JP2024027590A - Hot rolling roll outer layer material and hot rolling composite roll - Google Patents

Hot rolling roll outer layer material and hot rolling composite roll Download PDF

Info

Publication number
JP2024027590A
JP2024027590A JP2022130492A JP2022130492A JP2024027590A JP 2024027590 A JP2024027590 A JP 2024027590A JP 2022130492 A JP2022130492 A JP 2022130492A JP 2022130492 A JP2022130492 A JP 2022130492A JP 2024027590 A JP2024027590 A JP 2024027590A
Authority
JP
Japan
Prior art keywords
hot rolling
roll
outer layer
less
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022130492A
Other languages
Japanese (ja)
Inventor
太雅 布施
直道 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2022130492A priority Critical patent/JP2024027590A/en
Publication of JP2024027590A publication Critical patent/JP2024027590A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

【課題】本発明は、耐焼付き性および耐スリップ性が従来よりも優れた熱間圧延用ロールの外層材および熱間圧延用複合ロールを提供することを目的とする。【解決手段】質量%で、C:1.2~2.5%、Si:0.15~2.50%、Mn:0.15~2.50%、Ni:0.2~8.0%、Cr:1.5~10.0%、Mo:3.5~12.0%、V:2.0~7.5%、W:0.1~6.0%、P:0.01~0.04%、S:0.001~0.010%を含有し、残部Fe及び不可避的不純物からなり、かつC、Cr、Mo、V、Wの含有量が特定の式を満たす組成を有し、粒径1μm以上の炭化物が面積率で8.0~20.0%存在し、20℃の時のショア硬さが75.0HS以上85.0HS以下かつ600℃の時のショア硬さが45.0HS以上50.0HS以下である熱間圧延用ロール外層材。【選択図】なしAn object of the present invention is to provide an outer layer material for a hot rolling roll and a composite roll for hot rolling which have better seizure resistance and slip resistance than conventional ones. [Solution] In mass %, C: 1.2 to 2.5%, Si: 0.15 to 2.50%, Mn: 0.15 to 2.50%, Ni: 0.2 to 8.0 %, Cr: 1.5-10.0%, Mo: 3.5-12.0%, V: 2.0-7.5%, W: 0.1-6.0%, P: 0. 01 to 0.04%, S: 0.001 to 0.010%, the balance consists of Fe and unavoidable impurities, and the content of C, Cr, Mo, V, and W satisfies a specific formula. , carbides with a particle size of 1 μm or more are present in an area ratio of 8.0 to 20.0%, and the Shore hardness at 20°C is 75.0HS or more and 85.0HS or less and the Shore hardness at 600°C is A hot rolling roll outer layer material having a diameter of 45.0HS or more and 50.0HS or less. [Selection diagram] None

Description

本発明は、熱間圧延用ロール外層材および熱間圧延用複合ロールに係り、特に鋼板の粗圧延の後段スタンドに適用する際に好適な熱間圧延用ロール外層材および熱間圧延用複合ロールに関する。 The present invention relates to a hot rolling roll outer layer material and a hot rolling composite roll, and particularly to a hot rolling roll outer layer material and a hot rolling composite roll suitable for application to a stand after rough rolling of steel plates. Regarding.

近年、高品質な鋼板の需要が増加しており、それにともない鋼板の熱間圧延技術を向上させることを求められている。そのため、熱間圧延設備で使用される熱間圧延用ロールの特性の向上、具体的には耐摩耗性や耐焼付き性、耐スリップ性等の向上が強く要求されている。耐摩耗性を向上させるため、Cr系のM炭化物を導入したHiCr鋳鋼ロールや、工具鋼の一種である高速度鋼をベースにV,Cr,Mo,Wなどの炭化物形成元素を含有し、V系MC炭化物、Mo、W系MC炭化物、Cr系M炭化物(Mは炭化物を形成する金属元素を示す。)などの硬質炭化物を多量に導入したハイスロールが用いられている。しかし、耐摩耗性を向上させるために多量の炭化物を導入すると、硬さが高く耐摩耗性が良いため、ロールの表面粗さが小さくなり、圧延中の摩擦係数が小さくなることから、スリップが発生しやすくなる。一方で、圧延中の摩擦係数が大きくなると圧延材の一部がロール材に移着する現象である焼付きが発生し、焼付き発生後に圧延する製品の品質が劣化するという問題が発生する。 In recent years, the demand for high-quality steel sheets has increased, and there has been a need to improve hot rolling technology for steel sheets. Therefore, there is a strong demand for improvements in the properties of hot rolling rolls used in hot rolling equipment, specifically improvements in wear resistance, seizure resistance, slip resistance, and the like. To improve wear resistance, HiCr cast steel rolls incorporate Cr-based M7C3 carbides, and high -speed steel rolls, which are a type of tool steel, contain carbide-forming elements such as V, Cr, Mo, and W. However, a high-speed roll incorporating a large amount of hard carbide such as V-based MC carbide, Mo, W-based M 2 C carbide, and Cr-based M 7 C 3 carbide (M represents a metal element that forms a carbide) is used. ing. However, when a large amount of carbide is introduced to improve wear resistance, the hardness and wear resistance are high, so the surface roughness of the roll is reduced, and the coefficient of friction during rolling is reduced, resulting in slippage. It is more likely to occur. On the other hand, when the coefficient of friction during rolling increases, seizure occurs, which is a phenomenon in which a part of the rolled material is transferred to the roll material, and the quality of the rolled product deteriorates after the occurrence of seizure.

このような問題を解決するために様々な技術が開示されており、例えば特許文献1には、外層の化学成分が質量比で、C:1.0~3.0%、Si:0.2~2.0%、Mn:0.2~2.0%、V:3.0~10.0%、Cr:3.0~10.0%およびMo,Wの1種または2種を2.0~10.0%含有し、あるいは、さらにNi:0.2~5.0%またはCo:0.2~10.0%の1種または2種を含有し、残部Feおよび不可逃的不純物からなることを特徴とする熱間圧延用複合ロールが提案されている。これによって、硬く微細で粒状なMC型炭化物を多量に晶出することによって圧延鋼材との間で高く安定した摩擦係数が確保できる熱間圧延用複合ロールになるとしている。 Various techniques have been disclosed to solve such problems. For example, in Patent Document 1, the chemical components of the outer layer are C: 1.0 to 3.0%, Si: 0.2% by mass ratio. ~2.0%, Mn: 0.2~2.0%, V: 3.0~10.0%, Cr: 3.0~10.0% and one or two of Mo and W. .0 to 10.0%, or further contains one or two of Ni: 0.2 to 5.0% or Co: 0.2 to 10.0%, with the remainder being Fe and inescapable A composite roll for hot rolling has been proposed which is characterized by comprising impurities. The company claims that this results in a composite roll for hot rolling that can ensure a high and stable coefficient of friction with rolled steel by crystallizing a large amount of hard, fine, and granular MC type carbides.

また、特許文献2には、質量%で、C:0.8~4.0%、Si:0.2~2.0%、Mn:0.2~2.0%、Cr:3.0~15%、V:3.0~15%、Mo、Wの1種または2種:≧2%、かつMo+0.5W:≧6.1%、あるいはさらに、Ni:0.2~5%、Co:0.5~10%、Nb:0.50~5.0%、Al,Ti,Zrの1種以上:≦0.5%の1種または2種以上を含有させ、金属組織が面積率で5~30%の炭化物を有し、該各炭化物の分布を隣接する炭化物間の平均間隙が20μm以下である外層材を備える熱間圧延用複合ロールが提案されている。これによって、粒状炭化物の適正量を微細かつ各炭化物間の隣接する間隙を小さく分散させることで、耐スリップ性、耐焼付き性が向上する熱間圧延用複合ロールになるとしている。 Furthermore, in Patent Document 2, in mass %, C: 0.8 to 4.0%, Si: 0.2 to 2.0%, Mn: 0.2 to 2.0%, Cr: 3.0 ~15%, V: 3.0 ~ 15%, one or both of Mo and W: ≧2%, and Mo + 0.5W: ≧6.1%, or further, Ni: 0.2 ~ 5%, Co: 0.5 to 10%, Nb: 0.50 to 5.0%, and one or more of Al, Ti, and Zr: ≦0.5%, and the metal structure is A composite roll for hot rolling has been proposed, which includes an outer layer material having a carbide content of 5 to 30% and an average gap between adjacent carbides of 20 μm or less. The company claims that this will result in a composite roll for hot rolling that has improved slip resistance and seizure resistance by dispersing the appropriate amount of granular carbides in fine particles and reducing the adjacent gaps between each carbide.

