JP2024029895A - sound insulation panel - Google Patents

sound insulation panel Download PDF

Info

Publication number
JP2024029895A
JP2024029895A JP2022132351A JP2022132351A JP2024029895A JP 2024029895 A JP2024029895 A JP 2024029895A JP 2022132351 A JP2022132351 A JP 2022132351A JP 2022132351 A JP2022132351 A JP 2022132351A JP 2024029895 A JP2024029895 A JP 2024029895A
Authority
JP
Japan
Prior art keywords
sound insulation
uneven structure
insulation panel
side length
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022132351A
Other languages
Japanese (ja)
Inventor
洋平 野上
Yohei Nogami
裕幸 安部
Hiroyuki Abe
俊一 岡部
Shunichi Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2022132351A priority Critical patent/JP2024029895A/en
Publication of JP2024029895A publication Critical patent/JP2024029895A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light sound insulation panel with high sound insulation performance.
SOLUTION: In a sound insulation panel 1 having a rugged structure 2, thickness T of the rugged structure 2 is 0.1 mm or more and 20 mm or less, the tensile elastic modulus of a member forming the rugged structure 2 is 0.1 GPa or more, the length of a side of a square whose projected area is the same as the area of the sound insulation panel 1 is set to be a side length L, the area of a primary resonance frequency f[Hz] of out-of plane vibration of the sound insulation panel 1 and a side length L[m] is 80[Hz m] or more, and a quotient of a height H[m] from the lowest portion to the highest portion of the rugged structure 2 and the side length L[m] is 0.01 or more and 0.7 or less.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、遮音パネルに関する。 The present invention relates to a sound insulation panel.

建築物における室内環境及び車両における車内環境を向上させるために外部との仕切り部において騒音を遮る性能の要求が増している。外部との仕切り部において、騒音を遮る遮音性能の指標として、音響透過損失がある。音響透過損失は、仕切り部に配置された遮音パネルへの入射音に対する透過音のエネルギーの低減量を表し、値が大きいほど遮音性能が高いことを示す。
音響透過損失は、遮音パネルに採用された材質が均質単板材料の場合、基本的に質量で決定され、特に遮音パネルの面内振動の1次共振周波数付近で値が低下する特性を示す。また、遮音パネルに採用された材質が均質単板材料の場合、面内振動の1次共振周波数よりも低周波数域では剛性則領域と呼ばれ、面内振動の1次共振周波数よりも高周波数域では共振領域と呼ばれ、共振領域よりも高周波数域では質量則領域と呼ばれ、各周波数領域でそれぞれ特性を示す。剛性則領域では、遮音パネルに採用された材質の剛性と、遮音パネルの境界の剛性条件が音響透過損失に影響し、剛性を向上させることで音響透過損失が大きくなる性質がある。共振領域では、透過音のエネルギーによる遮音パネルの振動モードの共振が音響透過損失に影響し、遮音パネルの振動モードにより音響透過損失にピークやディップが生じる。質量則領域では、遮音パネルに採用された材質の質量(面密度)が大きいほど音響透過損失が大きくなる性質があり、遮音パネルの屈曲振動に起因するコインシデンス効果の影響により特定の周波数付近で音響透過損失が小さくなる性質がある。
In order to improve the indoor environment of buildings and the interior environment of vehicles, there is an increasing demand for performance in blocking noise at partitions from the outside. Sound transmission loss is an indicator of sound insulation performance in blocking noise at a partition from the outside. The sound transmission loss represents the amount of reduction in the energy of transmitted sound relative to the incident sound on the sound insulation panel disposed in the partition, and the larger the value, the higher the sound insulation performance.
When the material used for the sound insulation panel is a homogeneous veneer material, the sound transmission loss is basically determined by the mass, and exhibits a characteristic that the value particularly decreases near the primary resonant frequency of in-plane vibration of the sound insulation panel. In addition, if the material used for the sound insulation panel is a homogeneous veneer material, the frequency range lower than the first resonance frequency of in-plane vibration is called the stiffness law region, and the frequency range higher than the first resonance frequency of in-plane vibration is called the stiffness law region. In the region, it is called the resonance region, and in the frequency region higher than the resonance region, it is called the mass law region, and each frequency region exhibits its own characteristics. In the rigidity law region, the rigidity of the material used for the sound insulation panel and the rigidity conditions of the boundary of the sound insulation panel affect the sound transmission loss, and improving the rigidity tends to increase the sound transmission loss. In the resonance region, resonance of the vibration mode of the sound insulation panel due to the energy of transmitted sound affects the sound transmission loss, and peaks and dips occur in the sound transmission loss due to the vibration mode of the sound insulation panel. In the mass law region, the greater the mass (area density) of the material used for the sound insulation panel, the greater the sound transmission loss. It has the property of reducing transmission loss.

外部との仕切り部に配置される遮音パネルとして、例えば、均質単板材料であるアルミ板を採用した場合、アルミ板は、質量(面密度)を増すことで可聴域の遮音性能を向上させることができる。しかし、質量(面密度)の大きいものを遮音パネルに採用した場合、可聴域の遮音性能を向上させることができる反面、遮音パネルの取り扱い性及び仕切り部の耐久性が低下するという欠点が生じる。また、質量(面密度)の大きいものを遮音パネルに採用した場合、遮音性能は、質量則に従い、周波数が低くなるにつれて低下する性質がある。
そこで、低周波数領域の遮音性能を向上させるために、遮音パネルの一部である膜部材が曲率を有する形状に形成し、面内伸縮運動による弾性反発力によって音を遮音することで遮音性能を向上させることが提案されている(例えば、特許文献1参照)。また、面内伸縮を発生させるために膜部材を用いつつ、剛性を高めるために梁を設けて遮音性能を向上させることが提案されている(例えば、特許文献2参照)。
For example, if an aluminum plate, which is a homogeneous veneer material, is used as a sound insulating panel placed in the partition between the outside and the outside, the aluminum plate improves the sound insulation performance in the audible range by increasing the mass (area density). Can be done. However, when a material with a large mass (area density) is adopted as a sound insulation panel, the sound insulation performance in the audible range can be improved, but on the other hand, the handling of the sound insulation panel and the durability of the partition part are reduced. Further, when a sound insulation panel having a large mass (area density) is used, the sound insulation performance tends to decrease as the frequency becomes lower, according to the mass law.
Therefore, in order to improve the sound insulation performance in the low frequency range, the membrane member that is a part of the sound insulation panel is formed into a shape with curvature, and the sound insulation performance is improved by forming the membrane member that is a part of the sound insulation panel into a shape with curvature, and insulating the sound by the elastic repulsion force due to the in-plane expansion and contraction movement. Improvements have been proposed (for example, see Patent Document 1). Furthermore, it has been proposed to improve sound insulation performance by using a membrane member to generate in-plane expansion and contraction and by providing a beam to increase rigidity (for example, see Patent Document 2).

