JP2024033870A - Horizontal water wheel hydroelectric power generation device - Google Patents

Horizontal water wheel hydroelectric power generation device Download PDF

Info

Publication number
JP2024033870A
JP2024033870A JP2022137759A JP2022137759A JP2024033870A JP 2024033870 A JP2024033870 A JP 2024033870A JP 2022137759 A JP2022137759 A JP 2022137759A JP 2022137759 A JP2022137759 A JP 2022137759A JP 2024033870 A JP2024033870 A JP 2024033870A
Authority
JP
Japan
Prior art keywords
water
energy
rotating body
horizontal
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022137759A
Other languages
Japanese (ja)
Inventor
博人 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022137759A priority Critical patent/JP2024033870A/en
Publication of JP2024033870A publication Critical patent/JP2024033870A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

【課題】河川等において落差を必要としない横掛け水車による水力発電装置の提供を課題とする。【解決手段】本発明の一装置である横掛け水車設置幅が確保された流通路30の左右に収集堰25を構築し、収集堰25によって集約された河川流水を流通路30に設置回転する横掛け水車中央の回転体1を基準として、エネルギー生産流水34と非エネルギー生産流水35として左右に分け、垂直と90°の角度をもって水平に一対してなる回転翼をエネルギー生産流水34の位置エネルギーで垂直翼に、非エネルギー生産流水35の水面位置上部を水低杭を無にしての水平翼5と互いの回転翼の垂直と水平の変換作動で回転エネルギーを生産し、横掛け水車中央の回転体1上部で一体した駆動ギア21に噛合した被動ギア22で変速し回転軸23で連動した発電機24とで成る。【選択図】図1An object of the present invention is to provide a hydroelectric power generation device using a horizontal water wheel that does not require a head in a river or the like. [Solution] Collection weirs 25 are constructed on the left and right sides of a distribution passage 30 with a secured installation width for a horizontal water turbine, which is a device of the present invention, and river runoff collected by the collection weir 25 is installed and rotated in the distribution passage 30. Based on the rotating body 1 at the center of the side-hung water wheel, it is divided into energy-producing flowing water 34 and non-energy-producing flowing water 35 on the left and right, and a pair of rotary blades arranged horizontally at an angle of 90° with respect to the vertical are used to calculate the potential energy of the energy-producing flowing water 34. With vertical blades, non-energy producing flowing water 35 is placed at the top of the water surface with no water-low piles, and horizontal blades 5 and each other's rotary blades produce rotational energy through the vertical and horizontal conversion operation, and are It consists of a generator 24 whose speed is changed by a driven gear 22 that meshes with a driving gear 21 integrated on the upper part of the rotating body 1 and which is interlocked with a rotating shaft 23. [Selection diagram] Figure 1

Description

本発明は河川において落差を必要とせず、自然流水を利用しての小中規模水力発電装置に関するものであり、より詳細には河川流水の水面位置と適度の間隔を開けての上板と表面を川底と並列して埋設した底板とに相対して設けた軸受けに軸支した回転体と、回転体と一対に回転する回転翼とで成る横掛け水車であり、河川流水を横掛け水車中央の回転体を基準にしてエネルギー生産流水と非エネルギー生産流水として左右に分け、エネルギー生産流水の位置エネルギーで水中において垂直に成る垂直翼と、相対して一対する非エネルギー生産流水の水面上で水平に成る水平翼との循環作動によって電気エネルギーの生産を可能にした横掛け水車に関するものである。
The present invention relates to a small to medium-scale hydroelectric power generation device that uses natural flowing water without requiring a head in a river. It is a side-hung water turbine consisting of a rotating body supported on a bearing opposite to a bottom plate buried parallel to the riverbed, and a pair of rotating blades that rotate with the rotor. The energy-producing flowing water is divided into the left and right as the energy-producing flowing water and the non-energy producing flowing water as a reference, and the energy-producing flowing water has a vertical wing that is vertical in the water due to the potential energy, and a pair of non-energy producing flowing water is horizontal on the water surface opposite to each other. This relates to a horizontally shot water wheel that made it possible to produce electrical energy through cyclical operation with horizontal blades.

現在、自然流水を利用しての水力発電装置において、除塵装置を不要とする水車形式は上掛け水車に限られている。河川において水車を上掛けにしてエネルギーの生産を可能とするには、それに見合う落差がある取水堰が必要であり、現時点で上掛け水車の設置可能な既存堰はごく僅かであり、河川においての堰新設には様々な課題と膨大な費用を必要とする。 Currently, in hydroelectric power generation systems that utilize natural flowing water, the only type of water turbine that does not require a dust removal device is an overshot water turbine. In order to make it possible to produce energy by overloading a water wheel on a river, an intake weir with a commensurate head height is required.Currently, there are only a few existing weirs where overload turbines can be installed. Constructing a new weir involves various challenges and huge costs.

上記の一課題であるゴミ対策を解決すべく発明されたものに、例えば「特許第5671769号」がある。この装置の場合は、一軸で回転する既存の上掛け水車を二軸で回転するベルトコンベヤー式に変え、装置に見合う落差を有する堰上下に斜めにして掛け渡し、ベルト部に複数のバケットを均等に取り付け、自然流水をベルト部の上側バケット内に取り込み、複数あるバケット内水重量と斜め方向へ移動落下する流水圧でベルトコンベヤーを回転させての水力発電装置であり、ゴミ対策においては既存の上掛け水車と同等の機能を有する。 For example, ``Patent No. 5671769'' was invented to solve the above-mentioned problem of garbage countermeasures. In the case of this device, the existing overshot water wheel that rotates on one axis is replaced with a belt conveyor type that rotates on two axes, and the belt conveyor is installed diagonally above and below a weir with a head that corresponds to the device, and multiple buckets are distributed evenly on the belt. It is a hydroelectric power generation device that takes natural flowing water into the upper bucket of the belt part and rotates the belt conveyor using the weight of the water in the multiple buckets and the pressure of the flowing water that moves diagonally and falls. It has the same function as an overshot water wheel.

