段】汚泥処理装置は、反応槽と、反応槽内の濃縮余剰汚泥及びオゾンを撹拌するように構成された撹拌機とを備える。撹拌機は、回転軸と、回転軸を回転駆動させるように構成された駆動部と、反応槽内に位置するように回転軸に取り付けられた第1の羽根車とを含む。第1の羽根車は、回転軸の側方に向けて突出する複数の第1の撹拌翼を含む。複数の第1の撹拌翼はそれぞれ、板状を呈する一対の第1の翼部材を含む。一対の第1の翼部材は、上下方向において互いに向かい合い且つ前縁側から後縁側に向かうにつれて互いに近づくように配置されている。一対の第1の翼部材にはそれぞれ、翼厚方向において自身を貫通する複数の第1の貫通孔が回転軸の径方向及び周方向のそれぞれに沿って並ぶように形成されている。【選択図】図3

Description

本開示は、汚泥処理装置に関する。
近年、下水処理設備において生ずる下水汚泥をバイオマス資源として活用する技術が注目されている。下水汚泥は、下水の一次処理の際に生ずる初沈汚泥と、下水の二次処理の際に生ずる余剰汚泥とを含む。初沈汚泥は、下水中に含まれる浮遊物質が沈殿した汚泥である。余剰汚泥は、溶解性有機物の分解によって増殖した微生物のかたまりからなる汚泥である。
下水汚泥は、例えば濃縮装置で濃縮された後で消化槽に投入され、メタン菌で分解されることにより、バイオガスが発生する。バイオガスのエネルギーは、例えばガス発電により、電力として利活用される。一方、メタン菌で分解されなかった残余の汚泥は、脱水汚泥として廃棄される。
バイオガスの生成量を高めるためには、消化槽投入の前処理としてオゾンにより汚泥の難分解成分を易分解成分や可溶化成分に改質する方法が知られている。例えば、特許文献1は、汚泥含有液にオゾン処理とアルカリ処理を施す方法を開示している。
特開2005-219043号
しかしながら、余剰汚泥が濃縮された濃縮余剰汚泥は粘度が高い傾向にあるので、濃縮余剰汚泥に供給されたオゾンの気泡が拡散し難い。そのため、オゾンが濃縮余剰汚泥と未反応のまま液面に向けて浮上し、反応槽からオゾンが流出することがあった。オゾンの拡散のために撹拌装置を用いることも考えられるが、粘度が高い傾向にある濃縮余剰汚泥を撹拌するには比較的大きなエネルギーを要するのみならず、オゾンの効果的な拡散には至っていなかった。
そこで、本開示は、オゾンを濃縮余剰汚泥と効率的に反応させることが可能な汚泥処理装置を説明する。
汚泥処理装置の一例は、濃縮余剰汚泥をオゾンで処理するように構成された反応槽と、反応槽に濃縮余剰汚泥を供給するように構成された液供給部と、反応槽内の濃縮余剰汚泥にオゾンを供給するように構成されたガス供給部と、反応槽内の濃縮余剰汚泥及びオゾンを撹拌するように構成された撹拌機とを備える。撹拌機は、反応槽内において上下方向に沿って延びる回転軸と、回転軸を回転駆動させるように構成された駆動部と、反応槽内に位置するように回転軸に取り付けられた第1の羽根車とを含む。第1の羽根車は、回転軸の側方に向けて突出する複数の第1の撹拌翼を含む。複数の第1の撹拌翼はそれぞれ、板状を呈する一対の第1の翼部材を含む。一対の第1の翼部材は、上下方向において互いに向かい合い且つ前縁側から後縁側に向かうにつれて互いに近づくように配置されている。一対の第1の翼部材にはそれぞれ、翼厚方向において自身を貫通する複数の第1の貫通孔が回転軸の径方向及び周方向のそれぞれに沿って並ぶように形成されている。
本開示に係る汚泥処理装置によれば、オゾンを濃縮余剰汚泥と効率的に反応させることが可能となる。
図1は、汚泥処理装置の一例を側方から見た概略断面図である。 図2は、図1のII-II線断面図である。 図3は、2つの羽根車が組み合わされた形態の一例を示す斜視図である。 図4は、図3の上面図である。 図5は、図3の側面図である。 図6は、1つの羽根車の一例を示す斜視図である。 図7は、図6のVII-VII線断面図である。 図8(a)は、翼部材の一例を示す上面図であり、図8(b)は、図8(a)の翼部材の側端部を翼部材の長手方向から見た側面図である。
以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。なお、本明細書において、図の上、下、右、左というときは、図中の符号の向きを基準とすることとする。
[汚泥処理装置の構成]
まず、図1及び図2を参照して、汚泥処理装置1の構成について説明する。汚泥処理装置1は、液供給部10と、ガス供給部20と、反応槽30と、撹拌機40とを備える。
液供給部10は、図1に示されるように、濃縮余剰汚泥と水とを含有する汚泥含有液を反応槽30に供給するように構成されている。濃縮余剰汚泥は、例えば、下水処理設備において生ずる下水汚泥を二次処理して得られた余剰汚泥が、所定の濃度まで濃縮されたものである。濃縮処理の手法としては、例えば、重力式濃縮、機械式濃縮などが挙げられる。濃縮余剰汚泥の粘度は、濃縮処理前の余剰汚泥の粘度よりも高くなる。濃縮余剰汚泥の粘度は、例えば、10Pa・s以上であってもよい。
