JP2024041757A - インターフェイスのためのキャビティに近接した粒子の誘電泳動固定化 - Google Patents

インターフェイスのためのキャビティに近接した粒子の誘電泳動固定化 Download PDF

Info

Publication number
JP2024041757A
JP2024041757A JP2023209795A JP2023209795A JP2024041757A JP 2024041757 A JP2024041757 A JP 2024041757A JP 2023209795 A JP2023209795 A JP 2023209795A JP 2023209795 A JP2023209795 A JP 2023209795A JP 2024041757 A JP2024041757 A JP 2024041757A
Authority
JP
Japan
Prior art keywords
electrodes
fluid
membrane
counter electrode
various implementations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023209795A
Other languages
English (en)
Inventor
エー. ウェッブ,マーク
A Webb Mark
エス. チュールジアン,マーク
S Chooljian Marc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mekonos Inc
Original Assignee
Mekonos Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mekonos Inc filed Critical Mekonos Inc
Publication of JP2024041757A publication Critical patent/JP2024041757A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/026Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/005Dielectrophoresis, i.e. dielectric particles migrating towards the region of highest field strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/42Apparatus for the treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0424Dielectrophoretic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical or biological applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N2001/4038Concentrating samples electric methods, e.g. electromigration, electrophoresis, ionisation

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Electrochemistry (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Electrostatic Separation (AREA)

Abstract

【課題】流体及び非線形電場環境での直接操作のために単一細胞を分離するための改善されたシステムを提供すること。【解決手段】流体内の粒子を固定化するための装置及びその装置を操作するための方法が開示される。装置は、コンパートメントから流体を分離するための膜と、膜に近接して配置される1つ以上の電極と、対電極であって、1つ以上の電極及び対電極は、1つ以上の電極及び対電極にわたって非線形電場を生成するように構成されている、対電極と、1つ以上の電極及び対電極にわたって交流(AC)を提供することにより、1つ以上の電極と対電極との間を流れる流体内に懸濁された粒子を固定化するために振動非線形電場を生成する電源とを含む。膜は、コンパートメントから膜を横切って入るように構成された鋭利部材で、固定された粒子を機械的に操作できるようにするための開口を有することができる。【選択図】図1