ただ、自然流水を利用しての水力発電装置においては、ゴミ対策の他に様々な課題が山積し、特に水力発電装置の河川設置においては別格である。
「特許5671769号」の場合は、水力発電装置の除塵対策においては、ゴミ等を確実に排除することが出来るが、その他の課題である堰の新設と新設においての課題である堰底部の落下水による浸食、河川生物の遡上問題、景観、騒音対策、特に増水時においての流木、流石、増水分水量等と、これらの問題解決においては膨大な費用を有することになる。
又、この発明は、ある程度の傾斜を設けてのベルトコンベヤー式にしたことで、貯水した各々バケットの垂直でなく斜め方向への移動エネルギーとなり、ベルトコンベヤーの各々部位に膨大な抵抗を掛けることになり、自然流水を効率よく有効利用する事は難しい。
However, when it comes to hydroelectric power generation equipment that uses natural flowing water, there are many other issues in addition to garbage countermeasures, and installation of hydropower generation equipment in rivers is especially different.
In the case of "Patent No. 5671769," it is possible to reliably eliminate dust etc. as a dust removal measure for hydroelectric power generation equipment. Problems such as erosion caused by rivers, river creatures running upstream, landscape, noise countermeasures, driftwood, flowstones, increased water volume, etc., especially when the water rises, will require enormous costs to solve these problems.
In addition, this invention uses a belt conveyor type with a certain degree of inclination, so that the energy of moving each bucket containing water in an oblique direction instead of vertically causes a huge amount of resistance to be applied to each part of the belt conveyor. Therefore, it is difficult to use natural flowing water efficiently and effectively.

特許第5671769号公報Patent No. 5671769

上述したように、従来提唱されている直設河川装置の中、小規模水力発電装置においては、装置としての実用性はあるが、新設に対しては皆無である。その要因としては山積する課題にあり、例別すると、気候変動によって発生する河川の増水とそれに供る流木、流石等と、渇水時の水位低下と、景観、騒音対策、河川生物の遡上対策、又、落差を必要とする水力発電装置においては、装置に見合う高さの堰が必要であり、設置可能とする既存堰はごく僅かしかなく、上記課題を解決しての新設においては膨大な費用を必要とする。発電用ダム、河川水を取水しての発電装置を除き、上記課題を解決しての直設河川装置水力発電装置の新設は不可能である。 As mentioned above, among the directly installed river systems proposed in the past, small-scale hydroelectric power generation systems have practical utility as devices, but they have no practical utility for new installations. The reasons for this are a mountain of issues, such as the increase in river water caused by climate change and the accompanying driftwood, flowstones, etc., the drop in water levels during droughts, landscape, noise countermeasures, and countermeasures for river creatures to migrate upstream. In addition, hydroelectric power generation equipment that requires a head requires a weir with a height commensurate with the equipment, and there are only a few existing weirs that can be installed, and it would take a huge amount of time to construct a new weir to solve the above problems. Requires costs. With the exception of power generation dams and power generation devices that take in river water, it is impossible to newly install directly installed river hydroelectric power generation devices that solve the above problems.

本発明は、河川流水を利用しての小中規模の水力発電装置における問題を解決するためになされたものであって、上掛け下掛けと従来の水力発電装置を新たな横掛け水車形式にして、水車中央の回転体を基準して河川流水をエネルギー生産流水と非エネルギー生産流水として左右に分け、エネルギー生産流水の位置エネルギーで成る垂直翼と、非エネルギー生産流水の水面上で水抵抗を無にしての水平翼とで成る本発明は、落差を必要とせず、気候変動によってまれに発生する河川の増水分水量と、それに供る流木、流石等と、河川生物の遡上対策とその他の課題を解決しての横掛け水車水力発電装置を提供する事を課題とする。
The present invention was made in order to solve the problems in small and medium-sized hydroelectric power generation equipment that utilizes river water, and is an attempt to replace the conventional hydroelectric power generation equipment with an overhung and underhung type in a new side-hung water turbine format. The river water is divided into energy-producing water and non-energy-producing water on the left and right based on the rotating body at the center of the turbine, and vertical blades made of the potential energy of the energy-producing water and water resistance on the water surface of the non-energy-producing water are used. The present invention, which consists of a horizontal wing, does not require a head, and can be used to deal with increased water levels in rivers that rarely occur due to climate change, the driftwood, rocks, etc. that accompany it, countermeasures for river creatures to migrate upstream, and others. Our objective is to provide a horizontally cast water wheel hydroelectric power generation device that solves the following problems.

上記課題を解決するための請求項1に記載の発明は、水面上に一部を残し大部分を水中内に置いた円筒の回転体と前記回転体上部中心を基準して、円周に相対に並列して配置された複数の軸受けと、前記軸受けを自在にして貫通した90°回転支軸と前記90°回転支軸を、前記回転体内において相対に同等に長さを違えた出幅を残して切り離し、互いを連結する半円形連結板と、前記回転体を貫通し外位置で放射状に一定の長さにした相対する前記90°回転支軸と一体する垂直と90°の角度をもって水平に一対して成る回転翼と、前記出幅に前記回転翼と並列に一体する90°回転止め板と、前記回転体の内側外側の同位置に前記回転翼を垂直位置で受け止める為に設置された、前記90°回転止め板の受け板と、中心に主軸と一体した駆動ギアとが連座した前記回転体上部を塞ぐ上蓋と、中心に主軸を一体した低部を塞ぐ底蓋と、駆動ギアと噛合する被動ギアで変速させ、回転軸を介して連動する発電機とから成る、河川流水を利用しての横掛け水車水力発電装置である。 In order to solve the above problem, the invention according to claim 1 provides a cylindrical rotating body that is partially placed above the water surface and most of which is placed in the water, and a circumference relative to the center of the upper part of the rotating body. a plurality of bearings arranged in parallel, a 90° rotating support shaft that freely passes through the bearings, and the 90° rotating support shaft having protruding widths that are relatively equally different in length within the rotating body. A semicircular connecting plate that connects each other, and a vertical and horizontal that are integrated with the opposing 90° rotating support shaft that passes through the rotating body and has a constant length radially at the outer position. a pair of rotary blades, a 90° rotation stop plate integrated in parallel with the rotary blade on the protruding width, and installed at the same positions on the inside and outside of the rotary body to receive the rotary blade in a vertical position. In addition, the receiving plate of the 90° rotation stopper plate, a top cover that covers the upper part of the rotating body in which the drive gear integrated with the main shaft is seated in the center, a bottom cover that covers the lower part with the main shaft integrated in the center, and the drive gear. This is a side-shot water turbine hydroelectric power generation device that utilizes river water, and is comprised of a driven gear that meshes with the rotor to change speed, and a generator that is linked via a rotating shaft.