特許4227618号公報Patent No. 4227618 特許4024272号公報Patent No. 4024272

しかしながら、面内伸縮運動による弾性反発力によって音を遮音する構造においては、面内伸縮を発生させるために、材料の剛性を低くする必要があり、遮音できる周波数の範囲が狭いという欠点がある。また、面内伸縮を発生させるために膜部材を用いつつ、剛性を高めるために梁を設ける構造においては、重量が大きくなるという欠点がある。 However, structures that insulate sound using elastic repulsion caused by in-plane expansion and contraction have the disadvantage that the rigidity of the material must be lowered in order to generate in-plane expansion and contraction, and the range of frequencies that can be insulated is narrow. Further, in a structure in which a membrane member is used to generate in-plane expansion and contraction and a beam is provided to increase rigidity, there is a drawback that the weight increases.

上記のような事情に鑑み、本発明は、軽量であり、かつ、遮音性能が高い遮音パネルを提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a sound insulation panel that is lightweight and has high sound insulation performance.

本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、遮音パネルにおいて、遮音性能の向上に面外振動の1次共振周波数の上昇が寄与していることを見出し、高い剛性の材質であって、特定の凹凸構造を有することで、軽量であり、かつ、遮音性能が高い遮音パネルとすることを見出した。本発明者らは、かかる知見に基づきさらに研究を重ね、本発明を完成するに至った。 As a result of extensive research to achieve the above object, the present inventors discovered that in sound insulation panels, an increase in the primary resonance frequency of out-of-plane vibrations contributes to improving sound insulation performance, and they found that the use of highly rigid materials We have discovered that by having a specific uneven structure, it is possible to obtain a sound insulation panel that is lightweight and has high sound insulation performance. Based on this knowledge, the present inventors conducted further research and completed the present invention.

本発明は、上記課題を解決するためになされたものであり、本発明の要旨は、以下のとおりである。
[1]凹凸構造を備える遮音パネルであって、前記凹凸構造の厚みTが、0.1mm以上20mm以下であり、前記凹凸構造を形成する部材の引張弾性率が、0.1GPa以上であり、前記遮音パネルの面積と投影面積が同じである正方形の辺の長さを辺長Lとし、前記遮音パネルの面外振動の1次共振周波数f[Hz]と前記辺長L[m]との積が80[Hz・m]以上であり、前記凹凸構造の最も低い部分から最も高い部分の高さH[m]と前記辺長L[m]との商が0.01以上0.7以下である、遮音パネル。
[2]前記凹凸構造が半球形状である、[1]に記載の遮音パネル。
[3]前記凹凸構造を形成する部材がアルミ板である、[1]又は[2]に記載の遮音パネル。
[4]前記凹凸構造が単数である、[1]~[3]のいずれかに記載の遮音パネル。
[5]前記凹凸構造が複数である、[1]~[3]のいずれかに記載の遮音パネル。
[6]前記凹凸構造が曲面部を有する、[1]~[5]のいずれかに記載の遮音パネル。
[7]前記凹凸構造が平面部を有する、[1]~[6]のいずれかに記載の遮音パネル。
[8]前記遮音パネルが正方形である、[1]~[7]のいずれかに記載の遮音パネル。
[9]前記遮音パネルを形成する部材の密度が200kg/m以上12,000kg/m以下である、[1]~[8]のいずれかに記載の遮音パネル。
The present invention has been made to solve the above problems, and the gist of the present invention is as follows.
[1] A sound insulation panel having an uneven structure, wherein the thickness T of the uneven structure is 0.1 mm or more and 20 mm or less, and the tensile modulus of the member forming the uneven structure is 0.1 GPa or more, Let the side length of a square whose area and projected area are the same as the sound insulation panel be the side length L, and the primary resonance frequency f [Hz] of the out-of-plane vibration of the sound insulation panel and the side length L [m] The product is 80 [Hz m] or more, and the quotient of the height H [m] from the lowest part to the highest part of the uneven structure and the side length L [m] is 0.01 or more and 0.7 or less A sound insulation panel.
[2] The sound insulation panel according to [1], wherein the uneven structure has a hemispherical shape.
[3] The sound insulation panel according to [1] or [2], wherein the member forming the uneven structure is an aluminum plate.
[4] The sound insulation panel according to any one of [1] to [3], wherein the uneven structure is singular.
[5] The sound insulation panel according to any one of [1] to [3], wherein the uneven structure is plural.
[6] The sound insulation panel according to any one of [1] to [5], wherein the uneven structure has a curved surface portion.
[7] The sound insulation panel according to any one of [1] to [6], wherein the uneven structure has a flat portion.
[8] The sound insulation panel according to any one of [1] to [7], wherein the sound insulation panel is square.
[9] The sound insulation panel according to any one of [1] to [8], wherein the density of the member forming the sound insulation panel is 200 kg/m 3 or more and 12,000 kg/m 3 or less.

本発明によれば、軽量であり、かつ、遮音性能が高い遮音パネルを提供することができる。 According to the present invention, it is possible to provide a sound insulation panel that is lightweight and has high sound insulation performance.

図1(a)は、本発明の実施形態に係る遮音パネルの平面図であり、図1(b)は、図1(a)のA-A線における断面図である。FIG. 1(a) is a plan view of a sound insulation panel according to an embodiment of the present invention, and FIG. 1(b) is a sectional view taken along line AA in FIG. 1(a). 本発明の実施形態に係る遮音パネルの面外振動を示す図である。FIG. 3 is a diagram showing out-of-plane vibration of the sound insulation panel according to the embodiment of the present invention. 本発明の実施形態に係る遮音パネルの凹凸構造の様々な形態を示す断面図(その1)である。FIG. 2 is a cross-sectional view (part 1) showing various forms of the uneven structure of the sound insulation panel according to the embodiment of the present invention. 本発明の実施形態に係る遮音パネルの凹凸構造の様々な形態を示す断面図(その2)である。FIG. 3 is a cross-sectional view (part 2) showing various forms of the uneven structure of the sound insulation panel according to the embodiment of the present invention. 実施例1~4に係る遮音パネルの周波数ごとに面密度から計算した質量則を減算した結果を示すグラフである。3 is a graph showing the results of subtracting the mass law calculated from the areal density for each frequency of the sound insulation panels according to Examples 1 to 4. 実施例5~8に係る遮音パネルの周波数ごとに面密度から計算した質量則を減算した結果を示すグラフである。7 is a graph showing the results of subtracting the mass law calculated from the areal density for each frequency of the sound insulation panels according to Examples 5 to 8. 実施例9~12に係る遮音パネルの周波数ごとに面密度から計算した質量則を減算した結果を示すグラフである。12 is a graph showing the results of subtracting the mass law calculated from the areal density for each frequency of the sound insulation panels according to Examples 9 to 12. 実施例13~16に係る遮音パネルの周波数ごとに面密度から計算した質量則を減算した結果を示すグラフである。7 is a graph showing the results of subtracting the mass law calculated from the areal density for each frequency of the sound insulation panels according to Examples 13 to 16. 実施例17~19に係る遮音パネルの周波数ごとに面密度から計算した質量則を減算した結果を示すグラフである。7 is a graph showing the results of subtracting the mass law calculated from the areal density for each frequency of the sound insulation panels according to Examples 17 to 19. 比較例1~4に係る遮音パネルの周波数ごとに面密度から計算した質量則を減算した結果を示すグラフである。3 is a graph showing the results of subtracting the mass law calculated from the areal density for each frequency of the sound insulation panels according to Comparative Examples 1 to 4. 比較例5~8に係る遮音パネルの周波数ごとに面密度から計算した質量則を減算した結果を示すグラフである。7 is a graph showing the results of subtracting the mass law calculated from the areal density for each frequency of sound insulation panels according to Comparative Examples 5 to 8.

