JP2024044860A - lead acid battery - Google Patents

lead acid battery Download PDF

Info

Publication number
JP2024044860A
JP2024044860A JP2022150647A JP2022150647A JP2024044860A JP 2024044860 A JP2024044860 A JP 2024044860A JP 2022150647 A JP2022150647 A JP 2022150647A JP 2022150647 A JP2022150647 A JP 2022150647A JP 2024044860 A JP2024044860 A JP 2024044860A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
lead
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022150647A
Other languages
Japanese (ja)
Inventor
秀隆 関戸
格 瀬和
真輔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energywith Co Ltd
Original Assignee
Energywith Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energywith Co Ltd filed Critical Energywith Co Ltd
Priority to JP2022150647A priority Critical patent/JP2024044860A/en
Publication of JP2024044860A publication Critical patent/JP2024044860A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】自動車の駐車中の補機用電池の使われ方を想定した寿命試験において、優れた寿命性能を示す鉛蓄電池を提供すること。【解決手段】負極活物質13を含む負極9と、正極活物質15を含む正極10と、を備え、正極活物質15の全細孔容積が0.100g/ml以下であり、負極活物質13の質量に対する正極活物質15の質量の比が1.50以上である、鉛蓄電池。【選択図】図2[Problem] To provide a lead-acid battery that exhibits excellent life performance in a life test simulating the use of an auxiliary battery while an automobile is parked. [Solution] A lead-acid battery comprising a negative electrode 9 containing a negative electrode active material 13 and a positive electrode 10 containing a positive electrode active material 15, the total pore volume of the positive electrode active material 15 being 0.100 g/ml or less, and the ratio of the mass of the positive electrode active material 15 to the mass of the negative electrode active material 13 being 1.50 or more. [Selected Figure] Figure 2

Description

本発明は、鉛蓄電池に関するものである。 The present invention relates to lead-acid batteries.

自動車のエンジン(内燃機関)始動用のバッテリーとして鉛蓄電池が使用されている。これまで、エンジン始動用の鉛蓄電池の寿命性能を向上させるために様々な取り組みが行われている。例えば特許文献1には、負極材にケッチェンブラックを含有させ、負極材の密度を3g/cm以上とすることでエンジン始動用の鉛蓄電池の寿命性能を向上させる技術が開示されている。 Lead-acid batteries are used as batteries for starting automobile engines (internal combustion engines). Various efforts have been made to improve the life performance of lead-acid batteries for starting engines. For example, Patent Document 1 discloses a technology for improving the life performance of lead-acid batteries for starting engines by including Ketjen Black in the negative electrode material and setting the density of the negative electrode material to 3 g/ cm3 or more.

特開2019-50229号公報JP 2019-50229 A

近年では、ハイブリッド車、電気自動車等の電動車(xEV)が普及してきていること、及び、ドアを自動で開閉する機能、カーナビ電源を自動で起動する機能等、様々な機能が付与された自動車が増えてきていることに伴って、駐車中の機器への電力供給量が増えてきており、上記電力供給を担う補機用電池の重要性が高まっている。 In recent years, electric vehicles (xEV) such as hybrid cars and electric cars have become popular, and cars are equipped with various functions such as the ability to automatically open and close doors and the ability to automatically start the car navigation system. As the number of vehicles is increasing, the amount of power supplied to parked devices is increasing, and the importance of auxiliary equipment batteries, which are responsible for the power supply, is increasing.

現状では、補機用電池としてエンジン始動用の鉛蓄電池が転用されているが、エンジン始動用の鉛蓄電池は、駐車中の電池の使われ方を想定した寿命試験において必ずしも充分な寿命性能を示さない。 Currently, lead-acid batteries used for starting engines are being repurposed as auxiliary batteries, but lead-acid batteries used for starting engines do not necessarily demonstrate sufficient life performance in life tests that simulate how batteries are used while parked.

そこで、本発明の一側面は、自動車の駐車中の補機用電池の使われ方を想定した寿命試験において、優れた寿命性能を示す鉛蓄電池を提供することを目的とする。 Therefore, one aspect of the present invention aims to provide a lead-acid battery that exhibits excellent life performance in a life test that simulates how an auxiliary battery is used while a vehicle is parked.

本発明のいくつかの側面は、下記[1]~[6]を提供する。 Some aspects of the present invention provide the following [1] to [6].

[1]
負極活物質を含む負極と、正極活物質を含む正極と、を備え、
前記正極活物質の全細孔容積が0.100g/ml以下であり、
前記負極活物質の質量に対する前記正極活物質の質量の比が1.50以上である、鉛蓄電池。
[1]
comprising a negative electrode containing a negative electrode active material and a positive electrode containing a positive electrode active material,
The total pore volume of the positive electrode active material is 0.100 g/ml or less,
A lead-acid battery, wherein the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material is 1.50 or more.

[2]
前記正極活物質の多孔度が45.0体積%以下である、[1]に記載の鉛蓄電池。
[2]
The lead-acid battery according to [1], wherein the positive electrode active material has a porosity of 45.0% by volume or less.

[3]
前記負極活物質の質量に対する前記正極活物質の質量の比が1.60以上である、[1]又は[2]に記載の鉛蓄電池。
[3]
The lead acid battery according to [1] or [2], wherein a ratio of the mass of the positive electrode active material to the mass of the negative electrode active material is 1.60 or more.

[4]
前記正極活物質の密度が4.0g/cm以上である、[1]~[3]のいずれかに記載の鉛蓄電池。
[4]
The lead-acid battery according to any one of [1] to [3], wherein the positive electrode active material has a density of 4.0 g/cm 3 or more.

[5]
内燃機関を備えない自動車の駐車中に必要となる電力の供給に用いられる、[1]~[4]のいずれかに記載の鉛蓄電池。
[5]
The lead-acid battery according to any one of [1] to [4], which is used to supply electric power required while parking a car without an internal combustion engine.

[6]
内燃機関と、前記内燃機関を始動するための電力を供給する蓄電池と、駐車中に必要となる電力を供給する鉛蓄電池と、を備える自動車の、前記鉛蓄電池に用いられる、[1]~[4]のいずれかに記載の鉛蓄電池。
[6]
Used in the lead-acid battery of a motor vehicle including an internal combustion engine, a storage battery that supplies electric power for starting the internal combustion engine, and a lead-acid battery that supplies electric power required during parking, [1] to [ 4].

本発明の一側面によれば、自動車の駐車中の補機用電池の使われ方を想定した寿命試験において、優れた寿命性能を示す鉛蓄電池を提供することができる。 According to one aspect of the present invention, it is possible to provide a lead-acid battery that exhibits excellent life performance in a life test assuming how an auxiliary battery is used while a car is parked.

一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。1 is a perspective view showing an overall configuration and an internal structure of a lead-acid battery according to one embodiment; 図1に示した鉛蓄電池の電極群を示す斜視図である。FIG. 2 is a perspective view showing an electrode group of the lead-acid battery shown in FIG. 1. FIG.

本明細書中、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、具体的に明示する場合を除き、「~」の前後に記載される数値の単位は同じである。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例(実験例)に示されている値に置き換えてもよい。また、個別に記載した上限値及び下限値は任意に組み合わせ可能である。 In this specification, a numerical range indicated using "~" indicates a range that includes the numerical values before and after "~" as the minimum and maximum values, respectively. Furthermore, unless specifically stated otherwise, the units of the numerical values before and after "~" are the same. In the numerical ranges described in stages in this specification, the upper or lower limit of a numerical range of a certain stage may be replaced with the upper or lower limit of a numerical range of another stage. Furthermore, in the numerical ranges described in this specification, the upper or lower limit of the numerical range may be replaced with the values shown in the examples (experimental examples). Furthermore, the upper and lower limits described individually can be combined in any way.

<鉛蓄電池>
本発明の一実施形態は、負極活物質を含む負極と、正極活物質を含む正極と、を備え、正極活物質の全細孔容積が0.100g/ml以下であり、負極活物質の質量に対する正極活物質の質量の比(p/n比)が1.50以上である、鉛蓄電池に関する。
<Lead-acid battery>
One embodiment of the present invention relates to a lead-acid battery comprising a negative electrode containing a negative electrode active material and a positive electrode containing a positive electrode active material, in which the positive electrode active material has a total pore volume of 0.100 g/ml or less and a ratio of the mass of the positive electrode active material to the mass of the negative electrode active material (p/n ratio) is 1.50 or more.

上記鉛蓄電池は、自動車の駐車中の補機用電池の使われ方(例えば、ドアを自動で開閉する機能、カーナビ電源を自動で起動する機能等を動作させるために必要となる電力の供給)を想定した寿命試験において、上記構成を備えない鉛蓄電池(例えばエンジン始動用の鉛蓄電池)よりも優れた寿命性能を示す。そのため、上記鉛蓄電池は、自動車の駐車中に必要となる電力の供給(特に補機への電力の供給)に好適に用いられる。ここで、自動車の駐車中の補機用電池の使われ方を想定した寿命試験とは、25℃の温度環境下で、下記(I)を繰り返し行い、放電時の末期電圧が7.2Vとなるまでの総放電量Xで寿命性能を相対評価する寿命試験(以下、「寿命試験A」という。)である。
(I):下記条件(1)で放電を行った後、下記条件(2)で充電を行う。
条件(1):放電電流=25A、放電時間=240秒間
条件(2):充電電圧=14.8V、充電時間=600秒間
The above lead-acid battery is used as an auxiliary battery while the car is parked (for example, to supply the power necessary to operate functions such as automatically opening and closing the door, automatically starting the car navigation system, etc.) In a life test assuming the following, the battery showed superior life performance to a lead acid battery without the above configuration (for example, a lead acid battery for engine starting). Therefore, the lead-acid battery is suitably used for supplying electric power (particularly for supplying electric power to auxiliary equipment) required while the automobile is parked. Here, a lifespan test assuming how an auxiliary battery is used while a car is parked is a life test in which the following (I) is repeated in a temperature environment of 25°C, and the final voltage at the time of discharge is 7.2V. This is a lifespan test (hereinafter referred to as "lifespan test A") in which the lifespan performance is relatively evaluated based on the total discharge amount X until .
(I): After discharging under the following condition (1), charging is performed under the following condition (2).
Condition (1): Discharge current = 25A, discharge time = 240 seconds Condition (2): Charging voltage = 14.8V, charging time = 600 seconds

上記鉛蓄電池が使用される自動車としては、内燃機関を備えない自動車の他、内燃機関と、内燃機関を始動するための電力を供給する蓄電池と、駐車中に必要となる電力を供給する鉛蓄電池とを備える自動車等が挙げられる。このような自動車としては、例えば、ハイブリッド車、電気自動車等の電動自動車が挙げられる。すなわち、上記鉛蓄電池は、電動自動車(特にハイブリッド車及び電気自動車)の補機用電池として好適に用いられる。 Examples of automobiles in which the lead-acid battery can be used include automobiles that do not have an internal combustion engine, as well as automobiles that have an internal combustion engine, a storage battery that supplies power to start the internal combustion engine, and a lead-acid battery that supplies power required while parked. Examples of such automobiles include electric vehicles such as hybrid cars and electric cars. In other words, the lead-acid battery is suitable for use as an auxiliary battery in electric vehicles (particularly hybrid cars and electric cars).

