JP2024047495A - 学習装置、情報処理装置、基板処理装置、基板処理システム、学習方法および処理条件決定方法 - Google Patents

学習装置、情報処理装置、基板処理装置、基板処理システム、学習方法および処理条件決定方法 Download PDF

Info

Publication number
JP2024047495A
JP2024047495A JP2022153151A JP2022153151A JP2024047495A JP 2024047495 A JP2024047495 A JP 2024047495A JP 2022153151 A JP2022153151 A JP 2022153151A JP 2022153151 A JP2022153151 A JP 2022153151A JP 2024047495 A JP2024047495 A JP 2024047495A
Authority
JP
Japan
Prior art keywords
processing
substrate
learning
coating
conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022153151A
Other languages
English (en)
Inventor
真裕 ▲徳▼山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2022153151A priority Critical patent/JP2024047495A/ja
Priority to PCT/JP2023/028655 priority patent/WO2024070233A1/ja
Publication of JP2024047495A publication Critical patent/JP2024047495A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Weting (AREA)

Abstract

【課題】 基板を処理するために時間の経過に伴って変化する条件を機械学習させるのに適した学習装置を提供する。【解決手段】 学習装置200は、被膜が形成された基板に処理液を供給することにより被膜の処理をする基板処理装置を時間の経過に伴って変動する変動条件を含む処理条件で駆動して被膜の処理を行った後に、被膜の処理の前後の膜厚の差を示す第一処理量を取得する実験データ取得部261と、変動条件と処理条件に対応する第一処理量とを含む学習用データを機械学習して基板処理装置により被膜の処理をされる前の基板に形成された被膜について被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを生成するモデル生成部と、を備え、学習モデルは、第1畳み込みニューラルネットワークを含む。【選択図】図4