Description

本発明はインターフェイスのためのキャビティに近接した粒子の誘電泳動固定化に関する。
誘電泳動(DEP)は、非線形電場において、生体分子又は細胞等の電気的に中性であるが分極可能な物質が電場勾配で力を受けた場合に起こる電気物理現象である。これは、粒子にわたる電場の変動のために、粒子の一方の側が他方の側よりも大きな双極子力を受けるために生じる。DEP力は名目上下記の式で与えられる。
Figure 2024041757000002
ここで、rは粒子の半径であり、εは流体の誘電率であり、Eは電場であり、fCMは、流体と粒子との間での誘電率の差に依存する複雑値であり、DEP力が正か又は負かを決定するクラウジウス・モソッティ因子である。
流体環境中で中性粒子又は生物学的分子を捕捉及び分類する能力に基づいて、DEPは、例えば、マイクロ流体ベースの用途における単一細胞分析のために利用できる。例えば、インピーダンス又は蛍光特性化(又は任意の非接触評価技術)ための単一細胞を分離するためにDEPを適用することによる標準的な生化学的アッセイにおけるDEPの使用は、流体環境で実証されてきた。しかしながら、細胞を直接操作するために単一細胞を単離するためにDEPを用いることは、例えば、限定されないが、流体及び非線形電場環境における細胞の局所操作のためのプロービングツールの導入により、付加的な課題を提起する。したがって、流体及び非線形電場環境での直接操作のために単一細胞を分離するためにDEPを用いることができる新たなシステム及び技術プラットフォームが必要である。
様々な実施形態によれば、粒子を固定化するように構成された装置が提供される。当該装置は、コンパートメントから流体を分離するための膜と、前記膜に近接して配置される1つ以上の電極と、対電極であって、前記1つ以上の電極及び該対電極は、前記1つ以上の電極及び該対電極にわたって非線形電場を生成するように構成されている、対電極と、前記1つ以上の電極及び前記対電極にわたって交流(AC)を提供することにより、前記1つ以上の電極と前記対電極との間を流れる前記流体内に懸濁された粒子を固定化するために振動非線形電場(oscillating non-linear electric field)を生成する電源と、を含む。
様々な実施形態によれば、粒子を固定化するための装置を操作するための方法が提供される。当該方法は、電源を提供するステップと、コンパートメントから流体を分離するように構成された膜を提供するステップと、前記膜に近接して配置される1つ以上の電極を提供するステップと、対電極を提供するステップであって、前記1つ以上の電極及び該対電極は、前記1つ以上の電極及び該対電極にわたって非線形電場を生成するように構成されている、ステップと、前記電源を介して、前記1つ以上の電極及び前記対電極にわたって交流(AC)を供給することにより、振動非線形電場を生成するステップと、前記振動非線形電場により生成される誘電泳動力を介して、前記1つ以上の電極と前記対電極との間を流れる前記流体内に懸濁された粒子を固定化するステップと、を含む。
様々な実施形態によれば、粒子を固定化するように構成された装置が提供される。当該装置は、1つ以上の電極及び対電極であって、該1つ以上の電極と該対電極との間を流れる流体内に懸濁された粒子を固定化するために非線形電場を生成するように構成されている、1つ以上の電極及び対電極と、前記1つ以上の電極の表面に近接して配置される膜であって、前記1つ以上の電極の該表面は前記対電極に対して遠位にある、膜と、を含み、前記膜はコンパートメントから前記流体を分離するために構成され、該コンパートメントに配置される鋭利部材を挿入できるようにするように構成された開口を有する。
様々な実施形態によれば、粒子を固定化するための装置を操作するための方法が提供される。当該方法は、電源を提供するステップと、1つ以上の電極及び対電極を提供するステップであって、該1つ以上の電極及び該対電極は、該1つ以上の電極と該対電極との間を流れる流体内に懸濁された粒子を固定化するために非線形電場を生成するように構成されている、ステップと、前記1つ以上の電極の表面に近接して配置される膜を提供するステップであって、前記1つ以上の電極の該表面は前記対電極に対して遠位にあり、該膜はコンパートメントから前記流体を分離するために構成され、該コンパートメントに配置される鋭利部材を挿入できるようにするように構成された開口を有する、ステップと、前記電源を介して、前記1つ以上の電極及び前記対電極にわたって交流(AC)を供給することにより、振動非線形電場を生成するステップと、前記振動非線形電場により生成される誘電泳動力を介して、前記流体内に懸濁された粒子を固定化するステップと、を含む。
様々な実施形態によれば、粒子を固定化のための装置を操作するための方法が提供される。当該方法は、電源を提供するステップと、コンパートメントから流体を分離するように構成された膜を提供するステップと、前記膜の表面に近接して配置される一対の電極を提供するステップであって、該一対の電極は該電極にわたって非線形電場を生成するように構成されている、ステップと、前記電源を介して、前記電極にわたって交流(AC)を供給することにより、振動非線形電場を生成するステップと、前記振動非線形電場により生成される誘電泳動力を介して、前記電極間を流れる前記流体内に懸濁された粒子を固定化するステップと、を含む。当該方法は対電極を提供するステップも含む。当該方法は、前記膜の表面に近接して配置される第3の電極を提供するステップも含む。
これらの及び他の態様及び実施を以下で詳細に説明する。前述の情報及び以下の詳細な説明は、様々の態様及び実施の説明のための例を含み、クレームされた態様及び実施の性質及び特徴を理解するための概観又は枠組みを提供する。図面は、様々の態様及び実施の説明及びさらなる理解を提供し、本明細書に組み込まれるとともにその一部を構成する。
添付の図面は縮尺通りに記載することを意図していない。様々な図面における同様の参照番号及び名称は同様の要素を示す。明瞭にするために、全ての構成要素が全ての図面に表記されているわけではない。
図1A~図1Dは、様々な実施形態に係る、粒子を固定化するために構成された装置の概略図を示す。 図2A~図2Dは、様々な実施形態に係る、粒子を固定化するために構成された装置の概略図を示す。 図3A~図3Dは、様々な実施形態に係る、粒子を固定化するために構成された装置の概略図を示す。 図4は、様々な実施形態に係る、粒子の位置操作のために構成された装置の概略図を示す。 図5A~図5Dは、様々な実施形態に係る、粒子の位置操作のために構成された装置400の様々な概略図である。 図6A~図6Dは、様々な実施形態に係る、粒子を固定化するために構成された装置の様々な構成を示す。 図7A~図7Cは、様々な実施形態に係る、複数の粒子を固定化するために構成された装置の様々な構成の概略図を示す。 図8は、様々な実施形態に係る、粒子を固定化するための装置に関するシミュレーション結果を示すグラフ図である。 図9は、様々な実施形態に係る、粒子を固定化するための装置のための分析の結果を示す三次元チャートである。 図10は、様々な実施形態に係る、粒子を固定化するための装置を操作する例示の方法のためのフローチャートである。 図11は、様々な実施形態に係る、粒子の固定化のための装置を操作する例示の方法のためのフローチャートである。 図12は、様々な実施形態に係る、粒子の固定化のための装置を操作する例示の方法のためのフローチャートである。
本明細書に記載されているように、「粒子」という用語は、個々に又は共に物理的特性を有する物体のグループ又は物体を意味する。粒子は、限定されないが、生細胞、ウイルス、油滴、リポソーム、ミセル、逆ミセル、タンパク質凝集体、ポリマー、界面活性剤アセンブリ又はそれらの組み合わせを含む混合物を含むことができる組成を有する。粒子は、個々の又は複数の細胞(又は複数の細胞)、ウイルス(又は複数のウイルス)、細菌又は複数の細菌又は生きているか死んでいるかを問わず任意の生物であり得る。粒子は、流体中で自由に浮遊することができる。例えば、流体中で懸濁でき、接着性を有することができ、形状を変化させることができ、合体することができ、分離することができる等である。
「孔」という用語は、2つの領域の間の開口を意味する。「ペイロード」という用語は任意の化学化合物、ポリマー、生物学的高分子又は組み合わせを含む。「信号」という用語は、DC、AC又は周波数成分の重畳を含み得る電圧、電流、周波数、位相又は持続時間の変動等の任意の電気的事象を含む。「干渉」という用語は、信号又は信号成分の有効な伝達又は読み出しを妨げるか、妨害する又はさもなければ劣化させるか若しくは制限する任意の電磁的妨害を意味する。「膜」という用語は2つの領域を隔てる任意の仕切り又は物理的障壁を意味する。「問い合わせ」という用語は、例えば、材料サンプリング、物理的プロービング、検知、ペイロード送達、相互作用、物理的接触、毛細管ウィッキング及び/又は挿入等の活動を意味する。
本開示は概して流体及び非線形電場環境及びその様々な(例えば、マイクロ流体)用途における中性粒子又は生物学的分子の局所操作のための装置に関する。とりわけ、本開示は、分子又は細胞を局所的に操作するために、コンパートメント(又はキャビティ)に近接する、生物学的物体、単一細胞又は細胞群の誘電泳動ベース(DEPベース)の固定化のための装置に関する。様々な実施では、コンパートメント又はキャビティは、水性流体、水性緩衝液、有機溶媒、疎水性流体又はガスのうちの1つで充填できる。様々な実施では、コンパートメントは、コンパートメントの外の流体と混和しない流体をコンパートメント内に含むことができる。様々な実施では、コンパートメントは非水性流体又は水性環境と互換性がないマイクロエレクトロニクスを含むことができる。
また、本開示は、微小電気機械システム(MEMS)ベースの構造を有する界面及び/又はプロービングツール及び/又はナノ細孔エレクトロポレーション(NEP)用途のための電極を介して、コンパートメントにわたって個々の物体又は細胞を局所的に操作するための装置に関する。本明細書に開示の技術に基づく好適な用途は、原位置生物学的インテロゲーション、細胞工学、単一細胞ゲノミクス、生物学的試料の電気化学的及び物理的インテロゲーション(例えば、パッチクランプ又は原子間力顕微鏡(AFM))、液滴マイクロ流体工学(例えば、液滴流体のサンプリング又はマイクロインジェクション)及び任意の他の適切な用途を含む。本技術を適用可能な好適な用途は個別の生物製剤のインテロゲーション、例えば、細胞、生細胞、ウイルス、油滴、リポソーム、ミセル、逆ミセル、タンパク質凝集体、ポリマー、界面活性剤アセンブリ又はそれらの組み合わせのインテロゲーション又はプロービングを含む。
本明細書に開示の技術は、水性マイクロ流体環境を、非水性環境、例えば、疎水性溶媒を用いることができる非導電性の流体又はプロセスにあり得るエレクトロニクスと連結することに関する。開示の技術は、大きな規模で流体環境内の孤立粒子を局所操作することを提供する一方で、高精度のMEMSコンポーネント又はエレクトロニクスを含むコンパートメントからのアクセスを可能にすることを開示する。これは、MEMSプロセスをマイクロ流体プロセスと連結させて、懸濁粒子の高スループットの処理及びインテロゲーションを可能にすることによって行うことができる(粒子又は複数の粒子と言う用語は、「生物学的物体、複数の物体又は細胞」及び非生物学的物体を意味し得る)。とりわけ、本明細書に記載の技術は、MEMS構造を含む電子コンポーネントを含むコンパートメント(隔離されたコンパートメント又はキャビティ)から流体を分離する膜に隣接して流れる流体内の1つ以上の粒子を動かないようにし且つ固定化する、高スループットでDEPベースの粒子固定化(トラップ)装置に関する。本明細書に記載のように、キャビティから流体環境内へのアクセスを提供するために、膜を貫通する1つ以上の膜開口(本明細書では「孔」又は「マイクロ孔」ともいう)を用いることができる。例えば、開口は、コンパートメント内で膜にわたって存在する個々のMEMS/電気構造と個々に相互作用される及び/又は相互作用されるために流体内に懸濁された1つ以上の粒子へのアクセスを提供するために用いることができる。本明細書に記載されているように、膜は、限定されないが、疎水性又は親水性コーティングを通じた表面パターン化及び/又は膜の両側にある両方の流体媒体の圧力制御を含む流体力学的戦略を用いて、2つの非混和性流体間の安定した液体/気体界面又は液体-液体界面を維持するように設計することもできる。この界面は、キャビティを加圧若しくは減圧することにより又は孔のサイズ若しくは形状を変更することにより(例えば、有効な毛細管半径を小さくするために孔内に中空のマイクロニードルを挿入することにより)、静電気を介して表面エネルギーを変調させることを通じて、キャビティの内外に流体を意図的に移動させるように制御することもできる。
DEPを媒介とする粒子の固定化技術(例えば、とラッピング技術)を、単一細胞レベルで(例えば、単一細胞分解能で)の個々の生物学的分子又は細胞の高度な局所操作と相互作用させるプラットフォームを提供することにより、例えば、遺伝物質の抽出及び/又は個々の細胞への薬物分子の送達のための高度に制御可能なアプローチを単一細胞のためだけでなく、高スループットで、信頼性が高く、再現可能な方法で実現できる。
本明細書に記載されているように、流体内の粒子を固定化するための装置の様々な実施を説明する。様々な実施では、装置は、例えばマイクロ流体流路内の流体をコンパートメントから分離するための膜を含む。様々な実施では、装置は、コンパートメントから離れて膜上に配置される1つ以上の電極と、1つ以上の電極とは異なる表面積を有する対電極とを含む。様々な実施では、1つ以上の電極及び対電極(本明細書では「DEP電極」ともいう)は、1つ以上の電極及び対電極にわたって非線形電場を生成するように構成されている。様々な実施では、装置は、1つ以上の電極及び/又は対電極にわたって信号を提供及び検知するための電気入出力源も含む。様々な実施では、信号は、1つ以上の電極と対電極との間を流れる流体内で懸濁された粒子を固定化するために振動非線形電場を生成するためのAC電圧である。
装置の様々な実施において、膜は、固定化された粒子の機械的操作を可能にするための開口を有する。様々な実施では、機械的操作は、コンパートメントから膜を横切って入るように構成された鋭利部材で粒子をプロービングすることを含む。様々な実施では、鋭利部材はMEMS構造又はナノ電気機械システム(NEMS)構造である。様々な実施では、鋭利部材は、針、ピラー又は中空チューブである。
様々な実施では、開示の技術は、流体媒体内に懸濁された個別の物体(例えば、個別の球状物体)の最適なインテロゲーションのために調整されたマイクロ流体膜ハイブリッドアーキテクチャを有する装置に関する。係る装置を用いることで、DEPを用いて、球状物体を多孔質膜を含む膜に近接して空間的に閉じ込めることができる。様々な実施では、膜内の孔は、膜にわたって流体交換を防止するために幾何学的且つ化学的に最適化/調整されている。装置の用途は、外部プローブによる流体環境内の別個の生物学的システムをインテロゲーションすることを含むことができる。さらに、本明細書に記載のマイクロ流体膜ハイブリッドアーキテクチャに関する技術は、典型的なMEMS製造方法を介して、より大きなデバイスアーキテクチャに統合することができる。例えば、MEMS製造方法により外部プローブを製造でき、コンパートメント内に配置することができる。
様々な実施では、装置は、孔(例えば、開口125、225a~d等)と共に局所化され、キャビティから捕獲された粒子へのアクセスを可能にする一連の電極(又は、1つ以上の電極のアレイ、例えば、一対の電極、3つの電極のセット、4つの電極のセット等)を含む。様々な実施では、孔は、孔の内壁をコーティングする化学処理によって疎水性になるように作られている。様々な実施では、膜のいずれかの側の孔のエッジ面及び/又は孔内部は、例えば、上記で列挙した任意の小分子、タンパク質、ペプチド、ペプトイド、ポリマー又は無機材料の任意の好適な組み合わせを含む、一連の材料クラスでコーティング/化学的に機能化されている。表面化学及びそれらの機能のいくつかの例が本明細書に含まれる。様々な実施形態によれば、孔の内部及び/又は膜の片側のコーティングは、水溶液が孔を通って漏れるのを防止するために、疎水性オルガノシラン、例えばフルオロシラン等の疎水性物質を含むことができる。様々な実施形態によれば、細胞が付着しないようにして、捕獲サイトから離れた場所での、例えば開口又は孔の近くでの非特異的な細胞の付着を防止するために、例えば、限定されないがポロキサマー又はポリ(2-ヒドロキシエチルメタクリレート)等の化学物質又は例えばウシ血清アルブミン等の任意の好適なタンパク質ブロッキング溶液を用いて表面をコーティングすることができる。表面コーティングの一部の例は、例えば、タンパク質、ペプチド、ポリマー、様々な長さの炭化水素鎖、細胞付着に加えてペイロード/検体付着防止のために用いることができるものの任意の組み合わせ等の生物学的又は有機的材料を含み得る。様々な実施形態によれば、このような表面コーティングは、分子ペイロード付着を防止するために、とりわけ、鋭利部材又は針の上に配置される分子ペイロードに関して用いられ得る。様々な実施形態によれば、膜の片側は、それらの面の効率的な濡れを確実にし、開口からの疎水性材料が流出するのを防止するために、ヒアルロン酸、酸化チタン、ポリエチレングリコール等の親水性材料でコーティングされている。様々な実施形態によれば、疎水性及び親水性流体を別々の開口、孔又はキャビティに分離するために、上記のアプローチの任意の組み合わせを用いることができる。
本明細書に開示する様々な実施は、特徴付け、サンプリング、ペイロード送達又は例えば、電気化学的、インピーダンス測定法、光学的方法及びMEMSベースの細胞操作等の技術を介した流体環境における変更のために生物学的物体及び/又は細胞を大量にトラッピングするためのユニークな能力を表す。本明細書で記載されているように、物理的及び材料的な特性及びパラメータ、例えば、孔(又は開口)のサイズ及び疎水性、電極のサイズ、流体媒体の導電性及び電極の動作周波数等は、用途及びインテロゲーションすべき生物学的物体又は細胞に基づいて最適化できる。本明細書で説明する技術の様々な実施では、装置は、捕獲/捕捉及びプロービング/インテロゲーション/操作の後で細胞を選択的にリリースできるように構成することができる。
さらに、本明細書で説明する様々な実施によれば、装置は、誘電泳動(DEP)力を利用することによって最適化することもできる。例えば、生成されるDEP力は、上述のDEP方程式にしたがう電場勾配の二乗に比例するため、1つ以上の電極及び対電極にわたって高度に非線形の電場を生成することができる。様々な実施では、サイズの差異及び/又は近接を通じて大きな電場勾配を生成する幾何学的形状を有する1つ以上の電極間に交流(AC)を印加することによって、高度に非線形の限られた電場を生成して生物学的物体又は細胞に作用させて、それを捕獲領域に固定化することができる。例えば、1つ以上の電極、例えば1対の電極が開口の周囲に配置される場合、開口にある電極間で物体を捕獲するためにDEP力を調整することができる。加えて、電極内の開口の壁が疎水性材料でコーティングされている場合、開口のコーティングされた内壁の接触角は、以下の式を介して流体の毛細管圧に関係し得る。
Figure 2024041757000003
式中、rは開口の半径であり、γは表面張力(水及び空気の場合、約72.75mN/m)であろ、θは接触角である。従来、90を超える接触角θは疎水性材料を表すのに対して、90を下回る接触角θは親水性材料を表す。例えば、疎水性シランコーティングを施すことにより接触角θを約130°まで増やすことにより、約4μm又は5μmの比較的大きな開口の場合、空気-水界面の毛細管圧力は40~60kPaに達する。本明細書で説明するように、開口の内壁上の疎水性コーティングは、流体が開口を通って水性側からMEMS又は他の電子部品を含むことができる空気が充填されたコンパートメントに流れるのを防止することができる。膜にわたる他の種類の流体相分離についても同じ原理があてはまり、膜の水性側又は非水性側が高圧又は低圧であるかに応じて、孔をそれぞれ疎水性又は親水性表面処理でパターン化できる。したがって、非線形電場を生成するように配置された1つ以上の電極及び対電極を有する装置は、流体内の生物学的物体又は細胞を捕獲、固定又は閉じ込め、精密な電子コンポーネントが流体への曝露により損なわれることなく、開口を介して、コンパートメント内に存在するMEMS構造によってプロービングされるように構成することができる。様々な実施では、装置は、同じ又は実質的に同様のサイズを有する1つ以上の電極及び対電極を有し、1つ以上の電極及び対電極は、流体内の生物学的物体又は細胞を捕獲、固定又は閉じ込め、精密な電子コンポーネントが流体への曝露により損なわれることなく、開口を介して、コンパートメント内に存在するMEMS構造によってプロービングされるように高度に非線形の電場を生成するように構成することができる。様々な実施では、捕獲サイト、例えば、開口又は孔のそれぞれは1つの電極、2つの電極、3つの電極、4つの電極等を含むことができる。様々な実施では、追加の電極は、物体、例えば、粒子又は細胞の存在下でのインピーダンス感知のために構成することができる。さらに、装置の製造は確立されたMEMS処理技術及びフォトリソグラフィーに基づく信頼性及び再現性が高い方法を用いて行うことができるため、装置の製造方法は拡張可能であるため、臨床的に適切な量で生物学的物体又は細胞を平行して固定化及びインテロゲーションすることができる。
図1A~図1Dは、本明細書で開示の様々な実施に係る、粒子を固定化するための装置の概略図を示す。図1Aは、様々な実施形態に係る、例示の装置100の概略上面図を示す。図1Aに示すように、装置100は開口125(本明細書では「孔」ともいう)、複数の電極120及び1つ以上の相互接続部130を含む。例えば、図示のように、複数の電極120はアレイ又はグリッド状に形成された複数の個別の異なる電極表面積を含むことができる。電極120をリング又は円形の電極として示しているが、電極120は、図6A~図6D及び図7A~図7Cに関して図示説明するように一対の電極620a、620b、620c、620d、720であってもいいし、様々な実施形態に係る、開口125に近接して配置される任意の数の電極セットであってもよい。したがって、電極120に関して以下でさらに説明する物理的、化学的、材料的なパラメータは、図6A~図6D及び図7A~図7Cに関して図示説明する一対の電極620a、620b、620c、620d、720のいずれにも適用可能である。