本発明の実施形態に係る遮音パネル1は、図1(a)及び(b)に示すように、凹凸構造2を備える。本発明の実施形態に係る遮音パネル1は、凹凸構造2の厚みT、凹凸構造2を形成する部材の引張弾性率、遮音パネル1の面積と投影面積が同じである正方形の辺の長さを辺長Lとし、遮音パネル1の面外振動の1次共振周波数f[Hz]と辺長L[m]との積、及び、凹凸構造2の最も低い部分から最も高い部分の高さH[m]と辺長L[m]との商が特定の条件を満たす。本発明の実施形態に係る遮音パネル1がこれらの特定の条件を満たすことで、遮音パネル1の剛性が増し、面内の弾性伸縮変形による振動を人の可聴域外である20kHz以上にまで抑制し、面内振動による透過音のエネルギー消費を低減させる一方で、面外振動による透過音のエネルギー消費を増大させることで、軽量であり、かつ、遮音性能が高い遮音パネルとすることができる。 A sound insulating panel 1 according to an embodiment of the present invention includes an uneven structure 2, as shown in FIGS. 1(a) and 1(b). The sound insulation panel 1 according to the embodiment of the present invention has the thickness T of the uneven structure 2, the tensile elastic modulus of the member forming the uneven structure 2, and the length of the side of a square whose area and projected area are the same as the sound insulation panel 1. Let the side length be L, the product of the primary resonance frequency f [Hz] of out-of-plane vibration of the sound insulating panel 1 and the side length L [m], and the height H [from the lowest part to the highest part of the uneven structure 2] m] and the side length L[m] satisfies a specific condition. When the sound insulation panel 1 according to the embodiment of the present invention satisfies these specific conditions, the rigidity of the sound insulation panel 1 increases, and vibrations caused by in-plane elastic expansion/contraction deformation are suppressed to 20 kHz or higher, which is outside the human audible range. By reducing the energy consumption of transmitted sound due to in-plane vibration while increasing the energy consumption of transmitted sound due to out-of-plane vibration, it is possible to obtain a lightweight sound insulation panel with high sound insulation performance.

凹凸構造2の凹凸形状とは、遮音パネル1の一方の面1A側、またはその逆の面1B側に突出し、内部が空洞の形状をいい、例えば、図1(b)に示すように、湾曲面からなる半球形状をいう。凹凸構造2は、全体として凹凸形状であればよく、完全に曲面である必要はなく多面体で構成されていてもよいし、局所的に凹部、平面部があってもよい。遮音パネル1が凹凸構造2を備えることで、凹凸構造2の頂部20の剛性が向上し、遮音パネル1に透過音のエネルギーが透過した場合、図2(a)及び(b)に示すように、凹凸構造2の頂部20と裾部21が固定端として機能し、遮音パネルに対して垂直(面外)に振動する成分(図2(a)の実線矢印成分)からなる面外振動を誘起させ、比較的剛性が低い裾部21の近傍で面外振動が生じる。つまり、遮音パネル1が凹凸構造2を備えることで、遮音パネル1全体の剛性が向上し、面内の弾性伸縮変形を抑制し、かつ過度な面外振動をも抑制することができる。そして、遮音パネル1が凹凸構造の厚みT、凹凸構造を形成する部材の引張弾性率、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商が特定の条件を満たすことで、面内の弾性伸縮変形を可聴域周波数以上まで発生を抑制し、かつ面外振動については1次共振周波数まで抑制することが可能になり、全周波数域、特に低周波域(100~400Hz)での遮音性能の落ち込みを改善することができる。 The uneven shape of the uneven structure 2 refers to a shape that protrudes toward one surface 1A side of the sound insulation panel 1 or the opposite surface 1B side and is hollow inside. For example, as shown in FIG. A hemispherical shape consisting of surfaces. The uneven structure 2 only needs to have an uneven shape as a whole, and does not need to be a completely curved surface, but may be composed of a polyhedron, or may have locally recessed portions or flat portions. By providing the sound insulation panel 1 with the uneven structure 2, the rigidity of the top part 20 of the uneven structure 2 is improved, and when the energy of transmitted sound is transmitted through the sound insulation panel 1, as shown in FIGS. 2(a) and 2(b). , the top part 20 and bottom part 21 of the uneven structure 2 function as fixed ends, and induce out-of-plane vibration consisting of a component that vibrates perpendicularly (out-of-plane) to the sound insulation panel (solid arrow component in Fig. 2(a)). As a result, out-of-plane vibration occurs in the vicinity of the skirt portion 21, which has relatively low rigidity. That is, by providing the sound insulation panel 1 with the uneven structure 2, the rigidity of the entire sound insulation panel 1 is improved, and in-plane elastic expansion and contraction deformation can be suppressed, and excessive out-of-plane vibration can also be suppressed. The sound insulation panel 1 has the thickness T of the uneven structure, the tensile modulus of the member forming the uneven structure, the product of the primary resonance frequency f of the out-of-plane vibration of the sound insulation panel and the side length L, and the height of the uneven structure. When the quotient of H and side length L satisfies a specific condition, it is possible to suppress in-plane elastic expansion and contraction deformation to frequencies above the audible range, and to suppress out-of-plane vibrations to the primary resonance frequency. This makes it possible to improve the drop in sound insulation performance in all frequency ranges, especially in the low frequency range (100 to 400 Hz).

凹凸構造2の凹凸形状としては、例えば、図3(a)に示すように、曲率が高い曲面部からなる半球形状の凹凸構造2aであってもよく、図3(b)に示すように、同じ凹凸構造2bが複数であってもよく、図3(c)に示すように、異なる凹凸構造2c,2d,2eが設けられてもよい。また、凹凸構造2の凹凸形状としては、例えば、図4(a)に示すように、平面部からなるピラミッド形状の凹凸構造2fであってもよく、図4(b)に示すように、平面部からなる多面体形状の凹凸構造2gであってもよく、図4(c)に示すように、曲面部と平面部が混在する凹凸構造2hであってもよい。凹凸構造2の凹凸形状は、透過音のエネルギーを効率よく面外振動に誘起させるエネルギーに変換することが可能な形状であることが好ましく、例えば、凹凸構造2の頂部が単数であって裾部が周囲に配置される半球形状が好ましい。 The uneven shape of the uneven structure 2 may be, for example, a hemispherical uneven structure 2a consisting of a curved surface portion with a high curvature, as shown in FIG. 3(a), or as shown in FIG. 3(b), A plurality of the same uneven structures 2b may be provided, or different uneven structures 2c, 2d, and 2e may be provided as shown in FIG. 3(c). Further, as the uneven shape of the uneven structure 2, for example, as shown in FIG. 4(a), a pyramid-shaped uneven structure 2f consisting of a flat part may be used, or as shown in FIG. The uneven structure 2g may have a polyhedral shape, or the uneven structure 2h may have a mixture of curved surfaces and flat surfaces, as shown in FIG. 4(c). The uneven shape of the uneven structure 2 is preferably a shape that can efficiently convert the energy of transmitted sound into energy that induces out-of-plane vibration. For example, the uneven structure 2 has a single top and a base. Preferably, the hemispherical shape is arranged around the periphery.