Description

本発明は、学習装置、情報処理装置、基板処理装置、基板処理システム、学習方法および処理条件決定方法に関し、基板処理装置による処理条件に従った処理をシミュレートする学習モデルを生成する学習装置、その学習モデルを用いて処理条件を決定する情報処理装置、その情報処理装置を備えた基板処理装置、その情報処理装置と学習装置とを備えた基板処理システム、学習装置で実行される学習方法および情報処理装置で実行される処理条件決定方法に関する。
半導体製造プロセスにおいて、洗浄プロセスがある。洗浄プロセスでは、基板に薬液を供給するエッチング処理によって、基板に形成されている被膜の膜厚調整が行なわれる。この膜厚調整においては、基板の面が均一となるようにエッチング処理すること、あるいは、基板の面をエッチング処理によって平坦にすることが重要である。エッチング液をノズルから基板の一部に吐出する場合、ノズルを基板に対して径方向に移動させる必要がある。
特許文献1には、ノズルから基板にエッチング液を吐出することにより、基板に対してエッチング処理が可能な液処理装置が記載される。特許文献1には、基板の中央領域のエッチング処理を行いつつ、ウエハの面内温度分布を均一にするために、吐出されたエッチング液がウエハの中心を通る中央側の第1位置と、この中央側の位置よりもウエハの周縁側の第2位置との間でエッチングノズルを繰り返し往復させながらエッチング液を吐出する例が記載される。
エッチング処理は、被膜が処理される処理量がノズルを移動させる動作の違いによって変化する複雑なプロセスである。また、エッチング処理により被膜が処理される処理量は、基板を処理した後に判明する。このため、ノズルを移動させる動作を設定する作業は、技術者による試行錯誤が必要である。ノズルの最適な動作を決定するまでに、多大なコスト及び時間を要する。
特開2015-103656号公報
一方で、ノズルを移動させる動作をより複雑にすることが望まれる。ノズルを移動させる動作は、時間の経過に伴って変化する位置を示す時系列データである。ノズルを移動させる動作を複雑にすると、サンプリング間隔が短くなるので、時系列データの次元数が多くなる。一般に、学習用データの次元数が多くなると、機械学習に必要なデータ数が指数関数的に増加してしまう。このため、学習用データの次元数が多くなることにより、機械学習によって得られる学習モデルを最適化するのが困難となる。また、エッチング処理は、複雑なプロセスなので、目標とする処理量に適したノズルの動作は1つとは限らず、複数存在する場合がある。
本発明の目的の1つは、基板を処理するために時間の経過に伴って変化する条件を機械学習させるのに適した学習装置、学習方法および基板処理システムを提供することである。
また、本発明の他の目的は、基板を処理する複雑なプロセスの処理結果に対して複数の処理条件を提示することが可能な情報処理装置、基板処理装置、基板処理システムおよび処理条件決定方法を提供することである。
本発明の一局面に従う学習装置は、被膜が形成された基板に処理液を供給することにより被膜の処理をする基板処理装置を時間の経過に伴って変動する変動条件を含む処理条件で駆動して被膜の処理を行った後に、被膜の処理の前後の膜厚の差を示す第一処理量を取得する実験データ取得部と、変動条件と処理条件に対応する第一処理量とを含む学習用データを機械学習して基板処理装置により被膜の処理をされる前の基板に形成された被膜について被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを生成するモデル生成部と、を備え、学習モデルは、第1畳み込みニューラルネットワークを含む。
本発明の他の局面に従う情報処理装置は、基板処理装置を管理する情報処理装置であって、基板処理装置は、時間の経過に伴って変動する変動条件を含む処理条件で、被膜が形成された基板に処理液を供給することにより、被膜の処理をし、基板処理装置により被膜の処理をされる前の基板に形成された被膜について被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを用いて、基板処理装置を駆動するための処理条件を決定する処理条件決定部と、を備え、学習モデルは、第1畳み込みニューラルネットワークを含み、基板処理装置が被膜の処理をした処理条件に含まれる変動条件と基板処理装置により被膜の処理をされた基板に形成された被膜の処理の前後の膜厚の差を示す第一処理量とを含む学習用データを機械学習した推論モデルであり、処理条件決定部は、仮の変動条件を学習モデルに与えて学習モデルにより推測される第二処理量が許容条件を満たす場合に仮の変動条件を含む処理条件を、基板処理装置を駆動するための処理条件に決定する。
本発明のさらに他の局面に従う基板処理システムは、基板処理装置を管理する基板処理システムであって、学習装置と情報処理装置とを備え、基板処理装置は、時間の経過に伴って変動する変動条件を含む処理条件で、被膜が形成された基板に処理液を供給することにより、被膜の処理をし、学習装置は、基板処理装置を処理条件で駆動して基板に形成された被膜の処理を行った後に、被膜の処理の前後の膜厚の差を示す第一処理量を取得する実験データ取得部と、変動条件と処理条件に対応する第一処理量とを含む学習用データを機械学習して基板処理装置により被膜の処理をされる前の基板に形成された被膜について被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを生成するモデル生成部と、を備え、学習モデルは、第1畳み込みニューラルネットワークを含み、情報処理装置は、学習装置により生成された学習モデルを用いて、基板処理装置を駆動するための処理条件を決定する処理条件決定部と、を備え、処理条件決定部は、学習装置により生成された学習モデルに仮の変動条件を与えて学習モデルにより推測される第二処理量が許容条件を満たす場合に仮の変動条件を含む処理条件を、基板処理装置を駆動するための処理条件に決定する。
本発明のさらに他の局面に従う学習方法は、被膜が形成された基板に処理液を供給することにより被膜の処理をする基板処理装置を時間の経過に伴って変動する変動条件を含む処理条件で駆動して被膜の処理を行った後に、被膜の処理の前後の膜厚の差を示す第一処理量を取得する処理と、変動条件と処理条件に対応する第一処理量とを含む学習用データを機械学習して基板処理装置により被膜の処理をされる前の基板に形成された被膜について被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを生成する処理と、をコンピューターに実行させ、学習モデルは、第1畳み込みニューラルネットワークを含む。
本発明のさらに他の局面に従う処理条件決定方法は、基板処理装置を管理するコンピューターで実行される処理条件決定方法であって、基板処理装置は、時間の経過に伴って変動する変動条件を含む処理条件で、被膜が形成された基板に処理液を供給することにより、被膜の処理をし、基板処理装置により被膜の処理をされる前の基板に形成された被膜について被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを用いて、基板処理装置を駆動するための処理条件を決定する処理と、を含み、学習モデルは、第1畳み込みニューラルネットワークを含み、基板処理装置が被膜の処理をした処理条件に含まれる変動条件と基板処理装置により被膜の処理をされた基板に形成された被膜の処理の前後の膜厚の差を示す第一処理量とを含む学習用データを機械学習した推論モデルであり、処理条件を決定する処理は、仮の変動条件を学習モデルに与えて学習モデルにより推測される第二処理量が許容条件を満たす場合に仮の変動条件を含む処理条件を、基板処理装置を駆動するための処理条件に決定する処理を含む。
基板を処理するために時間の経過に伴って変化する条件を機械学習させるのに適した学習装置、学習方法および基板処理システムを提供することができる。
基板を処理する複雑なプロセスの処理結果に対して複数の処理条件を提示することが可能な情報処理装置、基板処理装置、基板処理システムおよび処理条件決定方法を提供することができる。
本発明の一実施の形態に係る基板処理システムの構成を説明するための図である。 情報処理装置の構成の一例を示す図である。 学習装置の構成の一例を示す図である。 基板処理システムの機能的な構成の一例を示す図である。 膜厚特性の一例を示す図である。 学習モデルを説明する図である。 学習処理の流れの一例を示すフローチャートである。 処理条件決定処理の流れの一例を示すフローチャートである。 追加学習処理の流れの一例を示すフローチャートである。 他の実施の形態に係る学習モデルを説明するための第1の図である。 他の実施の形態に係る学習モデルを説明するための第2の図である。
以下、本発明の一実施の形態に係る基板処理システムについて図面を参照しながら詳細に説明する。以下の説明において、基板とは、半導体基板(半導体ウェハ)、液晶表示装置もしくは有機EL(Electro Luminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板または太陽電池用基板等をいう。
1.基板処理システムの全体構成
図1は、本発明の一実施の形態に係る基板処理システムの構成を説明するための図である。図1の基板処理システム1は、情報処理装置100、学習装置200および基板処理装置300を含む。学習装置200は、例えばサーバであり、情報処理装置100は、例えばパーソナルコンピューターである。
学習装置200および情報処理装置100は、基板処理装置300を管理するために用いられる。なお、学習装置200および情報処理装置100が管理する基板処理装置300は、1台に限定されるものではなく、基板処理装置300の複数を管理してもよい。
本実施の形態に係る基板処理システム1において、情報処理装置100、学習装置200および基板処理装置300は、互いに有線または無線の通信線または通信回線網により接続される。情報処理装置100、学習装置200および基板処理装置300は、それぞれがネットワークに接続され、互いにデータの送受信が可能である。ネットワークは、例えば、ローカルエリアネットワーク(LAN)またはワイドエリアネットワーク(WAN)が用いられる。また、ネットワークは、インターネットであってもよい。また、情報処理装置100と基板処理装置300とは、専用の通信回線網で接続されてもよい。ネットワークの接続形態は、有線接続であってもよいし、無線接続であってもよい。
なお、学習装置200は、基板処理装置300および情報処理装置100と、必ずしも通信線または通信回線網で接続される必要はない。この場合、基板処理装置300で生成されたデータが記録媒体を介して学習装置200に渡されてもよい。また、学習装置200で生成されたデータが記録媒体を介して情報処理装置100に渡されてもよい。
基板処理装置300には、図示しない表示装置、音声出力装置および操作部が設けられる。基板処理装置300は、基板処理装置300の予め定められた処理条件(処理レシピ)に従って運転される。
2.基板処理装置の概要
基板処理装置300は、制御装置10と、複数の基板処理ユニットWUを備える。制御装置10は、複数の基板処理ユニットWUを制御する。複数の基板処理ユニットWUは、被膜が形成された基板Wに処理液を供給することにより基板を処理する。処理液はエッチング液を含み、基板処理ユニットWUはエッチング処理を実行する。エッチング液は、薬液である。エッチング液は、例えば、フッ硝酸(フッ酸(HF)と硝酸(HNO)との混合液)、フッ酸、バファードフッ酸(BHF)、フッ化アンモニウム、HFEG(フッ酸とエチレングリコールとの混合液)、又は、燐酸(HPO)である。
基板処理ユニットWUは、スピンチャックSCと、スピンモータSMと、ノズル311と、ノズル移動機構301と、を備える。スピンチャックSCは、基板Wを水平に保持する。スピンモータSMは、第1回転軸AX1を有する。第1回転軸AX1は、上下方向に延びる。スピンチャックSCは、スピンモータSMの第1回転軸AX1の上端部に取り付けられる。スピンモータSMが回転すると、スピンチャックSCが第1回転軸AX1を中心として回転する。スピンモータSMは、ステッピングモータである。スピンチャックSCに保持された基板Wは、第1回転軸AX1を中心として回転する。このため、基板Wの回転速度は、ステッピングモータの回転速度と同じである。なお、スピンモータの回転速度を示す回転速度信号を生成するエンコーダを設ける場合、エンコーダにより生成される回転速度信号から基板Wの回転速度が取得されてもよい。この場合、スピンモータは、ステッピングモータ以外のモータを用いることができる。