様々な実施では、電極120は約1nm~約50μmの厚さを有する。様々な実施では、電極120は約10nm~約5μm、約10nm~約10μm、約10nm~約10μm、約10nm~約5μm、約100nm~約4μm、約300nm~約3μm、約400nm~約5μm、約500nm~約5μmの厚さ(それらの間の任意の厚さの範囲を含む)を有する。
様々な実施では、電極120は十分な電気化学的安定性を有する透明導電材料又はドープ半導体材料のうちの少なくとも1つを含む。様々な実施では、透明導電材料はインジウム錫酸化物、グラフェン、ドープグラフェン、導電性ポリマー又は薄い金属層を含む。
図1Aに示すように、様々な実施では、複数の電極120(一連の電極120という)のそれぞれは開口125を有する。様々な実施では、複数の電極120の一部は開口125を有し、一部の電極120は開口125を有さない。様々な実施では、開口125を有する電極120と、開口125を有さない電極120とは、装置100の用途に基づいて戦略的に配置される。
様々な実施では、開口125は、約0.1nm~約1mmのサイズ(本明細書では、円形の場合には直径、非円形の形状の場合には横方向の寸法ともいう)を有する。様々な実施では、開口125は約1nm~約100nm、約100nm~約1μm、約1μm~約10μm、約100nm~約25μm、約1μm~約100μm又は約1μm~約50μmのサイズ(それらの間の任意のサイズ範囲を含む)を有する。
様々な実施では、複数の電極120内の電極120は、約1μmから約5mm、約1μmから約1mm、約10μmから約500μm又は約10μmから約1mmの電極間分離距離(それらの間の任意の分離距離範囲を含む)を2つの隣接する電極の間で有する。
様々な実施では、電極120及び1つ以上の相互接続部130は同じ材料を含む。様々な実施では、1つ以上の相互接続部130は、十分な電気化学的安定性を有する透明導電材料又はドープ半導体材料のうちの少なくとも1つを含む。様々な実施では、透明導電材料はインジウム錫酸化物、金属ナノワイヤメッシュ、グラフェン、ドープグラフェン、導電性ポリマー、薄い金属層、原子層金属膜又は任意の他の好適な透明導電体を含む。
図1Bは、装置100の電極120のうちの1つの拡大概略図を示す。様々な実施では、装置100は1つの電極120を含む。図1A及び図1Bに示すように、複数の電極120は、1つ以上の相互接続部130を介して互いにグリッド又はアレイ状に相互接続されている。様々な実施では、複数の電極120は任意の数の電極120を含むことができるグループ内で互いに相互接続されており、装置100は任意の数の電極120のグループを含むことができる。
図1Cは、様々な実施に係る、装置100の(図1Bの図に直交する)断面図を示す。図1Cに示すように、装置100は複数の電極120及び対電極140を含む。様々な実施形態によれば、複数の電極120のうちの各電極120は、図6A~図6D及び図7A~図7Cに関して図示説明するように一対の電極620a、620b、620c、620d、720であってもいいし、開口125に近接して配置される任意の数の電極セットであってもよい。様々な実施では、対電極140は、装置100の一部、実質的な部分、ほぼ全体又は全体にわたって広がる平面電極である。例えば、対電極140は複数の電極120のそれぞれよりも大きくてもよい。例えば、対電極140は個々の電極120のそれぞれの表面積よりも大きい表面積を有することができる。様々な実施では、対電極140と電極120との間の表面積の比は約1:1、1.1:1、2:1、5:1、10:1、50:1、100:1、100万:1又はそれらの間の任意の適切な比であり得る。
様々な実施では、電極120及び対電極140のサイズは同じであるか又は実質的に同様である。様々な実施では、電極120及び対電極140が同一平面に配置される。
図1Cに示すように、複数の電極120及び対電極140は、複数の電極120と対電極140との間の流路160を流れる流体(図1Cでは平行の矢印として示す)を受容するように構成されている。様々な実施では、流路160を流れる流体は、例えば、限定されないが、水性流体、水性緩衝液、有機溶媒、疎水性流体又はガスを含み得る。
様々な実施では、流体は、0~10mL/sの流速で流路160内を流れる。様々な実施では、流体は静止しているため、最低限の流速を有する。様々な実施では、流体は、約0.001mL/s~約0.1mL/s、約0.01mL/s~約1mL/s又は約0.1mL/s~約10mL/sの範囲(それらの間の任意の流速範囲を含む)で流れる。
図1Dは、装置100の複数の電極120のうちの1つの拡大断面図を示す。図1Dに示すように、装置100は、膜110、電極120、相互接続部130及びパッシベーション層150を含む。様々な実施では、膜110は電気絶縁材料を含む。様々な実施では、膜110は、限定されないが、窒化珪素、酸化珪素、金属酸化物、炭化物(例えば、SiCOH)、セラミック(例えば、アルミナ)及びポリマーを含む電気絶縁材料を含む。様々な実施態様では、膜110は、金属又はドープ半導体材料等の導電性材料を含む。様々な実施では、膜110は単層又は前述の材料のいずれかを含む多層積層体を有する複合層であり得る。
様々な実施では、流路160を形成する壁は、例えば、限定されないが、シリコン、ガラス、プラスチック又は例えば、流体層の構造材料として用いることができるポリ(ジメチルシロキサン)(PDMS)等の様々なエラストマーを含むことができる流路材料を含む。様々な実施では、流路160は約1nm~約1cm、約100nm~約100mm、約200nm~約1mm又は約200nm~約500μmの寸法(それらの間の任意の寸法を含む)を有する。様々な実施では、流路160の高さはプローブされる粒子サイズによって設定され、詰まりを回避するために、粒子の直径の少なくとも2倍でなければならない。
様々な実施では、膜110は約10nm~約1cmの厚さを有する。様々な実施では、膜は約10nm~約5mm、約10nm~約1mm、約10nm~約100μm、約50nm~約10μm、約50nm~約5μm、約100nm~約10μm、約100nm~約5μm又は約100nm~約2μmの厚さ(それらの間の任意の厚さ範囲を含む)を有する。様々な実施では、膜110又は膜を含む材料の任意の層をパターン化することができる。
図1Dは、流路160を流れる流体内で懸濁された粒子165も示す。様々な実施では、粒子165は、限定されないが、任意の生物学的物体、細胞又は非生物学的物体を含む様々の種類の粒子状物質又は球状物質を含み得る。様々な実施では、粒子165は、生物学的生物、生物学的構造、細胞、生細胞、ウイルス、油滴、リポソーム、ミセル、逆ミセル、タンパク質凝集体、ポリマー、界面活性剤集合体、小胞、微小小胞、タンパク質、分子、微小液滴又は非生物学的粒子状物質を含み得る。
様々な実施では、粒子165は約1nm~約1mmのサイズを有し得る。様々な実施では、粒子165は約10nm~約500μm、約50nm~約200μm、約200nm~約100μm、約300nm~約50μm、約100nm~約200μm、約100nm~約100μm又は約200nm~約50μmの間のサイズ(それらの間の任意のサイズ範囲を含む)を有し得る。
図1Dに示すように、様々な実施によれば、膜110は、流体がコンパートメント180に入ることから分離するように構成されている。図1Dは、装置100の開口125も示す。図1Dに示すように、開口125は膜110及び電極120を通って広がる。様々な実施では、開口125は、膜110、電極120及びパッシベーション層150を通って広がる。様々な実施では、開口125は、装置の動作に2つ以上の流体相(イオン性緩衝液及び空気又は水性及び有機溶媒等)を必要とする場合に、膜110にわたって2つの流体相を隔離するためのキャピラリー弁としての役割も果たし得る。図1Dの拡大断面図は、膜110の近くでコンパートメント180に配置された鋭利部材185も示す。
様々な実施では、鋭利部材185は、開口125内を移動し、膜110、電極120及びパッシベーション層150を通って移動するように構成されている。様々な実施では、開口125は、固定化された粒子165の機械的操作を可能にする。様々な実施では、機械的操作は、プロービング、挿入、貫通、電気穿孔、検知、材料の堆積、材料のサンプリング、さもなければ膜110、電極120及び/又はパッシベーション層150を横切って入るように構成された鋭利部材185で粒子165を操作することを含む。様々な実施では、機械的操作は鋭利部材185によって行われる。様々な実施では、鋭利部材185は、鋭利部材185が移動の前に、例えば、鋭利部材185を長手軸に沿って、例えば、図1Dに示すように垂直方向に下方に動かす前に存在するコンパートメント180から入る。様々な実施では、鋭利部材185は、約10nm~約50μmの長さを有する針、ピラー、中空管、ナノニードル又はマイクロニードルであり得る。様々な実施では、鋭利部材185は、微小電気機械システム(MEMS)法又はナノ電気機械システム(NEMS)法によって製造又は作成される。様々な実施形態では、コンパートメント180は、鋭利部材185を含むMEMS構造又はNEMS構造を含む。
様々な実施では、鋭利部材185は、膜110にわたってプローブの形態の第3の電極として動作するように構成できる。この第3の電極プローブは、検知又は作動のためにDC又はAC信号で、例えば、ナノ細孔エレクトロポレーション(NEP)用途のためのパルスDC信号又はインピーダンスを測定するための別個の周波数の低電力AC信号でバイアスされ得る。様々な実施では、DEP電極自体は下流フィルタリングを介してDEP信号から容易に分離されるように選択された別個の重畳AC信号又はDC信号も運び得る。
様々な実施では、開口125の壁は疎水性コーティング又は親水性コーティングを有する。様々な実施では、開口125は、開口125の内壁をコーティングする化学処理によって疎水性を有するように作られる。様々な実施では、膜のいずれかの側の開口125のエッジ面及び/又は開口125の壁の内側(内壁)(本明細書では「孔内部」ともいう)は、例えば、上記で列挙した任意の小分子、タンパク質、ペプチド、ペプトイド、ポリマー又は無機材料の任意の好適な組み合わせを含む、一連の材料クラスでコーティング/化学的に機能化されている。コーティングの様々の詳細は、図2A~図2Dに関して詳細に提供されている。
様々な実施形態によれば、疎水性コーティング又は親水性コーティングは、膜110及び/又は電極120の壁に配置(又は堆積)されて、流体がコンパートメントに入るのを防止する。様々な実施では、コーティングは関連する表面に化学的且つ共有結合的に付着されている。様々な実施では、疎水性コーティングは、アジド、オルガノシラン又はフルオロカーボン等の様々のクラスを含むことができる。様々な実施では、親水性コーティングは、任意の小分子、タンパク質、ペプチド、ペプトイド、ポリマー又は無機材料を含む一連の材料クラスを含むことができる。様々な実施では、開口125の壁はパターン化された親水性コーティング及び疎水性コーティングとの組み合わせを有する。
様々な実施では、疎水性コーティングは約95°~約165°の接触角を有する。様々な実施では、疎水性コーティングは約100°~約165°、約105°~約165°、約110°~約165°、約120°~約165°、約95°~約150°、約95°~約140°又は約95°~約130°の接触角(これらの間の任意の接触角範囲を含む)を有する。
様々な実施では、親水性コーティングは約20°~約80°の接触角を有する。様々な実施では、親水性コーティングは、約25°~約80°、約30°~約80°、約35°~約80°、約40°~約80°、約20°~約70°、約20°~約60°、又は約20°~約50°の接触角(これらの間の任意の接触角範囲を含む)を有する。
様々な実施によれば、複数の電極120及び対電極140にわたって交流(AC)を供給して、複数の電極120と対電極140との間を流れる流体内に懸濁された粒子165を固定化(又は捕獲)するために振動非線形電場を生成するために、電源(図示せず)を複数の電極120及び対電極140に電気的に接続することができる。様々な実施では、複数の電極を有する面内電場を適用して、代替DEP場の局所場最小化をもたらすことができる。様々な実施では、インピーダンス感知、電気湿潤又はエレクトロポレーションを含む用途のために、1つ以上のAC又はDC信号をDEP作動信号に重畳してもよい。
様々な実施では、複数の電極120(単一の電極の場合は電極120又は620a、620b、620c、620d、720等の一対の電極)及び対電極140にわたるACは、約1mV~約300Vの電圧で供給される。様々な実施では、複数の電極120及び対電極140にわたるACは、約5mV~約50V、約5mV~約20V、約250mV~約5V、約500mV~約50V、約750mV~約50V、約1V~約50V、約5V~約50V、約10V~約50V、約250mV~約40V、約250mV~約30V、約250mV~約20V、約250mV~約10V、約250mV~約8V、約250mV~約6V、約250mV~約5V、約500mV~約5V又は約1V~約5Vの電圧(それらの間の任意の電圧範囲を含む)で供給される。様々な実施では、複数の電極120(単一の電極の場合は電極120)及び対電極140にわたるACは、約1mV~約20V、約1mV~約10V、約1mV~約8V、約1mV~約8V、約1mV~約6V、約1mV~約5V、約1mV~約4V、約1mV~約3V、約1mV~約2V、約1mV~約1V、約1mV~約750mV、約1mV~約500mV、約1mV~約250mV、約1mV~約200mV、約1mV~約150mV、約1mV~約100mV、約1mV~約50mVの電圧(それらの間の任意の電圧範囲を含む)で供給される。
様々な実施では、複数の電極120(単一の電極の場合は電極120又は620a、620b、620c、620d、720等の一対の電極)及び対電極140にわたるACは、約1Hz~約1THzの発振周波数で供給される。様々な実施では、複数の電極120及び対電極140にわたるACは、約10Hz~約100GHz、約10Hz~約10GHz、約100Hz~約10GHz、約1kHz~約1GHz、約10kHz~約1GHz、約100kHz~約1GHz、約500kHz~約1GHz、約1MHz~約1GHz、約10MHz~約1GHz、約100MHz~約1GHz、約10kHz~約500MHz、約10kHz~約100MHz、約10kHz~約50MHz、約10kHz~約30MHz、約10kHz~約20MHz、約10kHz~約10MHz、約100kHz~約10MHz又は約500kHz~約10MHz又は約1MHz~約10MHzの発振周波数(それらの間の任意の周波数範囲を含む)で供給される。
様々な実施では、複数の電極120(単一の電極の場合は電極120又は620a、620b、620c、620d、720等の一対の電極)及び対電極140にわたって直流(DC)が印加される。様々な実施では、複数の電極120(単一の電極の場合は電極120又は620a、620b、620c、620d、720等の一対の電極)及び対電極140にわたって電流を印加する場合に、DC及びACが重畳され得る。
様々な実施では、複数の電極120及び対電極140は個別にアドレスされるか、グループでアドレスされるか又は電気的に短絡(例えば、短絡)され得る。様々な実施において、620a、620b、620c、620d、720のような電極対の各々は、個別にアドレス指定され、グループでアドレス指定され、または電気的に短絡(例えば、短絡)され得る。例えば、複数の電極120のそれぞれ及び対電極140に個別に又はグループでACを供給できる。例えば、複数の電極120及び対電極140は、複数の電極120の一部及び対電極140について短絡させ、複数の電極120のうちの他方の電極120及び対電極140については短絡しないようにすることができる。そのため、複数の電極120及び対電極140間の配置の任意の組み合わせ又は構成を、装置100に対して実施できる。
図2A~図2Dは、様々な実施形態に係る、粒子の固定化のために構成された装置の概略図を示す。図2A~図2Dは、装置の様々な構造構成を示し、これらの構成は、例えば、限定されないが、特定の層配列、配置及び疎水性又は親水性コーティング等のコーティングの種類を示す。図2A、図2B、図2C及び図2Dに示す構成は非限定的な例であるため、図示のものに加えて、様々な実施形態に従って任意の所望の構造構成を用いて粒子の固定化及び/又はインテロゲーションを行うことができる。
図2Aは、様々な実施形態に係る、装置200aの断面図を示す。図2Aに示すように、装置200aは互いに積層された膜210a、金属層230a1、パッシベーション層250a及び他の金属層230a2を含み、開口225aを含む。装置200aは、様々な実施形態によれば、膜210aの露出面に配置されるコーティング270a1及び開口225aの壁の内側(内壁)に配置されるコーティング270a2も含む。図2Aに示すように、コーティング270a1及びコーティング270a2は同じコーティングである。様々な実施形態によれば、コーティング270a1及び270a2は同じパターン又は異なるパターンを含むことができる。
図2Bは、様々な実施形態に係る、装置200bの断面図を示す。図2Bに示すように、装置200bは、互いに積層された膜210b、金属層230b1、パッシベーション層250b及び他の金属層230b2を含み、開口225bを含む。装置200bは、様々な実施形態によれば、膜210bの露出面に配置されるコーティング270b1及び開口225bの壁の内側に配置されるコーティング270b2を含む。図2Bに示すように、コーティング270b1及びコーティング270a2は異なるコーティングである。様々な実施形態によれば、コーティング270b1及び270b2は同じパターン又は異なるパターンを含むことができる。
図2Cは、様々な実施形態に係る、装置200cの断面図を示す。図2Cに示すように、装置200cは、互いに積層された膜210c、金属層230c1、パッシベーション層250c及び他の金属層230c2を含み、開口225cを含む。装置200cは、様々な実施形態によれば、開口225cの壁の内側に配置されるコーティング270cを含むが、膜210cの露出面にコーティングを含まない。様々な実施形態によれば、コーティング270cはパターンを含むことができる。
様々な実施形態によれば、膜210a、210b及び210cは、別段記載がない限り、図1Dに関して説明した膜110と同じであるか又は実質的に同様であってもいいため、詳細を完全には説明しない。様々な実施では、膜210a、210b及び210cは電気絶縁材料を含むことができる。様々な実施では、膜210a、210b及び210cは、限定されないが、窒化珪素、酸化珪素、金属酸化物、炭化物(例えば、SiCOH)、アルミナ等のセラミック及びポリマーを含む電気絶縁材料を含むことができる。様々な実施では、膜210a、210b及び210cは、金属又はドープ半導体材料等の導電性材料を含むことができる。様々な実施では、膜210a、210b及び210cは単層又は前述の材料のいずれかを含む多層積層体を有する複合層であり得る。
様々な実施では、膜210a、210b及び210cは約10nm~約1cmの厚さを有することができる。様々な実施では、膜210a、210b及び210cは、約10nm~約5mm、約10nm~約1mm、約10nm~約100μm、約50nm~約10μm、約50nm~約5μm、約100nm~約10μm、約100nm~約5μm又は約100nm~約2μmの厚さ(それらの間の任意の厚さ範囲を含む)を有し得る。
様々な実施形態によれば、金属層230a1、230a2、230b1、230b2、230c1及び230c2は、別段記載が限り、図1A~図1Dに関して説明した電極120及び/又は相互接続部130と同じ又は実質的に同様であってもいいため、完全には詳細を説明しない。様々な実施形態によれば、金属層230a1、230b1及び230c1は、例えば、電極120又は電極620a、620b、620c、620d、720を含むことができる電極層であり得る。様々な実施形態によれば、金属層230a1、230b1及び230c1は、相互接続層130又は730であり得る。様々な実施形態によれば、金属層230a2、230b2及び230c2は相互接続層130若しくは730又は鋭利部材(例えば、185、385a~d等)と共に、検知のために(検知電極として)、NEP電極として又は金属遮蔽電極として用いられるように構成可能な電極層であり得る。
様々な実施形態では、パッシベーション層250a、250b及び250cは、別段記載が限り、図1Dに関して説明したパッシベーション層150と同じ又は実質的に同様であってもいいため、完全には詳細を説明しない。
様々な実施形態によれば、コーティング270a1、270a2、270b1、270b2及び270cは、別段記載がない限り、図1Dに関して説明したコーティングと同じ又は実質的に同様であってもいいため、完全には詳細を説明しない。様々な実施では、コーティング270a1、270a2、270b1、270b2及び270cはそれぞれ疎水性コーティング又は親水性コーティングであり得る。疎水性コーティング又は親水性コーティングは、膜210a及び210bのそれぞれの露出面及び/又は開口225a、225b及び225cの壁の内側(内壁)に配置(又は堆積)されて、流体がそれぞれの開口225a、225b及び225cを横切って侵入するのを防止する。様々な実施では、コーティング270a1、270a2、270b1、270b2及び270cは、関連する表面に化学的及び共有結合的に付着される。様々な実施では、疎水性コーティングは、アジド、オルガノシラン又はフルオロカーボン等の様々のクラスを含むことができる。様々な実施では、親水性コーティングは、任意の小分子、タンパク質、ペプチド、ペプトイド、ポリマー又は無機材料を含む一連の材料クラスを含むことができる。様々な実施では、開口225a、225b及び225cのそれぞれの壁はパターン化された親水性及び疎水性コーティングの組み合わせを有する。
