JP2024041991A - Manufacturing method for copper clad laminates - Google Patents

Manufacturing method for copper clad laminates Download PDF

Info

Publication number
JP2024041991A
JP2024041991A JP2024006891A JP2024006891A JP2024041991A JP 2024041991 A JP2024041991 A JP 2024041991A JP 2024006891 A JP2024006891 A JP 2024006891A JP 2024006891 A JP2024006891 A JP 2024006891A JP 2024041991 A JP2024041991 A JP 2024041991A
Authority
JP
Japan
Prior art keywords
copper
conductor layer
region
clad laminate
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024006891A
Other languages
Japanese (ja)
Inventor
匠 下地
芳英 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2024006891A priority Critical patent/JP2024041991A/en
Publication of JP2024041991A publication Critical patent/JP2024041991A/en
Pending legal-status Critical Current

Links

Abstract

【課題】セミアディティブ法により配線パターンを形成する際に、配線の断面形状を矩形にしやすく、かつ、導体層の電流供給異常が生じにくい銅張積層板を提供する。【解決手段】銅張積層板1はベースフィルム10の表面に形成された導体層20を有する。導体層20は、MD方向に沿った一方または両方の縁の近傍領域である給電領域A1が、それ以外の全部または一部領域である配線形成領域A2よりも厚い。配線形成領域A2の導体層20が薄いので、セミアディティブ法により配線パターンを形成する際に、配線の断面形状を矩形にしやすい。また、給電領域A1の導体層20が厚いので、導体層20の電流供給異常が生じにくい。【選択図】図2[Problem] To provide a copper-clad laminate in which the cross-sectional shape of the wiring is easily made rectangular and current supply abnormalities in the conductor layer are unlikely to occur when a wiring pattern is formed by a semi-additive method. [Solution] A copper-clad laminate 1 has a conductor layer 20 formed on the surface of a base film 10. The conductor layer 20 has a power supply region A1, which is a region in the vicinity of one or both edges along the MD direction, thicker than a wiring formation region A2, which is all or part of the other region. Because the conductor layer 20 in the wiring formation region A2 is thin, it is easy to make the cross-sectional shape of the wiring rectangular when a wiring pattern is formed by a semi-additive method. Also, because the conductor layer 20 in the power supply region A1 is thick, current supply abnormalities in the conductor layer 20 are unlikely to occur. [Selected Figure] Figure 2

Description

本発明は、銅張積層板に関する。さらに詳しくは、本発明は、フレキシブルプリント配線板(FPC)などの製造に用いられる銅張積層板に関する。 The present invention relates to a copper-clad laminate. More specifically, the present invention relates to a copper-clad laminate used for manufacturing flexible printed wiring boards (FPC) and the like.

液晶パネル、ノートパソコン、デジタルカメラ、携帯電話などの電子機器には、樹脂フィルムの表面に配線パターンが形成されたフレキシブルプリント配線板が用いられる。 Flexible printed wiring boards, in which wiring patterns are formed on the surface of resin films, are used in electronic devices such as liquid crystal panels, notebook computers, digital cameras, and mobile phones.

フレキシブルプリント配線板は、セミアディティブ法、サブトラクティブ法などにより、銅張積層板に配線パターンを形成することで得られる。特に、微細配線の形成や、高精度の配線寸法が要求される場合には、セミアディティブ法が用いられる。 A flexible printed wiring board is obtained by forming a wiring pattern on a copper-clad laminate using a semi-additive method, a subtractive method, or the like. In particular, the semi-additive method is used when forming fine interconnects or requiring highly accurate interconnect dimensions.

セミアディティブ法によるフレキシブルプリント配線板の製造は、つぎの手順で行なわれる。まず、銅張積層板の導体層の表面にレジスト層を形成する。つぎに、レジスト層のうち配線パターンを形成する部分に開口部を形成する。つぎに、レジスト層の開口部から露出した導体層を陰極として電解めっきを行ない、配線部を形成する。つぎに、レジスト層を除去し、フラッシュエッチングなどにより配線部以外の導体層を除去する。これにより、フレキシブルプリント配線板が得られる。 Manufacturing of a flexible printed wiring board by the semi-additive method is carried out in the following steps. First, a resist layer is formed on the surface of the conductor layer of the copper-clad laminate. Next, an opening is formed in a portion of the resist layer where a wiring pattern will be formed. Next, electrolytic plating is performed using the conductor layer exposed through the opening of the resist layer as a cathode to form a wiring portion. Next, the resist layer is removed, and the conductor layer other than the wiring portion is removed by flash etching or the like. Thereby, a flexible printed wiring board is obtained.

セミアディティブ法では、銅張積層板の導体層のうち不要部分はエッチングにより除去される。導体層が厚すぎるとエッチング時間が長くなり、配線部のエッチングも進行することから、配線の断面形状を矩形にすることが困難になる。そのため、配線の断面形状を矩形にするという観点からは、銅張積層板の導体層は薄い方が好ましい。 In the semi-additive method, unnecessary portions of the conductor layer of the copper-clad laminate are removed by etching. If the conductor layer is too thick, the etching time becomes long and the etching of the wiring portion also progresses, making it difficult to make the cross-sectional shape of the wiring rectangular. Therefore, from the viewpoint of making the cross-sectional shape of the wiring rectangular, it is preferable that the conductor layer of the copper-clad laminate is thin.

しかし、導体層が薄いと電解めっきにより配線部を形成する際に問題が生じることがある。すなわち、電解めっきにより配線部を形成するには、導体層の縁部に電極端子を接続し、導体層に給電する。ここで、導体層が薄いと電気抵抗が高いため、十分な電流を流すことが難しい。また、導体層のうち電極端子と接触する部分が高電圧となり、導体層の溶解や異常析出が生じ、電流供給の障害となることがある。 However, if the conductor layer is thin, problems may occur when forming wiring portions by electrolytic plating. That is, in order to form a wiring part by electrolytic plating, an electrode terminal is connected to the edge of the conductor layer and power is supplied to the conductor layer. Here, if the conductor layer is thin, the electrical resistance is high, making it difficult to flow a sufficient current. Further, a portion of the conductor layer that comes into contact with the electrode terminal is exposed to a high voltage, which may cause melting or abnormal deposition of the conductor layer, which may impede current supply.

そこで、電解めっきにおける電流密度を低く設定することで、導体層の溶解などを防止することが行なわれている。例えば、特許文献1には、厚さ10nmのニッケルクロム合金膜と厚さ100nmの銅層とを有する基板にセミアディティブ法により配線を形成するにあたり、電流密度を1A/dmとすることが記載されている。しかし、電流密度が低すぎると、安定した電解めっきが困難になる。 Therefore, current density in electrolytic plating is set low to prevent the conductor layer from dissolving. For example, Patent Document 1 describes that when forming wiring by a semi-additive method on a substrate having a 10 nm thick nickel chromium alloy film and a 100 nm thick copper layer, the current density is set to 1 A/dm2. has been done. However, if the current density is too low, stable electrolytic plating becomes difficult.