ノズル311は、基板Wにエッチング液を供給する。ノズル311は、図示しないエッチング液供給部からエッチング液が供給され、回転中の基板Wに向けてエッチング液を吐出する。
ノズル移動機構301は、略水平方向にノズル311を移動させる。具体的には、ノズル移動機構301は、第2回転軸AX2を有するノズルモータ303と、ノズルアーム305と、を有する。ノズルモータ303は、第2回転軸AX2が略鉛直方向に沿うように配置される。ノズルアーム305は、直線状に延びる長手形状を有する。ノズルアーム305の一端は、ノズルアーム305の長手方向が第2回転軸AX2とは異なる方向となるように、第2回転軸AX2の上端に取り付けられる。ノズルアーム305の他端に、ノズル311がその吐出口が下方を向くように取り付けられる。
ノズルモータ303が動作すると、ノズルアーム305は第2回転軸AX2を中心として水平面内で回転する。これにより、ノズルアーム305の他端に取り付けられたノズル311は、第2回転軸AX2を中心として水平方向に移動する(旋回する)。ノズル311は、水平方向に移動しながら基板Wに向けてエッチング液を吐出する。ノズルモータ303は、例えば、ステッピングモータである。
制御装置10は、CPU(中央演算処理装置)およびメモリを含み、CPUがメモリに記憶されたプログラムを実行することにより、基板処理装置300の全体を制御する。制御装置10は、スピンモータSMおよびノズルモータ303を制御する。
学習装置200は、基板処理装置300から実験データが入力され、実験データを用いて学習モデルを機械学習し、学習済の学習モデルを、情報処理装置100に出力する。
情報処理装置100は、学習済の学習モデルを用いて、基板処理装置300がこれから処理する予定の基板に対して、基板を処理するための処理条件を決定する。情報処理装置100は、決定された処理条件を基板処理装置300に出力する。
図2は、情報処理装置の構成の一例を示す図である。図2を参照して、情報処理装置100は、CPU101、RAM(ランダムアクセスメモリ)102、ROM(リードオンリメモリ)103、記憶装置104、操作部105、表示装置106および入出力I/F(インターフェイス)107により構成される。CPU101、RAM102、ROM103、記憶装置104、操作部105、表示装置106および入出力I/F107はバス108に接続される。
RAM102は、CPU101の作業領域として用いられる。ROM103にはシステムプログラムが記憶される。記憶装置104は、ハードディスクまたは半導体メモリ等の記憶媒体を含み、プログラムを記憶する。プログラムは、ROM103または他の外部記憶装置に記憶されてもよい。
記憶装置104には、CD-ROM109が着脱可能である。CPU101が実行するプログラムを記憶する記録媒体としては、CD-ROM109に限られず、光ディスク(MO(Magnetic Optical Disc)/MD(Mini Disc)/DVD(Digital Versatile Disc))、ICカード、光カード、マスクROM、EPROM(Erasable Programmable ROM)などの半導体メモリ等の媒体でもよい。さらに、CPU101がネットワークに接続されたコンピューターからプログラムをダウンロードして記憶装置104に記憶する、または、ネットワークに接続されたコンピューターがプログラムを記憶装置104に書込みするようにして、記憶装置104に記憶されたプログラムをRAM102にロードしてCPU101で実行するようにしてもよい。ここでいうプログラムは、CPU101により直接実行可能なプログラムだけでなく、ソースプログラム、圧縮処理されたプログラム、暗号化されたプログラム等を含む。
操作部105は、キーボード、マウスまたはタッチパネル等の入力デバイスである。使用者は、操作部105を操作することにより、情報処理装置100に所定の指示を与えることができる。表示装置106は、液晶表示装置等の表示デバイスであり、使用者による指示を受け付けるためのGUI(Graphical User Interface)等を表示する。入出力I/F107は、ネットワークに接続される。
図3は、学習装置の構成の一例を示す図である。図3を参照して、学習装置200は、CPU201、RAM202、ROM203、記憶装置204、操作部205、表示装置206および入出力I/F207により構成される。CPU201、RAM202、ROM203、記憶装置204、操作部205、表示装置206および入出力I/F207はバス208に接続される。
RAM202は、CPU201の作業領域として用いられる。ROM203にはシステムプログラムが記憶される。記憶装置204は、ハードディスクまたは半導体メモリ等の記憶媒体を含み、プログラムを記憶する。プログラムは、ROM203または他の外部記憶装置に記憶されてもよい。記憶装置204には、CD-ROM209が着脱可能である。
操作部205は、キーボード、マウスまたはタッチパネル等の入力デバイスである。入出力I/F207は、ネットワークに接続される。
3.基板処理システムの機能構成
図4は、基板処理システムの機能的な構成の一例を示す図である。図4を参照して、基板処理装置300が備える制御装置10は、基板処理ユニットWUを制御して、処理条件に従って基板Wを処理する。処理条件は、予め定められた処理時間の間に基板Wを処理する条件である。処理時間は、基板に対する処理に対して定められる時間である。本実施の形態において、処理時間は、基板Wにノズル311がエッチング液を吐出している間の時間である。
処理条件は、本実施の形態においては、エッチング液の温度、エッチング液の濃度、エッチング液の流量、基板Wの回転数、ノズル311と基板Wとの相対位置を含む。処理条件は、時間の経過に伴って変動する変動条件を含む。本実施の形態において、変動条件は、ノズル311と基板Wとの相対位置である。相対位置は、ノズルモータ303の回転角度で示される。処理条件は、時間の経過に伴って変動しない固定条件を含む。本実施の形態において、固定条件は、エッチング液の温度、エッチング液の濃度、エッチング液の流量、基板Wの回転数である。
学習装置200は、学習用データを学習モデルに学習させて、処理条件からエッチングプロファイルを推測する推論モデルを生成する。以下、学習装置200が生成する推論モデルを予測器という。
学習装置200は、実験データ取得部261と、予測器生成部265と、予測器送信部267と、を含む。学習装置200が備える機能は、学習装置200が備えるCPU201がRAM202に格納された学習プログラムを実行することにより、CPU201により実現される。
実験データ取得部261は、基板処理装置300から実験データを取得する。実験データは、基板処理装置300が実際に基板Wを処理する場合に用いられる処理条件と、基板Wに形成された被膜の処理の前後の膜厚特性とを含む。膜厚特性は、基板Wに形成される被膜の基板Wの径方向に異なる複数の位置それぞれにおける膜厚で示される。
図5は、膜厚特性の一例を示す図である。図5を参照して、横軸に基板の半径方向の位置を示し、縦軸に膜厚を示す。横軸の原点が基板の中心を示す。基板処理装置300により処理される前の基板Wに形成された被膜の膜厚が実線で示される。基板処理装置300により処理条件に従ってエッチング液を供給する処理が実行されることにより、基板Wに形成される被膜の膜厚が調整される。基板処理装置300により処理された後の基板Wに形成された被膜の膜厚が点線で示される。
基板処理装置300により処理される前の基板Wに形成された被膜の膜厚と基板処理装置300により処理された後の基板Wに形成された被膜の膜厚との差が処理量(エッチング量)である。処理量は、基板処理装置300によりエッチング液を供給する処理により減少した膜の厚さを示す。処理量の径方向の分布を、エッチングプロファイルという。エッチングプロファイルは、基板Wの径方向に異なる複数の位置それぞれにおける処理量で示される。
また、基板処理装置300により形成される膜厚は、基板Wの全面において均一であることが望まれる。このため、基板処理装置300により実行される処理に対して、目標となる目標膜厚が定められる。目標膜厚は、一点鎖線で示される。乖離特性は、基板処理装置300により処理された後の基板Wに形成された被膜の膜厚と目標膜厚との差分である。乖離特性は、基板Wの径方向における複数の位置それぞれにおける差分を含む。
図4に戻って、予測器生成部265には、実験データ取得部261から実験データが入力される。予測器生成部265は、ニューラルネットワークに学習用データを用いて教師あり学習させることにより予測器を生成する。
具体的には、学習用データは、入力データと正解データとを含む。入力データは、実験データの処理条件に含まれる変動条件と、実験データに含まれる処理条件の変動条件以外の固定条件と、を含む。正解データは、エッチングプロファイルを含む。エッチングプロファイルは、実験データに含まれる処理前の被膜の膜厚特性と、実験データに含まれる処理後の被膜の膜厚特性との差である。この正解データに含まれるエッチングプロファイルは、第一処理量の一例である。予測器生成部265は、入力データを予測器のもとになる学習モデルに入力し、学習モデルの出力と正解データとの差が小さくなるように学習モデルのパラメータを決定する。予測器生成部265は、学習済の学習モデルに設定されたパラメータを組み込んだ学習済モデルを予測器として生成する。予測器は、学習済モデルに設定されたパラメータを組み込んだ推論プログラムである。予測器生成部265は、予測器を情報処理装置100に送信する。
図6は、学習モデルを説明する図である。図6を参照して、学習モデルは、A層~C層が入力側から出力側(上層から下層)に向かってこの順に設けられている。A層には、第1畳み込みニューラルネットワークCNN1が設けられ、B層には、全結合ニューラルネットワークNNが設けられ、C層には、第2畳み込みニューラルネットワークCNN2が設けられる。
第1畳み込みニューラルネットワークCNN1には、変動条件が入力される。全結合ニューラルネットワークNNには、第1畳み込みニューラルネットワークCNN1の出力と固定条件とが入力される。第2畳み込みニューラルネットワークCNN2には、全結合ニューラルネットワークNNの出力が入力される。
第1畳み込みニューラルネットワークCNN1は、複数の層を含む。本実施の形態では、第1畳み込みニューラルネットワークCNN1は、3つの層を含む。第1畳み込みニューラルネットワークCNN1内においては、入力側(上層側)から出力側(下層側)に向かって第1層L1、第2層L2および第3層L3がこの順に設けられる。なお、本実施の形態では、複数の層として3つの層を含む場合について説明するが、3つ以上の層を含んでいてもよい。
第1層L1、第2層L2および第3層L3それぞれは、畳み込み層およびプーリング層を含む。畳み込み層は、複数のフィルタを有する。畳み込み層においては、複数のフィルタが適用される。プーリング層は、畳み込み層の出力を圧縮する。第2層L2の畳み込み層のフィルタの数は、第1層L1の畳み込み層のフィルタの数の2倍に設定されている。第3層L3の畳み込み層のフィルタの数は、第2層L2の畳み込み層のフィルタの数の2倍に設定されている。このため、変動条件からできるだけ多くの特徴を抽出することができる。ここで、変動条件は、時間の経過に伴って変動するノズルの基板Wに対する相対位置を含む。第1畳み込みニューラルネットワークCNN1は、複数のフィルタを用いて特徴を抽出するので、ノズルの基板Wに対する相対位置の変化について時間の要素を含む特徴をより多く抽出する。なお、ここでは第2層L2の畳み込み層のフィルタの数が、第1層L1の畳み込み層のフィルタの数の2倍に設定される例を示しているが、2倍でなくてもよい。第2層L2の畳み込み層のフィルタの数は、第1層L1の畳み込み層のフィルタの数よりも多い数であればよい。また、第3層L3の畳み込み層のフィルタの数は、第2層L2の畳み込み層のフィルタの数の2倍でなくてもよい。第3層L3の畳み込み層のフィルタの数は、第2層L2の畳み込み層のフィルタの数よりも多い数であればよい。