様々な実施では、コーティング270a1、270a2、270b1、270b2及び270cのそれぞれの疎水性コーティングは、約95°~約165°の接触角を有することができる。様々な実施では、疎水性コーティングは約100°~約165°、約105°~約165°、約110°~約165°、約120°~約165°、約95°~約150°、約95°~約140°又は約95°~約130°の接触角(それらの間の任意の接触角範囲を含む)を有する。
様々な実施では、コーティング270a1、270a2、270b1、270b2及び270cのそれぞれの親水性コーティングは約20°~約80°の接触角を有することができる。様々な実施では、親水性コーティングは約25°~約80°、約30°~約80°、約35°~約80°、約40°~約80°、約20°~約70°、約20°~約60°又は約20°~約50°の接触角(それらの間の任意の接触角範囲を含む)を有する。
図2Dは、様々な実施形態に係る、装置200dの断面図を示す。様々な実施形態によれば、装置200dは、装置200a、200b、200c又は100のうちの1つと同じ又は実質的に同様であり得る。様々な実施形態によれば、装置200dは、装置200a、200b、200c又は100に含まれるように示される層のいずれか又は層の任意の組み合わせを含むことができる。
図2Dに示すように、装置200dは、一方の側に流路260dを有し、他方の側にコンパートメント280dを有するものとして図示されている。様々な実施形態によれば、流路260dは、別段記載がない限り、図1C及び図1Dに関して説明した流路260と同じ又は実質的に同様であってもいいため、完全には詳細を説明しない。様々な実施形態によれば、コンパートメント280dは、別段記載がない限り、図1Dに関して説明したコンパートメント180と同じ又は実質的に同様であってもいいため、完全には詳細を説明しない。図2Dに示すように、コンパートメント280dは、例えば、限定されないが、窒化ケイ素、酸化ケイ素、ガラス、金属酸化物、炭化物(例えば、SiCOH)、アルミナ等のセラミック、プラスチックを含むポリマー及びポリ(ジメチルシロキサン)(PDMS)等の様々なエラストマー又は構造材料として用いることが可能な任意の材料を含む電気絶縁材料を含む材料205d内に形成されている。
図2Dに示すように、装置は開口225dを含む。様々な実施形態によれば、開口225dは、開口225a、225b及び225cのうちの1つと同じ又は実質的に同様であってもよい。様々な実施形態によれば、開口225dには、別段記載がない限り、開口225a、225b及び225cの内壁上のコーティングと同じ又は実質的に同様のコーティングが配置されているため、完全には詳細を説明しない。
図2Dに示すように、コンパートメント280dは、様々な実施形態によれば、電極層290d及び電極層290d内に配置されるビア298dも含む。様々な実施では、電極層290dは、図1Dに関して説明した鋭利部材185等の鋭利部材を作動させるように構成することができる。様々な実施形態によれば、ビア298dは、コンパートメント280dから流体を汲み出す/コンパートメント280dに流体を汲み入れるように構成することができる。様々な実施形態によれば、流体は、例えば、限定されないが、水溶液、生物学的又は化学的試薬を含む水溶液、有機溶媒、鉱物油、フッ素化油、空気、細胞培養のための混合ガス(例えば、5%CO2)、不活性ガス等を含むことができる。
様々な実施形態によれば、装置200dは、開口225dの内壁の内側及び/又は表面に配置される1つ以上のコーティングを含むことができる。様々な実施形態によれば、開口225dの内側及び表面のコーティングは同じであっても異なっていてもよい。様々な実施形態によれば、表面上のコーティング及び開口225dの内側のコーティングは同じパターン又は異なるパターンを含むことができる。
図3A~図3Dは、様々な実施形態に係る、粒子のインテロゲーションのために構成された装置の概略図300a、300b、300c及び300dをそれぞれ示す。図3A、図3B、図3C及び図3Dに示す構成は非限定の例であるため、図示のものに加えて、様々な実施形態にしたがって任意の所望の構造構成を利用して、粒子の固定化及び/又はインテロゲーションを行うことができる。
図3A~図3Dに示すように、概略図300a、300b、300c及び300dは、膜310、金属層330及びパッシベーション層350を含む。様々な実施形態によれば、概略図300a、300b、300c及び300dは、流路360及びコンパートメント380にわたって開口325を含む。図3A~図3Dに示すように、概略図300a、300b、300c及び300dは、開口325の近くで捕獲、配置又はさもなければ固定化される内部部分(例えば、核又は内部成分)363を有する粒子365を含む。様々な実施形態によれば、粒子365は固定化され、プロービング又はインテロゲーションのための準備ができている。
様々な実施形態によれば、膜310は、別段記載がない限り、図1D、図2A、図2B及び図2Cに関して説明した膜110、210a、210b又は210cと同じ又は実質的に同様であってもよいため、完全には詳細を説明しない。
様々な実施形態によれば、金属層330は、別段記載がない限り、図1A~図1D、図2A~図2Cに関して説明した電極120及び/又は相互接続部130又は金属層230a1、230a2、230b1、230b2、230c1及び230c2のいずれかと同じ又は実質的に同様であってもよいため、完全には詳細を説明しない。
様々な実施形態によれば、パッシベーション層350は、別段記載がない限り、図1D、図2A、図2B及び図2Cに関して説明したパッシベーション層150、250a、250b又は250cと同じ又は実質的に同様であってもよいため、完全には詳細を説明しない。
様々な実施形態によれば、開口325は、別段記載がない限り、図1D、図2A、図2B、図2C及び図2Dに関して説明した開口125、225a、225b、225c又は225dのうちの1つと同じ又は実質的に同様であってもよいため、完全には詳細を説明しない。
様々な実施形態によれば、開口325は、別段記載がない限り、図1D、図2A、図2B及び図2Cに関して説明した開口125、225a、225b又は225cの内壁上のコーティングと同じ又は実質的に同様のコーティングが配置されていてもよいため、完全には詳細を説明しない。
様々な実施形態によれば、流路360は、別段記載がない限り、図1C、図1D及び図2Dに関して説明した流路160又は260dと同じ又は実質的に同様であってもよいため、完全には詳細を説明しない。
様々な実施形態によれば、コンパートメント380は、別段記載がない限り、図1D及び図2Dに関して説明したコンパートメント180又は280dと同じ又は実質的に同様であってもよいため、完全には詳細を説明しない。
図3A~図3Dに示すように、各概略図300a、300b、300c及び300dは、鋭利部材385a、385b、385c及び385dをそれぞれ含む。図3Aは、鋭利な先端を有する鋭利部材385aを示す。図3Bは、中空内部部分383b及び被覆された先端388bを有する鋭利部材385bを示す。図3Cは、その鋭利な先端に配置されたコーティング388cを有する鋭利部材385cを示す。図3Dは、中空内部部分383d及びその先端に配置されたコーティング388dを有する鋭利部材385dを示す。
図3A~図3Dに示されるように、各概略図300a、300b、300c及び300dは、粒子365の内部部分363に挿入又はプローブ(又はインテロゲーションされた)されたそれぞれの鋭利部材385a、385b、385c及び385d(本明細書ではまとめて「鋭利部材385」という)を示す。様々な実施形態によれば、鋭利部材385のそれぞれは開口325内で移動し、膜310、金属層330、及びパッシベーション層350を通って移動するように構成されている。様々な実施によれば、開口325は固定化された粒子365の機械的操作を可能にする。機械的操作は、プロービング、挿入、貫通、電気穿孔、検知、材料の堆積、材料のサンプリング、さもなければ膜310、金属層330及び/又はパッシベーション層350を横切って入るように構成された鋭利部材385で粒子365を操作することを含む。様々な実施では、機械的操作は、鋭利部材385のいずれかによって行われる。様々な実施では、鋭利部材385は、約10nm~約50μmの長さを有する針、ピラー、中空管、ナノニードル又はマイクロニードルであり得る。様々な実施では、内部部分383b及び383dは約200nm~約100μm、約10nm~約10μm又は約1nm~1μmの内径を有し得る。様々な実施では、鋭利部材385のそれぞれは、様々な実施形態によれば、微小電気機械システム(MEMS)法又はナノ電気機械システム(NEMS)法によって製造又は作成される。
様々な実施では、鋭利部材385のそれぞれは、膜310にわたってプローブの形態の第3の電極として動作するように構成できる。この第3の電極プローブは、検知又は作動のためにDC又はAC信号で、例えば、ナノ細孔エレクトロポレーション(NEP)用途のためのパルスDC信号又はインピーダンスを測定するための別個の周波数の低電力AC信号でバイアスされ得る。様々な実施では、DEP電極自体は下流フィルタリングを介してDEP信号から容易に分離されるように選択された別個の重畳AC信号又はDC信号も運び得る。加えて、ナノ細孔エレクトロポレーション(NEP)信号とDEP信号との間の信号分離の手段は、材料による物理的遮蔽又は注意深い信号制御によって実施され得る。
様々な実施では、鋭利部材385は、鋭利部材385のそれぞれが移動の前に、例えば、鋭利部材385を長手軸に沿って、例えば垂直方向に下方に動かす前に存在するコンパートメント380から入ることができる。追加の詳細は図1Dに関して提供され、さらなる詳細は図4に関して提供される。
図4は、様々な実施形態に係る、粒子の位置操作のために構成された装置400の概略図を示す。様々な実施形態によれば、装置400は、図1A~図1D、図2A~図2Dに関して説明した装置100、200a、200b、200c又は200dのうちの1つと同じ又は実質的に同様であり得る。図4に示すように、装置400は、膜410、金属層430、パッシベーション層150及び開口425を含む。図4に示す概略図は、対電極440、流路460及びコンパートメント480も含む。図4に示すように、概略図は開口425の近くで捕獲、配置又はさもなければ固定化された内部部分463(例えば、核又は内部成分)を有する粒子465も含む。
様々な実施形態によれば、流路460及びコンパートメント480のそれぞれは流体を含むことができる。様々な実施形態によれば、流体は水性流体、水性緩衝液、有機溶媒、疎水性流体又はガスのうちの1つを含む。様々な実施形態によれば、流路460は、コンパートメント480に含まれる流体(例えば、第2の流体)と混和しない流体(例えば、第1の流体)を含むことができるか又はその逆であり得る。例えば、流路460内の流体は疎水性流体であるのに対して、コンパートメント480内の流体は親水性流体であるか又はその逆であり得る。
様々な実施形態によれば、流路460は、細胞を輸送する目的又は生化学反応を行う目的で、リン酸緩衝生理食塩水(PBS)又は細胞培養培地等の水溶液を含むように構成することができ、コンパートメント480は、流路460の水溶液から精密な電気部品を分離するために空気又は不活性ガスを含むように構成される。
様々な実施形態では、例えば、腐食又は電解に敏感な電気部品を保護するため、有機溶媒を用いることができる化学反応のため又は小分子を試料採取するため等の様々な目的のために、流路460は水溶液を含むように構成することができ、コンパートメント480は有機溶媒又は油を含有するように構成されるか、又はその逆であり得る。
様々な実施形態によれば、流路460及びコンパートメント480は各チャンバー内で異なる水溶液を含むように構成することができ、例えば、細胞の懸濁液を含有する溶液を含むように流路460を構成し、ナノ細孔エレクトロポレーション(NEP)を介して捕獲された細胞に送達するために、溶解された遺伝物質を有する別の溶液を含むようにコンパートメント480を構成することができる。
様々な実施形態によれば、コンパートメント480は、例えば、限定されないが、窒化珪素、酸化珪素、ガラス、金属酸化物、炭化物(例えば、SiCOH)、アルミナ等のセラミック、プラスチックを含むポリマー及びポリ(ジメチルシロキサン)(PDMS)等の様々なエラストマー又は構造材料として用いることができる任意の材料を含む電気絶縁材料を含む材料405に形成される。図4に示すように、コンパートメント480は、様々な実施形態によれば、電極層490及び電極層490内に配置されるビア498も含む。様々な実施形態によれば、ビア498は、コンパートメント480から流体を汲み出す/コンパートメント480に流体を汲み入れるように構成することができる。様々な実施形態によれば、流体は、例えば、限定されないが、水溶液、生物学的又は化学的試薬を含む水溶液、有機溶媒、鉱物油、フッ素化油、空気、細胞培養のための混合ガス(例えば、5%CO2)、不活性ガス等を含むことができる。
図4に示すように、コンパートメント480は、鋭利部材485が固定される基板プラットフォーム495も含む。様々な実施形態によれば、基板プラットフォーム495は、本開示の様々な実施形態で開示されているように、任意の好適な機構(例えば、静電力)を介して、電極層490に対して移動するように構成される。例えば、基板プラットフォーム495は、鋭利部材485を移動させるように上下に移動するように作動するように構成でき、係る作動により、鋭利部材485が粒子465及び/又はその内部部分463をプローブ、挿入又はインテロゲーションすることができる。
図5A~図5Dは、様々な実施形態に係る、粒子の位置操作のために構成された装置400の様々な概略図である。図5Aは、装置400の断面図を示し、図5Bは、図5Aの図に対する装置400の別の図を示す。図5C及び図5Dは、基板プラットフォーム495に固定された鋭利部材485のベースの拡大斜視図及び拡大断面図を示す。図5B、図5C及び図5Dに示すように、鋭利部材485は、内側中空(内部)部分483を有する中空構造である。図5C及び図5Dの図は、基板プラットフォーム495内に配置され、鋭利部材485の入口486に接続されて、内部部分483とコンパートメント480の内側との間の流体連通を提供するウィッキング構造496を示す。様々な実施形態によれば、ウィッキング構造496と入口486との組み合せは、制御された流れ、例えば、限定されないが、電気浸透流、電気運動流、毛細管流又は任意の他の好適な流れ等又はウィッキング機構を可能にする。
様々な実施では、ウィッキング機構は、鋭利部材485の中空部分483を介して、捕獲又は固定化された粒子465に任意のペイロード又はペイロード混合物を供給するために用いることができる。様々な実施形態によれば、中空の鋭利部材485は、コンパートメント480内に存在する基板プラットフォームからの流体ウィッキング経路(例えば、流体が吸引される経路)を介した粒子透過及びエレクトロポレーションが可能になるように構成できる。様々な実施形態によれば、コンパートメント480は、任意の好適なペイロード流体、流体混合物又は不活性な無極性液体を充填することができる。様々な実施形態によれば、ペイロードは、粒子465の任意の領域、例えば、核等の細胞の特定の部分に送達され得る。
図6A~図6Dは、様々な実施形態に係る、粒子の固定化のために構成された装置の様々の構成を示す。図6A、図6B及び図6Dは所与の電極対にわたって電場を制御するための非限定的の例示の電極構成を示す。図6Cは電極対及びリング対電極にわたって電場を制御するための非限定的の例示の電極構成を示す。
図6Aは、開口625aを隔てて配置された一対の電極620aの上面図を示す電極構成600aの図である。図6Aに示すように、電極620aのそれぞれは、電極620aのそれぞれからの2つの対向する平坦な先端の間に真っ直ぐな電場線を生成する平坦な先端を有する。図6Aに示すレイアウトは、開口625aの近くの2つの平坦な先端にわたって生成される電場線を用いて、開口625aの近くで粒子を捕獲又は固定するように構成されている。様々な実施形態によれば、電極620の2つの先端は開口625aに沿って電場を集結させる。様々な実施形態によれば、電極620a及び開口625aの外側の表面領域は、例えば、漂遊電場線を制限して、電極の腐食又は電解を制限するか又はバルク流体中の電流の流れを防止するために、パッシベーション材料650aで覆われている。
図6Bは、開口625bを隔てて配置された一対の電極620bの上面図を示す電極構成600bの図である。図6Bに示すように、電極620bのそれぞれは、電極620bのそれぞれからの2つの対向する鋭利な先端の間に集束電場線を生成する鋭利な先端を有する。図6Bに示すレイアウトは、開口625bの近くの2つの鋭利な先端にわたって生成されるより集束された電場を用いて、開口625bの近傍で粒子を捕獲又は固定するように構成されている。様々な実施形態によれば、電極620bの2つの鋭利な先端の間に生成される電場線は非線形で、鋭利な先端に集中している。様々な実施形態によれば、電極620b及び開口625bの外側の表面領域は、例えば、漂遊電場線を制限して、電極の腐食又は電解を制限するか又はバルク流体中の電流の流れを防止するために、パッシベーション材料650bで覆われている。
図6Cは、図6Aに示すものと同様の一対の電極に加えてリング電極622cを示す電極構成600cの図である。図6Aに示すように、電極620cのそれぞれは埋設された相互接続部630cに接続され、図7Cに示す構成と同様に誘電体材料650cの層によってリング電極622cからは分離されている。様々な実施形態によれば、一対の電極620cは、図6A及び図6Bに示す電極620a及び620bと同様に機能するように、すなわち、開口625cの周囲に局在する集中電場を生成するように構成されている。様々な実施形態によれば、リング電極622cは、2つの電極620cのための共通接地として構成され、面内漂遊電場を捕獲サイト、すなわち、開口625cの周囲の領域に制限する。様々な実施形態によれば、電極620c、リング電極622c及び開口625cの外の表面領域は、例えば、漂遊電場線を制限して、電極の腐食又は電解を制限するか又はバルク流体中の電流の流れを防止するために、パッシベーション材料650cで覆われている。
図6Dは、様々な実施形態に係る、例示の電極構成600dの断面図を示す電極構成の図である。図6Dに示すように、電極構成600dは一対の電極620d及び膜610d上に開口625dを隔てて配置されるパッシベーション(誘電)材料650dを含む。
図7A~図7Cは、様々な実施形態に係る、複数の粒子を固定化するために構成された装置の様々な例示の構成の概略図を示す。図7A~図7Cに示すように、装置は、互いに積層されて膜710の上に配置される絶縁層750、電極720、相互接続部730及び誘電体層752を含む。様々な実施形態によれば、絶縁層750は、電極720のそれぞれの上面部分を露出させるウインドウ704を絶縁層750内に含む。
図7Aは、様々な実施形態に係る、固定化及び/又はインテロゲーションのための一連の電極を有する装置の例示の電極構成700aの斜視図を示す。図7Aに示すように、構成700aは、複数の開口725のそれぞれを隔てて配置される複数の電極対720を含む。構成700aは、様々な電極720を相互接続するように構成された複数の相互接続部730も含む。様々な実施形態によれば、相互接続部730は電極720と同じ層に配置されている。
図7Bは、様々な実施形態に係る、固定化及び/又はインテロゲーションのための一連の電極を有する装置の別の例示の電極構成700bの斜視図を示す。図7Bに示すように、構成700bは、複数の開口725のそれぞれを隔てて配置される複数の電極対720を含む。構成700aは様々な電極720を相互接続するように構成された複数の相互接続部730も含む。様々な実施形態によれば、相互接続部730は図7Bに示すように電極720と同じ層に配置されている。様々な実施形態によれば、相互接続部730は、図7Bに示すように、電極720として異なる層上に配置される。
図7Cは電極構成700bの断面図700cを示す。図7Cに示すように、装置の線A-A’に沿った断面は、電極720が、誘電体層752内に配置される相互接続部730とどのように連結されているかを示す。誘電体層752は電極720の下に配置される。様々な実施形態によれば、相互接続部730は誘電体層752内に埋め込まれ、電極720と垂直に連結される。
様々な実施では、電極対620a、620b、620c、620d及び720の各電極は、各電極対の他方の電極に対して約180度位相シフトされて位相がずれた状態で動作できる。様々な実施では、位相シフトは360度/電極数、例えば、3つの電極構成の場合は120度の位相シフト又は捕獲又は固定化に用いられる4つの電極構成の場合は90度の位相シフトとすることができる。
図8は、粒子(図示せず)の固定化のための装置についてのシミュレーション結果を示すグラフ図800である。図8に示すように、AC電場は、複数の電極820及び対電極840にわたって供給される。数十~数百ナノニュートン(nN)のオーダーのDEP力が、複数の電極820及び対電極840にわたって発生される。生成されたDEPは、例えば、センチメートル/秒(cm/s)までの流体速度に対して粒子(又は細胞)を捕獲又は固定化できる。図8に示すグラフ図800におけるシミュレーションはシミュレーションソフトウェアプログラムを用いて生成され、複数の電極820及び対電極840にわたって1MHzで発振するシミュレーション5Vにおいて最大70kV/mの電場を有する電場線824を示す。