凹凸構造2の厚みTは、0.1mm以上20mm以下である。凹凸構造2の厚みTが上記下限値未満であると、凹凸構造2の機械的剛性を得ることができない。また、凹凸構造2の厚みTが上記上限値を超えると、透過音のエネルギーを面外振動に誘起させるエネルギーに変換することが困難となる。凹凸構造2の厚みTは、機械的剛性を有しつつ、軽量化に寄与し、透過音のエネルギーを効率よく面外振動に誘起させるエネルギーに変換することが可能とする観点から、0.2mm以上15mm以下であることが好ましく、0.5mm以上10mm以下であることがより好ましく、1mm以上5mm以下であることがさらに好ましい。 The thickness T of the uneven structure 2 is 0.1 mm or more and 20 mm or less. If the thickness T of the uneven structure 2 is less than the above lower limit, the mechanical rigidity of the uneven structure 2 cannot be obtained. Moreover, if the thickness T of the uneven structure 2 exceeds the above upper limit value, it becomes difficult to convert the energy of transmitted sound into energy that induces out-of-plane vibration. The thickness T of the concavo-convex structure 2 is 0.2 mm from the viewpoint of having mechanical rigidity, contributing to weight reduction, and making it possible to efficiently convert the energy of transmitted sound into energy that induces out-of-plane vibration. It is preferably 15 mm or less, more preferably 0.5 mm or more and 10 mm or less, and even more preferably 1 mm or more and 5 mm or less.

凹凸構造2の引張弾性率は、0.1GPa以上である。凹凸構造2の引張弾性率が上記下限値未満であると、凹凸構造2の面内の弾性伸縮変形が抑制されることなく、透過音のエネルギーが面内振動を誘起させ、面外振動を誘起させることがなくなる。凹凸構造2の引張弾性率は、凹凸構造2の引張弾性率が上記下限値以上であることで、凹凸構造2の面内の弾性伸縮変形が抑制され、透過音のエネルギーが面内振動を誘起させることなく、透過音のエネルギーを効率よく面外振動に誘起させる観点から、1GPa以上であることが好ましく、5GPa以上であることがより好ましく、10GPa以上であることがさらに好ましい。凹凸構造2の引張弾性率の上限は特に限定されないが、500GPaが実質的な上限である。
なお、基材2の引張弾性率は、JIS K 7161-1:2014に準ずる方法により測定することができる。
The tensile modulus of the uneven structure 2 is 0.1 GPa or more. If the tensile modulus of the uneven structure 2 is less than the above lower limit, the in-plane elastic expansion and contraction deformation of the uneven structure 2 will not be suppressed, and the transmitted sound energy will induce in-plane vibration and out-of-plane vibration. You won't have to do anything. The tensile modulus of the uneven structure 2 is equal to or higher than the above lower limit, so that in-plane elastic expansion and contraction deformation of the uneven structure 2 is suppressed, and the energy of transmitted sound induces in-plane vibration. From the viewpoint of efficiently inducing the energy of transmitted sound into out-of-plane vibrations without causing any interference, it is preferably 1 GPa or more, more preferably 5 GPa or more, and even more preferably 10 GPa or more. Although the upper limit of the tensile modulus of the uneven structure 2 is not particularly limited, 500 GPa is a substantial upper limit.
Note that the tensile modulus of the base material 2 can be measured by a method according to JIS K 7161-1:2014.

遮音パネル1の面外振動の1次共振周波数fは、100Hz以上8,000Hz以下であることが好ましく、200Hz以上7,000Hz以下であることがより好ましく、300Hz以上6,000Hz以下であることがさらに好ましい。
なお、遮音パネル1の面外振動の1次共振周波数fは、JIS C 60068-2-81:2007に準ずる方法により測定することができる。
The primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1 is preferably 100 Hz or more and 8,000 Hz or less, more preferably 200 Hz or more and 7,000 Hz or less, and preferably 300 Hz or more and 6,000 Hz or less. More preferred.
Note that the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1 can be measured by a method according to JIS C 60068-2-81:2007.

遮音パネル1の面積(図1のXY平面における面積)と投影面積が同じである正方形の辺の長さを辺長Lとする。本明細書では、遮音パネル1の形状は限定されず、遮音パネル1の面積に着目し、遮音パネル1の面積と同じ面積である仮想の正方形を想定し、その正方形の一辺の長さを辺長Lとみなす。しかし、図1(a)に示すように、遮音パネル1が正方形である場合、辺長Lは、遮音パネル1がなす正方形の一辺の長さとする。
遮音パネル1の面外振動の1次共振周波数fと辺長Lとの積は、80Hz・m以上である。1次共振周波数fと辺長Lとの積(f×L)が80Hz・m未満であると、透過音のエネルギーを面外振動に誘起させるエネルギーに変換することが困難となる。遮音パネル1の面外振動の1次共振周波数fと辺長Lとの積は、透過音のエネルギーを効率よく面外振動に誘起させるエネルギーに変換することが可能とする観点から、100Hz・m以上であることが好ましく、125Hz・m以上であることがより好ましく、150Hz・m以上であることがさらに好ましい。凹凸構造2の引張弾性率の上限は特に限定されないが、2,500Hz・mが実質的な上限である。
The side length of a square whose projected area is the same as the area of the sound insulation panel 1 (the area on the XY plane in FIG. 1) is defined as the side length L. In this specification, the shape of the sound insulation panel 1 is not limited. Focusing on the area of the sound insulation panel 1, a virtual square having the same area as the sound insulation panel 1 is assumed, and the length of one side of the square is defined as the side. Considered as long L. However, as shown in FIG. 1(a), when the sound insulation panel 1 is square, the side length L is the length of one side of the square formed by the sound insulation panel 1.
The product of the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1 and the side length L is 80 Hz·m or more. If the product (f×L) of the primary resonance frequency f and the side length L is less than 80 Hz·m, it becomes difficult to convert the energy of transmitted sound into energy that induces out-of-plane vibration. The product of the primary resonance frequency f of the out-of-plane vibration of the sound insulation panel 1 and the side length L is 100 Hz·m from the viewpoint of making it possible to efficiently convert the energy of transmitted sound into energy that induces out-of-plane vibration. It is preferably at least 125 Hz·m, more preferably at least 150 Hz·m, even more preferably at least 150 Hz·m. Although the upper limit of the tensile modulus of the uneven structure 2 is not particularly limited, 2,500 Hz·m is a practical upper limit.