全結合ニューラルネットワークNNは、複数の層が設けられる。図6の例では、全結合ニューラルネットワークNNは、入力側のba層および出力側のbb層の二つの層が設けられる。図6の例では、各層には、複数のノードが含まれる。図6の例では、ba層に5つのノード、bb層に4つのノードが示されるが、ノードの数は、これに限定されるものではない。ba層のノードの数は、第1畳み込みニューラルネットワークCNN1の出力側のノードの数と固定条件の数との和に等しくなるように設定される。bb層のノードの数は、第2畳み込みニューラルネットワークCNN2の入力側のノードの数に等しくなるように設定される。ba層のノードの出力はbb層のノードの入力に接続される。パラメータは、ba層のノードの出力に対して重み付けする係数を含む。ba層とbb層との間には、1または複数の中間層が設けられてもよい。
第2畳み込みニューラルネットワークCNN2は、複数の層を含む。本実施の形態では、第2畳み込みニューラルネットワークCNN2は、3つの層を含む。第2畳み込みニューラルネットワークCNN2においては、入力側(上層側)から出力側(下層側)に向かって第4層L4、第5層L5および第6層L6がこの順に設けられる。なお、本実施の形態では、複数の層として3つの層を含む場合について説明するが、3つ以上の層を含んでいてもよい。
第4層L4、第5層L5および第6層L6それぞれは、畳み込み層およびプーリング層を含む。畳み込み層は、複数のフィルタを有する。畳み込み層においては、複数のフィルタが適用される。プーリング層は、畳み込み層の出力を圧縮する。第5層L5の畳み込み層のフィルタの数は、第4層L4の畳み込み層のフィルタの数の1/2倍に設定されている。また、第6層L6の畳み込み層のフィルタの数は、第5層L5の畳み込み層のフィルタの数の1/2倍に設定されている。このため、エッチングプロファイルからできるだけ多くの特徴を抽出することができる。エッチングプロファイルは、基板Wの径方向の複数の位置P[n](nは1以上の整数)それぞれにおける処理前後の膜厚の差E[n]で示される。このため、エッチングプロファイルにおける複数の処理量は、基板Wの径方向における位置の変化に伴って変動する。第2畳み込みニューラルネットワークCNN2は、複数のフィルタを用いて特徴を抽出するので、処理量の変化について基板Wの径方向の位置の要素を含む特徴をより多く抽出する。なお、ここでは第5層L5の畳み込み層のフィルタの数が、第4層L4の畳み込み層のフィルタの数の1/2倍に設定される例を示しているが、1/2倍でなくてもよい。第5層L5の畳み込み層のフィルタの数は、第4層L4の畳み込み層のフィルタの数よりも少ない数であればよい。また、第6層L6の畳み込み層のフィルタの数は、第5層L5の畳み込み層のフィルタの数の1/2倍でなくてもよい。第6層L6の畳み込み層のフィルタの数は、第5層L5の畳み込み層のフィルタの数よりも少ない数であればよい。
学習モデルに、入力データである変動条件と固定条件とを入力すると、学習モデルはエッチングプロファイルを推測する。この学習モデルにより推測されるエッチングプロファイルは、第二処理量の一例である。学習モデルにより推測されたエッチングプロファイルと、正解データであるエッチングプログファイルとの差分が誤差として算出される。そして、学習モデルは、この誤差が少なくなるように学習する。例えば、学習モデルは、誤差逆伝播法を用いて、第1畳み込みニューラルネットワークCNN1が有する複数のフィルタ、全結合ニューラルネットワークNNが有する複数のノードで定められる重みパラメータおよび第2畳み込みニューラルネットワークCNN2が有する複数のフィルタそれぞれの値を更新する。
図4に戻って、情報処理装置100は、処理条件決定部151と、予測器受信部155と、予測部159と、評価部161と、処理条件送信部163と、を含む。情報処理装置100が備える機能は、情報処理装置100が備えるCPU101がRAM102に格納された処理条件決定プログラムを実行することにより、CPU101により実現される。予測器受信部155は、学習装置200から送信される予測器を受信し、受信された予測器を予測部159に出力する。
処理条件決定部151は、基板処理装置300により処理の対象となる基板Wに対する処理条件を決定し、処理条件に含まれる変動条件と処理条件に含まれる固定条件とを予測部159に出力する。
予測部159は、変動条件と固定条件とからエッチングプロファイルを推測する。具体的には、予測部159は、処理条件決定部151から入力される変動条件と、固定条件とを予測器に入力し、予測器が出力するエッチングプロファイルを評価部161に出力する。
評価部161は、予測部159から入力されるエッチングプロファイルを評価し、評価結果を処理条件決定部151に出力する。詳細には、評価部161は、基板処理装置300が処理対象とする予定の基板Wの処理前の膜厚特性を取得する。評価部161は、予測部159から入力されるエッチングプロファイルと、基板Wの処理前の膜厚特性とからエッチング処理後に予測される膜厚特性を算出し、目標とする膜厚特性と比較する。比較の結果が評価基準を満たしていれば、処理条件決定部151により決定された処理条件を処理条件送信部163に出力する。例えば、評価部161は、乖離特性を算出し、乖離特性が評価基準を満たしているか否かが判断される。乖離特性は、エッチング処理後の基板Wの膜厚特性と目標の膜厚特性との差分である。評価基準は、任意に定めることができる。例えば、評価基準は、乖離特性において差分の最大値が閾値以下であるとしてもよいし、差分の平均が閾値以下であるとしてもよい。
処理条件送信部163は、処理条件決定部151により決定された処理条件を、基板処理装置300の制御装置10に送信する。基板処理装置300は、処理条件に従って基板Wを処理する。
評価部161は、評価結果が評価基準を満たしていない場合は、評価結果を処理条件決定部151に出力する。評価結果は、エッチング処理後に予測される膜厚特性またはエッチング処理後に予測される膜厚特性と目標の膜厚特性との差分を含む。
処理条件決定部151は、評価部161から評価結果が入力されることに応じて、予測部159に推測させるための新たな処理条件を決定する。処理条件決定部151は、実験計画法、ペアワイズ法またはベイズ推定を用いて、予め準備された複数の変動条件のうちから1つを選択し、選択された変動条件と固定条件とを含む処理条件を予測部159に推測させるための新たな処理条件として決定する。
処理条件決定部151は、ベイズ推定を用いて処理条件を探索してもよい。評価部161により複数の評価結果が出力される場合、処理条件と評価結果との組が複数となる。複数の組それぞれにおけるエッチングプロファイルの傾向から被膜の膜厚が均一となる処理条件またはエッチング処理後に予測される膜厚特性と目標の膜厚特性との差分が最小となる処理条件を探索する。
具体的には、処理条件決定部151は、目的関数を最小化するように処理条件を探索する。目的関数は、被膜の膜厚の均一性を示す関数または被膜の膜厚特性と目標膜厚特性との一致性を示す関数である。例えば、目的関数は、エッチング処理後に予測される膜厚特性と目標の膜厚特性との差分をパラメータで示した関数である。ここでのパラメータは、対応する変動条件である。対応する変動条件は、予測器がエッチングプロファイルを推測するために用いた変動条件である。処理条件決定部151は、複数の変動条件のうちから探索により決定されたパラメータである変動条件を選択し、選択された変動条件と固定条件とを含む新たな処理条件を決定する。
図7は、学習処理の流れの一例を示すフローチャートである。学習処理は、学習装置200が備えるCPU201がRAM202に格納された学習プログラムを実行することにより、CPU201により実行される処理である。
図7を参照して、学習装置200が備えるCPU201は、実験データを取得する。CPU201は、入出力I/F107を制御して、基板処理装置300から実験データを取得する(ステップS11)。実験データは、CD-ROM209等の記録媒体に記録された実験データを記憶装置104で読み取ることにより取得されてもよい。ここで取得される実験データは、複数である。実験データは、処理条件と、基板Wに形成された被膜の処理の前後の膜厚特性とを含む。膜厚特性は、基板Wの径方向に異なる複数の位置それぞれにおける、基板Wに形成される被膜の膜厚で示される。
次のステップS12においては、処理対象とするべき実験データが選択され、処理はステップS13に進む。ステップS13においては、実験データに含まれる変動条件と、固定条件と、エッチングプロファイルと、が学習用データに設定される。エッチングプロファイルは、実験データに含まれる処理前の被膜の膜厚特性と、実験データに含まれる処理後の被膜の膜厚特性との差分である。学習用データは、入力データと正解データとを含む。本実施の形態においては、実験データに含まれる変動条件と、固定条件とが入力データに設定され、エッチングプロファイルが正解データに設定される。
次のステップS14においては、CPU201は、学習モデルを機械学習させ、処理をステップS15に進める。入力データを学習モデルに入力し、学習モデルの出力と正解データとの誤差が小さくなるようにフィルタおよびパラメータを決定する。これにより、学習モデルのフィルタおよびパラメータが調整される。
ステップS15においては、調整が完了したか否かが判断される。学習モデルの評価に用いる学習用データが予め準備されており、評価用の学習用データで学習モデルの性能が評価される。評価結果が予め定められた評価基準を満たす場合に調整完了と判断される。評価結果が評価基準を満たさなければ(ステップS15でNO)、処理はステップS12に戻るが、評価結果が評価基準を満たすならば(ステップS15でYES)、処理はステップS16に進む。
処理がステップS12に戻る場合、ステップS12において、ステップS11において取得された実験データのうちから処理対象に選択されていない実験データが選択される。ステップS12~ステップS15のループにおいて、CPU201は、複数の学習用データを用いて学習モデルを機械学習させる。これにより、学習モデルのフィルタおよびパラメータが適正な値に調整される。ステップS16においては、学習済みモデルの学習パラメータが記憶される。ステップS17においては、学習済みモデルが予測器に設定され、情報処理装置100に予測器が送信され、処理は終了する。CPU201は、入出力I/F107を制御し、予測器を情報処理装置100に送信する。
図8は、処理条件決定処理の流れの一例を示すフローチャートである。処理条件決定処理は、情報処理装置100が備えるCPU101がRAM102に格納された処理条件決定プログラムを実行することにより、CPU101により実行される処理である。
図8を参照して、情報処理装置100が備えるCPU101は、予め準備された複数の変動条件のうちから1つを選択し(ステップS21)、処理をステップS22に進める。実験計画法、ペアワイズ法またはベイズ推定等を用いて、予め準備された複数の変動条件のうちから1つが選択される。
ステップS22においては、予測器を用いて、変動条件と固定条件とからエッチングプロファイルが推測され、処理はステップS23に進む。予測器に、変動条件と固定条件とを入力し、予測器が出力するエッチングプロファイルが取得される。ステップS23においては、処理後の膜厚特性が目標膜厚特性と比較される。基板処理装置300が処理の対象とする基板Wの処理前の膜厚特性と、ステップS22において推測されたエッチングプロファイルとから基板Wを処理した後の膜厚特性が算出される。そして、処理後の膜厚特性が目標膜厚特性と比較される。ここでは、基板Wを処理した後の膜厚特性と目標膜厚特性との差分が算出される。
ステップS24においては、比較結果が評価基準を満たすか否かが判断される。比較結果が評価基準を満たすならば(ステップS24でYES)、処理はステップS25に進むが、そうでなければ処理はステップS21に戻る。例えば、差分の最大値が閾値以下である場合に評価基準を満たすと判断する。また、差分の平均が閾値以下である場合に評価基準を満たすと判断する。
