JP2024023056A - 熱交換器の品質確認方法 - Google Patents

熱交換器の品質確認方法 Download PDF

Info

Publication number
JP2024023056A
JP2024023056A JP2022126609A JP2022126609A JP2024023056A JP 2024023056 A JP2024023056 A JP 2024023056A JP 2022126609 A JP2022126609 A JP 2022126609A JP 2022126609 A JP2022126609 A JP 2022126609A JP 2024023056 A JP2024023056 A JP 2024023056A
Authority
JP
Japan
Prior art keywords
flow path
heat exchanger
pressure
liquid
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022126609A
Other languages
English (en)
Inventor
宏昭 金澤
Hiroaki Kanazawa
謙太郎 田中
Kentaro Tanaka
英樹 高藤
Hideki Takafuji
禎 池内
Tadashi Ikeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2022126609A priority Critical patent/JP2024023056A/ja
Priority to US18/354,716 priority patent/US20240044759A1/en
Priority to EP23186675.7A priority patent/EP4321849A1/en
Publication of JP2024023056A publication Critical patent/JP2024023056A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/002Investigating fluid-tightness of structures by using thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/228Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators for radiators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2200/00Prediction; Simulation; Testing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

【課題】大量の熱風を使用する必要がない熱交換器の品質確認方法を提供する。【解決手段】熱交換器の品質確認方法は、第1流路と前記第1流路に隣接する第2流路とを有する熱交換器の第1流路及び第2流路に液体を加圧状態で封入する液圧試験を行う工程ST11と、第1流路内及び第2流路内から液体を排出する工程ST12と、第1流路内及び第2流路内を真空ポンプによって減圧して、第1流路内及び第2流路内に残留する液体の蒸発を促進させる工程ST13と、を含む。液体の蒸発を促進させる工程ST13では、加熱された気体を第1流路及び第2流路に送り込む。【選択図】図3