特許文献3には、質量%で、C:0.90~1.40%、Si:0.50~1.50%、Mn:0.50~1.50%、Ni:0.5~2.0%、Cr:9.0~16.0%、Mo:1.00~3.00%、Al:0.010~0.030%、を含有するとともに、V:0.05~0.50%、Ti:0.05~0.50%、Nb:0.02~0.20%、のうち少なくとも1種を含有し、かつ、(1)式:8≦Cr/C≦14、(2)式:3.0≦12.3C+0.55Cr-15.2≦7.0、および(3)式:26.0≦15.5C+Crを満足し、残部Feおよび不可避的不純物からなる溶湯組成を有する鋳鋼からなる外殻層と、該外殻層の内側に鋳造されたダクタイル鋳鉄からなる軸芯材が、中間層を介して一体化している熱間圧延粗圧延スタンド用ワークロールが提案されている。これにより、C量とCr量を適切量添加し、M炭化物量を制御することで、耐摩耗性と耐スリップ性が両立できる熱間圧延粗圧延スタンド用ワークロールになるとしている。 Patent Document 3 describes, in mass%, C: 0.90 to 1.40%, Si: 0.50 to 1.50%, Mn: 0.50 to 1.50%, Ni: 0.5 to 2 .0%, Cr: 9.0 to 16.0%, Mo: 1.00 to 3.00%, Al: 0.010 to 0.030%, and V: 0.05 to 0.0%. 50%, Ti: 0.05 to 0.50%, Nb: 0.02 to 0.20%, and (1) formula: 8≦Cr/C≦14, ( 2) formula: 3.0≦12.3C+0.55Cr-15.2≦7.0, and (3) formula: 26.0≦15.5C+Cr, and the molten metal composition consists of Fe and inevitable impurities. A work roll for a hot rolling rough rolling stand has been proposed in which an outer shell layer made of cast steel and a shaft core material made of ductile cast iron cast inside the outer shell layer are integrated via an intermediate layer. There is. Accordingly, by adding appropriate amounts of C and Cr and controlling the amount of M 7 C 3 carbide, a work roll for a hot rolling rough rolling stand can be obtained that can achieve both wear resistance and slip resistance.

特開2002-346613号公報Japanese Patent Application Publication No. 2002-346613 特開2004-255457号公報Japanese Patent Application Publication No. 2004-255457 特開2020-63485号公報JP2020-63485A

しかしながら、高品質鋼板の需要が高まる中で鋼板の熱間圧延技術の向上にともなって、ますます熱間圧延用ロールに要求される特性が厳しくなり、特に耐摩耗性がより強く要求されている。そのため、耐摩耗性の要求に合わせてロールを設計するとスリップし易くなり、逆にスリップ防止のために摩擦係数を大きくすると焼付き易くなり、ロールトラブルの発生頻度が増加する。特許文献1~3に記載された従来の熱間圧延用ロールでは、耐焼付き性および耐スリップ性が十分ではない。 However, as the demand for high-quality steel sheets increases and the hot rolling technology for steel sheets improves, the properties required for hot rolling rolls become increasingly strict, with wear resistance being particularly required. . Therefore, if a roll is designed to meet requirements for wear resistance, it will tend to slip, and conversely, if the coefficient of friction is increased to prevent slip, it will tend to seize, increasing the frequency of roll troubles. The conventional hot rolling rolls described in Patent Documents 1 to 3 do not have sufficient seizure resistance and slip resistance.

そこで本発明は、上記課題を解決した、耐焼付き性および耐スリップ性に優れた熱間圧延用ロールの外層材および熱間圧延用複合ロールを提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an outer layer material for a hot rolling roll and a hot rolling composite roll having excellent seizure resistance and slip resistance, which solve the above problems.

本発明者は、熱間圧延用ロールの基地組織、炭化物、硬さ、摩擦係数、化学成分の関係を詳細に調査した。その結果、炭化物の面積率や高温硬さが特定の範囲になるよう、化学成分を最適化させることで、耐焼付き性および耐スリップ性が向上することを見出した。
本発明は、これらの知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次の通りである。
[1] 質量%で、
C:1.2~2.5%、
Si:0.15~2.50%、
Mn:0.15~2.50%、
Ni:0.2~8.0%、
Cr:1.5~10.0%、
Mo:3.5~12.0%、
V:2.0~7.5%、
W:0.1~6.0%、
P:0.01~0.04%、
S:0.001~0.010%を含有し、
残部Fe及び不可避的不純物からなり、かつC、Cr、Mo、V、Wの含有量が下記(1)式および(2)式を満たす組成を有し、粒径1μm以上の炭化物が面積率で8.0~20.0%存在し、20℃の時のショア硬さが75.0HS以上85.0HS以下かつ600℃の時のショア硬さが45.0HS以上50.0HS以下である熱間圧延用ロール外層材。
20.0≦[%C]×([%V]+[%Cr]+[%Mo]+[%W])≦35.0 (1)
1.00≦[%C]×((0.177×[%V])/(0.099×[%Cr]+0.063×[%Mo]+0.033×[%W]))≦3.00 (2)
ここで(1)式および(2)式において、[%C]、[%Cr]、[%Mo]、[%V]、[%W]は、各元素の含有量(質量%)を表す。
[2] 外層と内層の2層、または外層と中間層および内層の3層を有する熱間圧延用複合ロールであって、前記外層が質量%で、
C:1.2~2.5%、
Si:0.15~2.50%、
Mn:0.15~2.50%、
Ni:0.2~8.0%、
Cr:1.5~10.0%、
Mo:3.5~12.0%、
V:2.0~7.5%、
W:0.1~6.0%、
P:0.01~0.04%、
S:0.001~0.010%を含有し、
残部Fe及び不可避的不純物からなり、かつC、Cr、Mo、V、Wの含有量が下記(1)式および(2)式を満たす組成を有し、粒径1μm以上の炭化物が面積率で8.0~20.0%存在し、20℃の時のショア硬さが75.0HS以上85.0HS以下かつ600℃の時のショア硬さが45.0HS以上50.0HS以下である熱間圧延用複合ロール。
20.0≦[%C]×([%V]+[%Cr]+[%Mo]+[%W])≦35.0 (1)
1.00≦[%C]×((0.177×[%V])/(0.099×[%Cr]+0.063×[%Mo]+0.033×[%W]))≦3.00 (2)
ここで(1)式および(2)式において、[%C]、[%Cr]、[%Mo]、[%V]、[%W]は、各元素の含有量(質量%)を表す。
The present inventor investigated in detail the relationship among the base structure, carbide, hardness, coefficient of friction, and chemical components of a hot rolling roll. As a result, they found that seizure resistance and slip resistance can be improved by optimizing the chemical components so that the area ratio of carbides and high-temperature hardness fall within a specific range.
The present invention was completed based on these findings and further studies. That is, the gist of the present invention is as follows.
[1] In mass%,
C: 1.2-2.5%,
Si: 0.15-2.50%,
Mn: 0.15-2.50%,
Ni: 0.2-8.0%,
Cr: 1.5-10.0%,
Mo: 3.5-12.0%,
V: 2.0-7.5%,
W: 0.1-6.0%,
P: 0.01-0.04%,
Contains S: 0.001 to 0.010%,
The remainder consists of Fe and unavoidable impurities, and the content of C, Cr, Mo, V, and W satisfies the following formulas (1) and (2), and the area ratio of carbides with a grain size of 1 μm or more is 8.0 to 20.0%, and the Shore hardness at 20°C is 75.0HS or more and 85.0HS or less, and the Shore hardness at 600°C is 45.0HS or more and 50.0HS or less. Roll outer layer material for rolling.
20.0≦[%C]×([%V]+[%Cr]+[%Mo]+[%W])≦35.0 (1)
1.00≦[%C]×((0.177×[%V])/(0.099×[%Cr]+0.063×[%Mo]+0.033×[%W]))≦3 .00 (2)
Here, in formulas (1) and (2), [%C], [%Cr], [%Mo], [%V], and [%W] represent the content (mass%) of each element. .
[2] A composite roll for hot rolling having two layers, an outer layer and an inner layer, or three layers, an outer layer, an intermediate layer, and an inner layer, wherein the outer layer is in mass%,
C: 1.2-2.5%,
Si: 0.15-2.50%,
Mn: 0.15-2.50%,
Ni: 0.2-8.0%,
Cr: 1.5-10.0%,
Mo: 3.5-12.0%,
V: 2.0-7.5%,
W: 0.1-6.0%,
P: 0.01-0.04%,
Contains S: 0.001 to 0.010%,
The remainder consists of Fe and unavoidable impurities, and the content of C, Cr, Mo, V, and W satisfies the following formulas (1) and (2), and the area ratio of carbides with a grain size of 1 μm or more is 8.0 to 20.0%, and the Shore hardness at 20°C is 75.0HS or more and 85.0HS or less, and the Shore hardness at 600°C is 45.0HS or more and 50.0HS or less. Composite roll for rolling.
20.0≦[%C]×([%V]+[%Cr]+[%Mo]+[%W])≦35.0 (1)
1.00≦[%C]×((0.177×[%V])/(0.099×[%Cr]+0.063×[%Mo]+0.033×[%W]))≦3 .00 (2)
Here, in formulas (1) and (2), [%C], [%Cr], [%Mo], [%V], and [%W] represent the content (mass%) of each element. .