凹凸構造2の高さH(図1におけるZ軸方向)は、凹凸構造2の頂部20の剛性を維持しつつ、裾部21の近傍で面外振動を生じやすくさせる観点から、0.01m以上0.2m以下であることが好ましく、0.02m以上0.17m以下であることがより好ましく、0.03m以上0.15m以下であることがさらに好ましい。
なお、凹凸構造2の高さHとは、凹凸構造2の最も低い部分から最も高い部分の高さをいい、具体的には、凹凸構造2の一番低い箇所(例えば、凹部底部)から凹凸構造2の一番高い箇所(例えば、凸部頂部)の高さをいう。凹凸構造2が複数である場合は、最も大きい値となる高さHを採用する。
The height H (Z-axis direction in FIG. 1) of the uneven structure 2 is set to 0.01 m or more in order to easily generate out-of-plane vibration near the bottom portion 21 while maintaining the rigidity of the top portion 20 of the uneven structure 2. The length is preferably 0.2 m or less, more preferably 0.02 m or more and 0.17 m or less, and even more preferably 0.03 m or more and 0.15 m or less.
Note that the height H of the uneven structure 2 refers to the height from the lowest part to the highest part of the uneven structure 2, and specifically, the height H of the uneven structure 2 from the lowest point (for example, the bottom of a recess) to the uneven part. It refers to the height of the highest point of the structure 2 (for example, the top of the convex part). When there is a plurality of uneven structures 2, the height H having the largest value is adopted.

凹凸構造2の高さHと辺長Lとの商(H/L)は、0.01以上0.7以下である。凹凸構造2の高さHと辺長Lとの商が上記範囲外であると、機械的剛性を有しつつ、軽量化に寄与し、透過音のエネルギーを効率よく面外振動に誘起させるエネルギーに変換することが困難となる。凹凸構造2の高さHと辺長Lとの商は、機械的剛性を有しつつ、軽量化に寄与し、透過音のエネルギーを効率よく面外振動に誘起させるエネルギーに変換することが可能とする観点から、0.05以上0.6以下であることが好ましく、0.07以上0.5以下であることがより好ましく、0.1以上0.4以下であることがさらに好ましい。 The quotient (H/L) of the height H and side length L of the uneven structure 2 is 0.01 or more and 0.7 or less. If the quotient of the height H and the side length L of the uneven structure 2 is outside the above range, it will have mechanical rigidity, contribute to weight reduction, and efficiently induce transmitted sound energy into out-of-plane vibrations. It becomes difficult to convert into The quotient of the height H and the side length L of the concavo-convex structure 2 contributes to weight reduction while having mechanical rigidity, and enables efficient conversion of transmitted sound energy into energy that induces out-of-plane vibration. From the viewpoint of this, it is preferably 0.05 or more and 0.6 or less, more preferably 0.07 or more and 0.5 or less, and even more preferably 0.1 or more and 0.4 or less.

凹凸構造2の面密度は、200kg/m以上8,000kg/m以下であることが好ましく、400kg/m以上6,000kg/m以下であることがより好ましく、600kg/m以上4,000kg/m以下であることがさらに好ましい。凹凸構造2の面密度が上記範囲内であることで、機械的剛性を有しつつ、軽量化に寄与することができる。
なお、凹凸構造2の面密度は、JIS Z 8807:2012に準ずる方法により測定することができる。
The surface density of the uneven structure 2 is preferably 200 kg/m 2 or more and 8,000 kg/m 2 or less, more preferably 400 kg/m 2 or more and 6,000 kg/m 2 or less, and 600 kg/m 2 or more. More preferably, it is 4,000 kg/m 2 or less. By having the surface density of the uneven structure 2 within the above range, it is possible to contribute to weight reduction while having mechanical rigidity.
Note that the surface density of the uneven structure 2 can be measured by a method according to JIS Z 8807:2012.

凹凸構造2としては、機械的剛性を有しつつ、遮音性能を向上させるために空気を通さない材料であれば特に限定はなく、例えば、ポリカーボネート樹脂、アクリル樹脂、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)、ポリプロピレン樹脂、塩化ビニル樹脂及びエポキシ樹脂等の少なくともいずれか1種を含む樹脂板などの有機材料が挙げられる。また、凹凸構造2としては、例えば、アルミ板、鋼板、ステンレス板及び鉄板等の金属板、並びに、ガラス板などの無機材料が挙げられる。また、凹凸構造2としては、セラミック板、石膏板及びFRP板等の複合材料を採用することができる。 The uneven structure 2 is not particularly limited as long as it has mechanical rigidity and does not allow air to pass through in order to improve sound insulation performance. For example, polycarbonate resin, acrylic resin, acrylonitrile-butadiene-styrene resin (ABS) Examples include organic materials such as resin plates containing at least one of resins), polypropylene resins, vinyl chloride resins, and epoxy resins. Examples of the uneven structure 2 include metal plates such as aluminum plates, steel plates, stainless steel plates, and iron plates, and inorganic materials such as glass plates. Moreover, as the uneven structure 2, a composite material such as a ceramic board, a gypsum board, and an FRP board can be adopted.

以上、本発明の実施形態について説明したが、本発明はこうした例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to these examples at all, and it goes without saying that the present invention can be implemented in various forms without departing from the gist of the present invention.

以下、実施例に基づき、本発明の実施形態をより具体的に説明するが、本発明がこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail based on Examples, but the present invention is not limited thereto.

(音響透過損失の測定)
JIS A 1441-1:2007に準拠して、実施例及び比較例に係る遮音パネルの音響透過損失を算出した。具体的には、残響室と無響室を実施例及び比較例に係る遮音パネルのサンプルで間仕切り(凹凸構造を有するものは凸部が残響室側となるように配置)、残響室においてスピーカーから100dBのノイズを発生させ、残響室における平均音圧レベルおよび無響室の実施例及び比較例に係る遮音パネルから10cm離れた地点での音響インテンシティをそれぞれ測定し、1/3オクターブバンドごとの音響透過損失を算出した。算出した1/3オクターブバンドごとの音響透過損失から、周波数ごとに面密度から計算した質量則を減算した結果を図5~図11のグラフに示す。
(Measurement of sound transmission loss)
In accordance with JIS A 1441-1:2007, the sound transmission loss of the sound insulation panels according to Examples and Comparative Examples was calculated. Specifically, we partitioned a reverberation room and an anechoic room with samples of sound insulation panels according to examples and comparative examples (those with an uneven structure are arranged so that the convex part faces the reverberation room side), and A noise of 100 dB was generated, and the average sound pressure level in the reverberation chamber and the sound intensity at a point 10 cm away from the sound insulation panel according to the example and comparative example of the anechoic chamber were measured, and the results were calculated for each 1/3 octave band. Sound transmission loss was calculated. The graphs in FIGS. 5 to 11 show the results of subtracting the mass law calculated from the areal density for each frequency from the calculated sound transmission loss for each 1/3 octave band.