ところで、近年では、OTA(Over The Air)と呼ばれる無線通信によるデータの送受信技術により車載OS(Operating System)のソフトウェアを自動でアップデートする機能を備える自動車も増えてきている。無線通信によるデータの送受信の際には、他の機能を動作させる場合と比較して、一時的に大きな電力が消費される。そのため、無線通信によりデータの送受信を行う車載機器への電力供給(例えばOTA技術による無線通信時の電力供給)を行う場合には、早期寿命に至ることがある。一方、上記鉛蓄電池は、無線通信によりデータの送受信を行う車載機器への電力供給を想定した寿命試験においても、上記構成を備えない鉛蓄電池(例えばエンジン始動用の鉛蓄電池)よりも優れた寿命性能を示す傾向がある。そのため、上記鉛蓄電池は、無線通信によりデータの送受信を行う車載機器への電力供給に好適に用いられる。ここで、無線通信によりデータの送受信を行う車載機器への電力供給を想定した寿命試験とは、25℃の温度環境下で、下記(II)を繰り返し行い、下記条件(3)での放電時の末期電圧が7.2Vとなるまでの総放電量Yで寿命性能を相対評価する寿命試験(以下、「寿命試験B」という。)である。
(II):上記条件(1)での放電と上記条件(2)での充電とをこの順でそれぞれ3回繰り返した後、下記条件(3)での放電と下記条件(4)での充電とをこの順で行う。
条件(3):放電電流=25A、放電時間=600秒間
条件(4):充電電圧=14.8V、充電時間=1500秒間
Incidentally, in recent years, an increasing number of automobiles are equipped with a function to automatically update the software of an in-vehicle OS (Operating System) using a wireless data transmission and reception technology called OTA (Over The Air). When transmitting and receiving data via wireless communication, a large amount of power is temporarily consumed compared to when operating other functions. Therefore, when power is supplied to in-vehicle equipment that transmits and receives data via wireless communication (for example, power is supplied during wireless communication using OTA technology), the service life may be prematurely reached. On the other hand, the above-mentioned lead-acid battery has a lifespan that is superior to that of a lead-acid battery that does not have the above structure (for example, a lead-acid battery for starting an engine), even in a life test assuming power supply to in-vehicle equipment that transmits and receives data via wireless communication. It tends to show performance. Therefore, the lead-acid battery is suitably used to supply power to in-vehicle equipment that transmits and receives data via wireless communication. Here, a lifespan test assuming power supply to in-vehicle equipment that transmits and receives data via wireless communication is a life test in which the following (II) is repeated in a temperature environment of 25°C, and when discharging under the following condition (3). This is a life test (hereinafter referred to as "life test B") in which the life performance is relatively evaluated by the total discharge amount Y until the final voltage of 7.2V.
(II): After repeating discharging under the above condition (1) and charging under the above condition (2) three times in this order, discharge under the following condition (3) and charge under the following condition (4). and in this order.
Condition (3): Discharge current = 25A, discharge time = 600 seconds Condition (4): Charging voltage = 14.8V, charging time = 1500 seconds

以下、図面を適宜参照しながら、一実施形態の鉛蓄電池について詳細に説明する。 Hereinafter, a lead-acid battery according to one embodiment will be described in detail with reference to the drawings as appropriate.

図1は、一実施形態の鉛蓄電池の全体構成及び内部構造を示す斜視図である。図1に示す鉛蓄電池1は液式鉛蓄電池である。図1に示すように、鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、負極端子4と、正極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とが設けられている。 Figure 1 is a perspective view showing the overall configuration and internal structure of a lead-acid battery according to one embodiment. The lead-acid battery 1 shown in Figure 1 is a flooded lead-acid battery. As shown in Figure 1, the lead-acid battery 1 includes a battery case 2 with an open top and a lid 3 that closes the opening of the battery case 2. The battery case 2 and the lid 3 are made of, for example, polypropylene. The lid 3 is provided with a negative terminal 4, a positive terminal 5, and a liquid inlet plug 6 that closes a liquid inlet provided in the lid 3.

電槽2の内部には、電極群(極板群)7と、希硫酸等の電解液とが収容されている。図示しないが、電槽2は、電極群7を収容するためのセル室を複数有しており、各セル室に1つの電極群7が収容されている。複数の電極群7のうち、最も負極端子4に近いセル室に収容された電極群7が負極柱8を介して負極端子4に接続されている。また、図示しないが、複数の電極群7のうち、最も正極端子5に近いセル室に収容された電極群7が正極柱を介して正極端子5に接続されている。電解液は、硫酸に加えて、0.01~0.1mol/L程度のイオン(例えばナトリウムイオン)を含むことがある。 Inside the battery case 2, an electrode group (electrode plate group) 7 and an electrolytic solution such as dilute sulfuric acid are housed. Although not shown, the battery case 2 has a plurality of cell chambers for accommodating electrode groups 7, and one electrode group 7 is accommodated in each cell chamber. Among the plurality of electrode groups 7 , the electrode group 7 accommodated in the cell chamber closest to the negative electrode terminal 4 is connected to the negative electrode terminal 4 via the negative electrode column 8 . Although not shown, among the plurality of electrode groups 7, the electrode group 7 accommodated in the cell chamber closest to the positive electrode terminal 5 is connected to the positive electrode terminal 5 via a positive electrode column. In addition to sulfuric acid, the electrolytic solution may contain about 0.01 to 0.1 mol/L of ions (eg, sodium ions).

図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、板状の負極(負極板)9と、板状の正極(正極板)10と、負極9と正極10との間に配置されたセパレータ11と、を備えている。電極群7は、正極10よりも多くの負極9を有しており、電極群7における負極9の数は8つであり、正極10の数は7つである。負極9は、負極集電体(負極格子体)12と、負極集電体12に保持された負極活物質13と、を含み、正極10は、正極集電体(正極格子体)14と、正極集電体14に保持された正極活物質15と、を含む。 FIG. 2 is a perspective view showing the electrode group 7. As shown in FIG. As shown in FIG. 2, the electrode group 7 includes a plate-shaped negative electrode (negative electrode plate) 9, a plate-shaped positive electrode (positive electrode plate) 10, and a separator 11 disposed between the negative electrode 9 and the positive electrode 10. It is equipped with The electrode group 7 has more negative electrodes 9 than the positive electrodes 10, and the number of negative electrodes 9 in the electrode group 7 is eight, and the number of positive electrodes 10 is seven. The negative electrode 9 includes a negative electrode current collector (negative electrode grid) 12 and a negative electrode active material 13 held by the negative electrode current collector 12, and the positive electrode 10 includes a positive electrode current collector (positive electrode grid) 14, A positive electrode active material 15 held by a positive electrode current collector 14 is included.

電極群7は、複数の負極9と複数の正極10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、負極9及び正極10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。 The electrode group 7 has a structure in which a plurality of negative electrodes 9 and a plurality of positive electrodes 10 are alternately stacked in a direction substantially parallel to the opening surface of the battery case 2 with a separator 11 in between. That is, the negative electrode 9 and the positive electrode 10 are arranged so that their main surfaces extend in a direction perpendicular to the opening surface of the battery case 2.

電極群7において、複数の負極9における各負極集電体12が有する負極耳部12a同士は、負極ストラップ16で集合溶接されている。同様に、複数の正極10における各正極集電体14が有する正極耳部10a同士は、正極ストラップ17で集合溶接されている。図示しないが、複数の電極群7は、負極ストラップ16又は正極ストラップ17により接続されている。また、最も負極端子4に近いセル室に収容された電極群7の負極ストラップ16が負極柱8に接続され、最も正極端子5に近いセル室に収容された電極群7の正極ストラップ17が正極柱に接続されている。 In the electrode group 7, the negative electrode ears 12a of the negative electrode collectors 12 in the multiple negative electrodes 9 are collectively welded together with the negative electrode strap 16. Similarly, the positive electrode ears 10a of the positive electrode collectors 14 in the multiple positive electrodes 10 are collectively welded together with the positive electrode strap 17. Although not shown, the multiple electrode groups 7 are connected by the negative electrode strap 16 or the positive electrode strap 17. In addition, the negative electrode strap 16 of the electrode group 7 housed in the cell chamber closest to the negative electrode terminal 4 is connected to the negative electrode column 8, and the positive electrode strap 17 of the electrode group 7 housed in the cell chamber closest to the positive electrode terminal 5 is connected to the positive electrode column.

電極群7は、例えば、セル室内で充分に圧縮された状態であり、負極9とセパレータ11とは互いに接触し、正極10とセパレータ11とは互いに接触していてよい。 The electrode group 7 may be, for example, sufficiently compressed within the cell chamber, with the negative electrode 9 and the separator 11 in contact with each other, and the positive electrode 10 and the separator 11 in contact with each other.

セパレータ11は、袋状に形成されており、負極9を収容している。セパレータ11は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等で形成されている。セパレータ11は、これらの材料で形成された織布、不織布、多孔質膜等にSiO、Al等の無機系粒子を付着させたものであってよい。セパレータ11の厚さ(シート状に展開して測定される厚さ)は、例えば、0.1~1.5mmである。なお、セパレータ11は袋状以外の形状(例えば、シート状)であってもよい。 The separator 11 is formed in a bag shape and contains the negative electrode 9. The separator 11 is formed of, for example, polyethylene (PE), polypropylene (PP), or the like. The separator 11 may be a woven fabric, nonwoven fabric, porous film, or the like formed of these materials to which inorganic particles such as SiO 2 and Al 2 O 3 are attached. The thickness of the separator 11 (thickness measured when developed into a sheet) is, for example, 0.1 to 1.5 mm. The separator 11 may be in a shape other than a bag shape (for example, a sheet shape).