ガス供給部20は、反応槽30にオゾンを含むガスを供給するように構成されている。ガス供給部20は、図1及び図2に示されるように、供給源21と、供給ライン22と、複数の吐出ノズル23とを含む。供給源21は、例えば、オゾンと他の気体(例えば、空気、不活性ガスなど)とが混合されたオゾン含有ガスを供給ライン22に供給するように構成されていてもよいし、オゾンのみを供給ライン22に供給するように構成されていてもよい。
供給源21は、例えば、オゾン発生装置(いわゆる、オゾナイザ)であってもよい。供給ライン22は、供給源21と複数の吐出ノズル23とを接続するように延びている。複数の吐出ノズル23は、上方に向けてオゾンを含む気体を吐出するように構成されている。複数の吐出ノズル23は、図2に示されるように、上方から見たときに、後述する回転軸42を中心として全体として円形を呈するように配置されていてもよい。
反応槽30は、液供給部10によって供給された濃縮余剰汚泥を、ガス供給部20によって供給されたオゾンで処理するように構成されている。反応槽30は、液供給部10によって供給された濃縮余剰汚泥を貯留することができればよく、例えば、筒状を呈していてもよい。
撹拌機40は、反応槽30内の濃縮余剰汚泥及びオゾンを撹拌するように構成されている。撹拌機40は、駆動部41と、回転軸42と、複数の羽根車100とを含む。
駆動部41は、接続された回転軸42を回転駆動させるように構成されている。図1の例では、駆動部41は、上方から見たときに回転軸42を時計回りに回転させる。駆動部41は、例えばモータなどであってもよい。駆動部41は、反応槽30の上方に配置されていてもよい。回転軸42は、駆動部41から下方に向けて上下方向に沿って延びている。図1に示されるように、回転軸42の上端部は、駆動部41に接続されている。回転軸42の上端部以外の部分は、反応槽30内において上下方向に沿って延びている。なお、回転軸42の下端部は、他の部材によって保持されていなくてもよいし、反応槽30の底面に設けられた軸受けなどによって保持されていてもよい。
複数の羽根車100(図1の例では3つの羽根車100A,100B,100C)は、反応槽30内に位置するように、回転軸42に取り付けられている。そのため、複数の羽根車100は、駆動部41によって回転軸42が回転駆動されると、回転軸42と共に回転する。
羽根車100A(第1の羽根車)及び羽根車100B(第2の羽根車)は、図1に示されるように、複数の吐出ノズル23の上方に位置するように、回転軸42の下端部に取り付けられている。羽根車100A及び羽根車100Bは、隣り合うように反応槽30内に位置している。すなわち、羽根車100Aは、羽根車100Bの近傍に位置している。羽根車100A,100Bの組は、複数の吐出ノズル23から反応槽30内に供給されたオゾンの気泡を微細化するように構成されている。なお、羽根車100Aの軸部材110(後述する)と羽根車100Bの軸部材110(後述する)とが回転軸42の延在方向において隙間を有した状態で、羽根車100A,100Bが回転軸42に取り付けられていてもよい。当該隙間は、10mm~40mm程度であってもよいし、25mm程度であってもよい。
羽根車100C(第3の羽根車)は、羽根車100A,100Bの組の上方に位置するように、回転軸42の中間部に取り付けられている。すなわち、羽根車100Cは、反応槽30内に位置している。羽根車100Cは、羽根車100A,100Bの組によって微細化されたオゾンの気泡をさらに微細化するように構成されている。
[羽根車の詳細]
ここで、羽根車100の構成について、図3~図8を参照して、より詳しく説明する。羽根車100は、軸部材110と、複数の撹拌翼120(第1の撹拌翼、第2の撹拌翼、第3の撹拌翼)とを含む。
軸部材110は、図3、図4、図6及び図7に示されるように、例えば円筒状を呈している。軸部材110の中央に設けられている軸孔111には、回転軸42が挿入可能である。軸部材110は、軸孔111に回転軸42が挿入された状態で、固定具(例えばボルトなど)によって回転軸42に固定されてもよい。
複数の撹拌翼120(図3~図7の例では4つの撹拌翼120)は、軸部材110に取り付けられている。複数の撹拌翼120は、軸部材110が回転軸42に固定された状態で回転軸42の側方に向けて突出するように、軸部材110から延びている。複数の撹拌翼120は、回転軸42の周方向(以下、単に「周方向」と称することがある。)において所定間隔をもって並ぶように配置されている。複数の撹拌翼120は、周方向において略等間隔に配置されていてもよいし、周方向において異なる間隔で配置されていてもよい。例えば、羽根車100が4つの撹拌翼120を含む場合には、4つの撹拌翼120は略90°おきに配置されていてもよい。