Description

本発明は、熱交換器の品質確認方法に関する。
従来、下記特許文献1に開示されているように、熱交換器を組み立てた後に、熱交換器の耐圧試験を行うことが知られている。特許文献1では、熱交換器の組み立てが終了した後の耐圧試験として、熱交換器内にたとえば45kg/cmの圧力の水溶液(炭酸アンモニウムと炭酸水素アンモニウムの水溶液)を封入して熱交換器内を加圧することを行っている。耐圧試験を行うことにより、熱交換器の品質を確認することができる。そして、耐圧試験後には、230℃の熱風を14m/minの風量で熱交換器に送風して、熱交換器内を乾燥させる処理も行っている。
特開昭61-118643号公報
特許文献1に開示された方法では、熱風乾燥を行うのに、230℃の熱風が用いられ、乾燥終了まで4~5時間を要する。このため、品質確認を終えるのに、大量の熱風が必要となるため、品質確認を行うためのコストが嵩む。
そこで、本発明は、前記従来技術を鑑みてなされたものであり、その目的とするところは、大量の熱風を使用する必要がない熱交換器の品質確認方法を提供することにある。
前記の目的を達成するため、本発明に係る熱交換器の品質確認方法は、熱交換器の品質確認方法であって、第1流路と前記第1流路に隣接する第2流路とを有する熱交換器の前記第1流路及び前記第2流路に液体を加圧状態で封入する液圧試験を行う工程と、前記第1流路内及び前記第2流路内から前記液体を排出する工程と、前記第1流路内及び前記第2流路内を真空ポンプによって減圧して、前記第1流路内及び前記第2流路内に残留する液体の蒸発を促進させる工程と、を含む。
本発明の品質確認方法では、液体を加圧状態で第1流路及び第2流路内に封入する液圧試験を行うため、熱交換器の変形および破損の有無や液体の漏洩発生の有無で熱交換器の健全性を確認することができる。また、液圧試験で用いられた液体を熱交換器から排出した後、第1流路内及び第2流路内を減圧して、流路内に残留する液体の蒸発を促進させる。このため、液体が熱交換器内に残留することによる弊害が生じないようにすることができる。しかも、流路内を減圧することによって残留液体の蒸発を促進させるため、大気圧下で熱交換器内に熱風を吹き込んで熱交換器の内部を乾燥させる場合に比べて、熱交換器内を乾燥させるのに必要なエネルギーを減らすことができる。したがって、熱交換器の品質確認を行うためのコストが嵩むことを抑制できる。
前記液体の蒸発を促進させる工程には、前記第1流路内を減圧する第1工程と、前記第1工程の実施前、前記第1工程と同時又は前記第1工程の実施後に前記第2流路内を減圧する第2工程と、が含まれていてもよい。この場合、前記第1工程において、加熱された気体を前記第2流路に送り込み、前記第2工程において、加熱された気体を前記第1流路に送り込んでもよい。
この態様では、第1流路の減圧と第2流路の減圧とが別々に行なわれる。第1流路内が減圧される第1工程では、第2流路内が加熱されるため、第2流路内の加熱に伴って第1流路も昇温する。つまり、第2流路内が加熱されると第2流路の熱が第1流路に伝熱するため、第1流路内は、減圧されるだけでなく昇温もする。したがって、第1流路内の減圧度合いを抑えながら、残留液体の蒸発促進を行うことができる。つまり、第1流路内の真空度をそれほど高度にしなくても(つまり、圧力をそれほど低くしなくても)、第1流路内の液体を蒸発させることができる。したがって、蒸発促進工程に必要なポンプ動力を低減できる。また、第2工程においても、同様にして、第2流路内に残留する液体の蒸発を促進できる。すなわち、第1流路内及び第2流路内を減圧しながら加熱することによって液体を蒸発させるため、流路内を減圧することなく液体を加熱して蒸発させる方法に比べ、流路内に送り込む気体の温度を低く抑えることができる。
前記第1工程は、前記第1流路内の圧力が所定の圧力以下に減圧されたことが確認されたことを条件として終了し、前記第2工程は、前記第2流路内の圧力が所定の圧力以下に減圧されたことが確認されたことを条件として終了してもよい。
この態様では、所定の圧力として、例えば、流路内の液体がほぼ残留していない状態に到達できる圧力が設定される。第1流路内の圧力及び第2流路内の圧力が、この設定された圧力に到達することによって第1工程及び第2工程を終了するため、熱交換器の流路内に液体がほぼ残留していない状態を得ることができる。
前記液体の蒸発を促進させる工程において、前記熱交換器を加温してもよい。
この態様では、第1流路内及び第2流路内を真空ポンプによって減圧する際の減圧度合いを抑えることができる。つまり、熱交換器自体が加温されることにより、第1流路及び第2流路内の真空度をそれほど高度にしなくても(つまり、圧力をそれほど低くしなくても)、液体を蒸発させることができる。したがって、蒸発促進工程に必要なポンプ動力を低減できる。なお、熱交換器を加温するための加熱源が必要になるが、この加熱源は流路内に残留する液体を直接的に加熱して蒸発させるために用いられるのではなく、減圧された流路を加熱するために用いられる。したがって、液体を直接加熱して蒸発させる方法に比べ、熱交換器の温度を低く抑えることができるため、コストが嵩むことを抑制できる。
前記品質確認方法は、前記第1流路内及び前記第2流路内に前記液体が残留していないことを確認する工程をさらに含んでもよい。この態様では、第1流路内及び第2流路内に液体が残留していないことを、熱交換器の使用者に保証することができる。