一実施形態においては、上蓋と底蓋とで前記回転体上下を塞いで、密閉された前記回転体上部円周に中心を基準に相対して、並列に設けた複数の前記軸受けに一定の長さの前記90°回転支軸を自在にして貫通させ、前記回転体内において相対し同等の出幅を残して切り離し、各々前記出幅を前記半円形連結板を介して連結し、連結時において前記90°回転支軸と一体になる前記回転翼を垂直位置で受け止めて垂直翼に、相対する前記90°回転支軸と一体する前記回転翼は、前記垂直翼に対し、90°の角度をもって水平移動する水平翼に成る。 In one embodiment, a top cover and a bottom cover cover the top and bottom of the rotating body, and a plurality of the bearings are arranged in parallel to each other with a certain length on the circumference of the sealed upper part of the rotating body, facing each other with respect to the center. The 90° rotation support shaft of the rotor is freely passed through the rotary body, and separated while leaving the same protrusion width while facing each other in the rotating body, and the protrusion widths are connected via the semicircular connecting plate, and when connected, the The rotary blade, which is integrated with the 90° rotation support shaft, is received in a vertical position by receiving the rotor blade in a vertical position, and the rotor blade, which is integrated with the opposing 90° rotation support shaft, is horizontally held at an angle of 90° with respect to the vertical blade. It becomes a moving horizontal wing.

また、一実施形態においては、前記回転体内において、複数に交差する前記半円形連結板の互いの接触を回避するために、相対する前記出幅を最長から最短に順々に調整し切り離された前記90°回転支軸を連結する前記半円形連結板においては、直径を違えて最小形から最大形へと拡大して成る。
上記構成は、相対する各々前記出幅の最長出幅を最小形前記半円形連結板で連結し、段差を付けて最下段を最短出幅と最大形半円形連結板で連結することで、交互に垂直と水平に定位置において変換作動する前記回転翼と一対する前記半円形連結板は、段差を設ける事で、各々前記半円形連結板の接触を回避する事ができる。
In one embodiment, in order to avoid contact between the plurality of intersecting semicircular connecting plates in the rotating body, the opposing protruding widths are adjusted from the longest to the shortest in order, and the connecting plates are separated. The semicircular connecting plate connecting the 90° rotating support shaft has different diameters and is expanded from the smallest shape to the largest shape.
The above configuration alternately connects the longest width of the facing widths with the smallest semicircular connecting plate, and connects the shortest width and the largest semicircular connecting plate with a step. By providing a step between the semicircular connecting plates that are paired with the rotary blades that convert vertically and horizontally in fixed positions, it is possible to avoid contact between the semicircular connecting plates.

また、一実施形態においては、二重構造にして外枠を肉厚に隙間に発泡体が注入された前記回転体は補強され、本装置の河川設置に限り、気候変動によりまれに発生する増水と、それに供る流木、流石等から横掛け水車中央の前記回転体を保護する事が出来る。また、外枠を肉厚にしたことで、前記回転体重量は加重され、前記回転体を支える各々部位に係る負荷の増大を前記上蓋と底蓋とで上下を塞いで成る前記回転体内空間と、前記発泡体の浮力によって水中内で浮かせ、各々部位に係る負荷を軽減させ本発明を持続可能にする。 Further, in one embodiment, the rotary body is reinforced with a double structure and foam is injected into the gap between the thick outer frame and the rotating body, which can be used only when this device is installed in a river, due to water rises that rarely occur due to climate change. In addition, the rotating body at the center of the horizontal water wheel can be protected from driftwood, loose stones, etc. that accompany it. Furthermore, by making the outer frame thicker, the weight of the rotor is increased, and an increase in the load on each part that supports the rotor is suppressed by the space inside the rotor body which is closed from above and below by the top cover and the bottom cover. The buoyancy of the foam allows it to float in water, reducing the load on each part and making the present invention sustainable.

また、一実施形態においては、前記回転体を貫通し外位置で放射状になる前記90°回転支軸と一体する前記回転翼は、一辺を垂直位置で一体させて垂直翼に、相対する片方を90°の角度をもって水平にして水平翼に成る。前記90°回転支軸の前記回転体内においての出幅に相対して、垂直と水平に一対する前記回転翼と並列に90°回転止め板を一体させ、前記回転体の内側、外側の同位置に前記回転翼を垂直に受け止めるための受け板を設置して、前記回転体の更なる強化と、前記回転翼を90°回転止め板として利用することが出来る。 Further, in one embodiment, the rotary blade that is integrated with the 90° rotation support shaft that penetrates the rotary body and becomes radial at the outer position has one side integrated in a vertical position, and the opposite side of the rotor blade integrated with the vertical blade. Horizontal at a 90° angle to form a horizontal wing. A 90° rotation stopper plate is integrated in parallel with the pair of vertical and horizontal rotary blades relative to the protruding width of the 90° rotation support shaft in the rotary body, and the plate is installed at the same position on the inside and outside of the rotary body. By installing a receiving plate to vertically receive the rotary blade, the rotary body can be further strengthened and the rotary blade can be used as a 90° rotation stopping plate.

上記課題を解決すための請求項5に記載の発明は、前記横掛け水車の設置幅が確保された流通路左右に、適度の高さにした収集堰を設け、河川流水を前記流通路に集約し、前記横掛け水車中央の前記回転体を基準に、エネルギー生産流水と非エネルギー生産流水として左右に分け、前記エネルギー生産流水の位置エネルギーで、前記垂直翼を垂直回転させ、相対して一対する前記水平翼は、前記非エネルギー生産流水の水面上を水抵抗を無にしての水平回転となる。 The invention as set forth in claim 5 for solving the above problem provides collection weirs with appropriate heights on the left and right sides of the flow path in which the installation width of the horizontal water wheel is secured, and directs river water to the flow path. The vertical blades are vertically rotated by the potential energy of the energy-producing flowing water, and the vertical blades are rotated vertically, and the water is separated into energy-producing flowing water and non-energy-producing flowing water. On the other hand, the horizontal blade rotates horizontally on the water surface of the non-energy producing flowing water with no water resistance.

また、一実施形態においては、前記収集堰によって前記流通路に集約された河川流水を、前記回転体を基準して前記エネルギー生産流水と前記非エネルギー生産流水として左右に分けられた河川流水の前記回転体川下の合流位置においては、流水と前記垂直翼は平行になり前記垂直翼に係る水抵抗は無に成る。前記垂直翼の流水との平行位置通過時点で水抵抗と90°の角度で一対する垂直と水平の前記回転翼自重による天秤作動と、前記非エネルギー生産流水の流水圧とで、前記垂直翼を水面に向け掛け上げ、それと同時に川上における前記水平翼は、自重によって下降し、水面位置通過時点で、前記エネルギー生産流水の位置エネルギーで掛け押し、前記受け板で受け止めて前記垂直翼に成る。 In one embodiment, the river water collected in the flow path by the collection weir is divided into the energy-producing water and the non-energy-producing water, with respect to the rotating body. At the merging position downstream of the rotating body, the flowing water and the vertical blade become parallel, and the water resistance related to the vertical blade becomes null. When the vertical blade passes a position parallel to the flowing water, the vertical blade is moved by the water resistance, the balance operation by the weight of the vertical and horizontal rotary blades that are set at an angle of 90°, and the flowing water pressure of the non-energy producing flowing water. At the same time, the horizontal wing is raised towards the water surface, and at the same time, the horizontal wing on the upstream is lowered by its own weight, and when it passes the water surface, it is pushed by the potential energy of the energy-producing flowing water, is received by the receiving plate, and becomes the vertical wing.