図9は、粒子の固定化のための装置の分析の結果を示す三次元チャート900である。図9に示すように、接触角及び開口半径の関数としての毛細管背圧(パスカル単位)は、水-空気界面の場合の上述した毛細管圧の数式から計算される。例えば、チャート900に示される負の値は、例えば、MEMSコンポーネントを収容するコンパートメントから離れる流体の方向の圧力に対応する。
図10は、例示の実施に係る、粒子の固定化のための装置を操作する例示の方法S100のフローチャートである。図10に示すように、方法S100は、ステップS110で、電源を提供することを含む。方法S100は、ステップS120で、コンパートメントから流体を分離するように構成された膜を提供するステップも含む。方法S100は、ステップS130で、膜に近接して配置される1つ以上の電極を提供することも含む。様々な実施形態によれば、1つ以上の電極は膜の表面に近接して配置され、該表面はコンパートメントに対して遠位にある。様々な実施形態によれば、1つ以上の電極は膜の表面に近接して配置され、表面はコンパートメントに対して近位にある。方法S100は、ステップS140で対電極を提供することであって、前記1つ以上の電極及び該対電極は前記1つ以上の電極及び該対電極にわたって非線形電場を生成するように構成されている、ことも含む。
図10に示すように、方法S100は、ステップS150で、前記電源を介して、前記1つ以上の電極及び前記対電極にわたって交流(AC)を供給することにより、振動非線形電場を生成することを含む。方法S100は、ステップS160で、前記振動非線形電場により生成される誘電泳動(DEP)力を介して、前記1つ以上の電極と前記対電極との間を流れる前記流体内に懸濁された粒子を固定化することも含む。方法S100は、ステップS170で、前記コンパートメントから前記膜を横切って入るように構成された鋭利部材で、前記膜の開口を介して前記粒子をプロービングすることを任意で含む。様々な実施では、鋭利部材はMEMS構造又はNEMS構造を含む。
様々な実施では、本方法は、前記開口を介して固定化された前記粒子を操作することを任意で含む。様々な実施では、本方法は、前記コンパートメントから前記膜を横切って入るように構成された鋭利部材で、前記開口を介して前記粒子を挿入することを任意で含む。
方法S100の様々な実施では、前記膜は窒化ケイ素、酸化ケイ素、金属酸化物、炭化物、セラミック、アルミナ又はポリマーのうちの少なくとも1つを含む。方法S100の様々な実施では、前記膜は約10nm~約1cmの厚さを有する。様々な実施では、前記膜は約100nm~約10μmの厚さを有する。方法S100の様々な実施では、前記開口は約10nm~約50μmのサイズを有する。様々な実施では、前記開口は約1μm~約5μmのサイズを有する。
方法S100の様々な実施では、前記開口の壁は疎水性コーティング又は親水性コーティングを有する。方法S100の様々な実施では、前記疎水性コーティングは約95°~約165°の接触角を有する。方法S100の様々な実施では、前記親水性コーティングは約20°~約80°の接触角を有する。
方法S100の様々な実施では、第1の表面は第2の表面よりも小さい。方法S100の様々な実施では、前記1つ以上の電極は、アレイ状に形成された複数の個々の異なる電極表面積を含む。
方法S100の様々な実施では、前記1つ以上の電極及び前記対電極にわたる前記ACは、約1mV~約300Vの電圧で供給される。様々な実施では、前記1つ以上の電極及び前記対電極にわたる前記ACは、約1mV~約20Vの電圧で供給される。
方法S100の様々な実施では、前記1つ以上の電極及び前記対電極にわたる前記ACは、約10Hz~約10GHzの発振周波数で供給される。前記1つ以上の電極及び前記対電極にわたる前記ACは、約1kHz~約1GHzの発振周波数で供給される。
方法S100の様々な実施では、前記1つ以上の電極は透明導電材料又はドープ半導体材料のうちの少なくとも1つを含む。様々な実施では、前記透明導電材料は、インジウム錫酸化物、グラフェン、ドープグラフェン、導電性ポリマー又は薄い金属層を含む。
方法S100の様々な実施では、前記1つ以上の電極は約1nm~約50μmの厚さを有する。様々な実施では、前記1つ以上の電極は約10nm~約5μmの厚さを有する。
方法S100の様々な実施では、前記流体は、水性流体、水性緩衝液、有機溶媒、疎水性流体又はガスのうちの1つを含む。方法S100の様々な実施では、前記流体は第1の流体であり、前記コンパートメントは第1の流体と混和しない第2の流体を含む。方法S100の様々な実施では、第1の流体は疎水性流体であり、第2の流体は親水性流体であるか又はその逆である。
方法S100の様々な実施では、前記粒子は約1nm~約1mmのサイズを有する。様々な実施では、前記粒子は、生物有機体、生物学的構造、細胞、生細胞、ウイルス、油滴、リポソーム、ミセル、逆ミセル、タンパク質凝集体、ポリマー又は界面活性剤アセンブリのうちの1つを含む。
様々な実施では、粒子がプロービングのために固定化される部位(「プロービング部位」ともよぶことができる)の個々のアドレスのために、インピーダンス感知を介してフィードバック制御機構を構成して、自動化されたワークフローにおける細胞捕獲の最適化を可能にすることができる。様々な実施では、粒子捕獲イベントは、粒子のキャパシタンス測定により(例えば、セルの膜のキャパシタンス測定により)フィルタリングされる重畳感知周波数を用いるインピーダンス感知によって検出され得る。次いで、この周波数は、フィルタ回路によって駆動誘電泳動(DEP)周波数から分離することができ、この周波数での大きさ及び位相情報は、捕獲された粒子の予想される効果に関連付けられる。
様々な実施では、予期しない信号が検出された場合は、2つ以上の粒子、例えば望ましくない粒子若しくは細胞タイプ又は埃等の捕獲を示す可能性があり、DEP電極をオフにすることにより、流れが粒子を処分することができるようになる。その後、捕獲手順を再度試みることができる。様々な実施では、十分な割合の粒子(又は細胞)がプロービングサイトで捕獲されるまで流れを再循環させることによりリアルタイム最適化を行うことができ、それに応じて信号電圧及び流速が調整される。様々な実施では、手順は同様であるが、孔を介して細胞内部に挿入されるMEMSプローブ内に第3の電極が存在し、細胞内部からの直接インピーダンス測定を可能にする。
様々な実施では、コンパートメント(例えば、キャビティ領域)は、コンパートメント内に収容される流体内容物に電気信号を印加されることができるようにするために導電性である。このキャビティは、孔又は複数の孔を有し、これに付随するDEP電極が先の実施形態と同様の形で各孔を空間的に覆う流体流動領域から膜によって分離されている。細胞アレイのアドレスエレクトロポレーションを可能にするために、生細胞及び/又は小胞を含む任意のタイプの粒子が膜孔を通って伝達されたキャビティの流体内容物に印加される信号を介して捕獲及びエレクトロポレーションすることができる。この実施形態は、流体流動領域の上部に対電極を含むことができる。加えて、ナノ細孔エレクトロポレーション(NEP)信号とDEP信号との間の信号分離の手段は、材料による物理的遮蔽又は注意深い信号制御によって実施され得る。
同様に、様々な実施では、NEPキャビティ(以前はMEMSキャビティ)は、後でDEP捕獲粒子にNEPを送達のために、任意のペイロード又はペイロード混合物をキャビティに供給可能な流体入力流路を備えるように構成できる。これらの流体入力流路は、ペイロード組成が異なる複数のソースから来るアレイで複合化(例えば、組み合わせ、リダイレクト等)されてもいいし、一種類のペイロード組成を供給するように構成されてもよい。これらのNEP-DEP(プロービング)サイトの単一アレイは、1つのチップ上で複合化された構成及び/又は単一のソース構成を有するセクタを含むようにチップ上に区分化することができる。
様々な実施では、中空プローブ(例えば、鋭利部材)は、プローブに印加される信号を介して粒子浸透及びエレクトロポレーションを可能にするように構成されている。MEMSステージからの流体ウィッキング経路(例えば、流体が吸収される経路)は、MEMSキャビティから中空プローブを通って粒子までペイロードを通過させることを可能にする。そのような1つの実施では、MEMSキャビティは均一なペイロード流体混合物で充填される。別のそのような実施では、MEMSキャビティには不活性の無極性液体が充填され、中空プローブの内側を通ってその先端に至る流体ウィッキング経路には極性液体及びペイロード混合物が充填されている。操作の間、この中空プローブが作動されて、任意の深さでDEP捕獲された粒子内に挿入され、その後にエレクトロポレーション及びペイロード送達のためにプローブに信号が印加される。このようにして、ペイロードが粒子の任意の領域に、そして細胞の場合には核に送達され得る。
様々な実施では、中空プローブは、例えば、粒子、細胞又は小胞内の異なる領域での流体の物理的な容積注入又はサンプリングを可能にするために、その内部で高容積精度でのペイロード溶液の可変収着又は脱着を可能にする信号を受信するように構成され得る。
図11は、例示の実施に係る、粒子の固定化のための装置を操作する例示の方法S200のフローチャートである。図11に示すように、方法S200は、ステップS210で電源を提供することを含む。方法S200は、ステップS220で、1つ以上の電極及び対電極を提供することであって、該1つ以上の電極及び該対電極は、該1つ以上の電極と該対電極との間を流れる流体内に懸濁された粒子を固定化するために非線形電場を生成するように構成されている、ことも含む。方法S200は、ステップS230で、前記1つ以上の電極の表面に近接して配置される膜を提供することであって、前記1つ以上の電極の該表面は前記対電極に対して遠位にあり、該膜はコンパートメントから前記流体を分離するために構成され、該コンパートメントに配置される鋭利部材を挿入できるようにするように構成された開口を有する、ことも含む。
図11に示すように、方法S200は、ステップS240で、前記電源を介して、前記1つ以上の電極及び前記対電極にわたって交流(AC)を供給することにより、振動非線形電場を生成することも含む。方法S200は、ステップS250で、前記振動非線形電場により生成される誘電泳動力を介して、第1の流体内に懸濁された粒子を固定化することも含む。方法S200は、ステップS260で、前記コンパートメントから前記膜を横切って入るように構成された鋭利部材で、前記膜の開口を介して前記粒子をプロービングすることを任意で含む。様々な実施では、鋭利部材はMEMS構造又はNEMS構造を含む。
様々な実施では、本方法は、前記開口を介して、固定化された前記粒子を操作することを任意で含む。様々な実施では、本方法は、前記コンパートメントから前記膜を横切って入るように構成された鋭利部材で、前記開口を介して前記粒子を挿入することを任意で含む。
方法S200の様々な実施では、前記膜は窒化ケイ素、酸化ケイ素、金属酸化物、炭化物、セラミック、アルミナ又はポリマーのうちの少なくとも1つを含む。方法S200の様々な実施では、前記膜は約10nm~約1cmの厚さを有する。様々な実施では、前記膜は約100nm~約10μmの厚さを有する。方法S200の様々な実施では、前記開口は約10nm~約50μmのサイズを有する。様々な実施では、前記開口は約1μm~約5μmのサイズを有する。
方法S200の様々な実施では、前記開口の壁は疎水性コーティング又は親水性コーティングを有する。様々な実施では、前記疎水性コーティングは約95°~約165°の接触角を有する。方法S100の様々な実施では、前記親水性コーティングは約20°~約80°の接触角を有する。
様々な実施では、第1の表面は第2の表面よりも小さい。方法S200の様々な実施では、前記1つ以上の電極は、アレイ状に形成された複数の個々の異なる電極表面積を含む。
様々な実施では、前記1つ以上の電極及び前記対電極にわたる前記ACは、約1mV~約300Vの電圧で供給される。様々な実施では、前記1つ以上の電極及び前記対電極にわたる前記ACは、約1mV~約20Vの電圧で供給される。
様々な実施では、前記1つ以上の電極及び前記対電極にわたる前記ACは、約10Hz~約10GHzの発振周波数で供給される。様々な実施では、前記1つ以上の電極及び前記対電極にわたる前記ACは、約1kHz~約1GHzの発振周波数で供給される。
様々な実施では、前記1つ以上の電極は透明導電材料又はドープ半導体材料のうちの少なくとも1つを含む。様々な実施では、前記透明導電材料は、インジウム錫酸化物、グラフェン、ドープグラフェン、導電性ポリマー又は薄い金属層を含む。
方法S200の様々な実施では、前記1つ以上の電極は約1nm~約50μmの厚さを有する。様々な実施では、前記1つ以上の電極は約10nm~約5μmの厚さを有する。
方法S200の様々な実施では、前記流体は、水性流体、水性緩衝液、有機溶媒、疎水性流体又はガスのうちの1つを含む。方法S200の様々な実施では、流体は第1の流体であり、前記コンパートメントは、第1の流体と混和しない第2の流体を含む。方法S200の様々な実施では、第1の流体は疎水性流体であり、第2の流体は親水性流体であるか又はその逆である。
様々な実施では、前記粒子は約1nm~約1mmのサイズを有する。様々な実施では、前記粒子は、生物有機体、生物学的構造、細胞、生細胞、ウイルス、油滴、リポソーム、ミセル、逆ミセル、タンパク質凝集体、ポリマー又は界面活性剤アセンブリのうちの1つを含む。
図12は、様々な実施形態に係る、粒子の固定化のための装置を操作する例示の方法S300のフローチャートである。図12に示すように、方法S300は、ステップS310で、電源を提供することを含む。方法S300は、ステップS320で、コンパートメントから流体を分離するように構成された膜を提供することに含む。方法S300は、ステップS330で、前記膜の表面に近接して配置される一対の電極を提供することであって、該一対の電極は該電極にわたって非線形電場を生成するように構成されている、ことも含む。
図12に示すように、方法S300は、ステップS340で、前記電源を介して、前記電極にわたって交流(AC)を供給することにより、振動非線形電場を生成することも含む。方法S300は、ステップS350で、前記振動非線形電場により生成される誘電泳動力を介して、前記電極間を流れる前記流体内に懸濁された粒子を固定化することも含む。方法S300は、ステップS360で、前記コンパートメントから前記膜を横切って入るように構成された鋭利部材で、前記膜の開口を介して前記粒子をプロービングすることを任意で含む。様々な実施では、鋭利部材はMEMS構造又はNEMS構造を含む。
様々な実施では、本方法は、対電極を提供することを任意で含む。様々な実施では、本方法は、前記膜の表面に近接して配置される第3の電極を提供することを任意で含む。様々な実施では、前記第3の電極はリング電極である。様々な実施では、本方法は、固定化された粒子を前記開口を介して操作することを任意で含む。様々な実施では、本方法は、前記コンパートメントから前記膜を横切って入るように構成された鋭利部材で、前記開口を介して前記粒子を挿入することを任意で含む。
様々な実施では、前記一対の電極のそれぞれは、鋭利な先端又は平坦な先端を含む。様々な実施では、前記膜は窒化ケイ素、酸化ケイ素、金属酸化物、炭化物、セラミック、アルミナ又はポリマーのうちの少なくとも1つを含む。様々な実施では、前記膜は約10nm~約1cmの厚さを有する。様々な実施では、前記膜は約100nm~約10μmの厚さを有する。
様々な実施では、前記開口は約10nm~約50μmのサイズを有する。様々な実施では、前記開口は約1μm~約5μmのサイズを有する。
様々な実施では、前記開口の壁は疎水性コーティング又は親水性コーティングを有する。様々な実施では、前記疎水性コーティングは約95°~約165°の接触角を有する。様々な実施では、前記親水性コーティングは約20°~約80°の接触角を有する。
様々な実施では、第1の表面は第2の表面よりも小さい。様々な実施では、前記膜は、アレイ状に形成された複数の電極対を含む。
様々な実施では、前記一対の電極及び前記対電極にわたる前記ACは、約1mV~約300Vの電圧で供給される。様々な実施では、前記一対の電極及び前記対電極にわたる前記ACは、約1mV~約20Vの電圧で供給される。
様々な実施では、前記一対の電極及び前記対電極にわたる前記ACは、約10Hz~約10GHzの発振周波数で供給される。様々な実施では、前記一対の電極及び前記対電極にわたる前記ACは、約1kHz~約1GHzの発振周波数で供給される。
様々な実施では、前記一対の電極のうちの一方の電極は透明導電材料又はドープ半導体材料のうちの少なくとも1つを含む。様々な実施では、前記透明導電材料は、インジウム錫酸化物、グラフェン、ドープグラフェン、導電性ポリマー又は薄い金属層を含む。
様々な実施では、前記一対の電極は約1nm~約50μmの厚さを有する。様々な実施では、前記一対の電極は約10nm~約5μmの厚さを有する。
様々な実施では、前記流体は、水性流体、水性緩衝液、有機溶媒、疎水性流体又はガスのうちの1つを含む。方法S300の様々な実施では、前記流体は第1の流体であり、前記コンパートメントは、該第1の流体と混和しない第2の流体を含む。方法S300の様々な実施では、前記第1の流体は疎水性流体であり、前記第2の流体は親水性流体であるか又はその逆である。
実施形態の記載
実施形態1:コンパートメントから流体を分離するための膜と、前記膜に近接して配置される1つ以上の電極と、対電極であって、前記1つ以上の電極及び該対電極は、前記1つ以上の電極及び該対電極にわたって非線形電場を生成するように構成されている、対電極と、前記1つ以上の電極及び前記対電極にわたって交流(AC)を提供することにより、前記1つ以上の電極と前記対電極との間を流れる前記流体内に懸濁された粒子を固定化するために振動非線形電場を生成する電源と、を含む装置。
実施形態2:前記膜は開口を含む、実施形態1に記載の装置。
実施形態3:前記開口は、固定化された前記粒子の機械的操作を可能にし、該機械的操作は、前記コンパートメントから前記膜を横切って入るように構成された鋭利部材で前記粒子をプロービングすることを含む、実施形態2に記載の装置。
実施形態4:前記膜は窒化ケイ素、酸化ケイ素、金属酸化物、炭化物、セラミック、アルミナ又はポリマーのうちの少なくとも1つを含む、先行する実施形態のいずれかに記載の装置。
実施形態5:前記膜は約10nm~約1cmの厚さを有する、先行する実施形態のいずれかに記載の装置。
実施形態6:前記膜は約100nm~約10μmの厚さを有する、先行する実施形態のいずれかに記載の装置。
実施形態7:前記開口は約10nm~約50μmのサイズを有する、先行する実施形態のいずれかに記載の装置。
実施形態8:前記開口は約1μm~約5μmのサイズを有する、先行する実施形態のいずれかに記載の装置。
実施形態9:前記開口の壁は疎水性コーティング又は親水性コーティングを有する、先行する実施形態のいずれかに記載の装置。
実施形態10:前記疎水性コーティングは約95°~約165°の接触角を有する、実施形態9に記載の装置。
実施形態11:前記親水性コーティングは約20°~約80°の接触角を有する、先行する実施形態のいずれかに記載の装置。
実施形態12:前記1つ以上の電極の表面積は前記対電極の表面積よりも小さい、先行する実施形態のいずれかに記載の装置。
実施形態13:前記1つ以上の電極は、アレイ状に形成された複数の個々の異なる電極表面積を含む、先行する実施形態のいずれかに記載の装置。
実施形態14:前記1つ以上の電極及び前記対電極にわたる前記ACは、約1mV~約300Vの電圧で供給される、先行する実施形態のいずれかに記載の装置。
実施形態15:前記1つ以上の電極及び前記対電極にわたる前記ACは、約1mV~約20Vの電圧で供給される、先行する実施形態のいずれかに記載の装置。
実施形態16:前記1つ以上の電極及び前記対電極にわたる前記ACは、約10Hz~約10GHzの発振周波数で供給される、先行する実施形態のいずれかに記載の装置。
実施形態17:前記1つ以上の電極及び前記対電極にわたる前記ACは、約1kHz~約1GHzの発振周波数で供給される、先行する実施形態のいずれかに記載の装置。
実施形態18:前記1つ以上の電極は透明導電材料又はドープ半導体材料のうちの少なくとも1つを含む、先行する実施形態のいずれかに記載の装置。
実施形態19:前記透明導電材料は、インジウム錫酸化物、グラフェン、ドープグラフェン、導電性ポリマー又は薄い金属層を含む、実施形態18に記載の装置。
実施形態20:前記1つ以上の電極は約1nm~約50μmの厚さを有する、先行する実施形態のいずれかに記載の装置。
実施形態21:前記1つ以上の電極は約10nm~約5μmの厚さを有する、先行する実施形態のいずれかに記載の装置。
実施形態22:前記流体は、水性流体、水性緩衝液、有機溶媒、疎水性流体又はガスのうちの1つを含む、先行する実施形態のいずれかに記載の装置。
実施形態23:前記粒子は約1nm~約1mmのサイズを有する、先行する実施形態のいずれかに記載の装置。
実施形態24:前記粒子は、生物有機体、生物学的構造、細胞、生細胞、ウイルス、油滴、リポソーム、ミセル、逆ミセル、タンパク質凝集体、ポリマー又は界面活性剤アセンブリのうちの1つを含む、先行する実施形態のいずれかに記載の装置。
実施形態25:前記コンパートメントは、微小電気機械システム(MEMS)構造又はナノ電気機械システム(NEMS)構造を含む、先行する実施形態のいずれかに記載の装置。
実施形態26:装置を操作するための方法であって、電源を提供するステップと、コンパートメントから流体を分離するように構成された膜を提供するステップと、前記膜に近接して配置される1つ以上の電極を提供するステップと、対電極を提供するステップであって、前記1つ以上の電極及び該対電極は、前記1つ以上の電極及び該対電極にわたって非線形電場を生成するように構成されている、ステップと、前記電源を介して、前記1つ以上の電極及び前記対電極にわたって交流(AC)を供給することにより、振動非線形電場を生成するステップと、前記振動非線形電場により生成される誘電泳動(DEP)力を介して、前記1つ以上の電極と前記対電極との間を流れる前記流体内に懸濁された粒子を固定化するステップと、を含む方法。