本発明により、耐焼付き性および耐スリップ性に優れた熱間圧延用ロール外層材および熱間圧延用複合ロールを提供することができる。その結果、ロールトラブル発生による圧延中断の時間損失が低減されることで、熱間圧延用ロールの圧延効率が向上し、それにともない熱間圧延鋼板の生産性が向上するという効果もある。 According to the present invention, it is possible to provide a hot rolling roll outer layer material and a hot rolling composite roll having excellent seizure resistance and slip resistance. As a result, the time loss due to interruption of rolling due to occurrence of roll troubles is reduced, thereby improving the rolling efficiency of the hot rolling rolls, which also has the effect of improving the productivity of hot rolled steel sheets.

熱間転動摩耗試験で使用した試験機の構成、熱間転動摩耗試験用試験片を模式的に示す説明図である。FIG. 2 is an explanatory diagram schematically showing the configuration of a testing machine used in a hot rolling wear test and a test piece for a hot rolling wear test.

本発明の熱間圧延用ロールの外層材の組成限定理由について説明する。なお、以下、質量%は、特に断らない限り、単に%と記す。 The reasons for limiting the composition of the outer layer material of the hot rolling roll of the present invention will be explained. In addition, hereinafter, mass % is simply written as % unless otherwise specified.

C:1.2~2.5%
CはV、Cr、Mo、W等と結合して硬質炭化物を形成し、耐摩耗性の向上に寄与する。また、基地に固溶して硬さを増加させる。Cが1.2%未満では炭化物量が不足し、優れた耐摩耗性を得ることができない。また、硬さが低くなるため、塑性流動が起こることで摩擦係数が大きくなり、焼付き易くなる。一方で、Cが2.5%を超えると炭化物が過剰に生成し、耐肌荒れ性、耐クラック性が低下する。また、硬さが高くなるとロールの表面粗さが小さくなり、摩擦係数が低下することでスリップが発生する。よって、Cは1.2%以上、2.5%以下に限定した。なお、Cの含有量は好ましくは1.5%以上2.2%以下である。
C: 1.2-2.5%
C combines with V, Cr, Mo, W, etc. to form hard carbides and contributes to improving wear resistance. It also solidly dissolves in the base to increase hardness. If C is less than 1.2%, the amount of carbide is insufficient and excellent wear resistance cannot be obtained. In addition, since the hardness is low, plastic flow occurs and the coefficient of friction increases, making it easier to seize. On the other hand, if C exceeds 2.5%, carbides are excessively produced, resulting in a decrease in roughness resistance and crack resistance. Furthermore, when the hardness increases, the surface roughness of the roll decreases, and the coefficient of friction decreases, causing slipping. Therefore, C was limited to 1.2% or more and 2.5% or less. Note that the content of C is preferably 1.5% or more and 2.2% or less.

Si:0.15~2.50%
Siは溶湯中で脱酸剤として作用し、溶湯の流動性を良くし、鋳造欠陥を防ぐ効果を持つ。Siが0.15%未満では脱酸効果が不足する。一方で、Siが2.50%を超えても効果が飽和する。よって、Siは0.15%以上、2.50%以下に限定した。なお、Siの含有量は好ましくは0.30%以上1.50%以下である。
Si: 0.15-2.50%
Si acts as a deoxidizing agent in the molten metal, improves the fluidity of the molten metal, and has the effect of preventing casting defects. If Si is less than 0.15%, the deoxidizing effect will be insufficient. On the other hand, even if Si exceeds 2.50%, the effect is saturated. Therefore, Si was limited to 0.15% or more and 2.50% or less. Note that the Si content is preferably 0.30% or more and 1.50% or less.

Mn:0.15~2.50%
Mnは溶湯の脱酸効果や、悪影響を及ぼすSをMnSとして固定する効果を持つ。Mnが0.15%未満ではその添加効果は不十分である。一方で、Mnが2.50%を超えても効果が飽和する。よって、Mnは0.15%以上、2.50%以下に限定した。なお、Mnの含有量は好ましくは0.30%以上1.50%以下である。
Mn: 0.15-2.50%
Mn has the effect of deoxidizing the molten metal and fixing S, which has an adverse effect, as MnS. If Mn is less than 0.15%, the effect of its addition is insufficient. On the other hand, even if Mn exceeds 2.50%, the effect is saturated. Therefore, Mn was limited to 0.15% or more and 2.50% or less. Note that the Mn content is preferably 0.30% or more and 1.50% or less.

Ni:0.2~8.0%
Niは基地の焼入れ性を向上させ、基地の硬さを向上させる効果を持つ。Niが0.2%未満ではその効果はほとんど発現しない。一方で、Niが8.0%を超えるとオーステナイトが残留しやすくなるため硬さが低下する。よって、Niは0.2%以上、8.0%以下に限定した。なお、Niの含有量は好ましくは1.0%以上4.0%以下である。
Ni: 0.2-8.0%
Ni has the effect of improving the hardenability of the base and improving the hardness of the base. If Ni is less than 0.2%, the effect will hardly be exhibited. On the other hand, if Ni exceeds 8.0%, austenite tends to remain, resulting in a decrease in hardness. Therefore, Ni was limited to 0.2% or more and 8.0% or less. Note that the Ni content is preferably 1.0% or more and 4.0% or less.

Cr:1.5~10.0%
Crは炭化物形成元素であり、Cと結合してM炭化物を形成する。硬質な炭化物であるため、耐摩耗性を向上させる効果を持つ。Crが1.5%未満ではM炭化物量が不足し、耐摩耗性が低下する。一方で、Crが10.0%を超えると、粗大なM炭化物が生成し、かえって耐摩耗性が悪化する。よって、Crは1.5%以上、10.0%以下に限定した。なお、Crの含有量は好ましくは3.0%以上7.0%以下である。
Cr: 1.5-10.0%
Cr is a carbide-forming element and combines with C to form M 7 C 3 carbide. Since it is a hard carbide, it has the effect of improving wear resistance. If the Cr content is less than 1.5%, the amount of M 7 C 3 carbide is insufficient, resulting in a decrease in wear resistance. On the other hand, when Cr exceeds 10.0%, coarse M 7 C 3 carbides are generated, which actually deteriorates the wear resistance. Therefore, Cr was limited to 1.5% or more and 10.0% or less. Note that the Cr content is preferably 3.0% or more and 7.0% or less.