負極集電体12及び正極集電体14は、それぞれ、鉛合金で形成されている。鉛合金は、鉛に加えて、スズ、カルシウム、アンチモン、セレン、銀、ビスマス等を含有する合金であってよく、具体的には、例えば、鉛、スズ及びカルシウムを含有する合金(Pb-Sn-Ca系合金)であってよい。 The negative electrode current collector 12 and the positive electrode current collector 14 are each made of a lead alloy. The lead alloy may be an alloy containing tin, calcium, antimony, selenium, silver, bismuth, etc. in addition to lead, and specifically, for example, an alloy containing lead, tin, and calcium (Pb-Sn -Ca-based alloy).

負極活物質13は、Pb成分として少なくともPbを含み、必要に応じて、Pb以外のPb成分(例えばPbSO)及び添加剤を更に含む。負極活物質13は、好ましくは、多孔質の海綿状鉛(Spongy Lead)を含む。 The negative electrode active material 13 contains at least Pb as a Pb component, and further contains Pb components other than Pb (for example, PbSO 4 ) and additives as necessary. The negative electrode active material 13 preferably contains porous spongy lead.

負極活物質13におけるPb成分の含有量は、負極活物質13の全質量を基準として、90質量%以上又は95質量%以上であってよく、99質量%以下又は98質量%以下であってよい。なお、負極活物質13の全質量は、例えば、鉛蓄電池1から負極9(負極集電体12及び負極活物質13)を取り出して水洗し、負極9を充分に乾燥させた後に測定した負極9の質量と、負極集電体12の質量との差から算出することができる。乾燥は、例えば、50℃で24時間行う。 The content of the Pb component in the negative electrode active material 13 may be 90% by mass or more or 95% by mass or more, and 99% by mass or less or 98% by mass or less, based on the total mass of the negative electrode active material 13. The total mass of the negative electrode active material 13 can be calculated, for example, by removing the negative electrode 9 (negative electrode current collector 12 and negative electrode active material 13) from the lead-acid battery 1, washing it with water, and thoroughly drying the negative electrode 9, and then calculating the difference between the mass of the negative electrode 9 and the mass of the negative electrode current collector 12. Drying is performed, for example, at 50°C for 24 hours.

添加剤としては、例えば、スルホ基及び/又はスルホン酸塩基を有する樹脂、硫酸バリウム、炭素材料(炭素繊維を除く)及び繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)が挙げられる。スルホ基及び/又はスルホン酸塩基を有する樹脂は、リグニンスルホン酸、リグニンスルホン酸塩、及び、フェノール類とアミノアリールスルホン酸とホルムアルデヒドとの縮合物(例えば、ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物)からなる群より選ばれる少なくとも一種であってよい。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Examples of additives include resins having sulfo groups and/or sulfonic acid groups, barium sulfate, carbon materials (excluding carbon fibers), and fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, carbon fibers, etc.) can be mentioned. Resins having sulfo groups and/or sulfonic acid groups include lignin sulfonic acid, lignin sulfonate salts, and condensates of phenols, aminoarylsulfonic acids, and formaldehyde (for example, condensates of bisphenol, aminobenzenesulfonic acid, and formaldehyde). It may be at least one selected from the group consisting of condensates). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black, and Ketjen black.

正極活物質15は、Pb成分としてPbOを含み、好ましくはβ-PbOを含む。正極活物質15は、Pb成分として、α-PbOを更に含んでいてもよい。すなわち、正極活物質15は、一実施形態において、Pb成分としてβ-PbOのみを含んでいてよく、他の一実施形態において、Pb成分としてα-PbO及びβ-PbOを含んでいてよい。正極活物質15は、必要に応じて、PbO以外のPb成分(例えばPbSO)及び添加剤を更に含んでいてよい。 The positive electrode active material 15 contains PbO 2 as a Pb component, preferably β-PbO 2 . The positive electrode active material 15 may further contain α-PbO 2 as a Pb component. That is, in one embodiment, the positive electrode active material 15 may include only β-PbO 2 as the Pb component, and in another embodiment, the positive electrode active material 15 may include α-PbO 2 and β-PbO 2 as the Pb component. good. The positive electrode active material 15 may further contain a Pb component other than PbO 2 (for example, PbSO 4 ) and an additive, if necessary.

正極活物質15におけるPb成分の含有量は、正極活物質15の全質量を基準として、90質量%以上又は95質量%以上であってよく、99.9質量%以下又は98質量%以下であってもよい。なお、正極活物質15の全質量は、例えば、鉛蓄電池1から正極10(正極集電体14及び正極活物質15)を取り出して水洗し、正極10を充分に乾燥させた後に測定した正極10の質量と、正極集電体14の質量との差から算出することができる。乾燥は、例えば、50℃で24時間行う。 The content of the Pb component in the positive electrode active material 15 may be 90% by mass or more or 95% by mass or more, and 99.9% by mass or less or 98% by mass or less, based on the total mass of the positive electrode active material 15. It's okay. The total mass of the positive electrode active material 15 is, for example, the positive electrode 10 measured after taking out the positive electrode 10 (positive electrode current collector 14 and positive electrode active material 15) from the lead-acid battery 1, washing it with water, and thoroughly drying the positive electrode 10. and the mass of the positive electrode current collector 14. Drying is performed, for example, at 50° C. for 24 hours.

添加剤としては、例えば、炭素材料(炭素繊維を除く)及び繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)が挙げられる。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Examples of the additive include carbon materials (excluding carbon fibers) and fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, carbon fibers, etc.). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black, and Ketjen black.

正極活物質15の全細孔容積は、0.100g/ml以下であり、上記寿命試験A及びBにおいてより良好な寿命性能が得られやすい観点では、0.098g/ml以下又は0.096g/ml以下であってもよい。正極活物質15の全細孔容積は、容量性能により優れる観点、並びに、上記寿命試験A及びBにおいてより良好な寿命性能が得られやすい観点では、0.090g/ml以上であってよく、0.092g/ml以上又は0.094g/ml以上であってもよい。これらの観点から、正極活物質15の全細孔容積は、例えば、0.090~0.100g/ml、0.092~0.098g/ml又は0.094~0.096g/mlであってよい。なお、正極活物質の全細孔容積は、化成後の全細孔容積であり、水銀ポロシメーターの測定結果から得られる値である。正極活物質の全細孔容積は、正極活物質ペーストを作製する際に加える希硫酸量、化成温度等によって調整することができる。例えば、正極活物質ペーストを作製する際に加える希硫酸量が多く、化成温度が高いほど、正極活物質の全細孔容積の値が大きくなる傾向がある。 The total pore volume of the positive electrode active material 15 is 0.100 g/ml or less, and may be 0.098 g/ml or less or 0.096 g/ml or less from the viewpoint of obtaining better life performance in the above-mentioned life tests A and B. The total pore volume of the positive electrode active material 15 may be 0.090 g/ml or more, 0.092 g/ml or more, or 0.094 g/ml or more from the viewpoint of obtaining better capacity performance and from the viewpoint of obtaining better life performance in the above-mentioned life tests A and B. From these viewpoints, the total pore volume of the positive electrode active material 15 may be, for example, 0.090 to 0.100 g/ml, 0.092 to 0.098 g/ml, or 0.094 to 0.096 g/ml. The total pore volume of the positive electrode active material is the total pore volume after chemical formation, and is a value obtained from the measurement results of a mercury porosimeter. The total pore volume of the positive electrode active material can be adjusted by the amount of dilute sulfuric acid added when preparing the positive electrode active material paste, the chemical formation temperature, etc. For example, the more dilute sulfuric acid added when preparing the positive electrode active material paste and the higher the chemical formation temperature, the larger the value of the total pore volume of the positive electrode active material tends to be.

正極活物質15の多孔度は、上記寿命試験A及びBにおいてより良好な寿命性能が得られやすい観点では、好ましくは45.0体積%以下であり、44.5体積%以下又は44.0体積%以下であってもよい。正極活物質15の多孔度は、容量性能により優れる観点、並びに、上記寿命試験A及びBにおいてより良好な寿命性能が得られやすい観点では、42.5体積%以上であってよく、43.0体積%以上又は43.5体積%以上であってもよい。これらの観点から、正極活物質15の多孔度は、例えば、42.5~45.0体積%、43.0~44.5体積%又は43.5~44.0体積%であってよい。正極活物質の多孔度は、化成後の多孔度であり、水銀ポロシメーター測定から得られる値(体積基準の割合)である。正極活物質の多孔度は、正極活物質ペーストを作製する際に加える希硫酸量、化成温度等によって調整することができる。例えば、正極活物質ペーストを作製する際に加える希硫酸量が多く、化成温度が高いほど、正極活物質の多孔度が大きくなる傾向がある。 The porosity of the positive electrode active material 15 is preferably 45.0% by volume or less, and may be 44.5% by volume or less, or 44.0% by volume or less, from the viewpoint of obtaining better life performance in the above-mentioned life tests A and B. The porosity of the positive electrode active material 15 may be 42.5% by volume or more, and may be 43.0% by volume or more, or 43.5% by volume or more, from the viewpoint of obtaining better capacity performance and from the viewpoint of obtaining better life performance in the above-mentioned life tests A and B. From these viewpoints, the porosity of the positive electrode active material 15 may be, for example, 42.5 to 45.0% by volume, 43.0 to 44.5% by volume, or 43.5 to 44.0% by volume. The porosity of the positive electrode active material is the porosity after chemical formation, and is a value (volume-based ratio) obtained from mercury porosimeter measurement. The porosity of the positive electrode active material can be adjusted by the amount of dilute sulfuric acid added when preparing the positive electrode active material paste, the chemical formation temperature, and the like. For example, the more dilute sulfuric acid is added when preparing the positive electrode active material paste and the higher the chemical conversion temperature, the greater the porosity of the positive electrode active material tends to be.