上記課題を解決するための請求項6に記載の発明は、前記非エネルギー生産流水の流通路と、河川生物の遡上通路とを兼ねて成る流通路幅分を外して、前記横掛け水車の回転に支障をきたすことのない川上位置に、川上に向け斜め方向に上部を水面位置にした複数の円柱を川底に並列に埋設し、数枚の横板を段差をつけて前記円柱と一体させて成る防護棚を前記回転体とそれに係る前記垂直翼の川上保護位置に設置する。 In order to solve the above problem, the invention according to claim 6 is such that the width of the flow path that serves both as a flow path for the non-energy producing flow water and an upstream path for river organisms is removed, and A plurality of cylinders are buried in parallel in the riverbed in an upstream position that does not interfere with rotation, diagonally facing upstream with the upper part at the water level, and several horizontal boards are integrated with the cylinders with steps. A protective shelf consisting of: is installed at an upstream protective position of the rotating body and the vertical blade associated therewith.

一実施形態においては、前記非エネルギー生産流水の流通路を河川生物の前記遡上通路として利用し、通常時の水面位置により僅かな高さにした前記収集堰と、前記回転体を軸支するための前記収集堰に掛け渡された前記上板との表面を、気候変動によりまれに発生する増水と、それに供る流木等を通過させ、流石等は前記防護棚を介して前記遡上通路に流し込む。また、一実施形態においては、本発明を横掛け水車とする事で、落差を必要とせず、前記遡上通路を設けることで、河川生物の生態系を壊す事なく、また、増水対策の
一環とする防護堰として利用する事も可能である。
In one embodiment, the flow path of the non-energy-producing water is used as the upstream path for river organisms, and the collection weir and the rotating body are pivotally supported, the height being slightly higher than the normal water surface position. The surface of the upper plate that spans the collection weir is used to pass increased water that rarely occurs due to climate change, as well as driftwood, etc. that accompany it. Pour into. Further, in one embodiment, by using the present invention as a side-hung water wheel, no head is required, and by providing the above-mentioned upstream passageway, the ecosystem of river organisms is not destroyed, and it is possible to prevent water from increasing. It is also possible to use it as a protective weir.

本発明は上述したとおりであって、横掛け水車にすることで落差を必要とせず、エネルギー生産流水の位置エネルギーで垂直移動する垂直翼で回転エネルギーを生産し、定位置において垂直から水平に変わる水平翼においては、非エネルギー生産流水の水面上を水平移動することで、水平翼に係る水抵抗は無であり、開放された非エネルギー生産流水の流通路を、河川生物の遡上通路として利用し、気候変動によって発生する増水と、それに供る流木、流石等による本装置の損壊を回避し効率よく、より一層有効活用する事ができ、発電効率の向上を図る事ができる効果がある。
The present invention is as described above, and by using a horizontal water wheel, no head is required, and rotational energy is produced by vertical blades that move vertically using the potential energy of the energy-producing flowing water, and changes from vertical to horizontal at a fixed position. In the horizontal wing, by moving the non-energy-producing running water horizontally on the water surface, there is no water resistance related to the horizontal wing, and the open flow path of the non-energy-producing running water is used as an upstream passage for river organisms. However, this device can be used more efficiently and effectively by avoiding damage to the device due to increased water levels caused by climate change and the resulting driftwood, debris, etc., and has the effect of improving power generation efficiency.

また、河川生物の生態系を壊す事なく、通常時は生活通路と増水時においては堰として利用することも可能であって、世界でも類を見ない水質源を持つ我が国内においては、限りなく増設が可能であり、河川に限らず用水路、浄水場、排水処理場等と、潮の干満による海峡においての潮流、洋上における海流、風力と、自然界における自然流すべてに応用する事が出来る効果がある。
In addition, it can be used as a livelihood route during normal times and as a weir during times of high water without destroying the ecosystem of river organisms. The effect can be applied not only to rivers but also to irrigation canals, water purification plants, wastewater treatment plants, etc., tidal currents in straits due to the ebb and flow of the tide, ocean currents on the ocean, wind power, and all natural currents in the natural world. There is.

本発明の実施形態における一部断面の全体平面図An overall partial cross-sectional plan view of an embodiment of the present invention 本発明の一実施形態における一部断面の側面図A partially sectional side view of an embodiment of the present invention 図1におけるB-B線断面図B-B cross-sectional view in Figure 1 本発明の一実施形態における一部断面の平面図A partial cross-sectional plan view of an embodiment of the present invention 本発明における実施形態の構成一部断面の平面図A partially sectional plan view of the configuration of an embodiment of the present invention 本発明の一部品説明図Part explanatory diagram of the present invention 本発明の一部位構成説明図Partial configuration explanatory diagram of the present invention 本発明の実施形態における側面の説明図Side explanatory diagram of an embodiment of the present invention

以下に本発明を実施するための形態について図面に基づいて説明する。
図1は本発明に係る河川流水を利用する横掛け水車水力発電装置の一実施形態の構成を示す全体平面図、図2はそのB-B線横掛け水車の側面断面図であり、横掛け水車の設置幅が確保された流通路30の左右に適度の高さにした収集堰25を構築し、収集堰25によって集約された河川流水を流通路30に設置した横掛け水車中央の回転体1を基準にして、エネルギー生産流水34と非エネルギー生産流水35として左右に分ける。
EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated based on drawing.
Fig. 1 is an overall plan view showing the configuration of an embodiment of a side-shot water turbine hydroelectric power generation device using river water according to the present invention, and Fig. 2 is a side sectional view of the BB line side-shot water turbine. Collection weirs 25 of appropriate height are constructed on the left and right sides of the distribution passage 30 with a secured installation width, and the river runoff collected by the collection weir 25 is transferred to the rotating body 1 at the center of the horizontal water wheel installed in the distribution passage 30. Based on the standard, it is divided into left and right as energy-producing water 34 and non-energy producing water 35.