実施形態27:前記膜は開口を含む、実施形態26に記載の方法。
実施形態28:前記開口を介して固定化された前記粒子を操作するステップをさらに含む、先行する実施形態のいずれかに記載の方法。
実施形態29:前記コンパートメントから前記膜を横切って入るように構成された鋭利部材で、前記開口を介して前記粒子をプロービングするステップをさらに含む、先行する実施形態のいずれかに記載の方法。
実施形態30:前記コンパートメントから前記膜を横切って入るように構成された鋭利部材で、前記開口を介して前記粒子を挿入するステップをさらに含む、先行する実施形態のいずれかに記載の方法。
実施形態31:前記鋭利部材は微小電気機械システム(MEMS)構造又はナノ電気機械システム(NEMS)構造を含む、実施形態30に記載の方法。
実施形態32:前記膜は窒化ケイ素、酸化ケイ素、金属酸化物、炭化物、セラミック、アルミナ又はポリマーのうちの少なくとも1つを含む、先行する実施形態のいずれかに記載の方法。
実施形態33:前記膜は約10nm~約1cmの厚さを有する、先行する実施形態のいずれかに記載の方法。
実施形態34:前記膜は約100nm~約10μmの厚さを有する、先行する実施形態のいずれかに記載の方法。
実施形態35:前記開口は約10nm~約50μmのサイズを有する、先行する実施形態のいずれかに記載の方法。
実施形態36:前記開口は約1μm~約5μmのサイズを有する、先行する実施形態のいずれかに記載の方法。
実施形態37:前記開口の壁は疎水性コーティング又は親水性コーティングを有する、先行する実施形態のいずれかに記載の方法。
実施形態38:前記疎水性コーティングは約95°~約165°の接触角を有する、実施形態37に記載の方法。
実施形態39:前記親水性コーティングは約20°~約80°の接触角を有する、先行する実施形態のいずれかに記載の方法。
実施形態40:前記1つ以上の電極の表面積は前記対電極の表面積よりも小さい、先行する実施形態のいずれかに記載の方法。
実施形態41:前記1つ以上の電極は、アレイ状に形成された複数の個々の異なる電極表面積を含む、先行する実施形態のいずれかに記載の方法。
実施形態42:前記1つ以上の電極及び前記対電極にわたる前記ACは、約1mV~約300Vの電圧で供給される、先行する実施形態のいずれかに記載の方法。
実施形態43:前記1つ以上の電極及び前記対電極にわたる前記ACは、約1mV~約20Vの電圧で供給される、先行する実施形態のいずれかに記載の方法。
実施形態44:前記1つ以上の電極及び前記対電極にわたる前記ACは、約10Hz~約10GHzの発振周波数で供給される、先行する実施形態のいずれかに記載の方法。
実施形態45:前記1つ以上の電極及び前記対電極にわたる前記ACは、約1kHz~約1GHzの発振周波数で供給される、先行する実施形態のいずれかに記載の方法。
実施形態46:前記1つ以上の電極は透明導電材料又はドープ半導体材料のうちの少なくとも1つを含む、先行する実施形態のいずれかに記載の方法。
実施形態47:前記透明導電材料は、インジウム錫酸化物、グラフェン、ドープグラフェン、導電性ポリマー又は薄い金属層を含む、先行する実施形態のいずれかに記載の方法。
実施形態48:前記1つ以上の電極は約1nm~約50μmの厚さを有する、先行する実施形態のいずれかに記載の方法。
実施形態49:前記1つ以上の電極は約10nm~約5μmの厚さを有する、先行する実施形態のいずれかに記載の方法。
実施形態50:前記流体は、水性流体、水性緩衝液、有機溶媒、疎水性流体又はガスのうちの1つを含む、先行する実施形態のいずれかに記載の方法。
実施形態51:前記粒子は約1nm~約1mmのサイズを有する、先行する実施形態のいずれかに記載の方法。
実施形態52:前記粒子は、生物有機体、生物学的構造、細胞、生細胞、ウイルス、油滴、リポソーム、ミセル、逆ミセル、タンパク質凝集体、ポリマー又は界面活性剤アセンブリのうちの1つを含む、先行する実施形態のいずれかに記載の方法。
実施形態53:1つ以上の電極及び対電極であって、該1つ以上の電極と該対電極との間を流れる流体内に懸濁された粒子を固定化するために非線形電場を生成するように構成されている、1つ以上の電極及び対電極と、前記1つ以上の電極の表面に近接して配置される膜であって、前記1つ以上の電極の該表面は前記対電極に対して遠位にある、膜と、を含む装置であって、前記膜はコンパートメントから前記流体を分離するために構成され、該コンパートメントに配置される鋭利部材を挿入できるようにするように構成された開口を有する、装置。
実施形態54:前記鋭利部材は微小電気機械システム(MEMS)構造又はナノ電気機械システム(NEMS)構造を含む、実施形態53に記載の装置。
実施形態55:前記膜は窒化ケイ素、酸化ケイ素、金属酸化物、炭化物、セラミック、アルミナ又はポリマーのうちの少なくとも1つを含む、先行する実施形態のいずれかに記載の装置。
実施形態56:前記膜は約10nm~約1cmの厚さを有する、先行する実施形態のいずれかに記載の装置。
実施形態57:前記膜は約100nm~約10μmの厚さを有する、先行する実施形態のいずれかに記載の装置。
実施形態58:前記開口は約10nm~約50μmのサイズを有する、先行する実施形態のいずれかに記載の装置。
実施形態59:前記開口は約1μm~約5μmのサイズを有する、先行する実施形態のいずれかに記載の装置。
実施形態60:前記開口の壁は疎水性コーティング又は親水性コーティングを有する、先行する実施形態のいずれかに記載の装置。
実施形態61:前記疎水性コーティングは約95°~約165°の接触角を有する、実施形態60に記載の装置。
実施形態62:前記親水性コーティングは約20°~約80°の接触角を有する、先行する実施形態のいずれかに記載の装置。
実施形態63:前記1つ以上の電極の表面積は前記対電極の表面積よりも小さい、先行する実施形態のいずれかに記載の装置。
実施形態64:前記1つ以上の電極は、アレイ状に形成された複数の個々の異なる電極表面積を含む、先行する実施形態のいずれかに記載の装置。
実施形態65:前記1つ以上の電極及び前記対電極にわたって交流(AC)を供給するための電源をさらに含む、先行する実施形態のいずれかに記載の装置。
実施形態66:前記ACは、約1mV~約300Vの電圧で供給される、実施形態65に記載の装置。
実施形態67:前記ACは、約1mV~約20Vの電圧で供給される、先行する実施形態のいずれかに記載の装置。
実施形態68:前記ACは、約10Hz~約10GHzの発振周波数で供給される、先行する実施形態のいずれかに記載の装置。
実施形態69:前記ACは、約1kHz~約1GHzの発振周波数で供給される、先行する実施形態のいずれかに記載の装置。
実施形態70:前記1つ以上の電極は透明導電材料又はドープ半導体材料のうちの少なくとも1つを含む、先行する実施形態のいずれかに記載の装置。
実施形態71:前記透明導電材料は、インジウム錫酸化物、グラフェン、ドープグラフェン、導電性ポリマー又は薄い金属層を含む、実施形態70に記載の装置。
実施形態72:前記1つ以上の電極は約1nm~約50μmの厚さを有する、先行する実施形態のいずれかに記載の装置。
実施形態73:前記1つ以上の電極は約10nm~約5μmの厚さを有する、先行する実施形態のいずれかに記載の装置。
実施形態74:前記流体は、水性流体、水性緩衝液、有機溶媒、疎水性流体又はガスのうちの1つを含む、先行する実施形態のいずれかに記載の装置。
実施形態75:前記粒子は約1nm~約1mmのサイズを有する、先行する実施形態のいずれかに記載の装置。
実施形態76:前記粒子は、生物有機体、生物学的構造、細胞、生細胞、ウイルス、油滴、リポソーム、ミセル、逆ミセル、タンパク質凝集体、ポリマー又は界面活性剤アセンブリのうちの1つを含む、先行する実施形態のいずれかに記載の装置。
実施形態77:装置を操作するための方法であって、電源を提供するステップと、1つ以上の電極及び対電極を提供するステップであって、該1つ以上の電極及び該対電極は、該1つ以上の電極と該対電極との間を流れる流体内に懸濁された粒子を固定化するために非線形電場を生成するように構成されている、ステップと、前記1つ以上の電極の表面に近接して配置される膜を提供するステップであって、前記1つ以上の電極の該表面は前記対電極に対して遠位にあり、該膜はコンパートメントから前記流体を分離するために構成され、該コンパートメントに配置される鋭利部材を挿入できるようにするように構成された開口を有する、ステップと、前記電源を介して、前記1つ以上の電極及び前記対電極にわたって交流(AC)を供給することにより、振動非線形電場を生成するステップと、前記振動非線形電場により生成される誘電泳動力を介して、前記流体内に懸濁された粒子を固定化するステップと、を含む方法。
実施形態78:前記膜は開口を含む、実施形態77に記載の方法。
実施形態79:前記開口を介して固定化された前記粒子を操作するステップをさらに含む、先行する実施形態のいずれかに記載の方法。
実施形態80:前記コンパートメントから前記膜を横切って入るように構成された鋭利部材で、前記開口を介して前記粒子をプロービングするステップをさらに含む、先行する実施形態のいずれかに記載の方法。
実施形態81:前記コンパートメントから前記膜を横切って入るように構成された鋭利部材で、前記開口を介して前記粒子を挿入するステップをさらに含む、先行する実施形態のいずれかに記載の方法。
実施形態82:前記鋭利部材は微小電気機械システム(MEMS)構造又はナノ電気機械システム(NEMS)構造を含む、実施形態81に記載の方法。
実施形態83:前記膜は窒化ケイ素、酸化ケイ素、金属酸化物、炭化物、セラミック、アルミナ又はポリマーのうちの少なくとも1つを含む、先行する実施形態のいずれかに記載の方法。
実施形態84:前記膜は約10nm~約1cmの厚さを有する、先行する実施形態のいずれかに記載の方法。
実施形態85:前記膜は約100nm~約10μmの厚さを有する、先行する実施形態のいずれかに記載の方法。
実施形態86:前記開口は約10nm~約50μmのサイズを有する、先行する実施形態のいずれかに記載の方法。
実施形態87:前記開口は約1μm~約5μmのサイズを有する、先行する実施形態のいずれかに記載の方法。
実施形態88:前記開口の壁は疎水性コーティング又は親水性コーティングを有する、先行する実施形態のいずれかに記載の方法。
実施形態89:前記疎水性コーティングは約95°~約165°の接触角を有する、実施形態88に記載の方法。
実施形態90:前記親水性コーティングは約20°~約80°の接触角を有する、先行する実施形態のいずれかに記載の方法。
実施形態91:前記1つ以上の電極の表面積は前記対電極の表面積よりも小さい、先行する実施形態のいずれかに記載の方法。
実施形態92:前記1つ以上の電極は、アレイ状に形成された複数の個々の異なる電極表面積を含む、先行する実施形態のいずれかに記載の方法。
実施形態93:前記1つ以上の電極及び前記対電極にわたる前記ACは、約1mV~約300Vの電圧で供給される、先行する実施形態のいずれかに記載の方法。
実施形態94:前記1つ以上の電極及び前記対電極にわたる前記ACは、約1mV~約20Vの電圧で供給される、先行する実施形態のいずれかに記載の方法。
実施形態95:前記1つ以上の電極及び前記対電極にわたる前記ACは、約10Hz~約10GHzの発振周波数で供給される、先行する実施形態のいずれかに記載の方法。
実施形態96:前記1つ以上の電極及び前記対電極にわたる前記ACは、約1kHz~約1GHzの発振周波数で供給される、先行する実施形態のいずれかに記載の方法。
実施形態97:前記1つ以上の電極は透明導電材料又はドープ半導体材料のうちの少なくとも1つを含む、先行する実施形態のいずれかに記載の方法。
実施形態98:前記透明導電材料は、インジウム錫酸化物、グラフェン、ドープグラフェン、導電性ポリマー又は薄い金属層を含む、実施形態97に記載の方法。
実施形態99:前記1つ以上の電極は約1nm~約50μmの厚さを有する、先行する実施形態のいずれかに記載の方法。
実施形態100:前記1つ以上の電極は約10nm~約5μmの厚さを有する、先行する実施形態のいずれかに記載の方法。
実施形態101:前記流体は、水性流体、水性緩衝液、有機溶媒、疎水性流体又はガスのうちの1つを含む、先行する実施形態のいずれかに記載の方法。
実施形態102:前記流体は第1の流体であり、前記コンパートメントは第2の流体をさらに含み、該第1の流体は疎水性流体であり、該第2の流体は親水性流体であるか又はその逆である、実施形態101に記載の方法。
実施形態103:前記第1の流体及び前記第2の流体は混和しない、先行する実施形態のいずれかに記載の方法。
実施形態104:前記粒子は約1nm~約1mmのサイズを有する、先行する実施形態のいずれかに記載の方法。
実施形態105:前記粒子は、生物有機体、生物学的構造、細胞、生細胞、ウイルス、油滴、リポソーム、ミセル、逆ミセル、タンパク質凝集体、ポリマー又は界面活性剤アセンブリのうちの1つを含む、先行する実施形態のいずれかに記載の方法。
実施形態106:前記流体は第1の流体であり、前記コンパートメントは該第1の流体と混和しない第2の流体を含む、先行する実施形態のいずれかに記載の装置。
実施形態107:前記第1の流体は疎水性流体であり、前記第2の流体は親水性流体であるか又はその逆である、先行する実施形態のいずれかに記載の装置。
実施形態108:前記流体は第1の流体であり、前記コンパートメントは該第1の流体と混和しない第2の流体を含む、先行する実施形態のいずれかに記載の方法。
実施形態109:前記第1の流体は疎水性流体であり、前記第2の流体は親水性流体であるか又はその逆である、請求項108に記載の装置。
実施形態110:前記流体は第1の流体であり、前記コンパートメントは該第1の流体と混和しない第2の流体を含む、先行する実施形態のいずれかに記載の装置。
実施形態111:前記第1の流体は疎水性流体であり、前記第2の流体は親水性流体であるか又はその逆である、実施形態110に記載の装置。
実施形態112:装置を操作するための方法であって、電源を提供するステップと、コンパートメントから流体を分離するように構成された膜を提供するステップと、前記膜の表面に近接して配置される一対の電極を提供するステップであって、該一対の電極は該電極にわたって非線形電場を生成するように構成されている、ステップと、前記電源を介して、前記電極にわたって交流(AC)を供給することにより、振動非線形電場を生成するステップと、前記振動非線形電場により生成される誘電泳動力を介して、前記電極間を流れる前記流体内に懸濁された粒子を固定化するステップと、を含む方法。
実施形態113:対電極を提供するステップをさらに含み、前記膜は開口を含む、実施形態112に記載の方法。
実施形態114:前記膜の表面に近接して配置される第3の電極を提供するステップをさらに含む、先行する実施形態のいずれかに記載の方法。
実施形態115:前記コンパートメントから前記膜を横切って入るように構成された鋭利部材で、前記開口を介して前記粒子をプロービングするステップをさらに含む、先行する実施形態のいずれかに記載の方法。
実施形態116:前記コンパートメントから前記膜を横切って入るように構成された鋭利部材で、前記開口を介して前記粒子を挿入するステップをさらに含む、先行する実施形態のいずれかに記載の方法。
実施形態117:前記一対の電極のそれぞれは、鋭利な先端若しくは平坦な先端を含むか又は前記第3の電極はリング電極である、先行する実施形態のいずれかに記載の方法。
実施形態118:前記鋭利部材は微小電気機械システム(MEMS)構造又はナノ電気機械システム(NEMS)構造を含む、先行する実施形態のいずれかに記載の方法。
実施形態119:前記膜は窒化ケイ素、酸化ケイ素、金属酸化物、炭化物、セラミック、アルミナ又はポリマーのうちの少なくとも1つを含む、先行する実施形態のいずれかに記載の方法。
実施形態120:前記膜は約10nm~約1cmの厚さを有する、先行する実施形態のいずれかに記載の方法。
実施形態121:前記膜は約100nm~約10μmの厚さを有する、先行する実施形態のいずれかに記載の方法。
実施形態122:前記開口は約10nm~約50μmのサイズを有する、先行する実施形態のいずれかに記載の方法。
実施形態123:前記開口は約1μm~約5μmのサイズを有する、先行する実施形態のいずれかに記載の方法。
実施形態124:前記開口の壁は疎水性コーティング又は親水性コーティングを有する、先行する実施形態のいずれかに記載の方法。
実施形態125:前記疎水性コーティングは約95°~約165°の接触角を有する、先行する実施形態のいずれかに記載の方法。
実施形態126:前記親水性コーティングは約20°~約80°の接触角を有する、先行する実施形態のいずれかに記載の方法。
実施形態127:前記開口は前記一対の電極の間に配置されている、先行する実施形態のいずれかに記載の方法。
実施形態128:前記膜は、アレイ状に形成された複数の電極対と、複数の開口とを含み、該開口のそれぞれは該複数の電極対のそれぞれの間に配置されている、先行する実施形態のいずれかに記載の方法。
実施形態129:前記一対の電極及び前記対電極にわたる前記ACは、約1mV~約300Vの電圧で供給される、先行する実施形態のいずれかに記載の方法。
実施形態130:前記一対の電極及び前記対電極にわたる前記ACは、約1mV~約20Vの電圧で供給される、先行する実施形態のいずれかに記載の方法。
実施形態131:前記一対の電極及び前記対電極にわたる前記ACは、約10Hz~約10GHzの発振周波数で供給される、先行する実施形態のいずれかに記載の方法。
実施形態132:前記一対の電極及び前記対電極にわたる前記ACは、約1kHz~約1GHzの発振周波数で供給される、先行する実施形態のいずれかに記載の方法。
実施形態133:前記一対の電極のうちの一方の電極は透明導電材料又はドープ半導体材料のうちの少なくとも1つを含む、先行する実施形態のいずれかに記載の方法。
実施形態134:前記透明導電材料は、インジウム錫酸化物、グラフェン、ドープグラフェン、導電性ポリマー又は薄い金属層を含む、実施形態133に記載の方法。
実施形態135:前記一対の電極は約1nm~約50μmの厚さを有する、先行する実施形態のいずれかに記載の方法。
実施形態136:前記一対の電極は約10nm~約5μmの厚さを有する、先行する実施形態のいずれかに記載の方法。
実施形態137:前記流体は、水性流体、水性緩衝液、有機溶媒、疎水性流体又はガスのうちの1つを含む、先行する実施形態のいずれかに記載の方法。
実施形態138:前記粒子は約1nm~約1mmのサイズを有する、先行する実施形態のいずれかに記載の方法。
実施形態139:前記粒子は、生物有機体、生物学的構造、細胞、生細胞、ウイルス、油滴、リポソーム、ミセル、逆ミセル、タンパク質凝集体、ポリマー又は界面活性剤アセンブリのうちの1つを含む、先行する実施形態のいずれかに記載の方法。
実施形態140:前記流体は第1の流体であり、前記コンパートメントは該第1の流体と混和しない第2の流体を含む、先行する実施形態のいずれかに記載の方法。
実施形態141:前記第1の流体は疎水性流体であり、前記第2の流体は親水性流体であるか又はその逆である、実施形態140に記載の方法。
実施形態142:前記1つ以上の電極は前記膜の表面に近接して配置され、該表面は前記コンパートメントに対して遠位にある、先行する実施形態のいずれかに記載の装置。
実施形態143:前記1つ以上の電極は前記膜の表面に近接して配置され、該表面は前記コンパートメントに対して近位にある、先行する実施形態のいずれかに記載の装置。
実施形態144:前記1つ以上の電極は前記膜の表面に近接して配置され、該表面は前記コンパートメントに対して遠位にある、実施形態26に記載の装置。
実施形態145:前記1つ以上の電極は前記膜の表面に近接して配置され、該表面は前記コンパートメントに対して近位にある、実施形態26に記載の装置。
本明細書は、多くの具体的な実施の詳細を含むが、これらは、いずれかの発明の範囲又は特許請求の範囲に記載のものを限定するものではなく、むしろ、特定の発明の特定の実施に特有の特徴の説明として解釈すべきである。別々の実施の文脈で本明細書に記載する特定の特徴は、単一の実施において組み合わせで実施することもできる。逆に、単一の実施の文脈で記載する様々の特徴は、複数の実施で別々に又は任意の適切なサブコンビネーションで実施することもできる。さらに、特徴は、特定の組み合わせで作用するものとして上述され、そのように特許請求の範囲に最初に記載され得るが、特許請求の範囲に記載のものの組み合わせからの1つ以上の特徴は場合によっては組み合わせから切り出すことができ、特許請求の範囲に記載のものの組み合わせは、サブコンビネーション又はサブコンビネーションの変形例に関し得る。
同様に、図面には特定の順序で動作が示されているが、これは、所望の結果を得るためにこのような動作を図示の特定の順番で又は順序で行うこと又は図示の全ての動作を行うことが必要であると理解すべきではない。特定の状況下では、マルチタスク及び並列処理が有利であり得る。さらに、上述の実施における様々のシステムコンポーネントの分離は、全ての実施においてそのような分離を必要とするものと理解すべきではなく、上述のプログラムコンポーネント及びシステムは、一般に、単一のソフトウェア製品内に統合され得るか又は複数のソフトウェア製品内にパッケージされ得ることを理解すべきである。
「又は」への言及は、「又は」を用いて記載される任意の用語が、記載される用語の1つ、複数及び全てのうちのいずれかを示し得るように包含的に解釈され得る。「第1」、「第2」、「第3」等の表記は必ずしも順序を示すことを意味するものではなく、類似の又は同様のアイテム又は要素を区別するために用いているにすぎない。
当業者にとって、本開示に記載の実施に対する様々な変更を容易に明らかであり、本明細書に定義される一般原理は、本開示の精神又は範囲から逸脱することなく、他の実施に適用され得る。そのため、特許請求の範囲は、本明細書で示す実施に限定されることを意図するものではなく、本開示、原理及び本明細書に開示の新規な特徴と一致する最も広い範囲に与えられるべきである。