正極活物質15の密度は、上記寿命試験A及びBにおいてより良好な寿命性能が得られやすい観点では、好ましくは4.0g/cm以上であり、4.2g/cm以上又は4.4g/cm以上であってもよい。正極活物質15の密度は、容量性能により優れる観点、並びに、上記寿命試験A及びBにおいてより良好な寿命性能が得られやすい観点では、4.9g/cm以下であってよく、4.7g/cm以下又は4.5g/cm以下であってもよい。これらの観点から、正極活物質15の密度は、例えば、4.0~4.9g/cm、4.2~4.7g/cm又は4.4~4.5g/cmであってよい。正極活物質の密度は、化成後の密度であり、水銀ポロシメーター測定から得られる値である。正極活物質の密度は、正極活物質ペーストを作製する際に加える希硫酸量、化成温度等によって調整することができる。例えば、正極活物質ペーストを作製する際に加える希硫酸量が多く、化成温度が高いほど、正極活物質の密度が小さくなる傾向がある。 The density of the positive electrode active material 15 is preferably 4.0 g/cm 3 or more, and may be 4.2 g/cm 3 or more or 4.4 g/cm 3 or more, from the viewpoint of obtaining better life performance in the above-mentioned life tests A and B. The density of the positive electrode active material 15 may be 4.9 g/cm 3 or less, 4.7 g/cm 3 or less, or 4.5 g/cm 3 or less, from the viewpoint of obtaining better capacity performance and from the viewpoint of obtaining better life performance in the above-mentioned life tests A and B. From these viewpoints, the density of the positive electrode active material 15 may be, for example, 4.0 to 4.9 g/cm 3 , 4.2 to 4.7 g/cm 3 , or 4.4 to 4.5 g/cm 3. The density of the positive electrode active material is the density after formation, and is a value obtained from mercury porosimeter measurement. The density of the positive electrode active material can be adjusted by the amount of dilute sulfuric acid added when preparing the positive electrode active material paste, the formation temperature, and the like. For example, the density of the positive electrode active material tends to decrease as the amount of dilute sulfuric acid added in preparing the positive electrode active material paste increases and the chemical formation temperature increases.

負極活物質13の質量(電極群に含まれる全ての負極活物質13の総質量)に対する正極活物質15の質量(電極群に含まれる全ての正極活物質15の総質量)の比(以下、「p/n比」という。)は1.50以上であり、上記寿命試験A及びBにおいてより良好な寿命性能が得られやすい観点では、1.55以上、1.60以上又は1.65以上であってもよい。p/n比は、上記寿命試験A及びBにおいてより良好な寿命性能が得られやすい観点では、1.85以下であってよく、1.80以下、1.75以下又は1.70以下であってもよい。これらの観点から、p/n比は、例えば、1.50~1.85、1.55~1.80、1.60~1.75又は1.65~1.70であってよい。p/n比は、化成後の負極活物質の質量に対する化成後の正極活物質の質量の比である。p/n比は、極板の使用枚数、活物質の集電体への充填量(例えば極板の厚さ)によって調整することができる。 The ratio (hereinafter, (referred to as "p/n ratio") is 1.50 or more, and from the viewpoint of easily obtaining better life performance in the above life tests A and B, 1.55 or more, 1.60 or more, or 1.65 or more. It may be. The p/n ratio may be 1.85 or less, 1.80 or less, 1.75 or less, or 1.70 or less, from the viewpoint of easily obtaining better life performance in the above life tests A and B. It's okay. From these points of view, the p/n ratio may be, for example, 1.50-1.85, 1.55-1.80, 1.60-1.75 or 1.65-1.70. The p/n ratio is the ratio of the mass of the positive electrode active material after chemical formation to the mass of the negative electrode active material after chemical formation. The p/n ratio can be adjusted by the number of electrode plates used and the amount of active material filled in the current collector (for example, the thickness of the electrode plate).

鉛蓄電池1の上記寿命試験A及びBにおける総放電量(総放電量X及びY)は、エンジン始動用の鉛蓄電池の寿命性能を評価するための寿命試験(以下、「寿命試験C」という。)における総放電量Zよりも高い傾向がある。例えば、寿命試験Cにおいて寿命に達するまでの総放電量Zに対する、寿命試験Aにおいて寿命に達するまで(放電時の末期電圧が7.2Vとなるまで)の総放電量Xの比(X/Z)は、1.3以上(例えば、1.3~4.1)となり得る。また、例えば、寿命試験Cにおいて寿命に達するまでの総放電量Zに対する、寿命試験Bにおいて寿命に達するまで(条件(3)での放電時の末期電圧が7.2Vとなるまで)の総放電量Yの比(Y/Z)は、1.2以上(例えば、1.2~3.7)となり得る。上記実施形態では、正極活物質の全細孔容積、多孔度及び密度、並びに、p/n比等を調整することにより、X/Z及びY/Zをより大きな値(例えば2.0以上又は3.0以上)とすることもできる。ここで、寿命試験Cは、JIS D 5301:2019 10.5に準拠する寿命試験であり、40℃の温度環境下で、下記(III)を繰り返し行い、定格コールドクランキング電流での連続放電時の末期電圧が7.2Vとなるまでの総放電量Zで寿命性能を相対評価する寿命試験である。
(III):上記条件(1)での放電と上記条件(2)での充電とをこの順でそれぞれ480回繰り返した後、56時間放置してから、定格コールドクランキング電流(370A)で30秒間連続放電を行う。
The total discharge amount (total discharge amount X and Y) in the above-mentioned life tests A and B of the lead acid battery 1 is a life test (hereinafter referred to as "life test C") for evaluating the life performance of a lead acid battery for engine starting. ) tends to be higher than the total discharge amount Z. For example, the ratio (X/Z ) can be 1.3 or more (eg, 1.3 to 4.1). For example, for the total discharge amount Z until reaching the end of life in life test C, the total discharge until reaching end of life in life test B (until the final voltage at the time of discharge under condition (3) becomes 7.2 V) The ratio of the quantity Y (Y/Z) can be 1.2 or more (eg, 1.2 to 3.7). In the above embodiment, X/Z and Y/Z are set to larger values (for example, 2.0 or more or 3.0 or higher). Here, the life test C is a life test based on JIS D 5301:2019 10.5, in which the following (III) is repeated in a temperature environment of 40°C, and during continuous discharge at the rated cold cranking current. This is a life test in which the life performance is relatively evaluated based on the total discharge amount Z until the terminal voltage of the battery reaches 7.2V.
(III): After repeating discharging under the above condition (1) and charging under the above condition (2) in this order 480 times, and leaving it for 56 hours, Perform continuous discharge for seconds.

鉛蓄電池1は、例えば、電極(負極及び正極)を得る電極製造工程と、電極を含む構成部材を組み立てて鉛蓄電池1を得る組立工程とを備える製造方法により製造される。鉛蓄電池1の製造方法は、未化成の負極及び正極を化成する工程(化成工程)を備える。化成工程は、上記電極製造工程で実施されてよく、組立工程で実施されてもよい。以下、電極製造工程及び組立工程について説明する。 The lead-acid battery 1 is manufactured by a manufacturing method that includes, for example, an electrode manufacturing process for obtaining electrodes (a negative electrode and a positive electrode), and an assembly process for assembling constituent members including the electrodes to obtain the lead-acid battery 1. The method for manufacturing the lead-acid battery 1 includes a step of chemically forming an unformed negative electrode and a positive electrode (chemical formation step). The chemical conversion step may be carried out in the electrode manufacturing process, or may be carried out in the assembly process. The electrode manufacturing process and assembly process will be explained below.

電極製造工程は、負極製造工程と、正極製造工程と、を備える。 The electrode manufacturing process includes a negative electrode manufacturing process and a positive electrode manufacturing process.

負極製造工程では、例えば、負極集電体12にペースト状の負極活物質(負極活物質ペースト)を保持させた後に、熟成及び乾燥することにより未化成の負極を得る。負極活物質ペーストは、例えば、鉛粉、添加剤及び硫酸(例えば希硫酸)を含んでいる。負極活物質ペーストは、例えば、鉛粉と添加剤とを混合することにより混合物を得た後に、この混合物に溶媒及び硫酸を加えて混練することにより得られる。負極活物質ペースト中の水分量は、例えば、5質量%以上、10質量%以上又は15質量%以上であり、30質量%以下、25質量%以下又は20質量%以下である。 In the negative electrode manufacturing process, for example, a paste-like negative electrode active material (negative electrode active material paste) is held in the negative electrode current collector 12 and then aged and dried to obtain an unformed negative electrode. The negative electrode active material paste contains, for example, lead powder, additives, and sulfuric acid (for example, dilute sulfuric acid). The negative electrode active material paste is obtained, for example, by mixing lead powder and additives to obtain a mixture, and then adding a solvent and sulfuric acid to this mixture and kneading the mixture. The water content in the negative electrode active material paste is, for example, 5% by mass or more, 10% by mass or more, or 15% by mass or more, and 30% by mass or less, 25% by mass or less, or 20% by mass or less.

正極製造工程では、例えば、正極集電体14にペースト状の正極活物質(正極活物質ペースト)を保持させた後に、熟成及び乾燥することにより未化成の正極を得る。正極活物質ペーストは、例えば、鉛粉、添加剤及び硫酸(例えば希硫酸)を含んでいる。正極活物質ペーストは、例えば、鉛粉と添加剤とを混合することにより混合物を得た後に、この混合物に溶媒及び硫酸を加えて混練することにより得られる。正極活物質ペースト中の水分量は、例えば、5質量%以上、10質量%以上又は15質量%以上であり、30質量%以下、25質量%以下又は20質量%以下である。 In the positive electrode manufacturing process, for example, after holding a paste-like positive electrode active material (positive electrode active material paste) in the positive electrode current collector 14, an unformed positive electrode is obtained by aging and drying. The positive electrode active material paste contains, for example, lead powder, additives, and sulfuric acid (for example, dilute sulfuric acid). The positive electrode active material paste can be obtained, for example, by mixing lead powder and additives to obtain a mixture, and then adding a solvent and sulfuric acid to this mixture and kneading the mixture. The water content in the positive electrode active material paste is, for example, 5% by mass or more, 10% by mass or more, or 15% by mass or more, and 30% by mass or less, 25% by mass or less, or 20% by mass or less.