ステップS25においては、基板処理装置300を駆動するための処理条件の候補に、ステップS21において選択された変動条件を含む処理条件が設定され、処理はステップS26に進む。ステップS26においては、探索の終了指示が受け付けられたか否かが判断される。情報処理装置100を操作するユーザーにより終了指示が受け付けられたならば処理はステップS27に進むが、そうでなければ処理はステップS21に戻る。なお、ユーザーにより入力される終了指示に変えて、予め定められた数の処理条件が候補に設定されたか否かが判断されてもよい。
ステップS27においては、候補に設定された1以上の処理条件のうちから1つが決定され、処理はステップS28に進む。候補に設定された1以上の処理条件のうちから情報処理装置100を操作するユーザーにより1つが選択されてもよい。したがって、ユーザーの選択の範囲が広がる。また、複数の処理条件に含まれる変動条件のうちからノズル動作が最も簡略な変動条件が自動的に選択されてもよい。ノズル動作が最も簡略な変動条件は、例えば、変速点の数が最少の変動条件とすることができる。これにより、基板Wを処理する複雑なノズル動作に対する処理結果に対して複数の変動条件を提示することができる。複数の変動条件のうちからノズルの制御が容易な変動条件を選択すれば、基板処理装置300の制御が容易になる。
ステップS28においては、ステップS28において決定された変動条件を含む処理条件が基板処理装置300に送信され、処理は終了する。CPU101は、入出力I/F107を制御して、処理条件を基板処理装置300に送信する。基板処理装置300は、情報処理装置100から処理条件を受信する場合、その処理条件に従って基板Wを処理する。
4.具体例
本実施の形態においては、変動条件は、ノズル動作の処理時間が60秒、サンプリング間隔0.01秒でサンプリングした時系列データである。変動条件は、6001個の値で構成される。このため、変動条件は、複雑なノズル動作を表現することが可能である。特に、ノズルの移動速度を変更する変速点の数を比較的多くしたノズル動作を変動条件で正確に表現することができる。その反面、変動条件の次元数が多いため、変動条件の時系列データを全結合ニューラルネットワークのモデルに機械学習させた場合、オーバフィッティングが発生することがある。
本実施の形態における予測器生成部265は、変動条件と固定条件とを、図6に示した畳み込みニューラルネットワークを含む学習モデルを機械学習させる。複雑なノズル動作を示す6001個の値からなる変動条件と固定条件とを、図6に示した学習モデルに学習させた予測器により予測されるエッチングプロファイルとして所望の結果が得られることを発明者は実験によって発見した。
また、本実施の形態においては、処理条件決定部151が処理条件を探索する際に、エッチングプロファイルが異なるものに対応する処理条件が探索されるので、複数の異なるエッチングプロファイルに対応する処理条件が選択される。このため、処理条件決定部151は、複数の処理条件のうちから目標となるエッチングプロファイルが予測される処理条件を効率的に探索することができる。
なお、サンプリング間隔を0.01秒とする例を説明したが、サンプリング間隔はこれに限定されない。これより長いサンプリング間隔としてもよいし、これより短いサンプリング間隔としてもよい。例えば、サンプリング間隔は0.1秒としてもよいし、0.005秒としてもよい。
5.他の実施の形態
(1)上述した実施の形態においては、学習装置200は、学習用データに基づいて、予測器を生成する。学習装置200は、予測器を追加学習するようにしてもよい。学習装置200は、予測器が生成された後に、基板処理装置300により処理された基板Wの処理の前後それぞれにおける被膜の膜厚特性および処理条件を取得する。そして、学習装置200は、処理前後それぞれにおける被膜の膜厚特性および処理条件から学習用データを生成し、予測器を機械学習させることにより、予測器を追加学習する。追加学習によって、予測器を構成するニューラルネットワークの構成は変更されないが、パラメータが調整される。
基板処理装置300が実際に基板Wを処理した結果、得られる情報を用いて、予測器を機械学習させるので、予測器の精度を向上させることができる。また、予測器を生成するために用いられる学習用データの数をできるだけ少なくできる。
図9は、追加学習処理の流れの一例を示すフローチャートである。追加学習処理は、学習装置200が備えるCPU201がRAM202に格納された追加学習プログラムを実行することにより、CPU201により実行される処理である。追加学習プログラムは、学習プログラムの一部である。
図9を参照して、学習装置200が備えるCPU201は、生産時データを取得し(ステップS31)、処理をステップS32に進める。生産時データは、予測器が生成された後に、基板処理装置300が基板Wを処理する際の処理条件、処理の前後それぞれの被膜の膜厚特性を含む。CPU201は、入出力I/F107を制御して、基板処理装置300から生産時データを取得する。生産時データは、CD-ROM209等の記録媒体に記録された実験データを記憶装置104で読み取ることにより取得されてもよい。
ステップS32においては、変動条件と、生産時データの処理条件に含まれる固定条件と、エッチングプロファイルと、が学習用データに設定される。エッチングプロファイルは、生産時データに含まれる処理前の被膜の膜厚特性と、生産時データに含まれる処理後の被膜の膜厚特性との差分である。変動条件と処理条件に含まれる固定条件とが入力データに設定される。エッチングプロファイルが正解データに設定される。
次のステップS33においては、CPU201は、予測器を追加学習し、処理をステップS34に進める。入力データを予測器に入力し、予測器の出力と正解データとの差が小さくなるようにフィルタおよびパラメータを決定する。これにより、予測器のフィルタおよびパラメータがさらに調整される。
ステップS34においては、調整が完了したか否かが判断される。評価用の学習用データで予測器の性能が評価される。評価結果が予め定められた追加学習用評価基準を満たす場合に調整完了と判断される。追加学習用評価基準は、予測器が生成される場合に用いられた評価基準よりも高い基準である。評価結果が追加学習用評価基準を満たさなければ(ステップS34でNO)、処理はステップS31に戻るが、評価結果が追加学習用評価基準を満たすならば(ステップS34でYES)、処理は終了する。
(2)学習装置200は、情報処理装置100により決定された処理条件およびその処理条件から予測器により推測されるエッチングプロファイルを含む蒸留用データを用いて、新たな学習モデルを機械学習させた蒸留モデルを生成してもよい。これにより、新たな学習モデルを学習させるためのデータを準備するのが容易になる。
(3)本実施の形態において、予測器を生成するために用いる学習用データにおいて、入力データが変動条件と固定条件と、を含む。本発明は、これに限定されない。入力データは変動条件のみを含み、固定条件を含まなくてもよい。
(4)本実施の形態において、変動条件の一例としてノズル311と基板Wとの相対位置を示したが、本発明は、これに限定されない。エッチング液の温度、エッチング液の濃度、エッチング液の流量および基板Wの回転数の少なくとも1つが、時間の経過に伴って変動する場合は、それらを変動条件としてもよい。また、変動条件は、1種類に限らず、複数を含み合わせてもよい。
図10は、他の実施の形態に係る学習モデルを説明するための第1の図である。ここでは、ノズルから吐出されるエッチング液の流量が時間の経過に伴って変動する場合を例に説明する。この場合、変動条件は、時間の経過に伴って変動するエッチング液の流量を含む。この場合、図10に示す学習モデルが用いられる。図10に示す学習モデルが、図6に示した学習モデルと異なる点は、第1畳み込みニューラルネットワークCNN1に入力される変動条件が、時間の経過に伴って変動するノズルの基板に対する相対位置を示す位置条件と、時間の経過に伴って変動するエッチング液の流量を示す流量条件と、を含む点である。このため、第1畳み込みニューラルネットワークCNN1は、2チャンネルの畳み込み処理を行う。
この場合、位置条件と流量条件それぞれは、同じ時刻におけるノズルの基板に対する相対位置と、エッチング液の流量とを示す。このため、位置条件と流量条件とを学習させる際に、位置条件と流量条件とを時間情報を保持しながら学習させることができる。また、単一の第1畳み込みニューラルネットワークCNN1を用いるので、学習パラメータの数を抑えることができ、オーバーフィッティングを抑制することができる。
また、学習モデルにおいては、位置条件と流量条件とを別の畳み込みニューラルネットワークで処理してもよい。図11は、他の実施の形態に係る学習モデルを説明するための第2の図である。図11を参照して、ノズル条件を処理する第1畳み込みニューラルネットワークCNN1と流量条件を処理する第3畳み込みニューラルネットワークCNN3が、全結合ニューラルネットワークNNの入力側に設けられる。
(5)上記実施の形態において、学習モデルは、第1畳み込みニューラルネットワークCNN1、全結合ニューラルネットワークNNおよび第2畳み込みニューラルネットワークCNN2を含むが本発明はこれに限定されない。例えば、予測器において、全結合ニューラルネットワークNNおよび第2畳み込みニューラルネットワークCNN2のいずれか一方または両方が設けられなくてもよい。
(6)情報処理装置100および学習装置200を、基板処理装置300と別体とする場合を例に説明したが、本発明はこれに限定されない。基板処理装置300に情報処理装置100が組み込まれていてもよい。さらに、基板処理装置300に、情報処理装置100および学習装置200が組み込まれていてもよい。また、情報処理装置100と学習装置200とは別体の装置としたが、それらは一体の装置として構成されてもよい。
6.実施の形態における効果
上記実施の形態の学習装置200においては、変動条件が時間の経過に伴って変動する値なので、第1畳み込みニューラルネットワークCNN1を用いることにより、時間の要素を考慮した特徴を抽出することができる。また、第1畳み込みニューラルネットワークCNN1に学習させることにより、学習パラメータの数を抑えることができるので、学習モデルの汎化性能を向上させることができる。
また、処理量は、基板の径方向に異なる複数の位置それぞれに定められるので、処理量を第2畳み込みニューラルネットワークCNN2に学習させることにより、基板の径方向の位置の要素を考慮した特徴が抽出される。また、学習パラメータの数を抑えることができ、学習モデルの汎化性能を向上させることができる。
また、第1畳み込みニューラルネットワークCNN1と第2畳み込みニューラルネットワークCNN2との間に全結合ニューラルネットワークNNが設けられる。この場合、第1畳み込みニューラルネットワークCNN1の出力の数と第2畳み込みニューラルネットワークCNN2の入力の数とを全結合ニューラルネットワークNNにより調整することが可能になる。また、第1畳み込みニューラルネットワークCNN1の出力の数と第2畳み込みニューラルネットワークCNN2の入力の数とを全結合ニューラルネットワークNNにより調整できるため、第1畳み込みニューラルネットワークCNN1の出力の数と第2畳み込みニューラルネットワークCNN2の入力の数とを合わせなくても、良好に機械学習を進めることができる。さらに、第1畳み込みニューラルネットワークCNN1の出力の数と第2畳み込みニューラルネットワークCNN2の入力の数とを合わせなくてもよいため、より次元数の多い学習用データを機械学習することができる。このため、より次元数の多い変動条件を機械学習することができる。また、より次元数の多い固定条件を機械学習することができ、基板処理装置を駆動するための処理条件に含まれる条件の種類をより多くして機械学習することができる。
さらに、第1畳み込みニューラルネットワークCNN1内において、上層から下層に向かってフィルタ数が多くなるので、変動条件の特徴を多く抽出することが可能になる。また、第2畳み込みニューラルネットワークCNN2内において、上層から下層に向かってフィルタ数が少なくなるので、複数の処理量それぞれの位置を考慮した特徴を多く抽出することが可能になる。その結果、学習装置200の汎化性能を向上させることが可能になる。