[実施例1]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドームアルミ(商品名「A5052」、志摩鋼業社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。実施例1に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 1]
Dome aluminum (trade name "A5052", manufactured by Shima Kogyo Co., Ltd., 0.4 m long x 0.4 m wide) was used as the sound insulation panel 1 (see Fig. 3 (a)) having a single hemispherical uneven structure 2 consisting of a curved surface. × height 0.05 m × thickness 2 mm) was adopted. Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 1, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例2]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドームアルミ(商品名「A5052」、志摩鋼業社製、縦0.4m×横0.4m×高さ0.15m×厚み2mm)を採用した。実施例2に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 2]
Dome aluminum (trade name "A5052", manufactured by Shima Kogyo Co., Ltd., 0.4 m long x 0.4 m wide) was used as the sound insulation panel 1 (see Fig. 3 (a)) having a single hemispherical uneven structure 2 consisting of a curved surface. × height 0.15 m × thickness 2 mm) was adopted. Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 2, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例3]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドームアルミ(商品名「A5052」、志摩鋼業社製、縦0.4m×横0.4m×高さ0.15m×厚み5mm)を採用した。実施例3に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 3]
Dome aluminum (trade name "A5052", manufactured by Shima Kogyo Co., Ltd., 0.4 m long x 0.4 m wide) was used as the sound insulation panel 1 (see Fig. 3 (a)) having a single hemispherical uneven structure 2 consisting of a curved surface. × height 0.15 m × thickness 5 mm) was adopted. Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 3, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例4]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドームアルミ(商品名「A5052」、志摩鋼業社製、縦0.8m×横0.8m×高さ0.1m×厚み4mm)を採用した。実施例4に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 4]
Dome aluminum (trade name "A5052", manufactured by Shima Kogyo Co., Ltd., 0.8 m long x 0.8 m wide) was used as the sound insulation panel 1 (see Fig. 3 (a)) having a single hemispherical uneven structure 2 consisting of a curved surface. × height 0.1 m × thickness 4 mm) was adopted. Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulating panel according to Example 4, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulating panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例5]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドームアルミ(商品名「A5052」、志摩鋼業社製、縦0.4m×横0.4m×高さ0.05m×厚み0.1mm)を採用した。実施例5に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 5]
Dome aluminum (trade name "A5052", manufactured by Shima Kogyo Co., Ltd., 0.4 m long x 0.4 m wide) was used as the sound insulation panel 1 (see Fig. 3 (a)) having a single hemispherical uneven structure 2 consisting of a curved surface. × height 0.05 m × thickness 0.1 mm) was adopted. Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 5, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例6]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドームアルミ(商品名「A5052」、志摩鋼業社製、縦0.4m×横0.4m×高さ0.05m×厚み20mm)を採用した。実施例6に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 6]
Dome aluminum (trade name "A5052", manufactured by Shima Kogyo Co., Ltd., 0.4 m long x 0.4 m wide) was used as the sound insulation panel 1 (see Fig. 3 (a)) having a single hemispherical uneven structure 2 consisting of a curved surface. × height 0.05 m × thickness 20 mm) was adopted. Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 6, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例7]
曲面部からなる複数(2個)の半球形状の凹凸構造2を有する遮音パネル1(図3(b)参照)としてドームアルミ(商品名「A5052」、志摩鋼業社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。実施例7に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 7]
Dome aluminum (trade name "A5052", manufactured by Shima Kogyo Co., Ltd., length 0.4 m x 0.4 m in width x 0.05 m in height x 2 mm in thickness). Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 7, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例8]
平面部からなる単数のピラミッド形状の凹凸構造2を有する遮音パネル1(図4(a)参照)としてピラミッドアルミ(商品名「A5052」、志摩鋼業社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。実施例8に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 8]
Pyramid aluminum (trade name "A5052", manufactured by Shima Kogyo Co., Ltd., length 0.4 m x width 0.4 m) was used as the sound insulation panel 1 (see Fig. 4 (a)) having a single pyramid-shaped uneven structure 2 consisting of a flat part. × height 0.05 m × thickness 2 mm) was adopted. Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 8, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of the out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例9]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドームSPCC冷延鋼板(商品名「SPCC冷延鋼板」、志摩工業社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。実施例9に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 9]
A dome SPCC cold-rolled steel plate (trade name "SPCC cold-rolled steel plate", manufactured by Shima Kogyo Co., Ltd., length 0.4 m) was used as a sound insulation panel 1 (see FIG. 3(a)) having a single hemispherical uneven structure 2 consisting of a curved surface. × width 0.4 m × height 0.05 m × thickness 2 mm) was adopted. Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 9, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例10]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドームガラス(商品名「透明ガラス」、日本電子工業社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。実施例10に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 10]
A dome glass (trade name "Transparent Glass", manufactured by JEOL Ltd., 0.4 m long x 0.4 m wide) was used as the sound insulation panel 1 (see FIG. 3(a)) having a single hemispherical uneven structure 2 consisting of a curved surface. 4m x height 0.05m x thickness 2mm). Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 10, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例11]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドーム石膏(商品名「硬質石膏ボード」、吉野石膏社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。実施例11に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 11]
A sound insulating panel 1 (see FIG. 3(a)) having a single hemispherical uneven structure 2 consisting of a curved surface is made of dome plaster (trade name "Hard Gypsum Board", manufactured by Yoshino Gypsum Co., Ltd., 0.4 m long x 0.4 m wide). 4m x height 0.05m x thickness 2mm). Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulating panel according to Example 11, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulating panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例12]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドームガラス繊維強化プラスチック(GFRP、商品名「熱硬化性GFRP」、スーパーレジン工業社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。実施例12に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 12]
A dome glass fiber reinforced plastic (GFRP, trade name "thermosetting GFRP", manufactured by Super Resin Kogyo Co., Ltd., vertical 0.4 m x width 0.4 m x height 0.05 m x thickness 2 mm). Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 12, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例13]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドーム炭素繊維強化プラスチック(CFRP、商品名「熱硬化性CFRP」、スーパーレジン工業社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。実施例13に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 13]
A dome carbon fiber reinforced plastic (CFRP, trade name ``thermosetting CFRP'', manufactured by Super Resin Kogyo Co., Ltd., vertical 0.4 m x width 0.4 m x height 0.05 m x thickness 2 mm). Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulating panel according to Example 13, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulating panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例14]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドームポリプロピレン(ポリプロピレン樹脂、商品名「ポリプロピレン樹脂」、KDA社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。実施例14に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 14]
Dome polypropylene (polypropylene resin, trade name "Polypropylene resin", manufactured by KDA Co., Ltd., length 0.4 m x width 0 .4m x height 0.05m x thickness 2mm). Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 14, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例15]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドーム塩化ビニル(塩化ビニル樹脂、商品名「硬質塩化ビニル樹脂」、KDA社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。実施例15に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 15]
A dome vinyl chloride (vinyl chloride resin, trade name: "hard vinyl chloride resin", manufactured by KDA Corporation, vertical 0.5 mm) is used as a sound insulation panel 1 (see FIG. 3(a)) having a single hemispherical uneven structure 2 consisting of a curved surface. 4m x width 0.4m x height 0.05m x thickness 2mm). Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 15, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例16]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドームアクリル(アクリル樹脂、商品名「アクリル樹脂」、KDA社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。実施例16に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 16]
Dome acrylic (acrylic resin, trade name "acrylic resin", manufactured by KDA Co., Ltd., length 0.4 m x width 0 .4m x height 0.05m x thickness 2mm). Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulating panel according to Example 16, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulating panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例17]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドームポリカーボネート(ポリカーボネート樹脂、商品名「ポリカーボネート樹脂」、KDA社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。実施例17に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 17]
A dome polycarbonate (polycarbonate resin, trade name "polycarbonate resin", manufactured by KDA Co., Ltd., length 0.4 m x width 0 .4m x height 0.05m x thickness 2mm). Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 17, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例18]
曲面部からなる単数の半球形状の凹凸構造2を有する遮音パネル1(図3(a)参照)としてドームエポキシ(エポキシ樹脂、商品名「ビスフェノールA型エポキシ樹脂」、KDA社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。実施例18に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 18]
Dome epoxy (epoxy resin, trade name "Bisphenol A type epoxy resin", manufactured by KDA Co., Ltd., length 0.4 m) was used as the sound insulation panel 1 (see FIG. 3(a)) having a single hemispherical uneven structure 2 consisting of a curved surface part. × width 0.4 m × height 0.05 m × thickness 2 mm) was adopted. Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 18, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[実施例19]
曲面部からなる単数の半球形状の凹凸構造を有する遮音パネル(図3(a)参照)としてドームPVDF(ポリフッ化ビニリデン樹脂、商品名「ポリフッ化ビニリデン樹脂」、KDA社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。実施例19に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Example 19]
A dome PVDF (polyvinylidene fluoride resin, trade name "polyvinylidene fluoride resin", manufactured by KDA Corporation, length 0.4 m x 0.4 m in width x 0.05 m in height x 2 mm in thickness). Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Example 19, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[比較例1]
遮音パネルとしてアルミ平板(商品名「A5052」、志摩鋼業社製、縦0.4m×横0.4m×厚み2mm)を採用した。比較例1に係る遮音パネルを形成する部材の引張弾性率、遮音パネルを形成する部材の面密度、及び、遮音パネルの面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Comparative example 1]
An aluminum flat plate (trade name "A5052", manufactured by Shima Kogyo Co., Ltd., length 0.4 m x width 0.4 m x thickness 2 mm) was used as the sound insulation panel. Results of measuring the tensile modulus of elasticity of the member forming the sound insulation panel, the areal density of the member forming the sound insulation panel, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel according to Comparative Example 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of the out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[比較例2]
曲面部からなる単数の半球形状の凹凸構造を有する遮音パネル(図3(a)参照)としてドームアルミ(商品名「A5052」、志摩鋼業社製、縦0.4m×横0.4m×高さ0.05m×厚み0.01mm)を採用した。比較例2に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネルの面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Comparative example 2]
Dome aluminum (product name "A5052", manufactured by Shima Kogyo Co., Ltd., 0.4 m long x 0.4 m wide x high (length: 0.05 m x thickness: 0.01 mm). Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Comparative Example 2, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel, and the surface of the sound insulation panel Table 1 shows the calculated results of the product of the primary resonance frequency f of external vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[比較例3]
曲面部からなる単数の半球形状の凹凸構造を有する遮音パネル(図3(a)参照)としてドームPVDF(ポリフッ化ビニリデン樹脂、商品名「ポリフッ化ビニリデン樹脂」、KDA社製、縦0.4m×横0.4m×高さ0.05m×厚み0.028mm)を採用した。比較例3に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Comparative example 3]
A dome PVDF (polyvinylidene fluoride resin, trade name "polyvinylidene fluoride resin", manufactured by KDA Corporation, length 0.4 m x 0.4 m in width x 0.05 m in height x 0.028 mm in thickness). Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Comparative Example 3, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[比較例4]
曲面部からなる単数の半球形状の凹凸構造を有する遮音パネル(図3(a)参照)としてドームクロロプレンゴム(クロロプレンゴム、商品名「クロロプレンゴム45°」、タイガースポリマー社製、縦0.4m×横0.4m×高さ0.05m×厚み2mm)を採用した。比較例4に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネル1の面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Comparative example 4]
Dome chloroprene rubber (chloroprene rubber, trade name ``chloroprene rubber 45°'', manufactured by Tigers Polymer Co., Ltd., length 0.4 m x 0.4 m in width x 0.05 m in height x 2 mm in thickness). Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Comparative Example 4, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel 1, and Table 1 shows the calculated results of the product of the primary resonance frequency f of out-of-plane vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[比較例5]
曲面部からなる単数の半球形状の凹凸構造を有する遮音パネル(図3(a)参照)としてドームポリプロピレン(ポリプロピレン樹脂、商品名「ポリプロピレン樹脂」、KDA社製、縦0.4m×横0.4m×高さ0.05m×厚み0.1mm)を採用した。比較例5に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネルの面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Comparative example 5]
Dome polypropylene (polypropylene resin, trade name "Polypropylene resin", manufactured by KDA, 0.4 m long x 0.4 m wide) was used as a sound insulation panel (see Figure 3 (a)) having a single hemispherical uneven structure consisting of a curved surface. × height 0.05 m × thickness 0.1 mm) was adopted. Results of measuring the tensile modulus of the member forming the uneven structure of the sound insulation panel according to Comparative Example 5, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel, and the surface of the sound insulation panel Table 1 shows the calculated results of the product of the primary resonance frequency f of external vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[比較例6]
曲面部からなる単数の半球形状の凹凸構造を有する遮音パネル(図3(a)参照)としてドーム塩化ビニル(塩化ビニル樹脂、商品名「硬質塩化ビニル樹脂」、KDA社製、縦0.4m×横0.4m×高さ0.05m×厚み0.1mm)を採用した。比較例6に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネルの面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Comparative example 6]
A dome vinyl chloride (vinyl chloride resin, trade name: "hard vinyl chloride resin", manufactured by KDA, 0.4 m long x 0.4 m in width x 0.05 m in height x 0.1 mm in thickness). Results of measuring the tensile modulus of the member forming the uneven structure of the sound insulation panel according to Comparative Example 6, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel, and the surface of the sound insulation panel Table 1 shows the calculated results of the product of the primary resonance frequency f of external vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[比較例7]
曲面部からなる単数の半球形状の凹凸構造を有する遮音パネル(図3(a)参照)としてドームアクリル(アクリル樹脂、商品名「アクリル樹脂」、KDA社製、縦0.4m×横0.4m×高さ0.05m×厚み0.1mm)を採用した。比較例7に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネルの面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Comparative Example 7]
Dome acrylic (acrylic resin, trade name "acrylic resin", manufactured by KDA, 0.4 m long x 0.4 m wide) was used as a sound insulating panel (see Figure 3 (a)) having a single hemispherical uneven structure consisting of a curved surface. × height 0.05 m × thickness 0.1 mm) was adopted. Results of measuring the tensile modulus of elasticity of the member forming the uneven structure of the sound insulation panel according to Comparative Example 7, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel, and the surface of the sound insulation panel Table 1 shows the calculated results of the product of the primary resonance frequency f of external vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