Mo:3.5~12.0%
Moは炭化物形成元素であり、Cと結合してMC炭化物を形成する。硬質な炭化物であるため、耐摩耗性を向上させる効果を持つ。Moが3.5%未満ではそれらの効果が不十分である。一方で、Moが12.0%を超えると粗大なMC炭化物が生成し、靭性が低下する。よって、Moは3.5%以上、12.0%以下に限定した。なお、Mo含有量は好ましくは5.5%以上9.5%以下である。
Mo: 3.5-12.0%
Mo is a carbide-forming element and combines with C to form M 2 C carbide. Since it is a hard carbide, it has the effect of improving wear resistance. If Mo is less than 3.5%, these effects are insufficient. On the other hand, when Mo exceeds 12.0%, coarse M 2 C carbides are generated, resulting in a decrease in toughness. Therefore, Mo was limited to 3.5% or more and 12.0% or less. Note that the Mo content is preferably 5.5% or more and 9.5% or less.

V:2.0~7.5%
Vは炭化物形成元素であり、Cと結合してMC炭化物を形成する。MC炭化物はビッカース硬さHvで2800の値を有し、最も硬い炭化物のうちの一つである。Vが2.0%未満では、MC炭化物の晶出・析出量が不十分であり、耐摩耗性が悪化する。一方で、Vが7.5%を超えると、鉄溶湯より比重の軽いVC炭化物が遠心鋳造中の遠心力により外層の内側に濃化し、偏析が起こる。よって、Vは2.0%以上、7.5%以下に限定した。なお、V含有量は好ましくは3.0%以上6.5%以下である。
V: 2.0-7.5%
V is a carbide-forming element and combines with C to form MC carbide. MC carbide has a Vickers hardness Hv of 2800 and is one of the hardest carbides. When V is less than 2.0%, the amount of crystallization and precipitation of MC carbides is insufficient, resulting in poor wear resistance. On the other hand, when V exceeds 7.5%, VC carbide, which has a lower specific gravity than the molten iron, concentrates inside the outer layer due to the centrifugal force during centrifugal casting, causing segregation. Therefore, V was limited to 2.0% or more and 7.5% or less. Note that the V content is preferably 3.0% or more and 6.5% or less.

W:0.1~6.0%
Wは炭化物形成元素であり、Cと結合して硬質なMC等の硬質な炭化物を生成し、外層の硬さが増加するとともに、耐摩耗性を向上させる効果を持つ。Wが0.1%未満ではその効果が不十分であり、耐摩耗性が悪化する。一方で、Wが6.0%を超えると粗大なMC炭化物が生成し、耐摩耗性がかえって悪化する。よって、Wは0.1%以上、6.0%以下に限定した。なお、W含有量は好ましくは1.0%以上4.0%以下である。
W: 0.1-6.0%
W is a carbide-forming element, and combines with C to form a hard carbide such as hard M 2 C, which increases the hardness of the outer layer and has the effect of improving wear resistance. If W is less than 0.1%, the effect is insufficient and wear resistance deteriorates. On the other hand, when W exceeds 6.0%, coarse M 2 C carbides are generated, and the wear resistance is rather deteriorated. Therefore, W was limited to 0.1% or more and 6.0% or less. Note that the W content is preferably 1.0% or more and 4.0% or less.

P:0.01~0.04%
Pは、製造過程で混入し、機械的特性が低下すると考えられてきたが、発明者らの鋭意検討の結果、少量のPの含有は硬さや耐摩耗性を向上させる効果があることを明らかにした。Pが0.01%未満ではその効果が十分ではなく、一方でPが0.04%を超えると機械的性質が劣化する。よって、Pは0.01%以上、0.04%以下に限定した。なお、P含有量は好ましくは0.02%以上0.03%以下である。
P: 0.01-0.04%
It has been thought that P is mixed in during the manufacturing process and deteriorates mechanical properties, but as a result of intensive studies by the inventors, it has become clear that the inclusion of a small amount of P has the effect of improving hardness and wear resistance. I made it. If P is less than 0.01%, the effect will not be sufficient, while if P is more than 0.04%, mechanical properties will deteriorate. Therefore, P was limited to 0.01% or more and 0.04% or less. Note that the P content is preferably 0.02% or more and 0.03% or less.

S:0.001~0.010%
Sは、通常、鉄系合金では有害元素として取り扱われ、一定量以下の含有量に制限されるが、その範囲内において、MnSは潤滑材の効果をもつ。一方で、含有量が多いと材質が脆くなる。よって、Sは0.001%以上、0.010%以下に限定した。なお、S含有量は好ましくは0.002%以上0.006%以下である。
S: 0.001-0.010%
S is normally treated as a harmful element in iron-based alloys and its content is limited to a certain amount or less, but within that range, MnS has the effect of a lubricant. On the other hand, if the content is high, the material becomes brittle. Therefore, S was limited to 0.001% or more and 0.010% or less. Note that the S content is preferably 0.002% or more and 0.006% or less.

不可避的不純物
上記した成分以外の残部は、Feおよび不可避的不純物からなる。
Unavoidable Impurities The remainder other than the above-mentioned components consists of Fe and unavoidable impurities.

また、本発明では、C、Cr、Mo、V、Wの含有量が上記の範囲内であり、加えて下記(1)式および下記(2)式を満たすことを特徴とする。
20.0≦[%C]×([%V]+[%Cr]+[%Mo]+[%W])≦35.0 (1)
1.00≦[%C]×((0.177×[%V])/(0.099×[%Cr]+0.063×[%Mo]+0.033×[%W]))≦3.00 (2)
ここで(1)式および(2)式において、[%C]、[%Cr]、[%Mo]、[%V]、[%W]は、各元素の含有量(質量%)を表す。
Further, the present invention is characterized in that the contents of C, Cr, Mo, V, and W are within the above ranges, and in addition, the following formula (1) and the following formula (2) are satisfied.
20.0≦[%C]×([%V]+[%Cr]+[%Mo]+[%W])≦35.0 (1)
1.00≦[%C]×((0.177×[%V])/(0.099×[%Cr]+0.063×[%Mo]+0.033×[%W]))≦3 .00 (2)
Here, in formulas (1) and (2), [%C], [%Cr], [%Mo], [%V], and [%W] represent the content (mass%) of each element. .

[%C]×([%V]+[%Cr]+[%Mo]+[%W])について、このパラメータは、炭素と炭化物形成元素の関係を示しており、上記(1)を満たすように調整することで炭化物量および基地中のC含有量が適正化され、硬さが向上し、それによって耐摩耗性が向上する。[%C]×([%V]+[%Cr]+[%Mo]+[%W])の値が20.0未満の場合、炭化物量の不足もしくは、基地中のC含有量が少ないため、十分な硬さを得られず、耐摩耗性が低下する。また、圧延中に塑性流動が起こりやすく、鋼材が焼付きやすくなる。一方、35.0を超えると、炭化物量の増加もしくは、基地中のC含有量が多いため、十分すぎる硬さが得られる。そのため、圧延中のロール表面粗さが小さくなることによって摩擦係数が低くなり、スリップが発生しやすくなる。よって、[%C]×([%V]+[%Cr]+[%Mo]+[%W])の値は20.0以上、35.0以下に限定した。さらに、好ましくは25.0以上30.0以下である。 Regarding [%C] × ([%V] + [%Cr] + [%Mo] + [%W]), this parameter indicates the relationship between carbon and carbide-forming elements, and satisfies (1) above. By adjusting in this manner, the amount of carbide and the C content in the matrix are optimized, the hardness is improved, and the wear resistance is thereby improved. If the value of [%C] x ([%V] + [%Cr] + [%Mo] + [%W]) is less than 20.0, the amount of carbide is insufficient or the C content in the base is low. Therefore, sufficient hardness cannot be obtained and wear resistance decreases. Additionally, plastic flow tends to occur during rolling, making the steel material more likely to seize. On the other hand, when it exceeds 35.0, the amount of carbides increases or the C content in the matrix increases, so that more than sufficient hardness is obtained. Therefore, as the surface roughness of the rolls during rolling becomes smaller, the coefficient of friction becomes lower, making slips more likely to occur. Therefore, the value of [%C]×([%V]+[%Cr]+[%Mo]+[%W]) was limited to 20.0 or more and 35.0 or less. Furthermore, preferably it is 25.0 or more and 30.0 or less.