また、学習モデルは、第1畳み込みニューラルネットワークCNN1を含むので、変動条件のデータ数が多い場合であっても、汎化性能を向上させた学習モデルを生成することができる。
7.請求項の各構成要素と実施の形態の各部との対応関係
基板Wが基板の一例であり、エッチング液が処理液の一例であり、基板処理装置300が基板処理装置の一例であり、実験データ取得部261が実験データ取得部の一例であり、予測器が学習モデルの一例であり、予測器生成部265がモデル生成部の一例である。また、情報処理装置100が情報処理装置の一例であり、変動条件生成部251が変動条件生成部の一例であり、ノズル311が基板に処理液を供給するノズルの一例であり、ノズル移動機構301が移動部の一例であり、予測部159,評価部161および処理条件決定部151が処理条件決定部の一例である。
8.実施の形態の総括
(第1項)本発明の一態様に係る学習装置は、
被膜が形成された基板に処理液を供給することにより前記被膜の処理をする基板処理装置を時間の経過に伴って変動する変動条件を含む処理条件で駆動して前記被膜の処理を行った後に、前記被膜の処理の前後の膜厚の差を示す第一処理量を取得する実験データ取得部と、
前記変動条件と前記処理条件に対応する前記第一処理量とを含む学習用データを機械学習して前記基板処理装置により前記被膜の処理をされる前の前記基板に形成された前記被膜について前記被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを生成するモデル生成部と、を備え、
前記学習モデルは、第1畳み込みニューラルネットワークを含む。
第1項に記載の学習装置によれば、変動条件が時間の経過に伴って変動する値であるので、畳み込みニューラルネットワークを用いることにより、時間の要素を考慮した特徴を抽出することができる。また、畳み込みニューラルネットワークを用いることにより、学習パラメータの数を抑えることができるので、学習モデルの汎化性能を向上させることができる。その結果、基板を処理するために時間の経過に伴って変化する条件を機械学習させるのに適した学習装置を提供することが可能になる。
(第2項)第1項に記載の学習装置において、
前記第一処理量と前記第二処理量とは、基板の径方向に異なる複数の位置それぞれにおける、前記被膜の処理の前後の膜厚の差であり、
前記学習モデルは、前記第一処理量または前記第二処理量を出力する第2畳み込みニューラルネットワークをさらに含んでもよい。
第2項に記載の学習装置によれば、第一および第二処理量は、基板の径方向に異なる複数の位置それぞれに定められるので、第一または第二処理量を畳み込みニューラルネットワークに学習させることにより、基板の径方向の位置の要素を考慮した特徴が抽出される。また、学習パラメータの数を抑えることができ、学習モデルの汎化性能を向上させることができる。
(第3項)第2項に記載の学習装置において、
前記学習モデルは、前記第1畳み込みニューラルネットワークの出力と前記処理条件のうち前記変動条件以外の固定条件が入力される全結合ニューラルネットワークを、さらに含み、
前記第2畳み込みニューラルネットワークは、前記全結合ニューラルネットワークの出力が入力されてもよい。
第3項に記載の学習装置によれば、第1畳み込みニューラルネットワークと第2畳み込みニューラルネットワークとの間に全結合ニューラルネットワークが設けられる。この場合、第1畳み込みニューラルネットワークから出力される特徴の数と第2畳み込みニューラルネットワークに入力される特徴の数とを全結合ニューラルネットワークにより調整することが可能になる。
(第4項)第2項または第3項に記載の学習装置において、
前記第1畳み込みニューラルネットワークが有する複数層でそれぞれ用いられるフィルター数は、下層で用いられるフィルター数がその上層で用いられるフィルター数の倍であり、
前記第2畳み込みニューラルネットワークが有する複数層でそれぞれ用いられるフィルター数は、下層で用いられるフィルター数がその上層で用いられるフィルター数の1/2倍であってもよい。
第4項に記載の学習装置によれば、第1畳み込みニューラルネットワーク内において、上層から下層に向かってフィルタ数が多くなるので、変動条件の特徴を多く抽出することが可能になる。また、第2畳み込みニューラルネットワーク内において、上層から下層に向かってフィルタ数が少なくなるので、複数の処理量の特徴を多く抽出することが可能になる。その結果、学習装置の精度を向上させることが可能になる。
(第5項) 第1項~第4項のいずれか一項に記載の学習装置において、
前記基板処理装置は、基板に処理液を供給するノズルを移動させることにより基板に前記処理液を供給し、
前記変動条件は、時間の経過に伴って変動する前記ノズルの基板に対する相対位置を示すノズル移動条件を含んでもよい。
第5項に記載の学習装置によれば、ノズル移動条件が第1畳み込みニューラルネットワークに入力される。このため、ノズル移動条件のデータ数が多い場合においても、汎化性能を向上させた学習モデルを生成することができる。
(第6項) 第5項に記載の学習装置において、
前記変動条件は、時間の経過に伴って変化する前記ノズルから吐出される処理液の流量を示す吐出流量条件をさらに含んでもよい。
第6項に記載の学習装置によれば、吐出流量条件のデータ数が多い場合においても、汎化性能を向上させた学習モデルを生成することができる。
(第7項) 本発明の他の態様に係る情報処理装置は、
基板処理装置を管理する情報処理装置であって、
前記基板処理装置は、時間の経過に伴って変動する変動条件を含む処理条件で、被膜が形成された基板に処理液を供給することにより、前記被膜の処理をし、
前記基板処理装置により前記被膜の処理をされる前の前記基板に形成された前記被膜について前記被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを用いて、前記基板処理装置を駆動するための処理条件を決定する処理条件決定部と、を備え、
前記学習モデルは、第1畳み込みニューラルネットワークを含み、前記基板処理装置が前記被膜の処理をした前記処理条件に含まれる前記変動条件と前記基板処理装置により前記被膜の処理をされた前記基板に形成された前記被膜の処理の前後の膜厚の差を示す第一処理量とを含む学習用データを機械学習した推論モデルであり、
前記処理条件決定部は、仮の変動条件を前記学習モデルに与えて前記学習モデルにより推測される前記第二処理量が許容条件を満たす場合に前記仮の変動条件を含む処理条件を、前記基板処理装置を駆動するための処理条件に決定する。
第7項に記載の情報処理装置によれば、時間の経過に伴って変動する仮の変動条件を学習モデルに与えて学習モデルにより推測される処理量が許容条件を満たす場合に、仮の変動条件を含む処理条件が基板処理装置を駆動するための処理条件に決定される。このため、許容条件を満たす処理量に対して複数の仮の変動条件を決定することができる。その結果、基板を処理する複雑なプロセスの処理結果に対して複数の処理条件を提示することが可能になる。
(第8項)基板処理装置は、第7項に記載の情報処理装置を備えてもよい。
第8項に記載の基板処理装置によれば、基板を処理する複雑なプロセスの処理結果に対して複数の処理条件を提示することが可能になる。
(第9項)本発明の他の態様に係る基板処理システムは、
基板処理装置を管理する基板処理システムであって、
学習装置と情報処理装置とを備え、
前記基板処理装置は、時間の経過に伴って変動する変動条件を含む処理条件で、被膜が形成された基板に処理液を供給することにより、前記被膜の処理をし、
前記学習装置は、前記基板処理装置を前記処理条件で駆動して前記基板に形成された前記被膜の処理を行った後に、前記被膜の処理の前後の膜厚の差を示す第一処理量を取得する実験データ取得部と、
前記変動条件と前記処理条件に対応する前記第一処理量とを含む学習用データを機械学習して前記基板処理装置により前記被膜の処理をされる前の前記基板に形成された前記被膜について前記被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを生成するモデル生成部と、を備え、
前記学習モデルは、第1畳み込みニューラルネットワークを含み、
前記情報処理装置は、前記学習装置により生成された前記学習モデルを用いて、前記基板処理装置を駆動するための処理条件を決定する処理条件決定部と、を備え、
前記処理条件決定部は、前記学習装置により生成された前記学習モデルに仮の変動条件を与えて前記学習モデルにより推測される前記第二処理量が許容条件を満たす場合に前記仮の変動条件を含む処理条件を、前記基板処理装置を駆動するための処理条件に決定する。
第9項に記載の基板処理システムによれば、基板を処理するために時間の経過に伴って変化する条件を機械学習させるのに適し、かつ、基板を処理する複雑なプロセスの処理結果に対して複数の処理条件を提示することが可能になる。
(第10項)本発明の他の態様に係る学習方法は、
被膜が形成された基板に処理液を供給することにより前記被膜の処理をする基板処理装置を時間の経過に伴って変動する変動条件を含む処理条件で駆動して前記被膜の処理を行った後に、前記被膜の処理の前後の膜厚の差を示す第一処理量を取得する処理と、
前記変動条件と前記処理条件に対応する前記第一処理量とを含む学習用データを機械学習して前記基板処理装置により前記被膜の処理をされる前の前記基板に形成された前記被膜について前記被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを生成する処理と、をコンピューターに実行させ、
前記学習モデルは、第1畳み込みニューラルネットワークを含む。
第10項に記載の学習方法によれば、学習モデルが畳み込みニューラルネットワークを含む。このため、基板を処理するために時間の経過に伴って変化する条件を機械学習させるのに適した学習方法を提供することができる。
(第11項)本発明の他の態様に係る処理条件決定方法は、
基板処理装置を管理するコンピューターで実行される処理条件決定方法であって、
前記基板処理装置は、時間の経過に伴って変動する変動条件を含む処理条件で、被膜が形成された基板に処理液を供給することにより、前記被膜の処理をし、
前記基板処理装置により前記被膜の処理をされる前の前記基板に形成された前記被膜について前記被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを用いて、前記基板処理装置を駆動するための処理条件を決定する処理と、を含み、
前記学習モデルは、第1畳み込みニューラルネットワークを含み、前記基板処理装置が前記被膜の処理をした前記処理条件に含まれる前記変動条件と前記基板処理装置により前記被膜の処理をされた前記基板に形成された前記被膜の処理の前後の膜厚の差を示す第一処理量とを含む学習用データを機械学習した推論モデルであり、
前記処理条件を決定する処理は、仮の変動条件を前記学習モデルに与えて前記学習モデルにより推測される前記第二処理量が許容条件を満たす場合に前記仮の変動条件を含む処理条件を、前記基板処理装置を駆動するための処理条件に決定する処理を含む。
第11項に記載の基板条件決定方法によれば、基板を処理する複雑なプロセスの処理結果に対して複数の処理条件を提示することが可能な処理条件決定方法を提供することができる。
1…基板処理システム,100…情報処理装置,151…処理条件決定部,155…予測器受信部,159…予測部,161…評価部,163…処理条件送信部,200…学習装置,251…変動条件生成部,261…実験データ取得部,265…予測器生成部,267…予測器送信部,300…基板処理装置,301…ノズル移動機構,303…ノズルモータ,305…ノズルアーム,311…ノズル,AX1…第1回転軸,AX2…第2回転軸,CNN1…第1畳み込みニューラルネットワーク,CNN2…第2畳み込みニューラルネットワーク,CNN3…第3畳み込みニューラルネットワーク,L1~L6…第1層~第6層,NN…全結合ニューラルネットワーク,SC…スピンチャック,SM…スピンモータ,W…基板,WU…基板処理ユニット