図3に示されるように、羽根車100Aの複数の撹拌翼120と、羽根車100Bの複数の撹拌翼120とは、周方向においてずれて配置されている。より詳しくは、上下方向から見て、羽根車100Aの複数の撹拌翼120は、周方向において羽根車100Bの複数の撹拌翼120の間の空間に位置するように、羽根車100Bの複数の撹拌翼120と互い違いに配置されている。例えば、羽根車100Aの複数の撹拌翼120と、羽根車100Bの複数の撹拌翼120とは、上下方向から見て、略45°おきに配置されていてもよい。
撹拌翼120は、一対の翼部材130,140(第1の翼部材、第2の翼部材、第3の翼部材)を含む。一対の翼部材130,140はそれぞれ、全体として板状を呈している。一対の翼部材130,140はそれぞれ、回転軸42の延在方向から見たときに、全体として略矩形状を呈しており、径方向の長さが周方向の長さよりも大きく設定されている。一対の翼部材130,140のうち軸部材110側の基端部は、固定具(例えばボルトなど)によって軸部材110に固定されてもよい。
一対の翼部材130,140は、図3、図5及び図6に示されるように、上下方向(回転軸42の延在方向)において互いに向かい合うように配置されている。一対の翼部材130,140はそれぞれ、羽根車100の回転方向(以下、単に「回転方向」と称することがある。)において前方側に位置する前縁LEと、回転方向において後方側に位置する後縁TEを含む。
一対の翼部材130,140は、前縁LE側から後縁TE側に向かうにつれて互いに近づくように配置されている。すなわち、一対の翼部材130,140は、回転軸42の径方向(以下、単に「径方向」と称することがある。)から見たときに、日本語の「ハ」字状を呈するように配置されている。
一対の翼部材130,140は、図3及び図5~図7に示されるように、径方向外方に向かうにつれて互いに離れるように延びている。すなわち、一対の翼部材130,140は、前縁LE側又は後縁TE側から見たときに、日本語の「ハ」字状を呈するように配置されている。前縁LE側又は後縁TE側から見たときの、一対の翼部材130,140がなす角度θ(図7参照)は、各種条件(例えば、翼部材130,140の大きさ、羽根車100の回転速度、濃縮余剰汚泥の粘度、濃縮余剰汚泥の供給流量、オゾンの供給流量など)によって変化しうる。当該角度θは、例えば、20°~45°程度であってもよいし、30°~35°程度であってもよい。
翼部材130は、翼部材140の上方に位置している。翼部材130は、前縁LEを含む主部131と、後縁TEを含む後縁部132とで構成されている。主部131及び後縁部132はそれぞれ、平板状を呈していてもよい。主部131の水平面に対する傾斜角度は、θ/2であり、10°~22.5°程度であってもよい。
後縁部132は、図3、図5~図7、図8(b)に示されるように、相対する翼部材140に近づくように主部131に対して曲がっていてもよい。換言すれば、後縁部132は、前縁LE側から後縁TE側に向かうにつれて、翼部材140の後縁部142(後述する)に近づくように、主部131に対して傾斜していてもよい。主部131と後縁部132とがなす角度φ(図8(b)参照)は、上記の各種条件によって変化しうる。角度φは、例えば、150°~170°程度であってもよいし、160°~170°程度であってもよい。
前縁LE及び後縁TEが並ぶ方向(以下、単に「並ぶ方向」と称することがある。)における後縁部132の幅L1は、並ぶ方向における主部131の幅L2よりも小さくてもよい。幅L1の大きさは、上記の各種条件によって変化しうる。幅L1は、例えば、幅L2の1/4~1/2程度の大きさであってもよい。
翼部材140は、前縁LEを含む主部141と、後縁TEを含む後縁部142とで構成されている。翼部材140は、翼部材130と同等の構造であるので、その説明を省略する。
翼部材130,140には、図3~図7及び図8(a)に示されるように、複数の貫通孔150(第1の貫通孔、第2の貫通孔、第3の貫通孔)が設けられている。複数の貫通孔150は、翼部材130,140の翼厚方向において翼部材130,140を貫通している。複数の貫通孔150は、径方向及び周方向のそれぞれに沿って並ぶように配置されている。貫通孔150の形状は、特に限定されないが、例えば、矩形状、多角形状、円形状、十字形状、星形状など種々の形状であってもよい。複数の貫通孔150は、格子状に(縦横に列をなして並ぶように)配列されていてもよいし、千鳥状に(互い違いとなるように)配列されていてもよい。複数の貫通孔150は、翼部材130,140の全体にわたって略均等に配置されていてもよい。