回転体1上部円周に、回転体1中心を基準して、軸受18を相対に偶数にして並列に配設し、90°回転支軸7を各々軸受18を貫通させ回転体1内において、出幅8,9,10,11を残して切り離し、各々出幅を半円形連結板14,15,16,17で連結し、切り離された90°回転支軸7を半円形連結板を介して一対させる。回転体1の外位置で放射状に成る90°回転支軸7と一辺が一体する回転翼をエネルギー生産流水34の位置エネルギーで垂直させて垂直翼6と成り、一対する一方の90°回転支軸7と一辺が一体する回転翼は、非エネルギー生産流水35の水面26より上で、垂直翼6に対し90°の角度をもって水平翼5となる。
Bearings 18 are arranged in parallel in an even number relative to each other on the upper circumference of the rotating body 1 with reference to the center of the rotating body 1, and the 90° rotation support shafts 7 are passed through each bearing 18 in the rotating body 1, Cut it off leaving the protruding widths 8, 9, 10, 11, connect the protruding widths with semicircular connecting plates 14, 15, 16, 17, and connect the separated 90° rotation support shaft 7 through the semicircular connecting plates. Make a pair. The rotor blade, which has one side integral with the radial 90° rotation support shaft 7 at the outer position of the rotating body 1, is made vertical by the potential energy of the energy-producing flowing water 34 to form the vertical blade 6, and one of the paired 90° rotation support shafts The rotor blade with one side integrated with 7 becomes the horizontal blade 5 at an angle of 90° to the vertical blade 6 above the water surface 26 of the non-energy producing flowing water 35.

図3は、本発明である横掛け水車の一実施形態の構成を示した断面図であり、円筒の回転体1を二重構造にして、外枠を肉厚に隙間に発泡体2を注入して回転体1を補強し、主軸19と駆動ギア21とが連座した上蓋3と、主軸19を中心においた底蓋4とで回転体1の上下を塞ぎ密閉して、上板27と底板28に相対に設けた主軸軸受20に回転体1の上下主軸19を軸支して成る回転体1は、外枠を肉厚にして補強した事で総体重量は加重され、下側主軸19と主軸軸受20に係る負荷の増大を回転体1内の空間と発泡体2の水中内の浮力によって軽減させ、本装置を持続させる事が出来る。
回転体1の上部を塞ぐ上蓋3中心の主軸19と一体する駆動ギア21の回転を被動ギア22で変速し、回転軸23を介し発電機24で電力生産を可能にする。
FIG. 3 is a cross-sectional view showing the configuration of an embodiment of a horizontal water turbine according to the present invention, in which the cylindrical rotating body 1 is made into a double structure, and the outer frame is thickened and a foam 2 is injected into the gap. The upper and lower parts of the rotor 1 are closed and sealed with a top cover 3 on which the main shaft 19 and the drive gear 21 are connected, and a bottom cover 4 with the main shaft 19 in the center. The rotating body 1 is constructed by supporting the upper and lower main shafts 19 of the rotating body 1 on the main shaft bearings 20 provided opposite to the main shaft bearings 28. The outer frame is reinforced with a thick wall, so that the total weight is increased, and the lower main shaft 19 and the lower main shaft 19 are reinforced. The increased load on the main shaft bearing 20 can be reduced by the space inside the rotating body 1 and the buoyancy of the foam 2 in water, making it possible to sustain the device.
A driven gear 22 changes the speed of the rotation of a drive gear 21 that is integrated with a main shaft 19 at the center of an upper cover 3 that closes the upper part of the rotary body 1, and enables a generator 24 to generate electric power via a rotating shaft 23.

90°回転支軸7の回転体1内においての出幅8,9,10,11と一体する90°回転止め板12は、垂直翼6と水平翼5と並列に置き、同数の90°回転止め板12の受板13を回転体1の内壁に設置する。実施形態においては90°回転止め板12を受板13で受け止める事で一体する回転翼は垂直翼6に成り、対する出幅と一体の90°回転止め板12は受板13を離れ90°回転止め板12と一体する回転翼は垂直翼6と90°の角度をもって水平翼5と成る。 The 90° rotation stop plate 12, which is integrated with the protruding widths 8, 9, 10, and 11 of the 90° rotation support shaft 7 in the rotating body 1, is placed in parallel with the vertical blades 6 and horizontal blades 5, and rotates the same number of 90° rotations. The receiving plate 13 of the stop plate 12 is installed on the inner wall of the rotating body 1. In the embodiment, by receiving the 90° rotation stopper plate 12 with the receiving plate 13, the integrated rotor blade becomes the vertical blade 6, and the 90° rotation stopper plate 12, which is integral with the protruding width, leaves the support plate 13 and rotates 90°. The rotor blade integrated with the stop plate 12 forms a horizontal blade 5 at an angle of 90° with the vertical blade 6.

回転体1を基準して左右に分けられたエネルギー生産流水34と非エネルギー生産流水35の川下の合流位置においては、流水と垂直翼は平行になり、垂直翼6に係る水抵抗は無になる。平行位置通過時点で水抵抗と非エネルギー生産流水35の流圧により垂直翼6は水面26に向け掛け上げされ、水面26上で水平翼に成り、それと同時に水平移行する水平翼5は自重により川上において水中に向け下降し、水面26通過時点でエネルギー生産流水34の位置エネルギーで垂直位置に戻され、半円形連結板を介して一対する回転翼の水平と垂直の変換作動を川下と川上の定位置で瞬時に行う事が出来る。 At the downstream merging position of the energy-producing flowing water 34 and the non-energy producing flowing water 35, which are divided into left and right sides with respect to the rotating body 1, the flowing water and the vertical blades become parallel, and the water resistance related to the vertical blades 6 becomes zero. . When passing the parallel position, the vertical wing 6 is hoisted toward the water surface 26 due to water resistance and the pressure of the non-energy-producing flowing water 35, and becomes a horizontal wing on the water surface 26. At the same time, the horizontal wing 5, which moves horizontally, is lifted upstream by its own weight. When it passes the water surface 26, it is returned to the vertical position by the potential energy of the energy-producing flowing water 34, and the horizontal and vertical conversion operations of the pair of rotor blades are controlled by the downstream and upstream positions via the semicircular connecting plate. It can be done instantly at any location.