Claims (11)

  1. 被膜が形成された基板に処理液を供給することにより前記被膜の処理をする基板処理装置を時間の経過に伴って変動する変動条件を含む処理条件で駆動して前記被膜の処理を行った後に、前記被膜の処理の前後の膜厚の差を示す第一処理量を取得する実験データ取得部と、
    前記変動条件と前記処理条件に対応する前記第一処理量とを含む学習用データを機械学習して前記基板処理装置により前記被膜の処理をされる前の前記基板に形成された前記被膜について前記被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを生成するモデル生成部と、を備え、
    前記学習モデルは、第1畳み込みニューラルネットワークを含む学習装置。
  2. 前記第一処理量と前記第二処理量とは、基板の径方向に異なる複数の位置それぞれにおける、前記被膜の処理の前後の膜厚の差であり、
    前記学習モデルは、前記第一処理量または前記第二処理量を出力する第2畳み込みニューラルネットワークをさらに含む、請求項1に記載の学習装置。
  3. 前記学習モデルは、前記第1畳み込みニューラルネットワークの出力と前記処理条件のうち前記変動条件以外の固定条件が入力される全結合ニューラルネットワークを、さらに含み、
    前記第2畳み込みニューラルネットワークは、前記全結合ニューラルネットワークの出力が入力される、請求項2に記載の学習装置。
  4. 前記第1畳み込みニューラルネットワークが有する複数層でそれぞれ用いられるフィルター数は、下層で用いられるフィルター数がその上層で用いられるフィルター数の倍であり、
    前記第2畳み込みニューラルネットワークが有する複数層でそれぞれ用いられるフィルター数は、下層で用いられるフィルター数がその上層で用いられるフィルター数の1/2倍である、請求項2に記載の学習装置。
  5. 前記基板処理装置は、基板に処理液を供給するノズルを移動させることにより基板に前記処理液を供給し、
    前記変動条件は、時間の経過に伴って変動する前記ノズルの基板に対する相対位置を示すノズル移動条件を含む、請求項1~4のいずれか一項に記載の学習装置。
  6. 前記変動条件は、時間の経過に伴って変化する前記ノズルから吐出される処理液の流量を示す吐出流量条件をさらに含む、請求項5に記載の学習装置。
  7. 基板処理装置を管理する情報処理装置であって、
    前記基板処理装置は、時間の経過に伴って変動する変動条件を含む処理条件で、被膜が形成された基板に処理液を供給することにより、前記被膜の処理をし、
    前記基板処理装置により前記被膜の処理をされる前の前記基板に形成された前記被膜について前記被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを用いて、前記基板処理装置を駆動するための処理条件を決定する処理条件決定部と、を備え、
    前記学習モデルは、第1畳み込みニューラルネットワークを含み、前記基板処理装置が前記被膜の処理をした前記処理条件に含まれる前記変動条件と前記基板処理装置により前記被膜の処理をされた前記基板に形成された前記被膜の処理の前後の膜厚の差を示す第一処理量とを含む学習用データを機械学習した推論モデルであり、
    前記処理条件決定部は、仮の変動条件を前記学習モデルに与えて前記学習モデルにより推測される前記第二処理量が許容条件を満たす場合に前記仮の変動条件を含む処理条件を、前記基板処理装置を駆動するための処理条件に決定する、情報処理装置。
  8. 請求項7に記載の情報処理装置を備えた基板処理装置。
  9. 基板処理装置を管理する基板処理システムであって、
    学習装置と情報処理装置とを備え、
    前記基板処理装置は、時間の経過に伴って変動する変動条件を含む処理条件で、被膜が形成された基板に処理液を供給することにより、前記被膜の処理をし、
    前記学習装置は、前記基板処理装置を前記処理条件で駆動して前記基板に形成された前記被膜の処理を行った後に、前記被膜の処理の前後の膜厚の差を示す第一処理量を取得する実験データ取得部と、
    前記変動条件と前記処理条件に対応する前記第一処理量とを含む学習用データを機械学習して前記基板処理装置により前記被膜の処理をされる前の前記基板に形成された前記被膜について前記被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを生成するモデル生成部と、を備え、
    前記学習モデルは、第1畳み込みニューラルネットワークを含み、
    前記情報処理装置は、前記学習装置により生成された前記学習モデルを用いて、前記基板処理装置を駆動するための処理条件を決定する処理条件決定部と、を備え、
    前記処理条件決定部は、前記学習装置により生成された前記学習モデルに仮の変動条件を与えて前記学習モデルにより推測される前記第二処理量が許容条件を満たす場合に前記仮の変動条件を含む処理条件を、前記基板処理装置を駆動するための処理条件に決定する、基板処理システム。
  10. 被膜が形成された基板に処理液を供給することにより前記被膜の処理をする基板処理装置を時間の経過に伴って変動する変動条件を含む処理条件で駆動して前記被膜の処理を行った後に、前記被膜の処理の前後の膜厚の差を示す第一処理量を取得する処理と、
    前記変動条件と前記処理条件に対応する前記第一処理量とを含む学習用データを機械学習して前記基板処理装置により前記被膜の処理をされる前の前記基板に形成された前記被膜について前記被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを生成する処理と、をコンピューターに実行させ、
    前記学習モデルは、第1畳み込みニューラルネットワークを含む、学習方法。
  11. 基板処理装置を管理するコンピューターで実行される処理条件決定方法であって、
    前記基板処理装置は、時間の経過に伴って変動する変動条件を含む処理条件で、被膜が形成された基板に処理液を供給することにより、前記被膜の処理をし、
    前記基板処理装置により前記被膜の処理をされる前の前記基板に形成された前記被膜について前記被膜の処理の前後の膜厚の差を示す第二処理量を推測する学習モデルを用いて、前記基板処理装置を駆動するための処理条件を決定する処理と、を含み、
    前記学習モデルは、第1畳み込みニューラルネットワークを含み、前記基板処理装置が前記被膜の処理をした前記処理条件に含まれる前記変動条件と前記基板処理装置により前記被膜の処理をされた前記基板に形成された前記被膜の処理の前後の膜厚の差を示す第一処理量とを含む学習用データを機械学習した推論モデルであり、
    前記処理条件を決定する処理は、仮の変動条件を前記学習モデルに与えて前記学習モデルにより推測される前記第二処理量が許容条件を満たす場合に前記仮の変動条件を含む処理条件を、前記基板処理装置を駆動するための処理条件に決定する処理を含む、処理条件決定方法。
JP2022153151A 2022-09-26 2022-09-26 学習装置、情報処理装置、基板処理装置、基板処理システム、学習方法および処理条件決定方法 Pending JP2024047495A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022153151A JP2024047495A (ja) 2022-09-26 2022-09-26 学習装置、情報処理装置、基板処理装置、基板処理システム、学習方法および処理条件決定方法
PCT/JP2023/028655 WO2024070233A1 (ja) 2022-09-26 2023-08-04 学習装置、情報処理装置、基板処理装置、基板処理システム、学習方法および処理条件決定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022153151A JP2024047495A (ja) 2022-09-26 2022-09-26 学習装置、情報処理装置、基板処理装置、基板処理システム、学習方法および処理条件決定方法