貫通孔150のサイズは、上記の各種条件によって変化しうる。貫通孔150の縦横のサイズは、例えば、10mm×10mm~50mm×50mm程度であってもよいし、10mm×10mm~30mm×30mm程度であってもよい。貫通孔150の縦横のサイズが10mm×10mm以上であると、オゾンの気泡がより微細化されやすい傾向にある。貫通孔150の縦横のサイズが50mm×50mm以下であると、翼部材130,140の強度が保たれやすい傾向にある。なお、翼部材130,140に異なるサイズや形状の貫通孔150が混在していてもよい。
翼部材130に設けられている複数の貫通孔150の総開口面積は、翼部材130に貫通孔150が形成されていないと仮定した場合の総面積に対して、例えば50%~80%程度であってもよいし、70%程度であってもよい。翼部材140においても同様である。
[作用]
以上の例によれば、ガス供給部20によって反応槽30内に供給されたオゾンの気泡は、濃縮余剰汚泥よりも軽いので、羽根車100の回転に伴い遠心力によって回転軸42に向けて移動する。この際、オゾンの気泡が、翼部材130,140の間の空間を通過し、翼部材130,140の表面に沿って移動する。そのため、翼部材130,140の表面に沿って移動するオゾンの気泡には、貫通孔150との衝突によって比較的大きな剪断力が作用する。したがって、オゾンの気泡が微細化されやすくなるので、濃縮余剰汚泥中のオゾンの比表面積が大きくなる。これにより、粘度が高い傾向にある濃縮余剰汚泥に対して、オゾンが溶解しやすくなる。その結果、オゾンを濃縮余剰汚泥と効率的に反応させることが可能となる。
以上の例によれば、貫通孔150は矩形状を呈しうる。この場合、より多くの数の貫通孔150を翼部材130,140に対して形成することができる。そのため、オゾンの気泡に対して、より大きな剪断力が作用する。したがって、オゾンを濃縮余剰汚泥とより効率的に反応させることが可能となる。
以上の例によれば、翼部材130の後縁部132と、翼部材140の後縁部142とは、前縁LE側から後縁TE側に向かうにつれて互いに近づくように、主部131,141に対して傾斜している。そのため、オゾンの気泡が翼部材130,140の間の空間を通過する直前の後縁部132,142においてさらに、オゾンの気泡に対して剪断力が作用しやすくなる。そのため、オゾンを濃縮余剰汚泥とより効率的に反応させることが可能となる。
以上の例によれば、翼部材130,140は、径方向外方に向かうにつれて互いに離れるように延びている。そのため、オゾンの気泡が遠心力によって回転軸に向けて移動しつつ翼部材130,140の表面に沿って移動する際に、貫通孔150との衝突によって、オゾンの気泡にさらに大きな剪断力が作用する。そのため、オゾンを濃縮余剰汚泥とより効率的に反応させることが可能となる。
以上の例によれば、複数の撹拌翼120は、周方向において略等間隔に配置されうる。この場合、回転軸42の周方向において隣り合う撹拌翼120同士の間の空間の大きさが、上方から見たときに略等しくなる。そのため、回転軸42の周方向において隣り合う撹拌翼120同士の間の空間のうち一の空間と他の空間とで、上方から見たときの大きさが異なっているような場合と比較して、当該空間を通ってオゾンの気泡が浮上していくような事象が抑制される。したがって、オゾンの気泡に対して剪断力が作用しやすくなるので、オゾンの気泡をより均一に微細化することが可能となる。その結果、オゾンを濃縮余剰汚泥とより効率的に反応させることが可能となる。
以上の例によれば、羽根車100Aの複数の撹拌翼120と、羽根車100Bの複数の撹拌翼120とは、周方向においてずれるように、互い違いに配置されている。そのため、撹拌機40が羽根車100Aを含んでいるが羽根車100Bを含んでいない場合と比較して、回転軸42の周方向において隣り合う撹拌翼120同士の間の空間を通ってオゾンの気泡が浮上していくような事象が、羽根車100Bの撹拌翼120によって抑制される。したがって、オゾンの気泡に対して剪断力が作用しやすくなるので、オゾンの気泡をより均一に微細化することが可能となる。その結果、オゾンを濃縮余剰汚泥とより効率的に反応させることが可能となる。
以上の例によれば、撹拌機40は、羽根車100A,100Bの組の上方に位置する羽根車100Cを含んでいる。そのため、羽根車100A,100Bにおいて微細化されたオゾンの気泡は、上昇して羽根車100Cに到達してさらに微細化される。したがって、オゾンを濃縮余剰汚泥とより効率的に反応させることが可能となる。
[変形例]
本明細書における開示はすべての点で例示であって制限的なものではないと考えられるべきである。特許請求の範囲及びその要旨を逸脱しない範囲において、以上の例に対して種々の省略、置換、変更などが行われてもよい。
(1)撹拌機40は、羽根車100A,100Bの組の上方に位置する羽根車100Cを含んでいなくてもよい。あるいは、撹拌機40は、羽根車100Cと隣り合う他の羽根車100をさらに含んでいてもよい。