組立工程では、例えば、得られた未化成の正極及び負極を、セパレータ11を介して積層し、同極性の電極の集電部をストラップで溶接させて未化成の電極群を得る。この電極群を電槽内の各セルに収容して、隣り合うセル室内の電極群の負極ストラップと正極ストラップとをセル室間を隔てている隔壁を貫通したセル間接続部により接続した後、蓋を電槽の上端に取り付けることで未化成の鉛蓄電池を作製する。次に、未化成の鉛蓄電池に希硫酸を入れて、直流電流を通電して電槽化成する。続いて、化成後の硫酸の比重(20℃)を適切な電解液の比重に調整することで、鉛蓄電池1が得られる。 In the assembly process, for example, the unformed positive and negative electrodes are stacked with separators 11 between them, and the current collectors of the electrodes of the same polarity are welded with straps to obtain an unformed electrode group. This electrode group is housed in each cell in a battery case, and the negative and positive straps of the electrode groups in adjacent cell chambers are connected with inter-cell connectors that penetrate the partitions separating the cell chambers, and then a lid is attached to the top of the battery case to produce an unformed lead-acid battery. Next, dilute sulfuric acid is poured into the unformed lead-acid battery, and direct current is passed through it to form the battery case. The specific gravity (20°C) of the sulfuric acid after formation is then adjusted to the specific gravity of an appropriate electrolyte, and lead-acid battery 1 is obtained.

化成に用いる硫酸の比重(20℃)は、1.15~1.25であってよい。化成後の硫酸の比重(20℃)は、好ましくは1.25~1.33、より好ましくは1.26~1.30である。化成条件及び硫酸の比重は、電極のサイズに応じて調整することができる。化成処理は、組立工程において実施されてもよく、電極製造工程において実施されてもよい(タンク化成)。 The specific gravity (20°C) of the sulfuric acid used for the chemical formation may be 1.15 to 1.25. The specific gravity (20°C) of the sulfuric acid after the chemical formation is preferably 1.25 to 1.33, more preferably 1.26 to 1.30. The chemical formation conditions and the specific gravity of the sulfuric acid can be adjusted depending on the size of the electrode. The chemical formation process may be performed in the assembly process or in the electrode manufacturing process (tank chemical formation).

以上、一実施形態の鉛蓄電池及びその製造方法について説明したが、本発明は上記実施形態に限定されない。 Although one embodiment of a lead-acid battery and a method for manufacturing the same have been described above, the present invention is not limited to the above embodiment.

例えば、1つの電極群を構成する負極及び正極の数は特に限定されず、負極6つに対して正極5つであってもよく、負極7つに対して正極6つであってもよい。また、正極の数が負極の数と同じであってもよいし、正極の数が負極の数より多くてもよい。例えば、負極5つに対して正極5つであってもよく、負極6つに対して正極6つであってもよく、負極7つに対して正極7つであってもよく、負極8つに対して正極8つであってもよい。 For example, the number of negative electrodes and positive electrodes that constitute one electrode group is not particularly limited, and may be six negative electrodes and five positive electrodes, or seven negative electrodes and six positive electrodes. Further, the number of positive electrodes may be the same as the number of negative electrodes, or the number of positive electrodes may be greater than the number of negative electrodes. For example, there may be five negative electrodes and five positive electrodes, six negative electrodes and six positive electrodes, seven negative electrodes and seven positive electrodes, and eight negative electrodes. There may also be eight positive electrodes.

また、例えば、セパレータ11が織布又は多孔質膜である場合、負極と正極との間にはセパレータ11に加えて不織布が設けられていてよい。不織布は、負極とセパレータとの間に設けられていてよく、正極とセパレータとの間に設けられていてもよい。電極群が不織布を備える場合、上記寿命試験A及びBにおいてより良好な寿命性能が得られやすい。不織布は、シート状であっても袋状であってもよい。不織布がシート状である場合、不織布は、負極及び/又は正極の表面を覆うように(例えば、負極及び/又は正極に巻きつけられるように)設けられていてよい。不織布が袋状である場合、袋状の不織布内に負極又は正極が収容されてよい。 Further, for example, when the separator 11 is a woven fabric or a porous membrane, a nonwoven fabric may be provided in addition to the separator 11 between the negative electrode and the positive electrode. The nonwoven fabric may be provided between the negative electrode and the separator, or may be provided between the positive electrode and the separator. When the electrode group includes a nonwoven fabric, better life performance is likely to be obtained in the life tests A and B described above. The nonwoven fabric may be in the form of a sheet or a bag. When the nonwoven fabric is in the form of a sheet, the nonwoven fabric may be provided so as to cover the surface of the negative electrode and/or the positive electrode (for example, so as to be wrapped around the negative electrode and/or the positive electrode). When the nonwoven fabric is bag-shaped, a negative electrode or a positive electrode may be housed within the bag-shaped nonwoven fabric.

不織布は、有機繊維で構成されていてもよいし、無機繊維で構成されていてもよい。不織布の構成材料として、無機繊維及びパルプを含む混合繊維を用いてもよく、有機繊維及び無機繊維を含む有機無機混合繊維を用いてもよい。有機繊維としては、ポリオレフィン繊維(ポリエチレン繊維、ポリプロピレン繊維等)、ポリエチレンテレフタレート繊維などが挙げられる。無機繊維としては、ガラス繊維(チョップドストランド、ミルドファイバー等)などが挙げられる。不織布は、好ましくは、ガラス繊維を含む。ガラス繊維を含む不織布としては、例えば、ガラス繊維をフェルト状に加工することにより形成されるガラスマットが挙げられる。ガラスマットはガラス繊維のみからなっていてよく、ガラス繊維以外の他の材料(例えば上述の有機繊維等)を含んでいてもよい。不織布中のガラス繊維の含有量は、例えば、90質量%以上であってよい。 The nonwoven fabric may be made of organic fibers or inorganic fibers. As the constituent material of the nonwoven fabric, a mixed fiber containing inorganic fibers and pulp may be used, or an organic-inorganic mixed fiber containing organic fibers and inorganic fibers may be used. Examples of organic fibers include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.) and polyethylene terephthalate fibers. Examples of inorganic fibers include glass fibers (chopped strands, milled fibers, etc.). The nonwoven fabric preferably contains glass fibers. Examples of nonwoven fabrics containing glass fibers include glass mats formed by processing glass fibers into a felt-like shape. The glass mats may be made of only glass fibers, or may contain materials other than glass fibers (such as the organic fibers described above). The content of glass fibers in the nonwoven fabric may be, for example, 90% by mass or more.

不織布の厚さは、上記寿命試験A及びBにおいてより良好な寿命性能が得られやすい観点では、0.1mm以上、0.3mm以上又は0.4mm以上であってよく、内部抵抗の増加が抑制されより高い性能が得られやすくなる観点では、1.0mm以下、0.7mm以下又は0.5mm以下であってよい。これらの観点から、不織布の厚さは、例えば、0.1~1.0mm、0.3~0.5mm又は0.4~0.7mmであってよい。 The thickness of the nonwoven fabric may be 0.1 mm or more, 0.3 mm or more, or 0.4 mm or more from the viewpoint of obtaining better life performance in the above-mentioned life tests A and B, and may be 1.0 mm or less, 0.7 mm or less, or 0.5 mm or less from the viewpoint of suppressing an increase in internal resistance and obtaining higher performance. From these viewpoints, the thickness of the nonwoven fabric may be, for example, 0.1 to 1.0 mm, 0.3 to 0.5 mm, or 0.4 to 0.7 mm.

不織布の厚さとセパレータの厚さの合計は、上記寿命試験A及びBにおいてより良好な寿命性能が得られやすい観点では、0.5mm以上、0.8mm以上又は1.2mm以上であってよく、内部抵抗の増加が抑制されより高い性能が得られやすくなる観点では、2.0mm以下、1.7mm以下又は1.4mm以下であってよい。これらの観点から、不織布の厚さとセパレータの厚さの合計は、例えば、0.5~2.0mm、0.8~1.7mm又は1.2~1.4mmであってよい。なお、不織布の厚さとセパレータの厚さの合計は、電極間距離(負極と正極との間の距離)に等しくてよい。 The sum of the thickness of the nonwoven fabric and the thickness of the separator may be 0.5 mm or more, 0.8 mm or more, or 1.2 mm or more, from the viewpoint of easily obtaining better life performance in the above life tests A and B. From the viewpoint of suppressing the increase in internal resistance and easily obtaining higher performance, the thickness may be 2.0 mm or less, 1.7 mm or less, or 1.4 mm or less. From these viewpoints, the total thickness of the nonwoven fabric and the separator may be, for example, 0.5 to 2.0 mm, 0.8 to 1.7 mm, or 1.2 to 1.4 mm. Note that the sum of the thickness of the nonwoven fabric and the thickness of the separator may be equal to the distance between the electrodes (the distance between the negative electrode and the positive electrode).

以下、実験例により本発明を具体的に説明する。ただし、本発明は下記の実験例に限定されるものではない。 The present invention will be specifically explained below using experimental examples. However, the present invention is not limited to the following experimental examples.

<実験例1>
以下の手順で実験例1の評価用鉛蓄電池を作製した。なお、正極活物質ペーストを調製する際の硫酸投入量及び添加材(補強用短繊維)の配合量は、正極活物質の全細孔容積、多孔度及び密度が表1に示す値となるように調整した。また、負極板及び正極板の枚数はそれぞれ8枚とし、負極活物質ペーストの負極集電体への充填量及び正極活物質ペーストの正極集電体への充填量は、評価用鉛蓄電池における負極活物質の質量に対する正極活物質の質量の比(p/n比)が1.57となるように調整した。
<Experimental Example 1>
The evaluation lead-acid battery of Experimental Example 1 was produced by the following procedure. The amount of sulfuric acid added and the amount of additive (reinforcing short fiber) added when preparing the positive electrode active material paste were adjusted so that the total pore volume, porosity, and density of the positive electrode active material were the values shown in Table 1. The number of negative electrode plates and the number of positive electrode plates were each eight, and the amount of the negative electrode active material paste filled into the negative electrode current collector and the amount of the positive electrode active material paste filled into the positive electrode current collector were adjusted so that the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material in the evaluation lead-acid battery (p/n ratio) was 1.57.