図5、図6の説明は、軸受け18を起点に出幅8、8から長さを違えて、出幅11、11と最短から最長へと伸ばしてなる90°回転支軸の回転体1内においての出幅と直径差を違え最小形から最大形と拡大して成る半円形連結板14,15,16,17との構成は、最長出幅11、11を最小形の半円形連結板14で連結し、順々に交差させ段差を設けて最下段を最大形の半円形連結板17で最短の出幅8、8を連結し、実施時において半円形連結板14,15,16,17の接触を回避する事が出来る。 The explanation of Figs. 5 and 6 is based on the inside of the rotating body 1 of the 90° rotating support shaft, which starts from the bearing 18, has different lengths from the protrusion widths 8 and 8, and extends from the shortest to the longest protrusion widths 11 and 11. The structure of the semicircular connecting plates 14, 15, 16, 17, which are enlarged from the smallest to the largest with different protrusion widths and diameters, is that the longest protrusion width 11, 11 is the smallest semicircular coupling plate 14. , and then intersect one after another to create a step, and connect the shortest widths 8 and 8 with the largest semicircular connecting plate 17 at the bottom, and at the time of implementation, the semicircular connecting plates 14, 15, 16, 17 contact can be avoided.

図7の説明は、回転体1内における一実施形態図であり、最短出幅8、8を最大形の半円形連結板17で連結し、垂直と水平に成る回転翼と並列に各々出幅と一体する90°回転止め板12を図1に示すエネルギー生産流水34の位置エネルギーで垂直になる垂直翼を受け板13で受け止める事で垂直移動する垂直翼6はエネルギー生産翼と成る。また一方の出幅8と一体する90°回転止め板は受け板13を離れ一体する水平翼5は水面上で水抵抗を無にしての非エネルギー生産翼と成る。 The explanation of FIG. 7 is an embodiment diagram inside the rotating body 1, in which the shortest extension widths 8, 8 are connected by the largest semicircular connecting plate 17, and the extension widths are parallel to the vertical and horizontal rotor blades. The vertical blade 6, which moves vertically, becomes an energy-producing blade by receiving the vertical blade 13, which becomes vertical due to the potential energy of the energy-producing flowing water 34 shown in FIG. In addition, the 90° rotation stopper plate integrated with one protrusion width 8 separates from the receiving plate 13, and the integrated horizontal wing 5 becomes a non-energy producing wing with no water resistance on the water surface.

上記構成の説明は、気候変動によってまれに発生する増水分水量とそれに供る流木等を収集堰25と上板27の表面上を通過させ、増水によって発生する流石等においては、横掛け水車の回転に支障をきたすことのない川上位置に設置された防護棚31に沿わせて河川生物の遡上通路図示ナシと、非エネルギー生産流水35の流通路図示ナシとを兼ねて成る流通路図示ナシに流し込み、増水による各々弊害から本装置を保護することが出来る。
The explanation of the above configuration is that the increased water volume that rarely occurs due to climate change and the accompanying driftwood are passed over the surfaces of the collection weir 25 and the upper plate 27, and when the flow of rocks, etc. that occurs due to increased water is carried out, A flow path shown along a protective shelf 31 installed at an upstream position that does not impede rotation and serves as a flow path shown for river organisms and a flow path shown for non-energy producing runoff 35. This can protect the equipment from the harmful effects of rising water.

電力生産においての現状は、地球規模で進む環境破壊の要因である火力発電、将来に課題を残しての原子力発電が主流であり、これらに頼る発電からの離脱を目的に、自然エネルギーを利用する太陽光発電と風力発電への移行が急速に進められている。ただ、世界的に類を見ない水資源を有する我が国において、自然エネルギーである水力を利用しての水力発電においては発展途上である。
水力発電の普及が進まない要因は、様々な課題の山積にあり、本発明はそれらの課題を解決しての発明である。
また本発明は、河川、用水路等に限らず海峡においての干満による潮流、洋上での海流、風力と、自然界におけるすべての自然流に応用する事が可能であり、先行する太陽光発電、風力発電と、本発明である水力発電装置とを併用活用し、早急な脱炭素社会を実現する事ができると自負する。
The current state of electricity production is dominated by thermal power generation, which is a cause of environmental destruction on a global scale, and nuclear power generation, which leaves problems for the future.With the aim of moving away from power generation that relies on these, it is necessary to use natural energy. The transition to solar and wind power generation is progressing rapidly. However, in Japan, which has water resources unparalleled in the world, hydroelectric power generation using hydropower, a natural energy, is still under development.
The reason why hydroelectric power generation is not becoming more popular is that there are a lot of problems, and the present invention is an invention that solves these problems.
Furthermore, the present invention can be applied not only to rivers, irrigation canals, etc., but also to all natural currents in the natural world, such as tidal currents in straits, ocean currents, and wind power. We are confident that we can quickly realize a decarbonized society by using this technology in combination with the hydroelectric power generation device of the present invention.

1 回転体
2 発泡体
3 上蓋
4 底蓋
5 水平翼
6 垂直翼
7 90°回転支軸
8 出幅
9 出幅
10 出幅
11 出幅
12 90°回転止め板
13 受け板
14 半円形連結板
15 半円形連結板
16 半円形連結板
17 半円形連結板
18 軸受け
19 主軸
20 主軸軸受
21 駆動ギア
22 被動ギア
23 発電機
24 収集堰
25 水面
26 上板
27 底板
28 水底
29 流水路
30 防護棚
31 円柱
32 横板
33 エネルギー生産流水
34 非エネルギー生産流水
1 Rotating body
2 Foam
3 Top lid
4 Bottom lid
5 horizontal wing
6 vertical wings
7 90° rotation support shaft
8 Output width
9 Output width
10 Output width
11 Output width
12 90° rotation stop plate
13 Receiver plate
14 Semicircular connecting plate
15 Semicircular connecting plate
16 Semicircular connecting plate
17 Semicircular connecting plate 18 Bearing
19 Main shaft
20 Main shaft bearing
21 Drive gear 22 Driven gear 23 Generator 24 Collection weir 25 Water surface 26 Top plate 27 Bottom plate 28 Water bottom 29 Water channel 30 Protective shelf 31 Cylinder 32 Horizontal plate 33 Energy producing water 34 Non-energy producing water

Claims (8)