特開2010-108964号公報Japanese Patent Application Publication No. 2010-108964

本発明は上記事情に鑑み、セミアディティブ法により配線パターンを形成する際に、配線の断面形状を矩形にしやすく、かつ、導体層の電流供給異常が生じにくい銅張積層板を提供することを目的とする。 In view of the above-mentioned circumstances, an object of the present invention is to provide a copper-clad laminate that makes it easy to make the cross-sectional shape of the wiring rectangular when forming a wiring pattern by a semi-additive method, and that is less likely to cause abnormal current supply to the conductor layer. shall be.

本発明の銅張積層板は、ベースフィルムの表面に形成された導体層を有し、前記導体層は、MD方向に沿った一方または両方の縁の近傍領域である給電領域が、それ以外の全部または一部領域である配線形成領域よりも厚いことを特徴とする。 The copper-clad laminate of the present invention has a conductor layer formed on the surface of the base film, and the conductor layer has a power feeding area that is a region near one or both edges along the MD direction, and a power feeding area that is a region near one or both edges along the MD direction. It is characterized by being thicker than the wiring formation region, which is all or part of the region.

本発明によれば、配線形成領域の導体層が薄いので、セミアディティブ法により配線パターンを形成する際に、配線の断面形状を矩形にしやすい。また、給電領域の導体層が厚いので、導体層の電流供給異常が生じにくい。 According to the present invention, since the conductor layer in the wiring formation region is thin, it is easy to make the cross-sectional shape of the wiring rectangular when forming the wiring pattern by the semi-additive method. Furthermore, since the conductor layer in the power supply region is thick, abnormality in current supply to the conductor layer is less likely to occur.

一実施形態に係る銅張積層板の部分拡大断面図である。FIG. 1 is a partially enlarged cross-sectional view of a copper-clad laminate according to an embodiment. 図(A)は一実施形態に係る銅張積層板の平面図である。図(B)は同銅張積層板の断面図である。Figure (A) is a plan view of a copper-clad laminate according to one embodiment. Figure (B) is a cross-sectional view of the same copper-clad laminate. セミアディティブ法によるフレキシブルプリント配線板の製造手順を示す説明図である。It is an explanatory view showing a manufacturing procedure of a flexible printed wiring board by a semi-additive method. 図(B)は第2実施形態の銅張積層板の断面である。図(B)は第3実施形態の銅張積層板の断面である。図(B)は第4実施形態の銅張積層板の断面である。Figure (B) is a cross section of the copper-clad laminate of the second embodiment. Figure (B) is a cross section of the copper-clad laminate of the third embodiment. Figure (B) is a cross section of the copper-clad laminate of the fourth embodiment. 銅張積層板の製造手順を示す説明図である。FIG. 2 is an explanatory diagram showing a manufacturing procedure of a copper-clad laminate. 他の実施形態の製造手順を示す説明図である。It is an explanatory view showing a manufacturing procedure of other embodiments.

つぎに、本発明の実施形態を図面に基づき説明する。
〔銅張積層板〕
図1に示すように、本発明の一実施形態に係る銅張積層板1は、ベースフィルム10と、ベースフィルム10の表面に形成された導体層20とからなる。
Next, embodiments of the present invention will be described based on the drawings.
[Copper-clad laminate]
As shown in FIG. 1, a copper-clad laminate 1 according to an embodiment of the present invention includes a base film 10 and a conductor layer 20 formed on the surface of the base film 10.

ベースフィルム10としてポリイミドフィルム、液晶ポリマー(LCP)フィルムなどの樹脂フィルムを用いることができる。特に限定されないが、ベースフィルム10の厚さは10~100μmが一般的である。 As the base film 10, a resin film such as a polyimide film or a liquid crystal polymer (LCP) film can be used. Although not particularly limited, the thickness of the base film 10 is generally 10 to 100 μm.

導体層20は、スパッタリングなどの乾式成膜法により成膜される金属層21と、電解めっきにより成膜される銅めっき被膜22とからなる。金属層21と銅めっき被膜22とはベースフィルム10の表面にこの順に積層されている。 The conductor layer 20 includes a metal layer 21 formed by a dry film forming method such as sputtering, and a copper plating film 22 formed by electrolytic plating. The metal layer 21 and the copper plating film 22 are laminated in this order on the surface of the base film 10.

金属層21は下地金属層21aと銅薄膜層21bとからなる。下地金属層21aと銅薄膜層21bとはベースフィルム10の表面にこの順に積層されている。一般に、下地金属層21aはニッケル、クロム、またはニッケルクロム合金からなる。下地金属層21aはなくてもよい。銅薄膜層21bはベースフィルム10の表面に下地金属層21aを介して成膜されてもよいし、下地金属層21aを介さずベースフィルム10の表面に直接成膜されてもよい。下地金属層21aの厚さは5~50nmが一般的であり、銅薄膜層21bの厚さは50~400nmが一般的である。 The metal layer 21 consists of a base metal layer 21a and a copper thin film layer 21b. The base metal layer 21a and the copper thin film layer 21b are laminated in this order on the surface of the base film 10. Generally, base metal layer 21a is made of nickel, chromium, or a nickel-chromium alloy. The base metal layer 21a may not be provided. The copper thin film layer 21b may be formed on the surface of the base film 10 via the base metal layer 21a, or may be directly formed on the surface of the base film 10 without using the base metal layer 21a. The thickness of the base metal layer 21a is generally 5 to 50 nm, and the thickness of the copper thin film layer 21b is generally 50 to 400 nm.

図2(A)および図2(B)に示すように、銅張積層板1の主面は給電領域A1と配線形成領域A2とを有する。導体層20は、給電領域A1が配線形成領域A2よりも厚くなっている。後述のごとく、セミアディティブ法により銅張積層板1を加工する際には、給電領域A1に電解めっきの電極端子を接続し、配線形成領域A2に配線パターンを形成する。 As shown in FIGS. 2(A) and 2(B), the main surface of the copper-clad laminate 1 has a power feeding area A1 and a wiring forming area A2. In the conductor layer 20, the power feeding area A1 is thicker than the wiring forming area A2. As will be described later, when processing the copper-clad laminate 1 by the semi-additive method, an electrode terminal for electrolytic plating is connected to the power supply area A1, and a wiring pattern is formed in the wiring formation area A2.

給電領域A1は銅張積層板1のMD方向(Machine Direction)に沿った縁の近傍の帯状領域である。本実施形態の銅張積層板1は左右両方の縁に沿った2つの給電領域A1を有する。配線形成領域A2は給電領域A1以外の全部または一部領域である。本実施形態では、配線形成領域A2は2つの給電領域A1の間の帯状領域である。 The power supply area A1 is a band-shaped area near the edge of the copper-clad laminate 1 along the MD direction (Machine Direction). The copper-clad laminate 1 of this embodiment has two power feeding areas A1 along both left and right edges. The wiring formation area A2 is all or a part of the area other than the power supply area A1. In this embodiment, the wiring formation area A2 is a strip-shaped area between the two power supply areas A1.