[%C]×((0.177×[%V])/(0.099×[%Cr]+0.063×[%Mo]+0.033×[%W]))について、このパラメータは、MC炭化物量と(MC炭化物量+M炭化物量)の比を表しており、上記(2)を満たすように調整することで、各炭化物量の割合が適正化され、圧延中の摩擦係数が焼付きおよびスリップが起こらない値を取ることが可能となる。[%C]×((0.177×[%V])/(0.099×[%Cr]+0.063×[%Mo]+0.033×[%W]))の値が1.00未満の場合、MC、M炭化物量の割合が多くなる。これらは面状に広く晶出するため、ロール表面が平坦化し、表面粗さが小さくなり、圧延中の摩擦係数が小さくなることでスリップが発生し易くなる。一方で、3.00を超える場合は、MC炭化物量の割合が多くなる。これは、微細な粒状な炭化物であり、ロール表面の突起部が多くなることにより圧延中の摩擦係数が大きくなり、焼付きが発生し易くなる。よって、[%C]×((0.177×[%V])/(0.099×[%Cr]+0.063×[%Mo]+0.033×[%W]))の値は、1.00以上、3.00以下に限定した。さらに、好ましくは1.20以上2.00以下である。
次に、本発明の熱間圧延用ロール外層材の組織限定理由について説明する。
For [%C] × ((0.177 × [%V]) / (0.099 × [%Cr] + 0.063 × [%Mo] + 0.033 × [%W])), this parameter is It represents the ratio of the amount of MC carbide and (the amount of M 2 C carbide + the amount of M 7 C 3 carbide), and by adjusting it to satisfy the above (2), the proportion of each carbide amount is optimized and the It becomes possible for the coefficient of friction to take a value that does not cause seizure or slippage. The value of [%C] × ((0.177 × [%V]) / (0.099 × [%Cr] + 0.063 × [%Mo] + 0.033 × [%W])) is 1.00 If it is less than 20%, the proportion of M 2 C and M 7 C 3 carbides increases. Since these crystallize widely in a planar shape, the roll surface becomes flat, the surface roughness becomes small, and the coefficient of friction during rolling becomes small, making slips more likely to occur. On the other hand, when it exceeds 3.00, the proportion of MC carbide increases. This is a fine granular carbide, and as the number of protrusions on the roll surface increases, the coefficient of friction during rolling increases, making seizure more likely. Therefore, the value of [%C] × ((0.177 × [%V]) / (0.099 × [%Cr] + 0.063 × [%Mo] + 0.033 × [%W])) is It was limited to 1.00 or more and 3.00 or less. Furthermore, preferably it is 1.20 or more and 2.00 or less.
Next, the reasons for limiting the structure of the hot rolling roll outer layer material of the present invention will be explained.

本発明の熱間圧延用ロール外層材は、上記した範囲の組成を有し、かつ粒径1μm以上の炭化物が面積率で8.0~20.0%存在する組織であることを特徴とする。炭化物とは、凝固中に晶出したMC炭化物、MC炭化物、M炭化物である。
ここで、基地とはマルテンサイトまたはベイナイトであることが好ましい。炭化物については様々な研究がされているが、そのほとんどは耐摩耗性に関する研究である。発明者らの鋭意検討の結果、各炭化物量を適切な割合にするため、上記した範囲の組成を有し、かつ粒径1μm以上の炭化物が面積率で8.0~20.0%存在する組織に限定することで、耐焼付き性および耐スリップ性が大きく向上することを発見した。各炭化物の硬さだけではなく、形態に着目し、粒状かつ微細なMC炭化物量と面状に晶出するMCおよびM炭化物量およびその割合を調整することで、圧延中の摩擦係数値を制御することができ、それにともなって耐焼付き性および耐スリップ性が向上したと考えられる。
次に、本発明の熱間圧延用ロール外層材及び熱間圧延用複合ロールの好ましい製造方法について説明する。
The hot rolling roll outer layer material of the present invention has a composition within the above-mentioned range, and is characterized by having a structure in which carbides with a grain size of 1 μm or more exist in an area ratio of 8.0 to 20.0%. . The carbides are MC carbide, M 2 C carbide, and M 7 C 3 carbide crystallized during solidification.
Here, the base is preferably martensite or bainite. Various studies have been conducted on carbides, but most of them are related to wear resistance. As a result of intensive studies by the inventors, in order to make the amount of each carbide an appropriate ratio, carbides having a composition within the above range and having a particle size of 1 μm or more exist in an area ratio of 8.0 to 20.0%. It has been discovered that by limiting the structure to the structure, seizure resistance and slip resistance can be greatly improved. By focusing not only on the hardness of each carbide but also on its morphology, and adjusting the amount of granular and fine MC carbides and the amount and ratio of planarly crystallized M 2 C and M 7 C 3 carbides, the It is thought that the friction coefficient value can be controlled, and the seizure resistance and slip resistance are improved accordingly.
Next, a preferred method for manufacturing the hot rolling roll outer layer material and hot rolling composite roll of the present invention will be described.

本発明では、ロール外層材の製造方法としては、遠心鋳造法や連続肉盛鋳造法などが好ましいが、製造コストの観点から着目すると、遠心鋳造法がより好ましい。なお、本発明ではこれらの製造方法に限定されない。 In the present invention, centrifugal casting, continuous overlay casting, and the like are preferred as methods for manufacturing the roll outer layer material, but from the viewpoint of manufacturing costs, centrifugal casting is more preferred. Note that the present invention is not limited to these manufacturing methods.

本発明の熱間圧延用複合ロールは、遠心鋳造法でロール外層材を鋳造する場合、遠心鋳造された外層と、該外層と溶着一体化した内層とからなる。なお、外層と内層との間に中間層を配してもよい。すなわち、外層と溶着一体化した内層に代えて、外層と溶着一体化した中間層および該中間層と溶着一体化した内層としてもよい。なお、内層は静置鋳造法で製造することが好ましい。 When the roll outer layer material is cast by a centrifugal casting method, the composite roll for hot rolling of the present invention consists of a centrifugally cast outer layer and an inner layer welded and integrated with the outer layer. Note that an intermediate layer may be arranged between the outer layer and the inner layer. That is, instead of the inner layer welded and integrated with the outer layer, there may be an intermediate layer welded and integrated with the outer layer, and an inner layer welded and integrated with the intermediate layer. Note that the inner layer is preferably manufactured by a static casting method.

静置鋳造法で製造する内層は、鋳造性や機械的性質に優れた球状黒鉛鋳鉄、いも虫状黒鉛鋳鉄(CV鋳鉄)などを用いることが好ましい。遠心鋳造製ロールは、外層と内層が溶着一体化しており、外層材の成分が内層に混入する。外層材に含まれるCr、V等の炭化物形成元素が内層へ混入すると、内層を脆弱化する。このため、内層への外層材成分の混入率はできるだけ抑えるのが好ましい。 For the inner layer manufactured by the static casting method, it is preferable to use spheroidal graphite cast iron, caterpillar graphite cast iron (CV cast iron), etc., which have excellent castability and mechanical properties. In centrifugal casting rolls, the outer layer and inner layer are welded together, and the components of the outer layer material mix into the inner layer. When carbide-forming elements such as Cr and V contained in the outer layer material mix into the inner layer, the inner layer becomes brittle. For this reason, it is preferable to suppress the mixing rate of the outer layer material components into the inner layer as much as possible.