水面上に一部を残し、大部分を水中内に置いた円筒の回転体と、前記回転体の水面位置上
部中心を基準にして、円周に相対に並列して配置された複数の軸受けと、前記軸受けを
自在にして貫通した90°回転支軸と、前記90°回転支軸を前記回転体内において相対に同等に長さを違えた出幅を残して切り離し、互いを連結する半円形連結板と、前記回転体を
貫通し外位置で放射状に一定の長さにした相対する前記90°回転支軸と一体する垂直と90°の角度をもって水平に一体して成る回転翼と、前記出幅に前記回転翼と並列に一体する90°回転止め板と、前記回転体の内側、外側の同位置に、前記回転翼を垂直位置で受け止める為に設置された前記90°回転止め板の受け板と、中心に主軸と一体した駆動ギアが一体した前記回転体上部を塞ぐ上蓋と、中心に主軸を一体した低部を塞ぐ底蓋と、前記駆動ギアと噛合する被動ギアで変速させ、回転軸を介して連動する発電機とで成る横掛け水車水力発電装置
A cylindrical rotating body with a portion remaining above the water surface and most of it submerged in the water, and a plurality of bearings arranged in parallel relative to the circumference with the center of the top of the rotating body above the water surface as a reference. , a 90° rotating support shaft that freely passes through the bearing, and a semicircular shape that connects the 90° rotating support shaft by separating the 90° rotating support shaft leaving a protrusion width of relatively equal length within the rotating body. a connecting plate, a rotor blade integrally formed vertically and horizontally at an angle of 90°, which is integral with the opposing 90° rotation support shaft passing through the rotating body and having a constant length radially at an outer position; A 90° rotation stopper plate integrated in parallel with the rotary blade on the extension width, and a 90° rotation stopper plate installed at the same positions on the inside and outside of the rotating body to receive the rotor blade in a vertical position. A receiving plate, a top lid that covers the upper part of the rotating body that has a drive gear integrated with the main shaft in the center, a bottom cover that covers a lower part that has the main shaft integrated in the center, and a driven gear that meshes with the drive gear to change the speed, Horizontal water wheel hydroelectric power generation device consisting of a generator linked via a rotating shaft
前記上蓋と前記底蓋とで上下を塞いで成る円筒の前記回転体を二重構造にして、外枠を肉厚に隙間に発泡体を注入して補強し、水面上の上板と表面を水低と並列して埋設された底板とに相対して設けた軸受けに主軸を軸支させて成る前記横掛け水車においては、外枠を肉厚にしたことで加重されて、下側前記主軸と前記主軸軸受とに係る負荷の増大を前記回転体内の空間と前記発泡体の浮力によって水中内に浮かせ、前記主軸と前記主軸軸受に係る負荷を軽減させ、前記横掛け水車を持続可能にした請求項1に記載の横掛け水車水力発電装置
The cylindrical rotating body whose top and bottom are closed by the top cover and the bottom cover is made into a double structure, and the outer frame is reinforced by injecting foam into the gap to thicken the outer frame, and the top plate and the surface above the water surface are reinforced. In the above-mentioned horizontally-hung water turbine, the main shaft is supported by a bearing provided opposite to a bottom plate buried in parallel with the water tank, and the main shaft is The increased load on the main shaft and the main shaft bearing is made to float in the water by the space inside the rotating body and the buoyancy of the foam, thereby reducing the load on the main shaft and the main shaft bearing, thereby making the horizontally cast water turbine sustainable. Horizontal water wheel hydroelectric power generation device according to claim 1
前記90°回転支軸を前記回転体内において切り離し、前記出幅の長さを違え相対して同等に最長から前記回転体内壁に沿わせて最短と順々に調整し、切り離された前記90°回転支軸を一対に連結する複数枚の前記半円形連結板においては、厚さと幅と形状の調整によって強化され、直径の長さを違え最小形から順々に最大形に拡大して成る請求項1に記載の横掛け水車水力発電装置
The 90° rotation support shaft is separated within the rotating body, and the length of the protruding width is changed, and the length of the protruding width is adjusted sequentially from the longest to the shortest along the wall of the rotating body, and the separated 90° A claim in which the plurality of semicircular connecting plates that connect a pair of rotating support shafts are strengthened by adjusting the thickness, width, and shape, and have different diameter lengths and are sequentially enlarged from the smallest shape to the largest shape. Horizontal water wheel hydroelectric power generation device described in item 1
前記回転体の外位置で、一定の長さにして放射状に成る各々前記90°回転支軸と一体する回転翼においては、一辺を前記90°回転支軸と一体させて垂直させ、前記半円形連結板を介して一対する一方の前記90°回転支軸と一体する前記回転翼は、90°の角度をもって水平に置き、互いの前記回転翼は実施時において前記垂直翼と前記水平翼に成る請求項1に記載の横掛け水車水力発電装置
At the outer position of the rotating body, each of the rotor blades having a fixed length and radially integrated with the 90° rotational support shaft has one side integrated with the 90° rotational support shaft and is perpendicular to the semicircular shape. The rotary blades, which are integrated with one of the pair of 90° rotation support shafts via a connecting plate, are placed horizontally at an angle of 90°, and the rotary blades of each other become the vertical blade and the horizontal blade during implementation. Horizontal water wheel hydroelectric power generation device according to claim 1
前記横掛け水車の設置幅が確保された流通路左右に適度の高さにした収集堰を設け、河川流水を前記流通路に集約し、前記横掛け水車中央の前記回転体を基準にエネルギー生産流水と非エネルギー生産流水として左右に分け、前記エネルギー生産流水の位置エネルギーで前記垂直翼を垂直回転させ、相対して一対する前記水平翼は前記非エネルギー生産流水の水面上を水抵抗を無にしての水平回転と成る請求項1に記載の横掛け水車水力発電装
Collection weirs with appropriate heights are installed on the left and right sides of the distribution path where the installation width of the horizontal water turbine is secured, and river water is concentrated in the distribution path, and energy is produced based on the rotating body in the center of the horizontal water turbine. The water is separated into left and right parts as running water and non-energy producing running water, the vertical blades are vertically rotated by the potential energy of the energy producing running water, and the opposing horizontal wings move on the water surface of the non-energy producing running water with no water resistance. The horizontally-shot water turbine hydropower generation system according to claim 1, which rotates horizontally.
前記非エネルギー生産流水の流通路と河川生物の遡上通路とを兼ねて成る流通路幅分を外して、前記横掛け水車の回転に支障をきたすことのない川上位置に川上に向け斜め方向に上部を水面位置にした複数の円柱を川底に並列に埋設し、数枚の横板を段差をつけて前記円柱と一体させて成る防護棚を前記回転体とそれに係る前記垂直翼の川上保護位置に設置した請求項1に記載の横掛け水車水力発電装置
The width of the flow path that serves both as a flow path for the non-energy-producing water and as an upstream path for river organisms is removed, and the flow path is moved diagonally upstream to a position upstream that does not interfere with the rotation of the horizontal water wheel. A plurality of cylinders with their upper parts facing the water surface are buried in parallel in the riverbed, and a protective shelf is constructed by integrating several horizontal plates with steps to protect the rotating body and its associated vertical blades upstream. The side-hung water turbine hydroelectric power generation device according to claim 1 installed in
ほぼ長方形状に形成された前記回転翼の長辺の一辺を、片側前記90°回転支軸と一体させ、前記半円形連結板で連結した一方の前記90°回転支軸に、同形状、同重量の前記回転翼を、右90°の角度にして同状態に一体させる事で互いの前記回転翼はシーソー状態回転翼になり、それらを複数にして構成された前記横掛け水車の作動形態は、中央の前記回転体を基準に、本装置形態に限り、左側を前記エネルギー生産流水に、右側を非エネルギー生産流水として河川流水を左右に分け、川上の流水分岐位置と、川下流水合流位置の係る一前記シーソー状態回転翼の流水分岐位置における前記回転翼は、前記90°回転支軸を支点として右斜め45°の角度で大部分が水中内にあり、前記横掛け水車の回転時、前記流水分岐位置通過時点の前記回転翼を、前記エネルギー生産流水の位置エネルギーで掛け押して、前記回転体の内側と、外側の同位置に設けた外側前記受け板で垂直に受け止めて垂直移動する前記垂直翼になり、それと同時に、前記エネルギー生産流水と、前記非エネルギー生産流水の川下合流位置で、前記回転体を堰に見立て、前記回転体の直径幅を底辺とする二等辺三角形状に発生する水位の低下箇所に垂直して係る前記回転翼は、水位低下による水抵抗の軽減と、前記非エネルギー生産流水の流圧と、シーソー原理による反復力と、川上の流水分岐位置において、前記エネルギー生産流水の位置エネルギーで垂直する前記回転翼の垂直力とで、前記受け板を離れ水面上に掛け上げされ、前記非エネルギー生産流水の水面と平行の水抵抗を無にしての前記水平翼になり、水力発電装置には必須である落差を必要とせず、前記シーソー状態回転翼の互いの前記回転翼を、川上流水分岐位と、川下流水合流位置を定位置として、前記水平翼から前記垂直翼に、前記垂直翼から前記水平翼にと同時変換させることを特徴とした請求項1から至6のいずれかに記載の横掛け水車水力発電装置
One long side of the rotary blade, which is formed in a substantially rectangular shape, is integrated with the 90° rotational shaft on one side, and is connected to the other 90° rotational shaft by the semicircular connecting plate. By aligning the heavy rotary blades at an angle of 90 degrees to the right and integrating them in the same state, the rotary blades become seesaw rotary blades, and the operation mode of the horizontally cast water turbine configured with a plurality of them is as follows. , based on the rotating body in the center, in this device configuration, the river water is divided into left and right parts, with the left side being the energy-producing water and the right side being the non-energy producing water, and the upstream water branching position and the downstream water convergence position. According to one aspect, the rotor blade in the see-saw state at the water branching position is mostly submerged in water at an angle of 45° to the right with the 90° rotational shaft as the fulcrum, and when the horizontally cast water turbine rotates, The rotary blade at the time of passing the flowing water branching position is pushed and pushed by the potential energy of the energy-producing flowing water, and is vertically received by the outer receiving plate provided at the same position on the inside and outside of the rotary body and moved vertically. At the same time, at the downstream confluence of the energy-producing flowing water and the non-energy-producing flowing water, a water level is generated in an isosceles triangle shape with the diameter width of the rotating body as a base, using the rotating body as a weir. The rotary blades perpendicular to the drop point of the water reduce the water resistance due to the water level drop, the flow pressure of the non-energy-producing water, the repetitive force due to the seesaw principle, and the energy-producing water at the upstream water branch position. With the vertical force of the rotary blade with the potential energy of There is no need for a head, which is essential for a hydroelectric power generation device, and the rotors in the seesaw state are moved from the horizontal blades to the vertical blades by setting the upstream water branch point and the downstream water confluence point as fixed positions. , the horizontally cast water turbine hydroelectric power generation device according to any one of claims 1 to 6, characterized in that the horizontal blades are simultaneously converted from the vertical blades to the horizontal blades.
本発明は、河川流水、潮の干潮による海峡においての潮流、洋上においての海流等と、風力を含む自然流と、用水路、浄水場、排水処理場等の人口流すべてに応用する事が可能な請求項1から至7のいずれかに記載の横掛け水車水力発電装置
The present invention can be applied to all river flowing water, tidal currents in straits due to low tide, ocean currents on the ocean, natural currents including wind power, and artificial flows such as irrigation canals, water purification plants, and wastewater treatment plants. Horizontal water wheel hydroelectric power generation device according to any one of claims 1 to 7.
JP2022137759A 2022-08-31 2022-08-31 Horizontal water wheel hydroelectric power generation device Pending JP2024033870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022137759A JP2024033870A (en) 2022-08-31 2022-08-31 Horizontal water wheel hydroelectric power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022137759A JP2024033870A (en) 2022-08-31 2022-08-31 Horizontal water wheel hydroelectric power generation device