なお、本実施形態の銅張積層板1は配線形成領域A2と給電領域A1との間に中間領域を有する。この意味において、配線形成領域A2は給電領域A1以外の一部領域である。導体層20は、中間領域において、給電領域A1側から配線形成領域A2側に向かって徐々に薄くなっている。中間領域は実質的に存在しなくてもよい。すなわち、配線形成領域A2と給電領域A1との間で、導体層20の厚さが階段状に変化してもよい。この場合、配線形成領域A2は給電領域A1以外の全部領域である。 Note that the copper-clad laminate 1 of this embodiment has an intermediate region between the wiring formation region A2 and the power supply region A1. In this sense, the wiring formation area A2 is a partial area other than the power supply area A1. The conductor layer 20 gradually becomes thinner in the intermediate region from the power supply region A1 side toward the wiring formation region A2 side. The intermediate region may be substantially absent. That is, the thickness of the conductor layer 20 may change stepwise between the wiring formation region A2 and the power supply region A1. In this case, the wiring formation area A2 is the entire area other than the power supply area A1.

一の給電領域A1の幅寸法は、電解めっきの電極端子を接続できる幅であればよく、特に限定されないが5~50mmである。配線形成領域A2は、通常、銅張積層板1の主面の大部分を占める。特に限定されないが、配線形成領域A2は給電領域A1よりも幅広である。中間領域は狭い方が好ましい。特に限定されないが、中間領域は給電領域A1よりも幅狭であることが好ましい。 The width dimension of one power supply area A1 may be any width that can connect an electrode terminal for electrolytic plating, and is not particularly limited, but is 5 to 50 mm. The wiring formation area A2 usually occupies most of the main surface of the copper-clad laminate 1. Although not particularly limited, the wiring formation area A2 is wider than the power supply area A1. It is preferable that the intermediate region be narrow. Although not particularly limited, it is preferable that the intermediate region is narrower than the power supply region A1.

セミアディティブ法により銅張積層板1を加工すればフレキシブルプリント配線板を製造できる。なお、長尺帯状の銅張積層板1を用いれば、ロールツーロール方式で銅張積層板1を加工できる。図3にセミアディティブ法によるフレキシブルプリント配線板の製造手順を示す。具体的には、銅張積層板1はつぎの手順で加工される。 A flexible printed wiring board can be manufactured by processing the copper-clad laminate 1 using a semi-additive method. Note that if a long strip-shaped copper-clad laminate 1 is used, the copper-clad laminate 1 can be processed by a roll-to-roll method. FIG. 3 shows the manufacturing procedure of a flexible printed wiring board using a semi-additive method. Specifically, the copper clad laminate 1 is processed in the following steps.

(1)まず、銅張積層板1の導体層20の表面にレジスト層31を形成する。ここで、レジスト層31は配線形成領域A2に形成する。給電領域A1の導体層20は露出させた状態にする。 (1) First, a resist layer 31 is formed on the surface of the conductor layer 20 of the copper-clad laminate 1. Here, the resist layer 31 is formed in the wiring formation area A2. The conductor layer 20 in the power supply area A1 is left exposed.

(2)つぎに、レジスト層31のうち配線パターンを形成する部分に開口部を形成する。 (2) Next, an opening is formed in a portion of the resist layer 31 where a wiring pattern is to be formed.

(3)つぎに、レジスト層31の開口部から露出した導体層20を陰極として電解めっきを行ない、めっき層32を積層する。ここで、導体層20の給電領域A1に電解めっきの電極端子を接続し、導体層20に給電する。 (3) Next, electrolytic plating is performed using the conductor layer 20 exposed through the opening of the resist layer 31 as a cathode, and the plating layer 32 is laminated. Here, an electroplated electrode terminal is connected to the power supply area A1 of the conductor layer 20, and power is supplied to the conductor layer 20.

(4)つぎに、レジスト層31を除去し、フラッシュエッチングなどにより配線部以外の導体層20を除去する。これにより、配線形成領域A2に配線パターンが形成される。なお、その後、給電領域A1(および中間領域)などの不要部分を切除して、フレキシブルプリント配線板の個片を得てもよい。 (4) Next, the resist layer 31 is removed, and the conductor layer 20 other than the wiring portion is removed by flash etching or the like. As a result, a wiring pattern is formed in the wiring formation area A2. Note that, after that, unnecessary portions such as the power feeding area A1 (and the intermediate area) may be cut out to obtain individual pieces of the flexible printed wiring board.

工程(3)の電解めっきでは、導体層20の給電領域A1に電極端子を接続する。給電領域A1の導体層20は厚いので、電気抵抗が高くなく、十分な電流を流すことができる。また、導体層20のうち電極端子と接触する部分が高電圧となりにくく、導体層20の溶解や異常析出といった電流供給異常が生じにくい。 In the electroplating step (3), an electrode terminal is connected to the power supply area A1 of the conductor layer 20. Since the conductor layer 20 in the power supply area A1 is thick, the electrical resistance is not high and a sufficient current can flow therethrough. In addition, the portion of the conductor layer 20 that comes into contact with the electrode terminal is less likely to have a high voltage, and current supply abnormalities such as melting or abnormal precipitation of the conductor layer 20 are less likely to occur.

導体層20の電流供給異常を抑制するという観点からは、給電領域A1の導体層20は厚いほど好ましい。具体的には、給電領域A1の導体層20の平均厚さは0.5μm以上が好ましく、0.6μm以上がより好ましく、1.0μm以上がさらに好ましい。なお、導体層20の電流供給異常を抑制するという観点からは、導体層20の平均厚さに上限はない。ただし、セミアディティブ法により加工される銅張積層板1の導体層20の平均厚さは、一般に、5μm以下である。 From the viewpoint of suppressing current supply abnormalities in the conductor layer 20, it is preferable that the conductor layer 20 in the power supply area A1 is thicker. Specifically, the average thickness of the conductor layer 20 in the power feeding area A1 is preferably 0.5 μm or more, more preferably 0.6 μm or more, and even more preferably 1.0 μm or more. Note that from the viewpoint of suppressing abnormality in current supply to the conductor layer 20, there is no upper limit to the average thickness of the conductor layer 20. However, the average thickness of the conductor layer 20 of the copper-clad laminate 1 processed by the semi-additive method is generally 5 μm or less.

工程(4)において、導体層20の不要部分はエッチングにより除去される。配線形成領域A2の導体層20は薄いので、エッチング時間を短くでき、配線部のエッチングの進行を小さくできる。そのため、配線の断面形状を矩形にしやすい。 In step (4), unnecessary portions of the conductor layer 20 are removed by etching. Since the conductor layer 20 in the wiring formation region A2 is thin, the etching time can be shortened and the progress of etching of the wiring portion can be reduced. Therefore, it is easy to make the cross-sectional shape of the wiring rectangular.

配線の断面形状を矩形にするという観点からは、配線形成領域A2の導体層20は薄いほど好ましい。具体的には、配線形成領域A2の導体層20の平均厚さは0.5μm以下(または0.5μm未満)が好ましく、0.4μm以下がより好ましく、0.2μm以下がさらに好ましい。 From the viewpoint of making the cross-sectional shape of the wiring rectangular, it is preferable that the conductor layer 20 in the wiring formation area A2 be thinner. Specifically, the average thickness of the conductor layer 20 in the wiring formation region A2 is preferably 0.5 μm or less (or less than 0.5 μm), more preferably 0.4 μm or less, and even more preferably 0.2 μm or less.