[比較例8]
曲面部からなる単数の半球形状の凹凸構造を有する遮音パネル(図3(a)参照)としてドームポリカーボネート(ポリカーボネート樹脂、商品名「ポリカーボネート樹脂」、KDA社製、縦0.4m×横0.4m×高さ0.05m×厚み0.1mm)を採用した。比較例8に係る遮音パネルの凹凸構造を形成する部材の引張弾性率、凹凸構造の面密度、及び、遮音パネルの面外振動の1次共振周波数fを測定した結果、並びに、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商の算出した結果を表1に示す。
[Comparative example 8]
A dome polycarbonate (polycarbonate resin, trade name "polycarbonate resin", manufactured by KDA, 0.4 m long x 0.4 m wide) was used as a sound insulation panel (see Figure 3 (a)) having a single hemispherical uneven structure consisting of a curved surface. × height 0.05 m × thickness 0.1 mm) was adopted. Results of measuring the tensile modulus of the member forming the uneven structure of the sound insulation panel according to Comparative Example 8, the areal density of the uneven structure, and the primary resonance frequency f of out-of-plane vibration of the sound insulation panel, and the surface of the sound insulation panel Table 1 shows the calculated results of the product of the primary resonance frequency f of external vibration and the side length L, and the quotient of the height H of the uneven structure and the side length L.