(未化成の負極板の作製)
Pb成分として鉛粉を用意した。Pb成分(鉛粉)100質量部に対して、ビスパーズP215(ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物、商品名、日本製紙株式会社製)0.2質量部(樹脂固形分)、アクリル繊維0.1質量部、硫酸バリウム1.0質量部、及びファーネスブラック0.2質量部の混合物を添加し、乾式混合した。次に、この混合物に水を加えて混練した後、比重1.280の希硫酸を少量ずつ添加しながら更に混練して、負極活物質ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式負極集電体に、この負極活物質ペーストを充填した。次いで、負極活物質ペーストを温度50℃、湿度98%の雰囲気で24時間熟成した後、温度50℃で16時間乾燥して、未化成の負極板を得た。
(Preparation of unformed negative electrode plate)
Lead powder was prepared as the Pb component. A mixture of 0.2 parts by mass (resin solids) of Bispers P215 (a condensate of bisphenol, aminobenzenesulfonic acid, and formaldehyde, trade name, manufactured by Nippon Paper Industries Co., Ltd.), 0.1 parts by mass of acrylic fiber, 1.0 parts by mass of barium sulfate, and 0.2 parts by mass of furnace black was added to 100 parts by mass of the Pb component (lead powder), and dry-mixed. Next, water was added to this mixture and kneaded, and then dilute sulfuric acid having a specific gravity of 1.280 was added little by little and further kneaded to prepare a negative electrode active material paste. The negative electrode active material paste was filled into an expandable negative electrode current collector prepared by subjecting a rolled sheet made of a lead alloy to an expand processing. Next, the negative electrode active material paste was aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%, and then dried at a temperature of 50 ° C. for 16 hours to obtain an unformed negative electrode plate.

(未化成の正極板の作製)
Pb成分として鉛粉及び鉛丹(Pb)を用意した(鉛粉:鉛丹=96:4(質量比))。上記Pb成分と、Pb成分の全質量を基準として0.07質量%の補強用短繊維(アクリル繊維)と、水とを混合して混練した。続いて、希硫酸(比重1.280)を少量ずつ添加しながら混練して、正極活物質ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式正極集電体にこの正極活物質ペーストを充填した。次いで、正極活物質ペーストを温度50℃、湿度98%の雰囲気で24時間熟成した後、温度60℃で24時間以上乾燥して、未化成の正極板を得た。
(Preparation of unformed positive electrode plate)
Lead powder and red lead (Pb 3 O 4 ) were prepared as the Pb component (lead powder: red lead = 96:4 (mass ratio)). The Pb component, 0.07% by mass of reinforcing short fibers (acrylic fibers) based on the total mass of the Pb component, and water were mixed and kneaded. Subsequently, dilute sulfuric acid (specific gravity: 1.280) was added little by little and kneaded to prepare a positive electrode active material paste. This positive electrode active material paste was filled into an expanded positive electrode current collector produced by expanding a rolled sheet made of a lead alloy. Next, the positive electrode active material paste was aged for 24 hours in an atmosphere at a temperature of 50° C. and a humidity of 98%, and then dried at a temperature of 60° C. for 24 hours or more to obtain an unformed positive electrode plate.

(評価用鉛蓄電池の組み立て)
袋状に加工したポリエチレン製のセパレータ(厚さ:0.75mm)に、未化成の負極板を挿入した。次に、未化成の正極板8枚と、袋状のセパレータに挿入された未化成の負極板8枚とを交互に積層した。続いて、キャストオンストラップ(COS)方式で、同極性の電極板の耳部同士を溶接して電極群を作製した。この電極群を6つ用意し、6つのセル室を有する電槽にそれぞれ挿入した。次いで電極群の負極ストラップと正極ストラップをセル間接続した後、蓋を電槽の上部に熱溶着することで、12V電池(JIS D 5301規定のB24サイズに相当)を組み立てた。その後、希硫酸に硫酸ナトリウム水溶液を加えることで調製した電解液(ナトリウムイオン濃度:0.05mol/L)を上記電池の各セルに注入し、40℃の水槽に入れて1時間静置した。その後、17Aにて18時間の定電流で化成を行い、評価用鉛蓄電池を得た。なお、化成後の電解液(硫酸溶液)の比重を1.28(20℃)に調整した。
(Assembly of lead-acid battery for evaluation)
An unformed negative electrode plate was inserted into a polyethylene separator (thickness: 0.75 mm) processed into a bag shape. Next, eight unformed positive electrode plates and eight unformed negative electrode plates inserted into the bag-shaped separator were alternately stacked. Next, the ears of the electrode plates of the same polarity were welded together using the cast-on-strap (COS) method to prepare an electrode group. Six of these electrode groups were prepared and inserted into a battery case having six cell chambers. Next, the negative electrode strap and the positive electrode strap of the electrode group were connected between the cells, and then the lid was heat-welded to the top of the battery case to assemble a 12V battery (corresponding to the B24 size specified in JIS D 5301). Then, an electrolyte (sodium ion concentration: 0.05 mol/L) prepared by adding an aqueous sodium sulfate solution to dilute sulfuric acid was injected into each cell of the battery, and the battery was placed in a water tank at 40 ° C. and left to stand for 1 hour. Then, formation was performed at a constant current of 17 A for 18 hours to obtain a lead-acid battery for evaluation. The specific gravity of the electrolytic solution (sulfuric acid solution) after the formation was adjusted to 1.28 (20° C.).

(正極活物質の全細孔容積、多孔度及び密度の測定)
まず、上記評価用鉛蓄電池を解体して正極板を取り出して水洗をした後、50℃で24時間乾燥した。次に、乾燥後の正極板の中央部から活物質の塊を3g採取した。この塊を、最大径が5mm程度の小片に砕き、この小片の合計3gを測定セルに入れた。そして、下記の条件に基づき、水銀ポロシメーターを用いて化成後の正極活物質の全細孔容積、多孔度及び密度を測定した。全細孔容積は0.0951g/mlであり、多孔度は43.8体積%であり、密度は4.45g/cmであった。なお、正極活物質の全細孔容積、多孔度及び密度は、それぞれ、6つの電極群の内、任意の3つの電極群を選択し、選択した電極群に含まれる任意の3枚の正極板それぞれについて求めた正極活物質の全細孔容積の平均値、多孔度の平均値及び密度の平均値である。
・装置:オートポアIV9520(株式会社島津製作所製)
・水銀圧入圧:0~354kPa(低圧)、大気圧~414MPa(高圧)
・各測定圧力での圧力保持時間:900秒(低圧)、1200秒(高圧)
・試料と水銀との接触角:130°
・水銀の表面張力:480~490mN/m
・水銀の密度:13.5335g/mL
(Measurement of total pore volume, porosity and density of positive electrode active material)
First, the lead-acid battery for evaluation was disassembled, the positive electrode plate was taken out, washed with water, and then dried at 50° C. for 24 hours. Next, 3 g of a lump of active material was collected from the center of the dried positive electrode plate. This lump was crushed into small pieces having a maximum diameter of about 5 mm, and a total of 3 g of the pieces was placed in a measurement cell. Then, the total pore volume, porosity, and density of the positive electrode active material after chemical formation were measured using a mercury porosimeter under the following conditions. The total pore volume was 0.0951 g/ml, the porosity was 43.8% by volume, and the density was 4.45 g/ cm3 . The total pore volume, porosity, and density of the positive electrode active material are determined by selecting any three electrode groups from the six electrode groups, and determining the total pore volume, porosity, and density of the positive electrode active material by selecting any three electrode groups from among the six electrode groups, and determining the total pore volume, porosity, and density of the positive electrode active material by selecting any three electrode groups from among the six electrode groups, and calculating the total pore volume, porosity, and density of the positive electrode active material by selecting any three electrode groups from among the six electrode groups, and determining the total pore volume, porosity, and density of the positive electrode active material by selecting any three electrode groups from among the six electrode groups, and calculating the total pore volume, porosity, and density of the positive electrode active material by selecting any three electrode groups from among the six electrode groups, and determining the total pore volume, porosity, and density of the positive electrode active material by selecting any three electrode groups from among the six electrode groups, and determining the total pore volume, porosity, and density of the positive electrode active material. These are the average value of the total pore volume, the average value of porosity, and the average value of density of the positive electrode active material determined for each.
・Device: Autopore IV9520 (manufactured by Shimadzu Corporation)
・Mercury intrusion pressure: 0 to 354 kPa (low pressure), atmospheric pressure to 414 MPa (high pressure)
・Pressure holding time at each measurement pressure: 900 seconds (low pressure), 1200 seconds (high pressure)
・Contact angle between sample and mercury: 130°
・Surface tension of mercury: 480-490mN/m
・Density of mercury: 13.5335g/mL

(p/n比の測定)
まず、上記評価用鉛蓄電池を解体して負極板及び正極板を取り出して水洗をした後、50℃で24時間乾燥した。次に、乾燥後の負極板及び乾燥後の正極板から負極活物質及び正極活物質を除去し、負極集電体及び正極集電体を得た。乾燥後の負極板と負極集電体の質量差、及び、乾燥後の正極板と正極集電体の質量差から、負極活物質の質量及び正極活物質の質量を求め、負極活物質の質量に対する正極活物質の質量の比(p/n比)を算出した。p/n比は1.57であった。なお、p/n比は、電極群に含まれる全ての負極活物質の総質量に対する、電極群に含まれる全ての正極活物質の総質量の比であり、すべての電極群(6つの電極群)それぞれについて求めたp/n比の平均値とした。
(Measurement of p/n ratio)
First, the lead-acid battery for evaluation was disassembled, and the negative and positive plates were removed and washed with water, and then dried at 50 ° C. for 24 hours. Next, the negative and positive active materials were removed from the dried negative and positive plates to obtain a negative and positive current collector. The mass of the negative and positive active materials was calculated from the mass difference between the dried negative and negative current collectors, and the mass difference between the dried positive and positive current collectors, and the ratio of the mass of the positive active material to the mass of the negative active material (p / n ratio) was calculated. The p / n ratio was 1.57. The p / n ratio is the ratio of the total mass of all the positive active materials contained in the electrode group to the total mass of all the negative active materials contained in the electrode group, and was the average value of the p / n ratios calculated for each of the electrode groups (six electrode groups).

<実験例2、6>
評価用鉛蓄電池における負極活物質の質量に対する正極活物質の質量の比(p/n比)が表1に示す値となるように、負極板(及び袋状セパレータ)の枚数、正極板の枚数、負極活物質ペーストの負極集電体への充填量、及び、正極活物質ペーストの正極集電体への充填量のうちの少なくとも1つを変更したことを除き、実験例1と同様にして評価用鉛蓄電池を組み立てた。次いで、実験例1と同様にして、正極活物質の全細孔容積、多孔度及び密度、並びに、p/n比を測定した。結果を表1に示す。なお、表1中の負極板及び正極板の枚数は、電極群1つあたりの枚数である(以下同じ。)。
<Experimental Examples 2 and 6>
The number of negative electrode plates (and bag-shaped separators) and the number of positive electrode plates were adjusted so that the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material (p/n ratio) in the evaluation lead-acid battery became the value shown in Table 1. The procedure was the same as in Experimental Example 1, except that at least one of the filling amount of the negative electrode active material paste into the negative electrode current collector and the filling amount of the positive electrode active material paste into the positive electrode current collector was changed. A lead-acid battery for evaluation was assembled. Next, in the same manner as in Experimental Example 1, the total pore volume, porosity, density, and p/n ratio of the positive electrode active material were measured. The results are shown in Table 1. Note that the numbers of negative electrode plates and positive electrode plates in Table 1 are the numbers per electrode group (the same applies hereinafter).