Publications (1)

Publication Number Publication Date
JP2024047495A true JP2024047495A (ja) 2024-04-05

Family

ID=90477132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022153151A Pending JP2024047495A (ja) 2022-09-26 2022-09-26 学習装置、情報処理装置、基板処理装置、基板処理システム、学習方法および処理条件決定方法

Country Status (2)

Country Link
JP (1) JP2024047495A (ja)
WO (1) WO2024070233A1 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640037A (zh) * 2018-09-03 2021-04-09 首选网络株式会社 学习装置、推理装置、学习模型的生成方法及推理方法
KR20210052559A (ko) * 2018-09-24 2021-05-10 어플라이드 머티어리얼스, 인코포레이티드 Cmp 프로세스 제어 알고리즘에 대한 입력으로서의 기계 시각
CN113574561A (zh) * 2019-03-15 2021-10-29 东京毅力科创株式会社 利用机器学习的半导体制造数据采集仪器的提高的分辨率
JP2021108367A (ja) * 2019-12-27 2021-07-29 株式会社Screenホールディングス 基板処理装置、基板処理方法、基板処理システム、及び学習用データの生成方法
JP2021152762A (ja) * 2020-03-24 2021-09-30 株式会社Screenホールディングス 学習済みモデル生成方法、学習済みモデル、異常要因推定装置、基板処理装置、異常要因推定方法、学習方法、学習装置、及び、学習データ作成方法
US11250199B1 (en) * 2020-09-16 2022-02-15 Center For Deep Learning In Electronics Manufacturing, Inc. Methods and systems for generating shape data for electronic designs

Also Published As

Publication number Publication date
WO2024070233A1 (ja) 2024-04-04

Similar Documents

Publication Publication Date Title
JP4472637B2 (ja) 電気的製造制御に対する確率制約最適化
CN113874993A (zh) 用于衬底处理系统的基于模型的调度
US11836429B2 (en) Determination of recipes for manufacturing semiconductor devices
WO2003025685A1 (en) Scalable, hierarchical control for complex processes
CN113544599A (zh) 执行过程并优化在该过程中使用的控制信号的方法
Feng et al. An online virtual metrology model with sample selection for the tracking of dynamic manufacturing processes with slow drift
Yu et al. Run-to-run control of chemical mechanical polishing process based on deep reinforcement learning
WO2021105313A1 (en) Parallelised training of machine learning models
Kim et al. A run-to-run controller for a chemical mechanical planarization process using least squares generative adversarial networks
WO2024070233A1 (ja) 学習装置、情報処理装置、基板処理装置、基板処理システム、学習方法および処理条件決定方法
WO2024070390A1 (ja) 学習装置、情報処理装置、基板処理装置、基板処理システム、学習方法および処理条件決定方法
TW202340884A (zh) 預防保養後的腔室條件監控及模擬
Huang et al. Cem-gd: Cross-entropy method with gradient descent planner for model-based reinforcement learning
US20230107813A1 (en) Time constraint management at a manufacturing system
WO2024070055A1 (ja) 学習装置、情報処理装置、基板処理装置、基板処理システム、学習方法および処理条件決定方法
TW202414282A (zh) 學習裝置、資訊處理裝置、基板處理裝置、基板處理系統、學習方法及處理條件決定方法
WO2023181525A1 (ja) 学習装置、情報処理装置、基板処理装置、基板処理システム、学習方法および処理条件決定方法
CN113574474A (zh) 使用因果模型抛光半导体晶圆
EP4075211B1 (en) Prediction method and system for multivariate time series data in manufacturing systems
US20230260767A1 (en) Process control knob estimation
US20230315953A1 (en) Using deep reinforcement learning for time constraint management at a manufacturing system
KR102279045B1 (ko) 공정 제어정보 생성 장치, 방법 및 이를 포함하는 공정 제어장치
TW202412946A (zh) 學習裝置、資訊處理裝置、基板處理裝置、基板處理系統、學習方法及處理條件決定方法
TW202414132A (zh) 用於防止機器學習模型性能的波動的方法和機制
Ganguly et al. Efficient Off-Policy Algorithms for Structured Markov Decision Processes