また、中間層を形成する場合は、中間層材として、黒鉛鋼、高炭素鋼、亜共晶鋳鉄等を用いることが好ましい。中間層と外層は溶着一体化しており、外層材の成分が中間層に混入する。内層への外層材成分の混入率を抑制するためには、外層材の中間層への混入率はできるだけ抑えるのが好ましい。 Moreover, when forming an intermediate layer, it is preferable to use graphite steel, high carbon steel, hypoeutectic cast iron, etc. as the intermediate layer material. The intermediate layer and the outer layer are welded together, and the components of the outer layer material are mixed into the intermediate layer. In order to suppress the mixing rate of the outer layer material components into the inner layer, it is preferable to suppress the mixing rate of the outer layer material into the intermediate layer as much as possible.

本発明の熱間圧延用複合ロールは、鋳造後、熱処理を施されることが好ましい。熱処理は、900~1100℃に加熱し、空冷あるいは衝風空冷する焼入れ処理と、さらに下式(3)に記載している焼戻しパラメータPが10000~20000の範囲内となるように、加熱保持したのち冷却する焼戻し処理を2回以上行うことが好ましい。この時、焼入れ温度、焼戻しパラメータ、焼戻し回数は成分に応じて記載の範囲内で変更することによって、前述した組織を得ることが可能となる。
P=T(log(t)+A) (3)
ここで、Tは焼戻し温度(K)、tは焼戻し時間(h)、Aは定数である。(本発明ではA=20を使用)
The composite roll for hot rolling of the present invention is preferably subjected to heat treatment after casting. The heat treatment included heating to 900 to 1100°C and quenching by air cooling or blast air cooling, and further heating and holding so that the tempering parameter P described in the formula (3) below was within the range of 10000 to 20000. It is preferable to perform tempering treatment, which is followed by cooling, two or more times. At this time, the above-described structure can be obtained by changing the quenching temperature, tempering parameters, and number of times of tempering within the stated ranges depending on the components.
P=T(log(t)+A) (3)
Here, T is the tempering temperature (K), t is the tempering time (h), and A is a constant. (A=20 is used in the present invention)

なお、本発明の熱間圧延用複合ロールの好ましい硬さは、20℃時のショア硬さで75.0HS~85.0HS、600℃時のショア硬さで45.0HS~50.0HSである。20℃ショア硬さが75.0HS未満では耐摩耗性が劣化し、一方で硬さが85.0HSを超えると、熱間圧延中に熱間圧延用ロール表面に形成されたクラックを研削除去するのが困難になる。また、熱間圧延中のロール表面温度は約600℃付近であり、600℃時のショア硬さが45.0HS未満では、塑性流動が起こり、鋼材がロール面に焼付きやすくなる。一方で、硬さが50.0HSを超えると、ロール硬さが高すぎることで、圧延中にスリップが発生し易くなる。このような硬さは、本発明の成分を有するロールを焼戻しパラメータPが10000~20000の範囲内となるように熱処理することで安定して確保できる。 The preferred hardness of the composite roll for hot rolling of the present invention is 75.0HS to 85.0HS in Shore hardness at 20°C, and 45.0HS to 50.0HS in Shore hardness at 600°C. . If the 20°C shore hardness is less than 75.0 HS, wear resistance will deteriorate, while if the hardness exceeds 85.0 HS, cracks formed on the surface of the hot rolling roll during hot rolling will be removed by grinding. becomes difficult. Further, the roll surface temperature during hot rolling is around 600°C, and if the Shore hardness at 600°C is less than 45.0 HS, plastic flow occurs and the steel material tends to seize on the roll surface. On the other hand, when the hardness exceeds 50.0 HS, the roll hardness is too high and slips are likely to occur during rolling. Such hardness can be stably ensured by heat-treating a roll containing the components of the present invention so that the tempering parameter P falls within the range of 10,000 to 20,000.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited to these examples.

表1に示す熱間圧延用ロール外層材の化学組成(残部はFe及び不可避的不純物である。)にて、No.1~8の本発明実施例の各供試材と、No.9~20の比較例の各供試材を、1450~1550℃まで加熱、溶解し、Y型キールブロック鋳型(直方体部:厚み35mm、幅230mm、高さ120mm)に鋳造した。冷却後、鋳塊を取り出し、900℃~1100℃で焼入れ処理したのち、焼戻しパラメータPが10000~20000の範囲内となるように、加熱保持したのち冷却する焼戻し処理を3回行った。その後、組織観察、硬さ測定、熱間転動摩耗試験機を用いた摩擦係数測定を行った。なお、組織観察と硬さ測定の試験片は肉厚中心部から採取した。 In the chemical composition of the hot rolling roll outer layer material shown in Table 1 (the remainder is Fe and unavoidable impurities), No. Each sample material of Examples 1 to 8 of the present invention and No. Each sample material of Comparative Examples 9 to 20 was heated to 1450 to 1550°C, melted, and cast into a Y-shaped keel block mold (cuboid part: thickness 35 mm, width 230 mm, height 120 mm). After cooling, the ingot was taken out and quenched at 900° C. to 1100° C., and then tempered three times by heating and holding and then cooling so that the tempering parameter P was within the range of 10,000 to 20,000. Thereafter, the structure was observed, the hardness was measured, and the friction coefficient was measured using a hot rolling wear tester. Note that the specimen for microstructural observation and hardness measurement was taken from the center of the wall thickness.

Figure 2024027590000001
Figure 2024027590000001

本発明例及び比較例の鋳塊から切り出した各試料をビッカース硬さ計(試験力:1kgf)で20℃と600℃時のビッカース硬さHVを各5点測定し、その平均値を算出した。高温(600℃時)ビッカース測定においては、JIS Z2252「高温ビッカース硬さ試験方法」に準拠した。圧子はダイヤモンドを使用し、ニコン製QM‐2(圧子および試験片の同時加熱式)の試験機を用いて、試験雰囲気はアルゴンガス雰囲気中、昇温速度20℃/min、荷重保持時間は10secで実験を行った。得られたビッカース硬さをJIS B 7731の計算式でショア硬さに換算した。 The Vickers hardness HV of each sample cut from the ingots of the inventive example and the comparative example was measured at 5 points each at 20°C and 600°C using a Vickers hardness meter (testing force: 1 kgf), and the average value was calculated. . The high temperature (at 600° C.) Vickers measurement was based on JIS Z2252 "High temperature Vickers hardness test method." Diamond was used as the indenter, and a Nikon QM-2 (simultaneous heating of the indenter and test piece) testing machine was used, the test atmosphere was an argon gas atmosphere, the heating rate was 20°C/min, and the load holding time was 10 sec. I conducted an experiment. The obtained Vickers hardness was converted into Shore hardness using the calculation formula of JIS B 7731.

熱間転動摩耗試験機を用いた摩擦係数測定方法は次の通りとした。得られた各発明例及び各比較例の鋳塊から熱間転動摩耗試験片(外径60mmφ、幅10mm、C1面取りあり)を採取した。摩耗試験は、図1に示すように、試験片と相手片との2円盤すべり転動方式で行った。試験片1を冷却水2で水冷しながら76rpmで回転させ、回転する該試験片1に、高周波誘導加熱コイル3で1000℃に加熱した相手片(外径190mmφ、幅15mm、C1面取り)4を荷重の方向7に荷重を180N加え、接触させながら転動させた。試験片の回転方向5と相手片の回転方向6は、試験片1と相手片4の接点における接線が同一方向となる回転方向である。摩擦係数測定方法は、試験を300分間実施し、60分ごとに相手片を新品に更新して計5回試験を行った。試験中のトルクと荷重を測定し、下式(4)から摩擦係数を算出した。
μ=T/P×L (4)
ここで、μは摩擦係数、Tはトルク(kgf・m)、Pは荷重(kgf)、Lは試験片の半径(m)である。
The friction coefficient measurement method using a hot rolling wear tester was as follows. Hot rolling wear test pieces (outer diameter 60 mmφ, width 10 mm, with C1 chamfer) were collected from the obtained ingots of each invention example and each comparative example. The wear test was carried out using a two-disc sliding rolling method between a test piece and a counterpart piece, as shown in FIG. The test piece 1 was cooled with cooling water 2 and rotated at 76 rpm, and a mating piece (outer diameter 190 mmφ, width 15 mm, C1 chamfer) 4 heated to 1000°C with a high frequency induction heating coil 3 was placed on the rotating test piece 1. A load of 180 N was applied in the load direction 7, and the test pieces were rolled while being in contact with each other. The rotation direction 5 of the test piece and the rotation direction 6 of the mating piece are rotation directions in which the tangents at the contact points of the test piece 1 and the mating piece 4 are in the same direction. The friction coefficient was measured by conducting the test for 300 minutes, replacing the mating piece with a new one every 60 minutes, and conducting the test five times in total. The torque and load during the test were measured, and the friction coefficient was calculated from the following equation (4).
μ=T/P×L (4)
Here, μ is the friction coefficient, T is the torque (kgf·m), P is the load (kgf), and L is the radius of the test piece (m).