導体層20の厚さは蛍光X線膜厚計により測定できる。導体層20、特に銅めっき被膜22は、電解めっきの際の電流集中や電流密度の不均一などに起因して、不可避的に厚さにばらつきが生じる。導体層20の「平均厚さ」とは、蛍光X線膜厚計により所定間隔で測定した厚さの平均値を意味する。 The thickness of the conductor layer 20 can be measured using a fluorescent X-ray film thickness meter. The conductor layer 20, particularly the copper plating film 22, inevitably has variations in thickness due to current concentration and non-uniform current density during electrolytic plating. The "average thickness" of the conductor layer 20 means the average value of the thicknesses measured at predetermined intervals using a fluorescent X-ray film thickness meter.

給電領域A1の導体層20の厚さのばらつきの範囲(最大値から最小値までの範囲)は、平均厚さの±20%以下が好ましく、±15%以下がより好ましく、±10%以下がさらに好ましい。同様に、配線形成領域A2の導体層20の厚さのばらつきの範囲は、平均厚さの±20%以下が好ましく、±15%以下がより好ましく、±10%以下がさらに好ましい。 The range of variation in thickness of the conductor layer 20 in the power supply area A1 (range from maximum to minimum) is preferably ±20% or less of the average thickness, more preferably ±15% or less, and even more preferably ±10% or less. Similarly, the range of variation in thickness of the conductor layer 20 in the wiring formation area A2 is preferably ±20% or less of the average thickness, more preferably ±15% or less, and even more preferably ±10% or less.

(その他の実施形態)
導体層20は、図2(B)に示すようにベースフィルム10の片面のみに形成されてもよいし、図4(A)に示すようにベースフィルム10の両面に形成されてもよい。ベースフィルム10の両面に導体層20が形成された銅張積層板2を加工すれば、両面に配線パターンが形成されたフレキシブルプリント配線板が得られる。
(Other embodiments)
The conductor layer 20 may be formed on only one side of the base film 10 as shown in FIG. 2(B), or may be formed on both sides of the base film 10 as shown in FIG. 4(A). By processing the copper-clad laminate 2 in which the conductor layers 20 are formed on both sides of the base film 10, a flexible printed wiring board in which wiring patterns are formed on both sides can be obtained.

図2(B)に示すように、銅張積層板1の両方の縁に導体層20が厚い給電領域A1を設ければ、両方の給電領域A1に電解めっきの電極端子を接続できる。そのため、配線形成領域A2の電流密度を均一にしやすい。一方、図4(B)に示すように、銅張積層板3の一方の縁のみに導体層20が厚い給電領域A1を設けてもよい。そうすれば、配線形成領域A2が広くなる。 As shown in FIG. 2(B), if power supply areas A1 with thick conductor layers 20 are provided on both edges of the copper-clad laminate 1, electrolytically plated electrode terminals can be connected to both power supply areas A1. Therefore, it is easy to make the current density in the wiring formation region A2 uniform. On the other hand, as shown in FIG. 4(B), a power supply region A1 in which the conductor layer 20 is thick may be provided only on one edge of the copper-clad laminate 3. By doing so, the wiring formation area A2 becomes wider.

図4(C)に示す銅張積層板4のように、一方の縁のみに給電領域A1を有する導体層20をベースフィルム10の両面に形成してもよい。 As in the copper-clad laminate 4 shown in FIG. 4(C), the conductor layer 20 having the power feeding area A1 only on one edge may be formed on both sides of the base film 10.

〔銅張積層板の製造方法〕
つぎに、図5に基づき、銅張積層板1の製造方法を説明する。
本実施形態の製造方法は電解めっき工程と切断工程とを有する。電解めっき工程において銅張積層板中間品1iを得た後に、切断工程において銅張積層板最終品1fを得る。なお、本明細書において銅張積層板最終品1fは銅張積層板1と同義である。
[Method for manufacturing copper-clad laminates]
Next, a method for manufacturing the copper-clad laminate 1 will be explained based on FIG. 5.
The manufacturing method of this embodiment includes an electrolytic plating step and a cutting step. After obtaining the copper-clad laminate intermediate product 1i in the electrolytic plating process, the final copper-clad laminate product 1f is obtained in the cutting process. In addition, in this specification, the copper-clad laminate final product 1f has the same meaning as the copper-clad laminate 1.

ロールツーロール方式のスパッタリング装置を用いれば、長尺帯状のベースフィルム10の表面に金属層21を成膜できる。以下、ベースフィルム10の表面に金属層21を成膜したものを基材11と称する。 If a roll-to-roll type sputtering device is used, the metal layer 21 can be formed on the surface of the long strip-shaped base film 10. Hereinafter, the metal layer 21 formed on the surface of the base film 10 will be referred to as the base material 11.

(1)電解めっき工程
ロールツーロール方式のめっき装置を用いれば、長尺帯状の基材11の表面に銅めっき被膜22を成膜できる。これにより、長尺帯状の銅張積層板中間品1iが得られる。
(1) Electrolytic plating process If a roll-to-roll type plating apparatus is used, the copper plating film 22 can be formed on the surface of the long strip-shaped base material 11. As a result, a long belt-shaped copper-clad laminate intermediate product 1i is obtained.

めっき装置は、ロールツーロールにより長尺帯状の基材11を搬送しつつ、基材11に対して電解めっきを行なう装置である。めっき装置はロール状に巻回された基材11を繰り出す供給装置と、めっき後の基材11(銅張積層板中間品1i)をロール状に巻き取る巻取装置とを有する。供給装置と巻取装置との間の搬送経路には、前処理槽、めっき槽、後処理槽が配置されている。基材11はめっき槽内を搬送されつつ、電解めっきよりその表面に銅めっき被膜22が成膜される。 The plating apparatus is an apparatus that performs electrolytic plating on the base material 11 while conveying the long strip-shaped base material 11 by roll-to-roll. The plating apparatus includes a supply device that feeds out the base material 11 wound into a roll, and a winding device that winds up the base material 11 after plating (copper-clad laminate intermediate product 1i) into a roll. A pre-treatment tank, a plating tank, and a post-treatment tank are arranged on the conveyance path between the supply device and the winding device. While the base material 11 is being transported through the plating bath, a copper plating film 22 is formed on its surface by electrolytic plating.

めっき槽には銅めっき液が貯留されている。銅めっき液は水溶性銅塩を含む。銅めっき液に一般的に用いられる水溶性銅塩であれば特に限定されず用いられる。銅めっき液は硫酸を含んでもよい。硫酸の添加量を調整することで、銅めっき液のpHおよび硫酸イオン濃度を調整できる。銅めっき液は一般的にめっき液に添加される添加剤を含んでもよい。添加剤として、ブライトナー成分、レベラー成分、ポリマー成分、塩素成分などから選択された1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 Copper plating solution is stored in the plating tank. The copper plating solution contains a water-soluble copper salt. Any water-soluble copper salt commonly used in copper plating solutions may be used without particular limitation. The copper plating solution may contain sulfuric acid. By adjusting the amount of sulfuric acid added, the pH and sulfate ion concentration of the copper plating solution can be adjusted. The copper plating solution may also include additives that are typically added to plating solutions. As the additive, one type selected from a brightener component, a leveler component, a polymer component, a chlorine component, etc. may be used alone, or two or more types may be used in combination.