(2)回転軸42の下端部に取り付けられる羽根車100は、一つでもよいし、3つ以上でもよい。
(3)撹拌機40が複数の羽根車100を含む場合、それぞれが独立して回転可能に構成されていてもよい。
(4)一対の翼部材130,140は、径方向において略一定の距離を維持した状態で、軸部材110から径方向外側に向かって延びていてもよい。
(5)翼部材130,140の後縁部132,142は、主部131,141に対して曲がっていなくてもよい。すなわち、主部131,141と後縁部132,142とが略同一平面上に位置するように、後縁部132,142が主部131,141に対して連続的に延びていてもよい。
[試験結果]
ここで、以下の3種類の汚泥処理装置を準備し、ガスホールドアップ(気液二層流の中で気体の占める体積比率であり、ボイド率ともいう。)を測定する試験を行った。ガスホールドアップは、パラメータε,H,Hをそれぞれ
ε:ガスホールドアップ
:オゾンガス注入時の液面高さ
:オゾンガス注入前の液面高さ
としたときに、下記式にて算出した。
Figure 2024047794000002


ここで、液面高さH,Hは、汚泥処理装置の軸中心近傍の1点の液面高さと、汚泥処理装置の側面の液面高さとをそれぞれコンベックス(巻き尺)にて測定し、これらの平均値にて算出した。
また、汚泥処理装置による汚泥処理条件は、以下のとおりであった。
・反応槽30の直径 :0.97m
・反応槽30の液深 :1.063m
・羽根車100の回転数 :150rpm
・オゾンガスの流量 :102.8L/min
・濃縮余剰汚泥のSS(SuspendedSolids)濃度 :2.5%~4.0%
(実施例1)
以上の例の汚泥処理装置1を用いた。
(実施例2)
各羽根車100において、翼部材130,140の後縁部132,142が主部131,141に対して曲がっていない点を除いて、実施例1と同様の汚泥処理装置1を用いた。
(比較例)
各羽根車100をコンケーブタービン翼(円筒を半割した断面円弧状を呈する翼)に置き換えた点を除いて、実施例1と同様の汚泥処理装置1を用いた。
(試験結果)
試験の結果、実施例1のガスホールドアップは7.78%であり、実施例2のガスホールドアップは6.81%であり、比較例のガスホールドアップは3.65%であった。そのため、実施例1,2ではオゾンの気泡が濃縮余剰汚泥に効率的に分散していることが確認された。また、翼部材130,140の後縁部132,142が主部131,141に対して曲がっている実施例1では、そうでない実施例2に対して、オゾンの気泡がさらに効率的に分散していることが確認された。
[他の例]
例1.汚泥処理装置の一例は、濃縮余剰汚泥をオゾンで処理するように構成された反応槽と、反応槽に濃縮余剰汚泥を供給するように構成された液供給部と、反応槽内の濃縮余剰汚泥にオゾンを供給するように構成されたガス供給部と、反応槽内の濃縮余剰汚泥及びオゾンを撹拌するように構成された撹拌機とを備える。撹拌機は、反応槽内において上下方向に沿って延びる回転軸と、回転軸を回転駆動させるように構成された駆動部と、反応槽内に位置するように回転軸に取り付けられた第1の羽根車とを含む。第1の羽根車は、回転軸の側方に向けて突出する複数の第1の撹拌翼を含む。複数の第1の撹拌翼はそれぞれ、板状を呈する一対の第1の翼部材を含む。一対の第1の翼部材は、上下方向において互いに向かい合い且つ前縁側から後縁側に向かうにつれて互いに近づくように配置されている。一対の第1の翼部材にはそれぞれ、翼厚方向において自身を貫通する複数の第1の貫通孔が回転軸の径方向及び周方向のそれぞれに沿って並ぶように形成されている。この場合、ガス供給部によって反応槽内に供給されたオゾンの気泡は、濃縮余剰汚泥よりも軽いので、第1の羽根車の回転に伴い遠心力によって回転軸に向けて移動する。この際、オゾンの気泡が、一対の第1の翼部材の間の空間を通過し、第1の翼部材の表面に沿って移動する。ここで、例1の装置において、一対の第1の翼部材は、上下方向において互いに向かい合い且つ前縁側から後縁側に向かうにつれて互いに近づくように配置されており、第1の翼部材に複数の貫通孔が形成されている。そのため、第1の翼部材の表面に沿って移動するオゾンの気泡には、複数の貫通孔との衝突によって比較的大きな剪断力が作用する。したがって、オゾンの気泡が微細化されやすくなるので、濃縮余剰汚泥中のオゾンの比表面積が大きくなる。これにより、粘度が高い傾向にある濃縮余剰汚泥に対して、オゾンが溶解しやすくなる。その結果、オゾンを濃縮余剰汚泥と効率的に反応させることが可能となる。