<実験例3>
負極活物質ペーストの負極集電体への充填量及び正極活物質ペーストの正極集電体への充填量を、評価用鉛蓄電池における負極活物質の質量に対する正極活物質の質量の比(p/n比)が1.30となるように調整したこと、及び、負極板と袋状のセパレータとの間に不織布(日本板硝子株式会社製、商品名:FM111、厚さ:0.3mm、繊維種:ガラス繊維)を挿入したことを除き、実験例1と同様にして評価用鉛蓄電池を組み立てた。次いで、実験例1と同様にして、正極活物質の全細孔容積、多孔度及び密度、並びに、p/n比を測定した。結果を表1に示す。
<Experiment example 3>
The filling amount of the negative electrode active material paste into the negative electrode current collector and the filling amount of the positive electrode active material paste into the positive electrode current collector were calculated using the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material in the lead-acid battery for evaluation (p/ n ratio) was adjusted to 1.30, and a nonwoven fabric (manufactured by Nippon Sheet Glass Co., Ltd., product name: FM111, thickness: 0.3 mm, fiber type) was used between the negative electrode plate and the bag-shaped separator. A lead-acid battery for evaluation was assembled in the same manner as in Experimental Example 1, except that a glass fiber) was inserted. Next, in the same manner as in Experimental Example 1, the total pore volume, porosity, density, and p/n ratio of the positive electrode active material were measured. The results are shown in Table 1.

<実験例4>
負極活物質ペーストの負極集電体への充填量及び正極活物質ペーストの正極集電体への充填量を、評価用鉛蓄電池における負極活物質の質量に対する正極活物質の質量の比(p/n比)が1.50となるように調整したこと、及び、正極板と袋状のセパレータとの間に不織布(日本板硝子株式会社製、商品名:SSG-MSL、厚さ:0.4mm、繊維種:ガラス繊維)を挿入したことを除き、実験例1と同様にして評価用鉛蓄電池を組み立てた。次いで、実験例1と同様にして、正極活物質の全細孔容積、多孔度及び密度、並びに、p/n比を測定した。結果を表1に示す。
<Experimental Example 4>
The amount of the negative electrode active material paste filled into the negative electrode current collector and the amount of the positive electrode active material paste filled into the positive electrode current collector were adjusted so that the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material in the lead-acid battery for evaluation (p / n ratio) was 1.50, and a nonwoven fabric (manufactured by Nippon Sheet Glass Co., Ltd., product name: SSG-MSL, thickness: 0.4 mm, fiber type: glass fiber) was inserted between the positive electrode plate and the bag-shaped separator. The evaluation lead-acid battery was assembled in the same manner as in Experimental Example 1. Next, the total pore volume, porosity and density of the positive electrode active material, and the p / n ratio were measured in the same manner as in Experimental Example 1. The results are shown in Table 1.

<実験例5>
評価用鉛蓄電池における負極活物質の質量に対する正極活物質の質量の比(p/n比)が1.68となるように、負極活物質ペーストの負極集電体への充填量、及び、正極活物質ペーストの正極集電体への充填量を変更したことを除き、実験例4と同様にして評価用鉛蓄電池を組み立てた。次いで、実験例1と同様にして、正極活物質の全細孔容積、多孔度及び密度、並びに、p/n比を測定した。結果を表1に示す。
<Experiment example 5>
The filling amount of the negative electrode active material paste into the negative electrode current collector and the positive electrode so that the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material (p/n ratio) in the lead-acid battery for evaluation is 1.68. A lead-acid battery for evaluation was assembled in the same manner as in Experimental Example 4, except that the amount of active material paste filled into the positive electrode current collector was changed. Next, in the same manner as in Experimental Example 1, the total pore volume, porosity, density, and p/n ratio of the positive electrode active material were measured. The results are shown in Table 1.

<実験例7>
正極板及び負極板のサイズを変更し、EN規格のLN1サイズに相当する12V電池を組み立てたこと、並びに、負極板(及び袋状セパレータ)の枚数、正極板の枚数、負極活物質ペーストの負極集電体への充填量、及び、正極活物質ペーストの正極集電体への充填量を変更したことを除き、実験例4と同様にして評価用鉛蓄電池を組み立てた。次いで、実験例1と同様にして、正極活物質の全細孔容積、多孔度及び密度、並びに、p/n比を測定した。結果を表1に示す。
<Experimental Example 7>
The size of the positive and negative plates was changed to assemble a 12V battery equivalent to the LN1 size of the EN standard, and the number of negative plates (and bag-shaped separators), the number of positive plates, the amount of negative active material paste filled into the negative current collector, and the amount of positive active material paste filled into the positive current collector were changed. Except for this, a lead-acid battery for evaluation was assembled in the same manner as in Experimental Example 4. Next, the total pore volume, porosity, density, and p/n ratio of the positive active material were measured in the same manner as in Experimental Example 1. The results are shown in Table 1.

<実験例8>
正極板及び負極板のサイズを変更し、EN規格のLN1サイズに相当する12V電池を組み立てたこと、並びに、評価用鉛蓄電池における負極活物質の質量に対する正極活物質の質量の比(p/n比)が1.67となるように、負極板(及び袋状セパレータ)の枚数、正極板の枚数、負極活物質ペーストの負極集電体への充填量、及び、正極活物質ペーストの正極集電体への充填量を変更したことを除き、実験例1と同様にして評価用鉛蓄電池を組み立てた。次いで、実験例1と同様にして、正極活物質の全細孔容積、多孔度及び密度、並びに、p/n比を測定した。結果を表1に示す。
<Experiment example 8>
The size of the positive electrode plate and negative electrode plate was changed to assemble a 12V battery corresponding to the LN1 size of the EN standard, and the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material in the lead-acid battery for evaluation (p/n The number of negative electrode plates (and bag-shaped separators), the number of positive electrode plates, the amount of negative electrode active material paste filled into the negative electrode current collector, and the positive electrode collection of positive electrode active material paste are adjusted so that the ratio) is 1.67. A lead-acid battery for evaluation was assembled in the same manner as in Experimental Example 1, except that the amount of filling into the electric body was changed. Next, in the same manner as in Experimental Example 1, the total pore volume, porosity, density, and p/n ratio of the positive electrode active material were measured. The results are shown in Table 1.

<実験例9、10>
評価用鉛蓄電池における負極活物質の質量に対する正極活物質の質量の比(p/n比)が表1に示す値となるように、負極活物質ペーストの負極集電体への充填量、及び、正極活物質ペーストの正極集電体への充填量を変更したことを除き、実験例3と同様にして評価用鉛蓄電池を組み立てた。次いで、実験例1と同様にして、正極活物質の全細孔容積、多孔度及び密度、並びに、p/n比を測定した。結果を表1に示す。
<Experimental Examples 9 and 10>
The filling amount of the negative electrode active material paste into the negative electrode current collector so that the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material (p/n ratio) in the lead-acid battery for evaluation becomes the value shown in Table 1, and A lead-acid battery for evaluation was assembled in the same manner as in Experimental Example 3, except that the amount of positive electrode active material paste filled into the positive electrode current collector was changed. Next, in the same manner as in Experimental Example 1, the total pore volume, porosity, density, and p/n ratio of the positive electrode active material were measured. The results are shown in Table 1.

<実験例11>
正極板及び負極板のサイズを変更し、EN規格のLN1サイズに相当する12V電池を組み立てたこと、並びに、評価用鉛蓄電池における負極活物質の質量に対する正極活物質の質量の比(p/n比)が1.50となるように、負極板(及び袋状セパレータ)の枚数、正極板の枚数、負極活物質ペーストの負極集電体への充填量、及び、正極活物質ペーストの正極集電体への充填量を変更したことを除き、実験例3と同様にして評価用鉛蓄電池を組み立てた。次いで、実験例1と同様にして、正極活物質の全細孔容積、多孔度及び密度、並びに、p/n比を測定した。結果を表1に示す。
<Experiment example 11>
The size of the positive electrode plate and negative electrode plate was changed to assemble a 12V battery corresponding to the LN1 size of the EN standard, and the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material in the lead-acid battery for evaluation (p/n The number of negative electrode plates (and bag-shaped separators), the number of positive electrode plates, the amount of negative electrode active material paste filled in the negative electrode current collector, and the positive electrode collection of positive electrode active material paste are adjusted so that the ratio (ratio) is 1.50. A lead-acid battery for evaluation was assembled in the same manner as in Experimental Example 3, except that the amount of filling into the electric body was changed. Next, in the same manner as in Experimental Example 1, the total pore volume, porosity, density, and p/n ratio of the positive electrode active material were measured. The results are shown in Table 1.

<実験例12>
正極活物質ペーストを調製する際の、硫酸投入量及び添加材(補強用短繊維)の配合量を変更することにより、全細孔容積が0.1060g/mlであり、多孔度が45.9体積%であり、密度が3.85g/cmである正極活物質を備える正極板を作製して用いたこと、並びに、評価用鉛蓄電池における負極活物質の質量に対する正極活物質の質量の比(p/n比)が1.23となるように、正極板の枚数、及び、正極活物質ペーストの正極集電体への充填量を変更したことを除き、実験例1と同様にして評価用鉛蓄電池を組み立てた。次いで、実験例1と同様にして、正極活物質の全細孔容積、多孔度及び密度、並びに、p/n比を測定した。結果を表1に示す。
<Experimental Example 12>
By changing the amount of sulfuric acid and the amount of additive (reinforcing short fiber) added when preparing the positive electrode active material paste, a positive electrode plate having a total pore volume of 0.1060 g / ml, a porosity of 45.9 vol%, and a density of 3.85 g / cm 3 was prepared and used, and the number of positive electrode plates and the amount of positive electrode active material paste filled into the positive electrode current collector were changed so that the ratio (p / n ratio) of the mass of the positive electrode active material to the mass of the negative electrode active material in the evaluation lead acid battery was 1.23. The evaluation lead acid battery was assembled in the same manner as in Experimental Example 1. Next, the total pore volume, porosity, density, and p / n ratio of the positive electrode active material were measured in the same manner as in Experimental Example 1. The results are shown in Table 1.