めっき槽内を搬送される基材11は銅めっき液に浸漬されている。また、めっき槽の内部には基材11の主面に対向するようにアノード41が配置されている。基材11をカソードとし、アノード41との間に電流を流すことで、基材11の表面に銅めっき被膜22を成膜できる。 The substrate 11 transported through the plating tank is immersed in the copper plating solution. An anode 41 is disposed inside the plating tank so as to face the main surface of the substrate 11. The substrate 11 serves as a cathode, and a current is passed between the substrate 11 and the anode 41, forming a copper plating film 22 on the surface of the substrate 11.

基材11とアノード41との間には遮蔽板42が配置されている。遮蔽板42は絶縁性の板である。遮蔽板42の素材は、特に限定されないが、絶縁性を有し銅めっき液に浸食されにくい樹脂、セラミックスなどが好適である。遮蔽板42として表裏を貫通する複数の孔を有するパンチングボードを用いることができる。遮蔽板42の孔から電流が漏洩するため、遮蔽板42は電流を完全に遮蔽することなく、電流を適度に遮蔽する。そのため、基材11のうち遮蔽板42と対向する領域においても、銅めっき被膜22を成膜できる。 A shielding plate 42 is arranged between the base material 11 and the anode 41. The shielding plate 42 is an insulating plate. The material of the shielding plate 42 is not particularly limited, but resins, ceramics, etc., which have insulating properties and are not easily corroded by copper plating solution, are suitable. As the shielding plate 42, a punching board having a plurality of holes passing through the front and back sides can be used. Since current leaks from the holes in the shielding plate 42, the shielding plate 42 does not completely shield the current, but moderately shields the current. Therefore, the copper plating film 22 can be formed even in the region of the base material 11 that faces the shielding plate 42 .

本実施形態の遮蔽板42は、基材11よりも幅狭であり、TD方向(図5における左右方向)の中央に配置されている。遮蔽板42により中央領域の電流が遮蔽されるため、基材11の中央領域における電流密度は左右の端領域における電流密度よりも低くなる。そのため、銅めっき被膜22は中央領域が薄くなり、端領域が厚くなる。 The shielding plate 42 of this embodiment is narrower than the base material 11, and is arranged at the center in the TD direction (left-right direction in FIG. 5). Since the current in the central region is shielded by the shielding plate 42, the current density in the central region of the base material 11 is lower than the current density in the left and right end regions. Therefore, the copper plating film 22 becomes thinner in the central region and thicker in the end regions.

銅めっき被膜22が厚く成膜された領域は、金属層21と合わせた導体層20も厚くなる。銅めっき被膜22が薄く成膜された領域は、金属層21と合わせた導体層20も薄くなる。以下、導体層20が厚い領域を厚膜領域A3といい、導体層20が薄い領域を薄膜領域A4という。 In the region where the copper plating film 22 is thickly formed, the conductor layer 20 combined with the metal layer 21 is also thick. In the area where the copper plating film 22 is thinly formed, the conductor layer 20 together with the metal layer 21 is also thin. Hereinafter, the region where the conductor layer 20 is thick will be referred to as a thick film region A3, and the region where the conductor layer 20 is thin will be referred to as a thin film region A4.

厚膜領域A3および薄膜領域A4は、いずれも、銅張積層板中間品1iのMD方向に沿った帯状の領域である。本実施形態の銅張積層板中間品1iは左右両方の端に2つの厚膜領域A3を有する。2つの厚膜領域A3の間に薄膜領域A4が配置されている。 Both the thick film region A3 and the thin film region A4 are belt-shaped regions along the MD direction of the copper-clad laminate intermediate product 1i. The copper-clad laminate intermediate product 1i of this embodiment has two thick film regions A3 at both left and right ends. A thin film region A4 is arranged between two thick film regions A3.

後述のごとく、切断工程において銅張積層板中間品1iを切断した後は、厚膜領域A3は給電領域A1となり、薄膜領域A4は配線形成領域A2となる。そのため、厚膜領域A3の導体層20の厚さは給電領域A1に合わせて設定される。また、薄膜領域A4の導体層20の厚さは配線形成領域A2に合わせて設定される。すなわち、厚膜領域A3の導体層20の平均厚さは0.5μm以上が好ましく、0.6μm以上がより好ましく、1.0μm以上がさらに好ましい。薄膜領域A4の導体層20の平均厚さは0.5μm以下(または0.5μm未満)が好ましく、0.4μm以下がより好ましく、0.2μm以下がさらに好ましい。 As will be described later, after the copper-clad laminate intermediate product 1i is cut in the cutting process, the thick film region A3 becomes the power supply region A1, and the thin film region A4 becomes the wiring formation region A2. Therefore, the thickness of the conductor layer 20 in the thick film region A3 is set in accordance with the power supply region A1. Further, the thickness of the conductor layer 20 in the thin film region A4 is set in accordance with the wiring formation region A2. That is, the average thickness of the conductor layer 20 in the thick film region A3 is preferably 0.5 μm or more, more preferably 0.6 μm or more, and even more preferably 1.0 μm or more. The average thickness of the conductor layer 20 in the thin film region A4 is preferably 0.5 μm or less (or less than 0.5 μm), more preferably 0.4 μm or less, and even more preferably 0.2 μm or less.

銅めっき被膜22の厚さは電解めっきにおける電流密度とめっき時間とにより調整できる。また、薄膜領域A4と厚膜領域A3とにおける銅めっき被膜22の厚さの差異は、遮蔽板42の電流の遮蔽力に依存する。遮蔽板42の電流の遮蔽力は、例えば、開孔率で調整できる。ここで、開孔率とは遮蔽板42の主面の面積に対する孔の総面積の割合を意味する。開孔率を高くするほど電流の遮蔽力を弱めることができる。開孔率を低くするほど電流の遮蔽力を強めることができる。 The thickness of the copper plating film 22 can be adjusted by adjusting the current density and plating time in electrolytic plating. Further, the difference in the thickness of the copper plating film 22 between the thin film region A4 and the thick film region A3 depends on the current shielding power of the shield plate 42. The current shielding power of the shielding plate 42 can be adjusted by, for example, the aperture ratio. Here, the aperture ratio means the ratio of the total area of holes to the area of the main surface of the shielding plate 42. The higher the aperture ratio is, the weaker the current shielding power can be. The lower the porosity, the stronger the current shielding power.

薄膜領域A4および厚膜領域A3の幅寸法および位置は遮蔽板42の幅寸法および位置に依存する。遮蔽板42の幅寸法を大きくすれば薄膜領域A4の幅寸法を大きくでき、遮蔽板42の幅寸法を小さくすれば薄膜領域A4の幅寸法を小さくできる。遮蔽板42の位置により薄膜領域A4の位置を調整できる。 The width dimension and position of the thin film region A4 and the thick film region A3 depend on the width dimension and position of the shielding plate 42. By increasing the width of the shielding plate 42, the width of the thin film area A4 can be increased, and by decreasing the width of the shielding plate 42, the width of the thin film area A4 can be decreased. The position of the thin film area A4 can be adjusted by the position of the shielding plate 42.

(2)切断工程
つぎに、銅張積層板中間品1iをスリッターで長手方向に切断する。本実施形態では銅張積層板中間品1iを厚膜領域A3における特定の位置(図5における一点鎖線の位置)で切断する。これにより、銅張積層板中間品1iの端部を除去する。
(2) Cutting process Next, the copper-clad laminate intermediate product 1i is cut in the longitudinal direction with a slitter. In this embodiment, the copper-clad laminate intermediate product 1i is cut at a specific position in the thick film region A3 (the position indicated by the dashed-dotted line in FIG. 5). As a result, the ends of the copper-clad laminate intermediate product 1i are removed.