例2.例1の装置において、一対の第1の翼部材はそれぞれ、前縁側から後縁側に向かうにつれて互いに近づくように前縁側の主部に対して傾斜する後縁側の後縁部を含んでいてもよい。この場合、オゾンの気泡が一対の第1の翼部材の間の空間を通過する直前の後縁部においてさらに、オゾンの気泡に対して剪断力が作用しやすくなる。そのため、オゾンを濃縮余剰汚泥とより効率的に反応させることが可能となる。
例3.例1又は例2の装置において、一対の第1の翼部材は、回転軸の径方向の外方に向かうにつれて互いに離れるように延びていてもよい。この場合、オゾンの気泡が遠心力によって回転軸に向けて移動しつつ第1の翼部材の表面に沿って移動する際に、複数の貫通孔との衝突によって、オゾンの気泡にはさらに大きな剪断力が作用する。そのため、オゾンを濃縮余剰汚泥とより効率的に反応させることが可能となる。
例4.例1~例3のいずれかの装置において、撹拌機は、反応槽内において第1の羽根車の近傍に位置するように、回転軸に取り付けられた第2の羽根車をさらに含み、第2の羽根車は、回転軸の側方に向けて突出する複数の第2の撹拌翼を含み、複数の第2の撹拌翼はそれぞれ、上下方向から見て複数の第1の撹拌翼に対して回転軸の周方向においてずれるように、複数の第1の撹拌翼と互い違いに配置されており、板状を呈する一対の第2の翼部材を含み、一対の第2の翼部材は、上下方向において互いに向かい合い且つ前縁側から後縁側に向かうにつれて互いに近づくように配置されており、一対の第2の翼部材にはそれぞれ、翼厚方向において自身を貫通する複数の第2の貫通孔が回転軸の径方向に沿って並ぶように形成されていてもよい。この場合、第1及び第2の羽根車が同様の構造を有しており、第1の撹拌翼と第2の撹拌翼とが上方から見てずれている。そのため、撹拌機が第1の羽根車を含んでいるが第2の羽根車を含んでいない場合と比較して、回転軸の周方向において隣り合う第1の撹拌翼同士の間の空間を通ってオゾンの気泡が浮上していくような事象が、第2の羽根車の第2の撹拌翼によって抑制される。したがって、オゾンの気泡に対して剪断力が作用しやすくなるので、オゾンの気泡をより均一に微細化することが可能となる。その結果、オゾンを濃縮余剰汚泥とより効率的に反応させることが可能となる。
例5.例1~例4のいずれかの装置において、撹拌機は、反応槽内において第1の羽根車とは離れて第1の羽根車の上方に位置するように、回転軸に取り付けられた第3の羽根車をさらに含み、第3の羽根車は、回転軸の側方に向けて突出する複数の第3の撹拌翼を含み、複数の第3の撹拌翼はそれぞれ、板状を呈する一対の第3の翼部材を含み、一対の第3の翼部材は、上下方向において互いに向かい合い且つ前縁側から後縁側に向かうにつれて互いに近づくように配置されており、一対の第3の翼部材にはそれぞれ、翼厚方向において自身を貫通する複数の第3の貫通孔が回転軸の径方向に沿って並ぶように形成されていてもよい。この場合、第1の羽根車において微細化されたオゾンの気泡は、上昇して第3の羽根車に到達してさらに微細化される。そのため、オゾンを濃縮余剰汚泥とより効率的に反応させることが可能となる。
例6.例1~例5の装置において、複数の第1の貫通孔は矩形状を呈していてもよい。この場合、より多くの数の第1の貫通孔を第1の翼部材に対して形成することができる。そのため、オゾンの気泡に対して、より大きな剪断力が作用する。したがって、オゾンを濃縮余剰汚泥とより効率的に反応させることが可能となる。
例7.例1~例6のいずれかの装置において、複数の第1の撹拌翼は、回転軸の周方向において略等間隔に配置されていてもよい。この場合、回転軸の周方向において隣り合う第1の撹拌翼同士の間の空間の大きさが、上方から見たときに略等しくなる。そのため、回転軸の周方向において隣り合う第1の撹拌翼同士の間の空間のうち一の空間と他の空間とで、上方から見たときの大きさが異なっているような場合と比較して、当該空間を通ってオゾンの気泡が浮上していくような事象が抑制される。したがって、オゾンの気泡に対して剪断力が作用しやすくなるので、オゾンの気泡をより均一に微細化することが可能となる。その結果、オゾンを濃縮余剰汚泥とより効率的に反応させることが可能となる。
例8.例1~例7のいずれかの装置において、液供給部によって反応槽に供給される濃縮余剰汚泥の粘度は10Pa・s以上であってもよい。
1…汚泥処理装置、10…液供給部、20…ガス供給部、30…反応槽、40…撹拌機、41…駆動部、42…回転軸、100…羽根車、100A…羽根車(第1の羽根車)、100B…羽根車(第2の羽根車)、100C…羽根車(第3の羽根車)、120…撹拌翼(第1の撹拌翼、第2の撹拌翼、第3の撹拌翼)、130…翼部材(第1の翼部材、第2の翼部材、第3の翼部材)、131…主部、132…後縁部、140…翼部材(第1の翼部材、第2の翼部材、第3の翼部材)、141…主部、142…後縁部、150…貫通孔(第1の貫通孔、第2の貫通孔、第3の貫通孔)、LE…前縁、TE…後縁。