図5~11に示したグラフより、凹凸構造の厚みT、凹凸構造を形成する部材の引張弾性率、遮音パネルの面外振動の1次共振周波数fと辺長Lとの積、及び、凹凸構造の高さHと辺長Lとの商が特定の条件を満たすものは、面外振動による透過音のエネルギー消費を増大させることが可能となり、全周波数域、特に低周波域(100~400Hz)での遮音性能の落ち込みを改善することができた。また、上記特定の条件を満たすものは、面内の弾性伸縮変形を可聴域周波数以上まで発生を抑制し、かつ面外振動については1次共振周波数まで抑制することが可能になり、全周波数域、特に低周波域(100~400Hz)での遮音性能の落ち込みを改善することができた。 From the graphs shown in Figures 5 to 11, the thickness T of the uneven structure, the tensile modulus of the member forming the uneven structure, the product of the primary resonance frequency f of the out-of-plane vibration of the sound insulation panel and the side length L, and the unevenness. If the quotient of the structure height H and side length L satisfies a specific condition, it becomes possible to increase the energy consumption of transmitted sound due to out-of-plane vibration, and it is possible to increase the energy consumption of transmitted sound due to out-of-plane vibration, and to ) was able to improve the drop in sound insulation performance. Additionally, if the above specific conditions are met, it is possible to suppress the occurrence of in-plane elastic expansion and contraction deformation to frequencies above the audible range, and to suppress out-of-plane vibrations to the primary resonance frequency, making it possible to suppress in-plane elastic deformation to frequencies above the audible range. In particular, we were able to improve the drop in sound insulation performance in the low frequency range (100 to 400 Hz).

1…遮音パネル
2…凹凸構造
1... Sound insulation panel 2... Uneven structure

Claims (9)

凹凸構造を備える遮音パネルであって、
前記凹凸構造の厚みTが、0.1mm以上20mm以下であり、
前記凹凸構造を形成する部材の引張弾性率が、0.1GPa以上であり、
前記遮音パネルの面積と投影面積が同じである正方形の辺の長さを辺長Lとし、前記遮音パネルの面外振動の1次共振周波数f[Hz]と前記辺長L[m]との積が80[Hz・m]以上であり、
前記凹凸構造の最も低い部分から最も高い部分の高さH[m]と前記辺長L[m]との商が0.01以上0.7以下である、遮音パネル。
A sound insulation panel having an uneven structure,
The thickness T of the uneven structure is 0.1 mm or more and 20 mm or less,
The tensile modulus of the member forming the uneven structure is 0.1 GPa or more,
Let the side length of a square whose area and projected area are the same as the sound insulation panel be the side length L, and the primary resonance frequency f [Hz] of the out-of-plane vibration of the sound insulation panel and the side length L [m] The product is 80 [Hz・m] or more,
A sound insulation panel, wherein the quotient of the height H [m] from the lowest to the highest part of the uneven structure and the side length L [m] is 0.01 or more and 0.7 or less.
前記凹凸構造が半球形状である、請求項1に記載の遮音パネル。 The sound insulation panel according to claim 1, wherein the uneven structure has a hemispherical shape. 前記凹凸構造を形成する部材がアルミ板である、請求項1に記載の遮音パネル。 The sound insulation panel according to claim 1, wherein the member forming the uneven structure is an aluminum plate. 前記凹凸構造が単数である、請求項1に記載の遮音パネル。 The sound insulation panel according to claim 1, wherein the uneven structure is singular. 前記凹凸構造が複数である、請求項1に記載の遮音パネル。 The sound insulation panel according to claim 1, wherein the uneven structure is plural. 前記凹凸構造が曲面部を有する、請求項1に記載の遮音パネル。 The sound insulation panel according to claim 1, wherein the uneven structure has a curved surface portion. 前記凹凸構造が平面部を有する、請求項1に記載の遮音パネル。 The sound insulation panel according to claim 1, wherein the uneven structure has a flat portion. 前記遮音パネルが正方形である、請求項1に記載の遮音パネル。 The acoustical panel of claim 1, wherein the acoustical panel is square. 前記遮音パネルを形成する部材の密度が200kg/m以上12,000kg/m以下である、請求項1に記載の遮音パネル。 The sound insulation panel according to claim 1, wherein the density of the member forming the sound insulation panel is 200 kg/m 3 or more and 12,000 kg/m 3 or less.
JP2022132351A 2022-08-23 2022-08-23 sound insulation panel Pending JP2024029895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022132351A JP2024029895A (en) 2022-08-23 2022-08-23 sound insulation panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022132351A JP2024029895A (en) 2022-08-23 2022-08-23 sound insulation panel

Publications (1)

Publication Number Publication Date
JP2024029895A true JP2024029895A (en) 2024-03-07

Family

ID=90106720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022132351A Pending JP2024029895A (en) 2022-08-23 2022-08-23 sound insulation panel

Country Status (1)

Country Link
JP (1) JP2024029895A (en)

Similar Documents

Publication Publication Date Title
US11158299B2 (en) Acoustic meta-material basic structure unit, composite structure thereof, and assembly method
US9466283B2 (en) Sound attenuating structures
JP5056385B2 (en) Sound absorber
US5701359A (en) Flat-panel speaker
US7010143B2 (en) Rectangular panel-form loudspeaker and its radiating panel
JP4227618B2 (en) Sound insulation structure and structure using the same
US6478109B1 (en) Laminated composite panel-form loudspeaker
CN110751937A (en) High-rigidity high-damping local resonance unit for constructing acoustic metamaterial structure
JP6585314B2 (en) Soundproof structure
CN115910016B (en) Underwater sound absorption covering layer based on cavity resonance
US11732467B2 (en) Acoustic tile
JP2024029895A (en) sound insulation panel
JP3263630B2 (en) Sound insulation board
JP2011118338A (en) Sound absorbing structure
JP4223438B2 (en) Porous soundproof structure
JP2840130B2 (en) Sound absorber
JPH1037619A (en) Sound-proof door
JP2024039881A (en) sound insulation structure
WO1998052744A1 (en) Composite structure
CN111710324A (en) Broadband sound absorption structure
WO2017057081A1 (en) Laminate, and vibration-damping sheet and sound-insulating sheet having same
JP2008233753A (en) Sound absorbing structure
Komamura et al. Development of Acoustic Metamaterial Sheets with Two-Dimensional Array of Hollow Local Resonators
KR101838718B1 (en) Panel vibration type sound absorptive material
JP2023151643A (en) acoustic metamaterial