(3)銅張積層板最終品
銅張積層板中間品1iを切断すると銅張積層板最終品1fが得られる。銅張積層板最終品1fは、導体層20が厚い給電領域A1と、導体層20が薄い配線形成領域A2とを有する。銅張積層板中間品1iの厚膜領域A3の残部が銅張積層板最終品1fの給電領域A1となる。銅張積層板中間品1iの薄膜領域A4が銅張積層板最終品1fの配線形成領域A2となる。本実施形態では、銅張積層板中間品1iの端部が除去され、給電領域A1の幅寸法が所定幅に整えられた銅張積層板最終品1fが得られる。
(3) Final copper-clad laminate product When the intermediate copper-clad laminate product 1i is cut, a final copper-clad laminate product 1f is obtained. The final product 1f of the copper-clad laminate has a power supply area A1 where the conductor layer 20 is thick and a wiring formation area A2 where the conductor layer 20 is thin. The remainder of the thick film area A3 of the intermediate copper clad laminate 1i becomes the power supply area A1 of the final copper clad laminate 1f. The thin film area A4 of the intermediate copper clad laminate 1i becomes the wiring forming area A2 of the final copper clad laminate 1f. In this embodiment, the end portion of the intermediate copper-clad laminate 1i is removed to obtain a final copper-clad laminate 1f in which the width of the power supply area A1 is adjusted to a predetermined width.

なお、電解めっき工程において、基材11の表裏両側にアノード41を配置すれば、基材11の両面に銅めっき被膜22を成膜できる。この場合、遮蔽板42も基材11の表裏両側に配置される。そうすれば、図4(A)に示す銅張積層板2が得られる。 In addition, if anodes 41 are placed on both the front and back sides of the substrate 11 in the electrolytic plating process, copper plating films 22 can be formed on both sides of the substrate 11. In this case, shielding plates 42 are also placed on both the front and back sides of the substrate 11. This results in the copper-clad laminate 2 shown in FIG. 4(A).

また、銅張積層板中間品1iの一方の厚膜領域A3をその中間位置で切断し、他方の厚膜領域A3(および中間領域)の全部を切除してもよい。そうすれば、図4(B)または図4(C)に示す銅張積層板3、4が得られる。 Alternatively, one thick film region A3 of the copper-clad laminate intermediate product 1i may be cut at an intermediate position, and the other thick film region A3 (and the middle region) may be entirely removed. By doing so, the copper-clad laminates 3 and 4 shown in FIG. 4(B) or FIG. 4(C) are obtained.

(その他の実施形態)
図6に示すように、電解めっき工程において、基材11とアノード41との間に複数の遮蔽板42をTD方向に並べて配置してもよい。隣り合う遮蔽板42の間には隙間があけられる。この隙間に対向する領域も厚膜領域A3となる。そのため、3つ以上の厚膜領域A3を有する導体層20を形成できる。図示の例では、2枚の遮蔽板42がTD方向に並べられている。両端および中央に3つの厚膜領域A3を有し、それらの間に2つの薄膜領域A4を有する導体層20を形成できる。
(Other embodiments)
As shown in FIG. 6, in the electrolytic plating process, a plurality of shielding plates 42 may be arranged side by side in the TD direction between the base material 11 and the anode 41. A gap is provided between adjacent shielding plates 42. The region facing this gap also becomes the thick film region A3. Therefore, the conductor layer 20 having three or more thick film regions A3 can be formed. In the illustrated example, two shielding plates 42 are arranged in the TD direction. A conductor layer 20 can be formed that has three thick film regions A3 at both ends and in the center and two thin film regions A4 between them.

この銅張積層板中間品1iは各厚膜領域A3における特定の位置で切断される。これにより、複数の(図示の例では2つの)銅張積層板最終品1fが得られる。 This copper-clad laminate intermediate product 1i is cut at a specific position in each thick film region A3. As a result, a plurality of (in the illustrated example, two) copper-clad laminate final products 1f are obtained.

なお、中央の厚膜領域A3の幅寸法が大きい場合には、中央の厚膜領域A3を2箇所で切断し、間の部分を除去すればよい。そうすれば、銅張積層板最終品1fの給電領域A1の幅寸法を所定幅に整えられる。 Note that if the width of the central thick film region A3 is large, the central thick film region A3 may be cut at two locations and the portion between them may be removed. By doing so, the width dimension of the power supply area A1 of the final product 1f of the copper-clad laminate can be adjusted to a predetermined width.

(共通の条件)
ベースフィルムとして、幅570mm、厚さ34μmの長尺帯状のポリイミドフィルム(宇部興産社製 Upilex)を用意した。ベースフィルムをマグネトロンスパッタリング装置にセットした。マグネトロンスパッタリング装置内にはニッケルクロム合金ターゲットと銅ターゲットとが設置されている。ニッケルクロム合金ターゲットの組成はCrが20質量%、Niが80質量%である。真空雰囲気下で、ベースフィルムの両面に、厚さ25nmのニッケルクロム合金からなる下地金属層を形成し、その上に厚さ100nmの銅薄膜層を形成した。
(Common conditions)
As a base film, a long belt-shaped polyimide film (Upilex, manufactured by Ube Industries, Ltd.) with a width of 570 mm and a thickness of 34 μm was prepared. The base film was set in a magnetron sputtering device. A nickel chromium alloy target and a copper target are installed in the magnetron sputtering device. The composition of the nickel-chromium alloy target is 20% by mass of Cr and 80% by mass of Ni. Under a vacuum atmosphere, a 25 nm thick base metal layer made of a nickel chromium alloy was formed on both sides of the base film, and a 100 nm thick copper thin film layer was formed thereon.

ロールツーロール方式のめっき装置を用いて基材の両面に銅めっき被膜を成膜して銅張積層板中間品を得た。めっき槽に貯留される銅めっき液は硫酸銅を120g/L、硫酸を70g/L、ブライトナー成分を16mg/L、レベラー成分を20mg/L、ポリマー成分を1,100mg/L、塩素成分を50mg/L含有する。ブライトナー成分としてビス(3-スルホプロピル)ジスルフィド(RASCHIG GmbH社製の試薬)を用いた。レベラー成分としてジアリルジメチルアンモニウムクロライド-二酸化硫黄共重合体(ニットーボーメディカル株式会社製 PAS-A―5)を用いた。ポリマー成分としてポリエチレングリコール-ポリプロピレングリコール共重合体(日油株式会社製 ユニルーブ50MB-11)を用いた。塩素成分として塩酸(和光純薬工業株式会社製の35%塩酸)を用いた。 A copper clad laminate intermediate product was obtained by forming a copper plating film on both sides of the base material using a roll-to-roll type plating device. The copper plating solution stored in the plating tank contains 120g/L of copper sulfate, 70g/L of sulfuric acid, 16mg/L of brightener component, 20mg/L of leveler component, 1,100mg/L of polymer component, and 1,100mg/L of chlorine component. Contains 50mg/L. Bis(3-sulfopropyl) disulfide (a reagent manufactured by RASCHIG GmbH) was used as a brightener component. Diallyldimethylammonium chloride-sulfur dioxide copolymer (PAS-A-5, manufactured by Nittobo Medical Co., Ltd.) was used as a leveler component. A polyethylene glycol-polypropylene glycol copolymer (Unilube 50MB-11, manufactured by NOF Corporation) was used as a polymer component. Hydrochloric acid (35% hydrochloric acid manufactured by Wako Pure Chemical Industries, Ltd.) was used as the chlorine component.