Claims (12)

  1. 濃縮余剰汚泥をオゾンで処理するように構成された反応槽と、
    前記反応槽に濃縮余剰汚泥を供給するように構成された液供給部と、
    前記反応槽内の濃縮余剰汚泥にオゾンを供給するように構成されたガス供給部と、
    前記反応槽内の濃縮余剰汚泥及びオゾンを撹拌するように構成された撹拌機とを備え、
    前記撹拌機は、
    前記反応槽内において上下方向に沿って延びる回転軸と、
    前記回転軸を回転駆動させるように構成された駆動部と、
    前記反応槽内に位置するように前記回転軸に取り付けられた第1の羽根車とを含み、
    前記第1の羽根車は、前記回転軸の側方に向けて突出する複数の第1の撹拌翼を含み、
    前記複数の第1の撹拌翼はそれぞれ、板状を呈する一対の第1の翼部材を含み、
    前記一対の第1の翼部材は、前記上下方向において互いに向かい合い且つ前縁側から後縁側に向かうにつれて互いに近づくように配置されており、
    前記一対の第1の翼部材にはそれぞれ、翼厚方向において自身を貫通する複数の第1の貫通孔が前記回転軸の径方向及び周方向のそれぞれに沿って並ぶように形成されている、汚泥処理装置。
  2. 前記一対の第1の翼部材はそれぞれ、前縁側から後縁側に向かうにつれて互いに近づくように前記前縁側の主部に対して傾斜する前記後縁側の後縁部を含む、請求項1に記載の装置。
  3. 前記一対の第1の翼部材は、前記回転軸の径方向の外方に向かうにつれて互いに離れるように延びている、請求項1に記載の装置。
  4. 前記一対の第1の翼部材は、前記回転軸の径方向の外方に向かうにつれて互いに離れるように延びている、請求項2に記載の装置。
  5. 前記撹拌機は、前記反応槽内において前記第1の羽根車の近傍に位置するように、前記回転軸に取り付けられた第2の羽根車をさらに含み、
    前記第2の羽根車は、前記回転軸の側方に向けて突出する複数の第2の撹拌翼を含み、
    前記複数の第2の撹拌翼はそれぞれ、
    上下方向から見て前記複数の第1の撹拌翼に対して前記回転軸の周方向においてずれるように、前記複数の第1の撹拌翼と互い違いに配置されており、
    板状を呈する一対の第2の翼部材を含み、
    前記一対の第2の翼部材は、前記上下方向において互いに向かい合い且つ前縁側から後縁側に向かうにつれて互いに近づくように配置されており、
    前記一対の第2の翼部材にはそれぞれ、翼厚方向において自身を貫通する複数の第2の貫通孔が前記回転軸の径方向に沿って並ぶように形成されている、請求項1に記載の装置。
  6. 前記撹拌機は、前記反応槽内において前記第1の羽根車の近傍に位置するように、前記回転軸に取り付けられた第2の羽根車をさらに含み、
    前記第2の羽根車は、前記回転軸の側方に向けて突出する複数の第2の撹拌翼を含み、
    前記複数の第2の撹拌翼はそれぞれ、
    上下方向から見て前記複数の第1の撹拌翼に対して前記回転軸の周方向においてずれるように、前記複数の第1の撹拌翼と互い違いに配置されており、
    板状を呈する一対の第2の翼部材を含み、
    前記一対の第2の翼部材は、前記上下方向において互いに向かい合い且つ前縁側から後縁側に向かうにつれて互いに近づくように配置されており、
    前記一対の第2の翼部材にはそれぞれ、翼厚方向において自身を貫通する複数の第2の貫通孔が前記回転軸の径方向に沿って並ぶように形成されている、請求項2に記載の装置。
  7. 前記撹拌機は、前記反応槽内において前記第1の羽根車の近傍に位置するように、前記回転軸に取り付けられた第2の羽根車をさらに含み、
    前記第2の羽根車は、前記回転軸の側方に向けて突出する複数の第2の撹拌翼を含み、
    前記複数の第2の撹拌翼はそれぞれ、
    上下方向から見て前記複数の第1の撹拌翼に対して前記回転軸の周方向においてずれるように、前記複数の第1の撹拌翼と互い違いに配置されており、
    板状を呈する一対の第2の翼部材を含み、
    前記一対の第2の翼部材は、前記上下方向において互いに向かい合い且つ前縁側から後縁側に向かうにつれて互いに近づくように配置されており、
    前記一対の第2の翼部材にはそれぞれ、翼厚方向において自身を貫通する複数の第2の貫通孔が前記回転軸の径方向に沿って並ぶように形成されている、請求項3に記載の装置。
  8. 前記撹拌機は、前記反応槽内において前記第1の羽根車の近傍に位置するように、前記回転軸に取り付けられた第2の羽根車をさらに含み、
    前記第2の羽根車は、前記回転軸の側方に向けて突出する複数の第2の撹拌翼を含み、
    前記複数の第2の撹拌翼はそれぞれ、
    上下方向から見て前記複数の第1の撹拌翼に対して前記回転軸の周方向においてずれるように、前記複数の第1の撹拌翼と互い違いに配置されており、