上記試験は、熱間圧延の連続的な操業を想定している試験のため、相手片を1000℃に加熱し、300分後における摩擦係数や焼付き状況を評価している。焼付きの有無は300分後における試験片表面を目視で確認し、相手片の材質の移着があるものを焼付きありとし、移着がなかったものを焼付き無しとした。 The above test assumes continuous operation of hot rolling, so the mating piece is heated to 1000°C, and the friction coefficient and seizure status are evaluated after 300 minutes. The presence or absence of seizure was visually confirmed on the surface of the test piece after 300 minutes, and those with transfer of the material of the other piece were evaluated as having seizure, and those with no transfer were evaluated as no seizure.

熱間転動摩耗試験(以下、摩耗試験ともいう。)方法は次の通りとした。摩擦係数測定試験時と同様に、得られた各発明例及び各比較例の鋳塊から、熱間転動摩耗試験片(外径60mmφ、幅10mm、C1面取りあり)を採取した。摩耗試験は、図1に示すように、試験片1と相手片4との2円盤すべり転動方式で行った。試験片1を冷却水2で水冷しながら700rpmで回転させ、回転する該試験片1に、高周波誘導加熱コイル3で800℃に加熱した相手片(外径190mmφ、幅15mm、C1面取り)4を荷重の方向7に荷重を686N加え、接触させながら転動させた。試験片の回転方向5と相手片の回転方向6は、試験片1と相手片4の接点における接線が同一方向となる回転方向である。摩耗試験は135分間実施し、45分(試験片31500回転)ごとに相手片を新品に更新して計3回(試験片94500回転)試験を行い、試験前後の試験片の質量減少量、すなわち摩耗量を測定した。 The hot rolling wear test (hereinafter also referred to as wear test) method was as follows. As in the friction coefficient measurement test, hot rolling wear test pieces (outer diameter 60 mmφ, width 10 mm, with C1 chamfer) were collected from the obtained ingots of each invention example and each comparative example. The wear test was carried out using a two-disc sliding rolling method using a test piece 1 and a mating piece 4, as shown in FIG. The test piece 1 was cooled with cooling water 2 and rotated at 700 rpm, and a mating piece (outer diameter 190 mmφ, width 15 mm, C1 chamfer) 4 heated to 800°C with a high frequency induction heating coil 3 was placed on the rotating test piece 1. A load of 686 N was applied in the load direction 7, and the test pieces were rolled while being in contact with each other. The rotation direction 5 of the test piece and the rotation direction 6 of the mating piece are rotation directions in which the tangents at the contact points of the test piece 1 and the mating piece 4 are in the same direction. The wear test was carried out for 135 minutes, and the test piece was replaced with a new one every 45 minutes (31,500 revolutions of the test piece), and the test was performed a total of 3 times (94,500 revolutions of the test piece). The amount of wear was measured.

熱処理後の各試料について、鏡面研磨後、ナイタール液で腐食した後、デジタルマイクロスコープで組織観察を行った。撮影する視野内に共晶セルが200個以上確認できる視野で撮影を行った.また、画像解析ツール(ImageJ)を用いて、測定倍率200倍の写真の二値化処理を行った。写真中の基地組織と炭化物の輝度に違いがあるため、二値化処理をすることで、基地組織と炭化物を分類し面積を求めることができる。各試料5枚撮影し、炭化物の面積率の平均値を算出した。ここで、前記炭化物の面積率は、粒径1μm以上の炭化物の面積率である。前記炭化物の粒径は、500倍で撮影したデジタルマイクロスコープ画像から、炭化物の直径を測定し、これを前記炭化物の粒径とした。棒状の炭化物については、短辺の長さを前記炭化物の粒径とした。また、炭化物の形状が楕円形等の場合は、最小径を粒径とした。 For each sample after heat treatment, the structure was observed using a digital microscope after mirror polishing and corrosion with nital solution. Photographs were taken in a field of view where more than 200 eutectic cells could be seen within the field of view. Further, using an image analysis tool (ImageJ), a photograph at a measurement magnification of 200 times was subjected to binarization processing. Since there is a difference in brightness between the base structure and the carbide in the photograph, by performing binarization processing, it is possible to classify the base structure and the carbide and calculate the area. Five images of each sample were photographed, and the average value of the area ratio of carbide was calculated. Here, the area ratio of carbides is the area ratio of carbides having a particle size of 1 μm or more. The particle size of the carbide was determined by measuring the diameter of the carbide from a digital microscope image taken at a magnification of 500 times, and this was defined as the particle size of the carbide. For rod-shaped carbides, the length of the short side was taken as the particle size of the carbide. In addition, when the shape of the carbide was elliptical or the like, the minimum diameter was taken as the particle size.

得られた結果を表2に示す。 The results obtained are shown in Table 2.

Figure 2024027590000002
Figure 2024027590000002

表2の摩擦係数は、0.15~0.30の範囲で合格、0.15未満もしくは0.30より大きい値は不合格とした。摩擦係数が0.15未満の場合、試験中の摩擦係数が小さいことから耐スリップ性が十分ではないと考えられる。また、0.30より大きい場合は、試験中の摩擦係数が高いため、焼付きが発生した。適正な基地の高温硬さおよび各炭化物量の割合によって、試験中の摩擦係数が適切な範囲の値となり、耐焼付き性および耐スリップ性が向上したと考えられる。また摩耗量は、発明例では0.50g以下であるのに対し、摩擦係数が0.30より大きい比較例のサンプルNo.16~20では0.50gを超えている。さらに、Crを規定成分より過剰量含んでいる比較例のサンプルNo.11においても摩耗量が0.50gを超えている。上限以下の摩擦係数および適正な成分組成によって耐摩耗性が向上したと考えられる。 Regarding the friction coefficient in Table 2, values in the range of 0.15 to 0.30 were considered acceptable, and values less than 0.15 or greater than 0.30 were judged as failure. If the friction coefficient is less than 0.15, it is considered that the slip resistance is not sufficient because the friction coefficient during the test is small. Moreover, when it was larger than 0.30, the friction coefficient during the test was high, and seizure occurred. It is thought that by adjusting the high temperature hardness of the base and the ratio of each carbide amount, the friction coefficient during the test was within an appropriate range, and the seizure resistance and slip resistance were improved. Further, the amount of wear in the invention example is 0.50 g or less, whereas the comparative sample No. 1 has a friction coefficient greater than 0.30. 16 to 20 exceeds 0.50 g. Furthermore, Sample No. of Comparative Example contains Cr in excess of the specified component. In No. 11 as well, the amount of wear exceeds 0.50 g. It is thought that the wear resistance was improved due to the friction coefficient being below the upper limit and the appropriate component composition.

したがって、本発明によれば、耐焼付き性および耐スリップ性に優れた熱間圧延用ロール外層材および複合ロールを製造することが可能となる。その結果、スリップによるロール噛みこみ不良や、被圧延材にスリップマークが付く等の肌荒れなどのロールトラブル発生による圧延中断時の時間損失が低減することで熱間圧延用ロールの圧延効率が向上し、それにともない熱間圧延鋼板の生産性が向上するという効果も得られる。 Therefore, according to the present invention, it is possible to manufacture a hot rolling roll outer layer material and a composite roll having excellent seizure resistance and slip resistance. As a result, the rolling efficiency of hot rolling rolls is improved by reducing time loss during rolling interruptions due to roll troubles such as poor roll biting due to slips and rough skin such as slip marks on the rolled material. Accordingly, the effect of improving the productivity of hot-rolled steel sheets can also be obtained.