(実施例1~3)
電解めっきにおいて基材の中央部とアノードとの間に遮蔽板を配置し、基材のTD方向の中央部の幅約480mmの領域における銅めっき被膜が、両方の端領域における銅めっき被膜よりも薄くなるようにした。電解めっきにおける電流密度、めっき時間、および遮蔽板の開孔率を変化させ、中央領域および端領域における導体層の厚さが異なる銅張積層板中間品を3種類製造した。
(Examples 1 to 3)
In the electrolytic plating, a shielding plate was placed between the center of the substrate and the anode, so that the copper plating film in a region of about 480 mm width in the center of the substrate in the TD direction was thinner than the copper plating film in both end regions. By changing the current density in the electrolytic plating, the plating time, and the aperture ratio of the shielding plate, three types of intermediate copper-clad laminates with different thicknesses of the conductor layer in the center and end regions were produced.

蛍光X線膜厚計(エスアイアイ・ナノテクノロジー株式会社製、形式SFT9250)を用いて導体層の厚さを測定した。コリメータを直径0.5mmに設定し、測定点ごとの測定時間を30秒/点とした。銅張積層板中間品のTD方向に沿って1mm間隔で厚さを測定し、中央領域、端領域それぞれの平均厚さを求めた。導体層の厚さは表1に示すとおりである。 The thickness of the conductor layer was measured using a fluorescent X-ray film thickness meter (manufactured by SII Nano Technology Co., Ltd., model SFT9250). The collimator was set to a diameter of 0.5 mm, and the measurement time for each measurement point was 30 seconds/point. The thickness of the copper-clad laminate intermediate product was measured at 1 mm intervals along the TD direction, and the average thickness of each of the central region and end regions was determined. The thickness of the conductor layer is as shown in Table 1.

(比較例1)
電解めっきにおいて基材とアノードとの間に遮蔽板を配置せず、銅めっき被膜を成膜し、銅張積層板中間品を得た。すなわち、中央領域と端領域とで厚さに差異を設けなかった。導体層の厚さは表1に示すとおりである。
(Comparative example 1)
In electrolytic plating, a copper plating film was formed without placing a shielding plate between the base material and the anode, and an intermediate product of a copper-clad laminate was obtained. That is, there was no difference in thickness between the central region and the end regions. The thickness of the conductor layer is as shown in Table 1.

(比較例2)
電解めっきにおいて基材の両端部とアノードとの間に遮蔽板を配置し、基材のTD方向の中央部の幅約480mmの領域における銅めっき被膜が、両方の端領域における銅めっき被膜よりも厚くなるようにした。導体層の厚さは表1に示すとおりである。
(Comparative example 2)
In electrolytic plating, a shielding plate is placed between both ends of the base material and the anode, and the copper plating film in a region approximately 480 mm wide at the center in the TD direction of the base material is larger than the copper plating film at both end regions. I made it thicker. The thickness of the conductor layer is as shown in Table 1.

実施例1~3および比較例1、2で得られた銅張積層板中間品の両端をスリッターで切除し、幅500mmの銅張積層板最終品を得た。 Both ends of the intermediate copper-clad laminates obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were cut off using a slitter to obtain final copper-clad laminates with a width of 500 mm.

5種類の銅張積層板最終品をつぎの手順で加工した。銅張積層板最終品の両面にレジスト層を形成した。ここで、レジスト層は銅張積層板最終品の中央領域(幅約480mmの領域)に形成し、両方の端領域(幅約10mmの領域)の導体層を露出させた状態とした。レジスト層のうち配線パターンを形成する部分に開口部を形成した。銅張積層板最終品の両方の端領域にクリップ式めっき電極端子を取り付け、硫酸銅めっき浴中にて30分通電して配線パターンを形成した。ここで、電流密度1A/dmおよび3A/dmの2つの条件で配線パターンを形成した。 Five types of final copper-clad laminates were processed using the following procedure. Resist layers were formed on both sides of the final copper-clad laminate. Here, the resist layer was formed in the central region (an area with a width of about 480 mm) of the final copper-clad laminate, leaving the conductor layers in both end areas (an area with a width of about 10 mm) exposed. An opening was formed in a portion of the resist layer where a wiring pattern was to be formed. Clip-type plating electrode terminals were attached to both end regions of the final copper-clad laminate, and electricity was applied for 30 minutes in a copper sulfate plating bath to form a wiring pattern. Here, wiring patterns were formed under two conditions: current density of 1 A/dm 2 and 3 A/dm 2 .

配線パターンを形成した銅張積層板の電極端子付近を観察し、導体層の電流供給異常の有無を評価した。その結果を表1に示す。 The vicinity of the electrode terminals of the copper-clad laminate on which the wiring pattern was formed was observed, and the presence or absence of abnormality in current supply to the conductor layer was evaluated. The results are shown in Table 1.

Figure 2024041991000002
Figure 2024041991000002

表1より、電解めっきの電極端子が接続される端領域の導体層が厚いほど、導体層の電流供給異常が生じにくいことが分かる。端領域の導体層の平均厚さが1.0μmまたは0.6μmの場合は(実施例1、2)、電解めっきにおける電流密度を3A/dmとしても導体層の溶解および異常析出は確認されない。端領域の導体層の平均厚さが0.5μmの場合は(実施例3)、電解めっきにおける電流密度を3A/dmとすると導体層が僅かに溶解するが、電流密度を1A/dmとすれば導体層の溶解および異常析出は確認されない。端領域の導体層の平均厚さが0.2μmの場合は(比較例1、2)、電流密度を1A/dmとしても導体層の溶解または異常析出が生じる。 From Table 1, it can be seen that the thicker the conductor layer in the end region to which the electroplated electrode terminal is connected, the less likely the abnormality in current supply to the conductor layer will occur. When the average thickness of the conductor layer in the end region is 1.0 μm or 0.6 μm (Examples 1 and 2), no dissolution or abnormal precipitation of the conductor layer is observed even when the current density in electrolytic plating is 3 A/dm 2 . When the average thickness of the conductor layer in the end region is 0.5 μm (Example 3), if the current density in electrolytic plating is 3 A/dm 2 , the conductor layer will dissolve slightly, but if the current density is 1 A/dm 2 If so, no dissolution or abnormal precipitation of the conductor layer will be confirmed. When the average thickness of the conductor layer in the end region is 0.2 μm (Comparative Examples 1 and 2), dissolution or abnormal precipitation of the conductor layer occurs even at a current density of 1 A/dm 2 .

これより、導体層の電流供給異常を抑制するためには、銅張積層板の端領域の平均厚さを、0.5μm以上とすることが好ましく、0.6μm以上とすることがより好ましく、1.0μm以上とすることがさらに好ましいことが確認された。 From this, in order to suppress current supply abnormalities in the conductor layer, the average thickness of the end region of the copper-clad laminate is preferably 0.5 μm or more, more preferably 0.6 μm or more, It was confirmed that it is more preferable to set the thickness to 1.0 μm or more.