    板状を呈する一対の第2の翼部材を含み、
    前記一対の第2の翼部材は、前記上下方向において互いに向かい合い且つ前縁側から後縁側に向かうにつれて互いに近づくように配置されており、
    前記一対の第2の翼部材にはそれぞれ、翼厚方向において自身を貫通する複数の第2の貫通孔が前記回転軸の径方向に沿って並ぶように形成されている、請求項4に記載の装置。
  9. 前記撹拌機は、前記反応槽内において前記第1の羽根車とは離れて前記第1の羽根車の上方に位置するように、前記回転軸に取り付けられた第3の羽根車をさらに含み、
    前記第3の羽根車は、前記回転軸の側方に向けて突出する複数の第3の撹拌翼を含み、
    前記複数の第3の撹拌翼はそれぞれ、板状を呈する一対の第3の翼部材を含み、
    前記一対の第3の翼部材は、前記上下方向において互いに向かい合い且つ前縁側から後縁側に向かうにつれて互いに近づくように配置されており、
    前記一対の第3の翼部材にはそれぞれ、翼厚方向において自身を貫通する複数の第3の貫通孔が前記回転軸の径方向に沿って並ぶように形成されている、請求項1~8のいずれか一項に記載の装置。
  10. 前記複数の第1の貫通孔は矩形状を呈する、請求項1に記載の装置。
  11. 前記複数の第1の撹拌翼は、前記回転軸の周方向において略等間隔に配置されている、請求項1に記載の装置。
  12. 前記液供給部によって前記反応槽に供給される濃縮余剰汚泥の粘度は10Pa・s以上である、請求項1に記載の装置。
JP2022153487A 2022-09-27 2022-09-27 汚泥処理装置 Pending JP2024047794A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022153487A JP2024047794A (ja) 2022-09-27 2022-09-27 汚泥処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022153487A JP2024047794A (ja) 2022-09-27 2022-09-27 汚泥処理装置

Publications (1)

Publication Number Publication Date
JP2024047794A true JP2024047794A (ja) 2024-04-08

Family

ID=90606306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022153487A Pending JP2024047794A (ja) 2022-09-27 2022-09-27 汚泥処理装置

Country Status (1)

Country Link
JP (1) JP2024047794A (ja)

Similar Documents

Publication Publication Date Title
KR101015470B1 (ko) 다축 교반기
US4267052A (en) Aeration method and apparatus
KR101566240B1 (ko) 에어레이션 임펠러 및 이를 포함하는 수처리용 교반기
JP4039430B2 (ja) 羽根車
KR20180024726A (ko) 자기부상식 표면 교반기
JP2007167708A (ja) 液中撹拌装置
JP5282986B2 (ja) 攪拌装置
CN111565854A (zh) 用于气液传质的反应器
KR101014593B1 (ko) 소화조 교반기
JP2024047794A (ja) 汚泥処理装置
KR20100064204A (ko) 수중 교반펌프
KR101767500B1 (ko) 소화조 교반기용 임펠러
JPH08281089A (ja) 竪形撹拌機
US7497949B2 (en) System and method for oxygenating an aerobic sludge digester
KR200392269Y1 (ko) 교반기
CN102350250A (zh) 一种双层搅拌桨组合装置
KR101986098B1 (ko) 스컴 블레이드가 설치된 소화조용 누유 방지형 다축 교반기
JPH0321211B2 (ja)
KR20050118547A (ko) 교반기
JP2009178619A (ja) 曝気攪拌機
JP3239171B2 (ja) 攪拌曝気装置における軸流インペラ
JP2000015075A (ja) 撹拌翼及びその撹拌装置
JP6650221B2 (ja) 撹拌装置
JP4628232B2 (ja) スラリー用撹拌翼
JPH08173987A (ja) 高水深槽に適した曝気装置