Publications (1)

Publication Number Publication Date
JP2024033870A true JP2024033870A (en) 2024-03-13

Family

ID=90193977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022137759A Pending JP2024033870A (en) 2022-08-31 2022-08-31 Horizontal water wheel hydroelectric power generation device

Country Status (1)

Country Link
JP (1) JP2024033870A (en)

Similar Documents

Publication Publication Date Title
Nasir Design of micro-hydro-electric power station
CN101649813B (en) Integrated system for generating electricity by current, sea wave as well as tide kinetic energy and wind and solar energy
KR100883756B1 (en) Complex ocean power system combining sluice power and ocean current power
US20100045046A1 (en) Force fluid flow energy harvester
KR101347230B1 (en) Generating device for air floating small hydro power
CN104329205A (en) Water flow power generating device
CN101122276A (en) Fluid engine
JP2024033870A (en) Horizontal water wheel hydroelectric power generation device
CN216008750U (en) Ocean tide multidirectional flow driving all-weather hydraulic generator
CN102287309B (en) Water flow generator
CN202247818U (en) Tide and river power station
SK287751B6 (en) Flow turbine with pivoted blades
KR101634637B1 (en) Hydroelectric generating apparatus using guide vane and hybrid generator
CN207598414U (en) Tide and flow magnitude electricity generation system
EP2422075B1 (en) Fluid flow operated power generating system
Vocadlo et al. Hydraulic kinetic energy conversion (HKEC) systems
JP6274694B2 (en) Water-lift rotary power generator
KR20140061270A (en) Hydroelectric power generation apparatus using waterway
US11946457B1 (en) High-mass hydro rotor for hydroelectric power generation
CN111395280A (en) Non-dam type hydropower station
KR101590070B1 (en) Hydroelectric power generation apparatus and waterwheel for the same
KR20120031984A (en) Power generation system that combines hydropower and wind power
JP3201185U (en) Paddle type rotary blade water current generator
BG3701U1 (en) Rotor double turbine and deflector system for generation of electricity from a channel watercourse
CN117627838A (en) Water dead weight driving system