<実験例13>
正極板及び負極板のサイズを変更し、EN規格のLN1サイズに相当する12V電池を組み立てたこと、並びに、評価用鉛蓄電池における負極活物質の質量に対する正極活物質の質量の比(p/n比)が1.25となるように、負極板(及び袋状セパレータ)の枚数、正極板の枚数、負極活物質ペーストの負極集電体への充填量、及び、正極活物質ペーストの正極集電体への充填量を変更したことを除き、実験例12と同様にして評価用鉛蓄電池を組み立てた。次いで、実験例1と同様にして、正極活物質の全細孔容積、多孔度及び密度、並びに、p/n比を測定した。結果を表1に示す。
<Experimental Example 13>
The size of the positive and negative plates was changed to assemble a 12V battery equivalent to the LN1 size of the EN standard, and the ratio of the mass of the positive active material to the mass of the negative active material in the lead-acid battery for evaluation (p/n ratio) was changed to 1.25. Except for this, the number of negative plates (and bag-shaped separators), the number of positive plates, the amount of negative active material paste filled into the negative current collector, and the amount of positive active material paste filled into the positive current collector were changed. The lead-acid battery for evaluation was assembled in the same manner as in Experimental Example 12. Next, the total pore volume, porosity, density, and p/n ratio of the positive active material were measured in the same manner as in Experimental Example 1. The results are shown in Table 1.

Figure 2024044860000002
Figure 2024044860000002

<評価>
(寿命試験A)
各実験例の評価用鉛蓄電池について、25℃の温度環境下で、下記(I)を繰り返し行い、放電時の末期電圧が7.2Vとなるまでの総放電量Xを比較することにより、寿命性能を評価した。評価は、実験例3の評価用鉛蓄電池の上記総放電量Xを100とする相対評価とした。結果を表2に示す。
(I):下記条件(1)で放電を行った後、下記条件(2)で充電を行う。
条件(1):放電電流=25A、放電時間=240秒間
条件(2):充電電圧=14.8V、充電時間=600秒間
<Evaluation>
(Life test A)
For the lead-acid battery for evaluation in each experimental example, the following (I) was repeatedly performed in a temperature environment of 25°C, and the total discharge amount X until the final voltage at the time of discharge reached 7.2V was compared. Performance was evaluated. The evaluation was a relative evaluation in which the total discharge amount X of the evaluation lead acid battery of Experimental Example 3 was set to 100. The results are shown in Table 2.
(I): After discharging under the following condition (1), charging is performed under the following condition (2).
Condition (1): Discharge current = 25A, discharge time = 240 seconds Condition (2): Charging voltage = 14.8V, charging time = 600 seconds

(寿命試験B)
各実験例の評価用鉛蓄電池について、25℃の温度環境下で、下記(II)を繰り返し行い、下記条件(3)での放電時の末期電圧が7.2Vとなるまでの総放電量Yを比較することにより、寿命性能を評価した。評価は、実験例3の評価用鉛蓄電池の上記総放電量Yを100とする相対評価とした。結果を表2に示す。
(II):上記条件(1)での放電と上記条件(2)での充電とをこの順でそれぞれ3回繰り返した後、下記条件(3)での放電と下記条件(4)での充電とをこの順で行う。
条件(3):放電電流=25A、放電時間=600秒間
条件(4):充電電圧=14.8V、充電時間=1500秒間
(Life Test B)
For the evaluation lead-acid batteries of each experimental example, the following (II) was repeatedly performed in a temperature environment of 25° C., and the life performance was evaluated by comparing the total discharge amount Y until the terminal voltage during discharge under the following condition (3) reached 7.2 V. The evaluation was a relative evaluation in which the total discharge amount Y of the evaluation lead-acid battery of Experimental Example 3 was set to 100. The results are shown in Table 2.
(II): Discharging under the above condition (1) and charging under the above condition (2) are repeated three times in this order, and then discharging under the following condition (3) and charging under the following condition (4) are performed in this order.
Condition (3): Discharge current = 25 A, discharge time = 600 seconds Condition (4): Charge voltage = 14.8 V, charge time = 1500 seconds

(寿命試験C)
各実験例(ただし実験例12及び13は除く)の評価用鉛蓄電池について、40℃の温度環境下で、下記(III)を繰り返し行い、定格コールドクランキング電流での連続放電時の末期電圧が7.2Vとなるまでの総放電量Zを比較することにより、寿命性能を評価した。評価は、実験例3の評価用鉛蓄電池の上記総放電量Zを100とする相対評価とした。結果を表2に示す。
(III):上記条件(1)での放電と上記条件(2)での充電とをこの順でそれぞれ480回繰り返した後、56時間放置してから、定格コールドクランキング電流(370A)で30秒間連続放電を行う。
(Life Test C)
The evaluation lead-acid batteries of each of the experimental examples (excluding experimental examples 12 and 13) were repeatedly subjected to the following (III) in a temperature environment of 40° C., and the life performance was evaluated by comparing the total discharge amount Z until the terminal voltage during continuous discharge at the rated cold cranking current reached 7.2 V. The evaluation was a relative evaluation with the total discharge amount Z of the evaluation lead-acid battery of experimental example 3 taken as 100. The results are shown in Table 2.
(III): Discharging under the above condition (1) and charging under the above condition (2) were repeated 480 times in this order, and then the battery was left for 56 hours, after which it was continuously discharged for 30 seconds at the rated cold cranking current (370 A).

(総放電量の比較)
上記寿命試験Aにおいて寿命に達するまでの総放電量Xと、上記寿命試験Bにおいて寿命に達するまでの総放電量Yと、上記寿命試験Cにおいて寿命に達するまでの総放電量Zとから、総放電量の比(X/Z)、及び、比(Y/Z)を求めた。結果を表2に示す。
(Comparison of total discharge amount)
From the total discharge amount X until the life is reached in the above life test A, the total discharge amount Y until the life is reached in the above life test B, and the total discharge amount Z until the life is reached in the above life test C, the total The ratio (X/Z) and the ratio (Y/Z) of discharge amount were determined. The results are shown in Table 2.

Figure 2024044860000003
Figure 2024044860000003

1…鉛蓄電池、9…負極、10…正極、11…セパレータ、12…負極集電体、13…負極活物質、14…正極集電体、15…正極活物質。 1...lead-acid battery, 9...negative electrode, 10...positive electrode, 11...separator, 12...negative electrode current collector, 13...negative electrode active material, 14...positive electrode current collector, 15...positive electrode active material.

Claims (6)

負極活物質を含む負極と、正極活物質を含む正極と、を備え、
前記正極活物質の全細孔容積が0.100g/ml以下であり、
前記負極活物質の質量に対する前記正極活物質の質量の比が1.50以上である、鉛蓄電池。
comprising a negative electrode containing a negative electrode active material and a positive electrode containing a positive electrode active material,
The total pore volume of the positive electrode active material is 0.100 g/ml or less,
A lead-acid battery, wherein the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material is 1.50 or more.
前記正極活物質の多孔度が45.0体積%以下である、請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the porosity of the positive electrode active material is 45.0% by volume or less. 前記負極活物質の質量に対する前記正極活物質の質量の比が1.60以上である、請求項1に記載の鉛蓄電池。 The lead-acid battery according to claim 1, wherein the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material is 1.60 or more. 前記正極活物質の密度が4.0g/cm以上である、請求項1に記載の鉛蓄電池。 2. The lead-acid battery according to claim 1, wherein the positive electrode active material has a density of 4.0 g/ cm3 or more. 内燃機関を備えない自動車の駐車中に必要となる電力の供給に用いられる、請求項1~4のいずれか一項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 4, which is used to supply power required while a vehicle without an internal combustion engine is parked. 内燃機関と、前記内燃機関を始動するための電力を供給する蓄電池と、駐車中に必要となる電力を供給する鉛蓄電池と、を備える自動車の、前記鉛蓄電池に用いられる、請求項1~4のいずれか一項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 4, which is used as the lead-acid battery of an automobile equipped with an internal combustion engine, a storage battery that supplies power to start the internal combustion engine, and a lead-acid battery that supplies power required while the automobile is parked.
JP2022150647A 2022-09-21 2022-09-21 lead acid battery Pending JP2024044860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022150647A JP2024044860A (en) 2022-09-21 2022-09-21 lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022150647A JP2024044860A (en) 2022-09-21 2022-09-21 lead acid battery

Publications (1)

Publication Number Publication Date
JP2024044860A true JP2024044860A (en) 2024-04-02

Family

ID=90480256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022150647A Pending JP2024044860A (en) 2022-09-21 2022-09-21 lead acid battery

Country Status (1)

Country Link
JP (1) JP2024044860A (en)

Similar Documents

Publication Publication Date Title
US6492059B1 (en) Separator for sealed lead-acid battery
CA2858055A1 (en) Energy storage devices comprising carbon-based additives and methods of making thereof
US20130029210A1 (en) Lead acid storage battery
EP3660960B1 (en) Lead-acid battery
JPWO2018229875A1 (en) Liquid lead storage battery
CN111279539A (en) Lead-acid battery
JP2024044860A (en) lead acid battery
US20050181284A1 (en) Energy storage devices
JP7331856B2 (en) lead acid battery
JP2024044862A (en) lead acid battery
JP2024044861A (en) lead acid battery
JP2024044871A (en) Lead-acid battery
JP2024044869A (en) Lead-acid battery
JP2024044872A (en) lead acid battery
JP2024044865A (en) Lead-acid battery
JP6996274B2 (en) Lead-acid battery
JP2024044863A (en) Lead-acid battery
JP7372914B2 (en) lead acid battery
JP2024035553A (en) lead acid battery
WO2019064854A1 (en) Lead acid storage battery
JP2024035653A (en) lead acid battery
JP6582636B2 (en) Lead acid battery
JP2021096900A (en) Lead acid battery
JP7196497B2 (en) Negative electrode for lead-acid battery and lead-acid battery
JP4488220B2 (en) Method for producing positive electrode plate for lead acid battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230105