Claims (16)

  1. コンパートメントから流体を分離するための膜であって、該膜は開口を含む、膜と、
    前記膜に近接して配置される1つ以上の電極と、
    対電極であって、前記1つ以上の電極及び該対電極は、前記1つ以上の電極及び該対電極にわたって非線形電場を生成するように構成されている、対電極と、
    前記1つ以上の電極及び前記対電極にわたって交流(AC)を提供することにより、前記1つ以上の電極と前記対電極との間の流路を流れる前記流体内に懸濁された粒子を固定化するために振動非線形電場を生成する電源と、
    を含み、
    前記開口は、固定化された前記粒子の機械的操作を可能にし、該機械的操作は、鋭利部材で前記粒子をプロービングすることを含む、装置。
  2. 前記膜は窒化ケイ素、酸化ケイ素、金属酸化物、炭化物、セラミック、アルミナ又はポリマーのうちの少なくとも1つを含む、請求項1に記載の装置。
  3. 前記膜は10nm~1cmの厚さを有する、請求項1又は2に記載の装置。
  4. 前記開口は10nm~50μmのサイズを有する、請求項1に記載の装置。
  5. 前記開口の壁は疎水性コーティング又は親水性コーティングを有する、請求項1に記載の装置。
  6. 前記1つ以上の電極の表面積は前記対電極の表面積よりも小さい、請求項1乃至5のいずれか一項に記載の装置。
  7. 前記1つ以上の電極及び前記対電極にわたる前記ACは、10Hz~10GHzの発振周波数で供給される、請求項1乃至6のいずれか一項に記載の装置。
  8. 前記1つ以上の電極は透明導電材料又はドープ半導体材料のうちの少なくとも1つを含む、請求項1乃至7のいずれか一項に記載の装置。
  9. 前記透明導電材料は、インジウム錫酸化物、グラフェン、ドープグラフェン、導電性ポリマー又は薄い金属層を含む、請求項8に記載の装置。
  10. 前記流体は、水性流体、水性緩衝液、有機溶媒、疎水性流体又はガスのうちの1つを含む、請求項1乃至9のいずれか一項に記載の装置。
  11. 前記粒子は、生物有機体、生物学的構造、細胞、生細胞、ウイルス、油滴、リポソーム、ミセル、逆ミセル、タンパク質凝集体、ポリマー又は界面活性剤アセンブリのうちの1つを含む、請求項1乃至10のいずれか一項に記載の装置。
  12. 装置を操作するための方法であって、
    電源を提供するステップと、
    コンパートメントから流体を分離するように構成された膜を提供するステップであって、該膜は開口を含む、ステップと、
    前記膜に近接して配置される1つ以上の電極を提供するステップと、
    対電極を提供するステップであって、前記1つ以上の電極及び該対電極は、前記1つ以上の電極及び該対電極にわたって非線形電場を生成するように構成されている、ステップと、
    前記電源を介して、前記1つ以上の電極及び前記対電極にわたって交流(AC)を供給することにより、振動非線形電場を生成するステップと、
    前記振動非線形電場により生成される誘電泳動(DEP)力を介して、前記1つ以上の電極と前記対電極との間の流路を流れる前記流体内に懸濁された粒子を固定化するステップと、
    鋭利部材で、前記開口を介して前記粒子をプロービングするステップと、
    を含む方法。
  13. 前記開口を介して固定化された前記粒子を操作するステップをさらに含む、請求項12に記載の方法。
  14. 鋭利部材で、前記開口を介して前記粒子を挿入するステップをさらに含む、請求項12に記載の方法。
  15. 1つ以上の電極及び対電極であって、該1つ以上の電極と該対電極との間の流路を流れる流体内に懸濁された粒子を固定化するために非線形電場を生成するように構成されている、1つ以上の電極及び対電極と、
    前記1つ以上の電極の表面に近接して配置される膜であって、前記1つ以上の電極の該表面は前記対電極に対して遠位にある、膜と、
    を含む装置であって、
    前記膜はコンパートメントから前記流体を分離するために構成され、前記膜と、前記1つ以上の電極のうちの1つとにわたって延びる開口を有する、装置。
  16. 前記粒子は、生物有機体、生物学的構造、細胞、生細胞、ウイルス、油滴、リポソーム、ミセル、逆ミセル、タンパク質凝集体、ポリマー又は界面活性剤アセンブリのうちの1つを含む、請求項15に記載の装置。
JP2023209795A 2019-04-23 2023-12-13 インターフェイスのためのキャビティに近接した粒子の誘電泳動固定化 Pending JP2024041757A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962837646P 2019-04-23 2019-04-23
US62/837,646 2019-04-23
PCT/US2020/029387 WO2020219593A1 (en) 2019-04-23 2020-04-22 Dielectrophoretic immobilization of a particle in proximity to a cavity for interfacing
JP2021563055A JP7404396B2 (ja) 2019-04-23 2020-04-22 インターフェイスのためのキャビティに近接した粒子の誘電泳動固定化