1:試験片
2:冷却水
3:高周波誘導加熱コイル
4:相手片
5:試験片の回転方向
6:相手片の回転方向
7:荷重の方向
1: Test piece 2: Cooling water 3: High frequency induction heating coil 4: Opposite piece 5: Rotation direction of test piece 6: Rotation direction of counterpart piece 7: Direction of load

Claims (2)

質量%で、
C:1.2~2.5%、
Si:0.15~2.50%、
Mn:0.15~2.50%、
Ni:0.2~8.0%、
Cr:1.5~10.0%、
Mo:3.5~12.0%、
V:2.0~7.5%、
W:0.1~6.0%、
P:0.01~0.04%、
S:0.001~0.010%を含有し、
残部Fe及び不可避的不純物からなり、かつC、Cr、Mo、V、Wの含有量が下記(1)式および(2)式を満たす組成を有し、粒径1μm以上の炭化物が面積率で8.0~20.0%存在し、20℃の時のショア硬さが75.0HS以上85.0HS以下かつ600℃の時のショア硬さが45.0HS以上50.0HS以下である熱間圧延用ロール外層材。
20.0≦[%C]×([%V]+[%Cr]+[%Mo]+[%W])≦35.0 (1)
1.00≦[%C]×((0.177×[%V])/(0.099×[%Cr]+0.063×[%Mo]+0.033×[%W]))≦3.00 (2)
ここで(1)式および(2)式において、[%C]、[%Cr]、[%Mo]、[%V]、[%W]は、各元素の含有量(質量%)を表す。
In mass%,
C: 1.2-2.5%,
Si: 0.15-2.50%,
Mn: 0.15-2.50%,
Ni: 0.2-8.0%,
Cr: 1.5-10.0%,
Mo: 3.5-12.0%,
V: 2.0-7.5%,
W: 0.1-6.0%,
P: 0.01-0.04%,
Contains S: 0.001 to 0.010%,
The remainder consists of Fe and unavoidable impurities, and the content of C, Cr, Mo, V, and W satisfies the following formulas (1) and (2), and the area ratio of carbides with a grain size of 1 μm or more is 8.0 to 20.0%, and the Shore hardness at 20°C is 75.0HS or more and 85.0HS or less, and the Shore hardness at 600°C is 45.0HS or more and 50.0HS or less. Roll outer layer material for rolling.
20.0≦[%C]×([%V]+[%Cr]+[%Mo]+[%W])≦35.0 (1)
1.00≦[%C]×((0.177×[%V])/(0.099×[%Cr]+0.063×[%Mo]+0.033×[%W]))≦3 .00 (2)
Here, in formulas (1) and (2), [%C], [%Cr], [%Mo], [%V], and [%W] represent the content (mass%) of each element. .
外層と内層の2層、または外層と中間層および内層の3層を有する熱間圧延用複合ロールであって、前記外層が質量%で、
C:1.2~2.5%、
Si:0.15~2.50%、
Mn:0.15~2.50%、
Ni:0.2~8.0%、
Cr:1.5~10.0%、
Mo:3.5~12.0%、
V:2.0~7.5%、
W:0.1~6.0%、
P:0.01~0.04%、
S:0.001~0.010%を含有し、
残部Fe及び不可避的不純物からなり、かつC、Cr、Mo、V、Wの含有量が下記(1)式および(2)式を満たす組成を有し、粒径1μm以上の炭化物が面積率で8.0~20.0%存在し、20℃の時のショア硬さが75.0HS以上85.0HS以下かつ600℃の時のショア硬さが45.0HS以上50.0HS以下である熱間圧延用複合ロール。
20.0≦[%C]×([%V]+[%Cr]+[%Mo]+[%W])≦35.0 (1)
1.00≦[%C]×((0.177×[%V])/(0.099×[%Cr]+0.063×[%Mo]+0.033×[%W]))≦3.00 (2)
ここで(1)式および(2)式において、[%C]、[%Cr]、[%Mo]、[%V]、[%W]は、各元素の含有量(質量%)を表す。
A composite roll for hot rolling having two layers, an outer layer and an inner layer, or three layers, an outer layer, an intermediate layer, and an inner layer, wherein the outer layer is in mass%,
C: 1.2-2.5%,
Si: 0.15-2.50%,
Mn: 0.15-2.50%,
Ni: 0.2-8.0%,
Cr: 1.5-10.0%,
Mo: 3.5-12.0%,
V: 2.0-7.5%,
W: 0.1-6.0%,
P: 0.01-0.04%,
Contains S: 0.001 to 0.010%,
The remainder consists of Fe and unavoidable impurities, and the content of C, Cr, Mo, V, and W satisfies the following formulas (1) and (2), and the area ratio of carbides with a grain size of 1 μm or more is 8.0 to 20.0%, and the Shore hardness at 20°C is 75.0HS or more and 85.0HS or less, and the Shore hardness at 600°C is 45.0HS or more and 50.0HS or less. Composite roll for rolling.
20.0≦[%C]×([%V]+[%Cr]+[%Mo]+[%W])≦35.0 (1)
1.00≦[%C]×((0.177×[%V])/(0.099×[%Cr]+0.063×[%Mo]+0.033×[%W]))≦3 .00 (2)
Here, in formulas (1) and (2), [%C], [%Cr], [%Mo], [%V], and [%W] represent the content (mass%) of each element. .
JP2022130492A 2022-08-18 2022-08-18 Hot rolling roll outer layer material and hot rolling composite roll Pending JP2024027590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022130492A JP2024027590A (en) 2022-08-18 2022-08-18 Hot rolling roll outer layer material and hot rolling composite roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022130492A JP2024027590A (en) 2022-08-18 2022-08-18 Hot rolling roll outer layer material and hot rolling composite roll

Publications (1)

Publication Number Publication Date
JP2024027590A true JP2024027590A (en) 2024-03-01

Family

ID=90039585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022130492A Pending JP2024027590A (en) 2022-08-18 2022-08-18 Hot rolling roll outer layer material and hot rolling composite roll

Country Status (1)

Country Link
JP (1) JP2024027590A (en)

Similar Documents

Publication Publication Date Title
JP5477522B1 (en) Centrifugal cast composite roll and manufacturing method thereof
EP3050637B1 (en) Centrifugally cast, hot-rolling composite roll
WO2013077377A1 (en) Centrifugally cast composite rolling mill roll and manufacturing method therefor
TWI460284B (en) Roll shell material and centrifugal cast roll for hot rolling mill with excellent fatigue resistance
JP5949596B2 (en) Roll outer layer material for hot rolling, and composite roll for hot rolling
WO2014041778A1 (en) Outer-layer material for hot-rolling roll, and hot-rolling composite roll
TW201739931A (en) Rolling rod outer layer and composite rolling rod
TW201812044A (en) Roller outer layer material for rolling and composite roller for rolling having excellent wear resistance and applicable to cool and hot rolling processing
JP4483585B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP3632640B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP6313844B1 (en) Composite roll for rolling
JP4123912B2 (en) Hot roll outer layer material and hot roll composite roll
TW201812043A (en) Roller outer layer material for hot rolling and roll compound roll having a significantly improved wear resistance as compared to rollers for high-speed tool steel rolling
JPWO2018147367A1 (en) Composite roll for rolling and manufacturing method thereof
JP3925308B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP4428214B2 (en) High Cr roll outer layer material for hot rolling and high Cr composite roll for hot rolling
JP4341357B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP5516545B2 (en) Centrifugal cast roll outer layer material for hot rolling with excellent fatigue resistance and composite roll made of centrifugal cast for hot rolling
WO2018047444A1 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP4123903B2 (en) Hot roll outer layer material and hot roll composite roll
JP2024027590A (en) Hot rolling roll outer layer material and hot rolling composite roll
JP4311073B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP2024075137A (en) Outer layer material for hot rolling rolls and composite rolls for hot rolling
JP2023178732A (en) Roll outer layer for hot rolling and composite roll for hot rolling
JP4569122B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240326