1 銅張積層板
10 ベースフィルム
20 導体層
21 金属層
21a 下地金属層
21b 銅薄膜層
22 銅めっき被膜
A1 給電領域
A2 配線形成領域
1 Copper-clad laminate 10 Base film 20 Conductor layer 21 Metal layer 21a Base metal layer 21b Copper thin film layer 22 Copper plating film A1 Power supply area A2 Wiring formation area

本発明は、銅張積層板の製造方法に関する。さらに詳しくは、本発明は、フレキシブルプリント配線板(FPC)などの製造に用いられる銅張積層板の製造方法に関する。 The present invention relates to a method for manufacturing a copper-clad laminate. More specifically, the present invention relates to a method for manufacturing a copper-clad laminate used for manufacturing flexible printed wiring boards (FPC) and the like.

本発明は上記事情に鑑み、セミアディティブ法により配線パターンを形成する際に、配線の断面形状を矩形にしやすく、かつ、導体層の電流供給異常が生じにくい銅張積層板の製造方法を提供することを目的とする。 In view of the above-mentioned circumstances, the present invention provides a method for manufacturing a copper-clad laminate that makes it easy to make the cross-sectional shape of the wiring rectangular when forming a wiring pattern by a semi-additive method, and that is less likely to cause abnormality in current supply to the conductor layer. The purpose is to

本発明の銅張積層板の製造方法は、ロールツーロールにより基材を搬送しつつ、電解めっきにより該基材の表面に銅めっき被膜を成膜して銅張積層板中間品を得る電解めっき工程と、前記銅張積層板中間品をスリッターで切断して銅張積層板最終品を得る切断工程と、を備え、前記電解めっき工程において、前記基材とアノードとの間に遮蔽板を配置して前記基材の所定領域における電流密度を低くすることで、MD方向に沿った帯状の厚膜領域および薄膜領域を有する導体層を形成し、前記切断工程において、前記銅張積層板中間品を前記厚膜領域で切断することで、MD方向に沿った縁の近傍領域である給電領域が、それ以外の全部または一部領域である配線形成領域よりも厚い前記導体層を有する前記銅張積層板最終品を形成することを特徴とする。The method for producing a copper-clad laminate of the present invention involves electrolytic plating to form an intermediate copper-clad laminate product by forming a copper plating film on the surface of the base material by electrolytic plating while conveying the base material by roll-to-roll. step, and a cutting step of cutting the copper-clad laminate intermediate product with a slitter to obtain a final copper-clad laminate product, and in the electrolytic plating step, a shielding plate is disposed between the base material and the anode. By lowering the current density in a predetermined region of the base material, a conductor layer having a band-shaped thick film region and a thin film region along the MD direction is formed, and in the cutting step, the copper clad laminate intermediate product is By cutting in the thick film region, the power supply region, which is a region near the edge along the MD direction, is thicker than the wiring formation region, which is all or a part of the other region. It is characterized by forming a final laminate product.

Claims (4)

ベースフィルムの表面に形成された導体層を有し、
前記導体層は、MD方向に沿った一方または両方の縁の近傍領域である給電領域が、それ以外の全部または一部領域である配線形成領域よりも厚く、
前記導体層は、前記給電領域の平均厚さが0.5μm以上であり、前記配線形成領域の平均厚さが0.5μm未満である
ことを特徴とする銅張積層板。
It has a conductor layer formed on the surface of the base film,
The conductor layer is thicker in a power supply region, which is a region near one or both edges along the MD direction, than a wiring formation region, which is all or a part of the other region;
The copper-clad laminate, wherein the conductor layer has an average thickness of 0.5 μm or more in the power supply region and an average thickness of less than 0.5 μm in the wiring formation region.
前記導体層は、前記給電領域の平均厚さが0.6μm以上である
ことを特徴とする請求項1記載の銅張積層板。
The copper-clad laminate according to claim 1, wherein the conductor layer has an average thickness of 0.6 μm or more in the power feeding area.
前記導体層は、前記配線形成領域の平均厚さが0.4μm以下である
ことを特徴とする請求項1記載の銅張積層板。
2. The copper-clad laminate according to claim 1, wherein the conductor layer has an average thickness of 0.4 μm or less in the wiring formation region.
前記給電領域の幅が5~50mmである
ことを特徴とする請求項1記載の銅張積層板。
The copper-clad laminate according to claim 1, wherein the width of the power feeding area is 5 to 50 mm.
JP2024006891A 2022-07-04 2024-01-19 Manufacturing method for copper clad laminates Pending JP2024041991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024006891A JP2024041991A (en) 2022-07-04 2024-01-19 Manufacturing method for copper clad laminates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022107535A JP2024006537A (en) 2022-07-04 2022-07-04 copper clad laminate
JP2024006891A JP2024041991A (en) 2022-07-04 2024-01-19 Manufacturing method for copper clad laminates

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022107535A Division JP2024006537A (en) 2022-07-04 2022-07-04 copper clad laminate

Publications (1)

Publication Number Publication Date
JP2024041991A true JP2024041991A (en) 2024-03-27

Family

ID=89540275

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022107535A Pending JP2024006537A (en) 2022-07-04 2022-07-04 copper clad laminate
JP2024006891A Pending JP2024041991A (en) 2022-07-04 2024-01-19 Manufacturing method for copper clad laminates

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2022107535A Pending JP2024006537A (en) 2022-07-04 2022-07-04 copper clad laminate

Country Status (1)

Country Link
JP (2) JP2024006537A (en)

Also Published As

Publication number Publication date
JP2024006537A (en) 2024-01-17

Similar Documents

Publication Publication Date Title
JP6993613B2 (en) Manufacturing method of copper-clad laminate
JP7107190B2 (en) Method for manufacturing copper-clad laminate
JP2019183249A (en) Anode shielding plate, electrolytic plating device, and method for manufacturing metal-clad laminate
JP7107189B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP2024041991A (en) Manufacturing method for copper clad laminates
JP7276025B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP7415813B2 (en) Copper-clad laminate and method for manufacturing copper-clad laminate
JP7211184B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
KR102525404B1 (en) Copper clad laminate
JP7245420B2 (en) Preparation method for adhesion strength evaluation sample of copper-clad laminate
JP2022105808A (en) Copper clad laminate
JP7230564B2 (en) Method for manufacturing copper-clad laminate
JP7322678B2 (en) Method for manufacturing copper-clad laminate
JP7151758B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP7245419B2 (en) Preparation method for adhesion strength evaluation sample of copper-clad laminate
KR102525403B1 (en) Copper clad laminate
WO2021200614A1 (en) Flexible printed wiring board and manufacturing method thereof
JP7409150B2 (en) Manufacturing method for copper clad laminates
TWI785257B (en) copper clad laminate
JP7409151B2 (en) Manufacturing method for copper clad laminates
JP2023112244A (en) Copper clad laminate and method for manufacturing copper clad laminate
JP7273366B2 (en) copper clad laminate
JP2022159627A (en) Copper-clad laminate and method for producing copper-clad laminate
JP2023058843A (en) Copper-clad laminate and method for producing copper-clad laminate
JP2023005364A (en) Copper-clad laminate and method for producing copper-clad laminate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240119