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021563055A Division JP7404396B2 (ja) 2019-04-23 2020-04-22 インターフェイスのためのキャビティに近接した粒子の誘電泳動固定化

Publications (1)

Publication Number Publication Date
JP2024041757A true JP2024041757A (ja) 2024-03-27

Family

ID=72941838

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021563055A Active JP7404396B2 (ja) 2019-04-23 2020-04-22 インターフェイスのためのキャビティに近接した粒子の誘電泳動固定化
JP2023209795A Pending JP2024041757A (ja) 2019-04-23 2023-12-13 インターフェイスのためのキャビティに近接した粒子の誘電泳動固定化

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021563055A Active JP7404396B2 (ja) 2019-04-23 2020-04-22 インターフェイスのためのキャビティに近接した粒子の誘電泳動固定化

Country Status (11)

Country Link
US (1) US20220280943A1 (ja)
EP (1) EP3959018A4 (ja)
JP (2) JP7404396B2 (ja)
KR (2) KR20240097974A (ja)
CN (1) CN113811394A (ja)
AU (1) AU2020263374B2 (ja)
CA (1) CA3137731A1 (ja)
IL (1) IL287333A (ja)
SG (1) SG11202111508YA (ja)
TW (1) TW202106869A (ja)
WO (1) WO2020219593A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210346844A1 (en) * 2020-05-05 2021-11-11 Massachusetts Institute Of Technology Electrokinetic-Based Concentrator Device and Method
WO2023160777A1 (en) * 2022-02-23 2023-08-31 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device and method for manipulating biological cells and method of manufacturing the device
WO2024073585A2 (en) * 2022-09-30 2024-04-04 Mekonos, Inc. Systems and methods for single-cell trapping via dielectrophoresis

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244349B2 (en) * 1997-12-17 2007-07-17 Molecular Devices Corporation Multiaperture sample positioning and analysis system
WO2002059598A1 (en) * 2001-01-26 2002-08-01 Cytion S.A. Method and apparatus for the precise positioning of cells and other small objects
WO2002077259A2 (en) * 2001-03-24 2002-10-03 Aviva Biosciences Corporation Biochips including ion transport detecting structures and methods of use
WO2002103354A1 (en) * 2001-06-20 2002-12-27 Sophion Bioscience A/S An apparatus and method for determining and/or monitoring electrophysiological properties of ion channels
CN1729285A (zh) * 2001-06-29 2006-02-01 里兰·斯坦福初级大学董事会 电子修复视网膜的人造突触芯片界面
US6887362B2 (en) 2002-02-06 2005-05-03 Nanogen, Inc. Dielectrophoretic separation and immunoassay methods on active electronic matrix devices
AU2003234323A1 (en) * 2002-05-03 2003-11-17 The Regents Of The University Of California Fast electrical lysis of cells and rapid collection of the contents thereof using capillary electrophoresis
EP1501924A4 (en) * 2002-05-04 2006-05-24 Aviva Biosciences Corp DEVICE WITH STRUCTURES OF PROTECTIVE ION TRANSPORT AND USE METHOD
AU2003278461A1 (en) * 2002-10-16 2004-05-04 Cellectricon Ab Nanoelectrodes and nanotips for recording transmembrane currents in a plurality of cells
US7105081B2 (en) * 2002-12-20 2006-09-12 Board Of Regents, The University Of Texas System Methods and apparatus for electrosmear analysis
US7112433B2 (en) * 2003-04-24 2006-09-26 Hewlett-Packard Development Company, L.P. Electrical analysis of biological membranes
US9562837B2 (en) * 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
ITMI20061063A1 (it) * 2006-05-31 2007-12-01 Mindseeds Lab S R L Metrodo e apparato pe rla selezione e la modifica di singole cellule e loro piccoli aggregati
WO2010104856A2 (en) * 2009-03-09 2010-09-16 Virginia Tech Intellectual Properties, Inc. Devices and methods for contactless dielectrophoresis for cell or particle manipulation
JP2011104487A (ja) 2009-11-13 2011-06-02 Tosoh Corp 微粒子操作装置
US9146227B2 (en) * 2010-12-30 2015-09-29 Molecular Devices, Llc Planar patch clamp devices and methods for fabrication and use
US9387488B2 (en) * 2012-11-13 2016-07-12 Academia Sinica Molecular entrapment and enrichment
EP3155396A4 (en) * 2014-06-12 2017-12-27 Wafergen, Inc. Single cell capture with polymer capture films
CN104789468B (zh) 2014-07-22 2017-10-20 奥克莱流体公司 颗粒筛选装置
US11567096B2 (en) * 2016-10-31 2023-01-31 Mekonos Limited Sensing for automated biological cell injection

Also Published As

Publication number Publication date
AU2020263374A1 (en) 2021-11-04
KR20240097974A (ko) 2024-06-27
EP3959018A1 (en) 2022-03-02
KR20210153683A (ko) 2021-12-17
US20220280943A1 (en) 2022-09-08
CA3137731A1 (en) 2020-10-29
SG11202111508YA (en) 2021-11-29
AU2020263374B2 (en) 2023-05-11
WO2020219593A1 (en) 2020-10-29
KR102677639B1 (ko) 2024-06-24
CN113811394A (zh) 2021-12-17
TW202106869A (zh) 2021-02-16
JP2022530064A (ja) 2022-06-27
EP3959018A4 (en) 2022-06-15
JP7404396B2 (ja) 2023-12-25
IL287333A (en) 2021-12-01

Similar Documents

Publication Publication Date Title
JP7404396B2 (ja) インターフェイスのためのキャビティに近接した粒子の誘電泳動固定化
CA2485099C (en) Apparatus including ion transport detecting structures and methods of use
US9995668B2 (en) Apparatus for manipulating, modifying and characterizing particles in a micro channel
US20050009004A1 (en) Apparatus including ion transport detecting structures and methods of use
US6893547B2 (en) Apparatus and method for fluid injection
US7968305B2 (en) Biochips including ion transport detecting structures and methods of use
US20110147215A1 (en) Method and device for manipulating and observing liquid droplets
JP2002536167A (ja) プログラム可能な微小流体処理のための方法および装置
EP2928606B1 (en) Manipulation of objects in microfluidic devices using external electrodes
WO2010147942A1 (en) Multiphase non-linear electrokinetic devices
JP2005515058A (ja) 流体の経路割当および制限のための無壁チャネル
TW202436615A (zh) 用於透過介電泳捕捉單細胞之系統及方法
WO2024073585A2 (en) Systems and methods for single-cell trapping via dielectrophoresis
Lee Fundamental studies of AC/DC electrokinetic phenomena for the realization of microchip capillary electrophoresis for single-cell analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20241003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241015