前記熱交換器は、積層式の熱交換器であってもよい。
以上説明したように、本発明によれば、大量の熱風を使用することなく熱交換器の品質確認を行うことができる。
品質確認方法の確認対象となる積層式の熱交換器の斜視図である。 前記熱交換器の流路構造を説明するための図である。 前記品質確認方法の各ステップを説明するための図である。 前記品質確認方法における第1工程を行うときの熱交換器を示す図である。 前記品質確認方法における第2工程を行うときの熱交換器を示す図である。 その他の実施形態に係る品質確認方法における第1工程を行うときの熱交換器を示す図である。
以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。
本実施形態に係る品質確認方法は、図1及び図2に示す積層式の熱交換器を対象にした熱交換器10の品質確認方法である。当該方法は、熱交換器10を製造した後であって、熱交換器10を客先に出荷する前に行われる。当該方法について具体的に説明する前にまず、熱交換器10の構成について説明する。なお、品質確認の対象となる熱交換器10は、積層式の熱交換器であれば図1及び図2に示す熱交換器10に限られるものではなく、例えば、多数の積層されたプレートを有し、各プレート間の間隙が流路として構成されたプレート熱交換器であってもよい。また、熱交換器10は、表面に多数の溝が形成された多数のプレートが重ね合わされた構成であって、プレート同士が接合されることによって隣接プレート間に流路が形成されるマイクロチャネル熱交換器であってもよい。熱交換器10は、アルミニウム材で構成されてもよく、あるいは、ステンレス、チタン等によって構成されてもよい。
図1及び図2に示す熱交換器10は、第1流体と第2流体との間で熱交換を行うように構成されたプレートフィン熱交換器である。熱交換器10には、第1流体用のヘッダ11,12と、第2流体用のヘッダ13,14とが取り付けられている。第1流体用のヘッダ11,12には、第1流体が熱交換器10に流入される前に通過する第1分配ヘッダ11と、熱交換器10から流出した第1流体が通過する第1集合ヘッダ12と、が含まれている。また、第2流体用のヘッダ13,14には、第2流体が熱交換器10に流入される前に通過する第2分配ヘッダ13と、熱交換器10から流出した第2流体が通過する第2集合ヘッダ14と、が含まれている。
熱交換器10は、それぞれ平板からなる多数の仕切りプレート21と、隣り合う仕切りプレート21間にそれぞれ配置された波形のフィンプレート22と、を備えている。多数の仕切りプレート21は一方向(仕切りプレート21の厚さ方向。以下、積層方向とも称する。)に互いに間隔をおいて並んでおり、フィンプレート22は各仕切りプレート21間に配置されている。
各フィンプレート22はその両側に位置する一対の仕切りプレート21に接合されている。これにより、仕切りプレート21間に多数の流路23が形成されている。また、この仕切りプレート21の反対側にもフィンプレート22が接続されているため、仕切りプレート21の両側には、それぞれ多数の流路23が形成されている。仕切りプレート21の一方側に位置する流路23は、第1流体を流通させる多数の第1流路25として機能し、当該仕切りプレート21のもう一方側に位置する流路23は、第2流体を流通させる多数の第2流路26として機能する。すなわち、第1流路25と第2流路26とは、仕切りプレート21を挟んで互いに隣接している。
多数の第1流路25(第1流路群)は、仕切りプレート21の幅方向(図1の斜め方向及び図2の左右方向)に並ぶように配置されており、各第1流路25は、仕切りプレート21の長手方向(図1の上下方向及び図2の奥行き方向)に延びている。また、多数の第2流路26(第2流路群)も、仕切りプレート21の幅方向(図1の斜め方向及び図2の左右方向)に並ぶように配置されており、各第2流路26は、仕切りプレート21の長手方向(図1の上下方向及び図2の奥行き方向)に延びている。そして、多数の第1流路25(第1流路群)を有する第1層29と、多数の第2流路26(第2流路群)を有する第2層30とは、積層方向(図1の斜め方向及び図2の上下方向)に交互に配置されて積層されている。したがって、多数の第1流路25及び第2流路26が積層方向にも並んでいる。
第1流路25はそれぞれ、第1分配ヘッダ11の内側空間及び第1集合ヘッダ12の内側空間に連通している。したがって、第1分配ヘッダ11内に導入された第1流体は、各第1流路25に流入し、各第1流路25を流れた第1流体は、第1集合ヘッダ12内に合流される。また、第2流路26はそれぞれ、第2分配ヘッダ13の内側空間及び第2集合ヘッダ14の内側空間に連通している。したがって、第2分配ヘッダ13内に導入された第2流体は、各第2流路26に流入し、各第2流路26を流れた第2流体は、第2集合ヘッダ14内に合流される。
各第1層29及び各第2層30には、仕切りプレート21の幅方向両側に、サイドバー33が設けられている。サイドバー33は、一対の仕切りプレート21間においてフィンプレート22の幅方向両端を塞ぐものである。サイドバー33が設けられることにより、第1流路25内及び第2流路26内の圧力がフィンプレート22に作用したときでも、当該圧力に耐えることができる。
熱交換器10の積層方向の両端には、それぞれ外側プレート34が設けられている。外側プレート34は、仕切りプレート21よりも厚みのある平板材によって構成されており、外側プレート34が設けられることにより、第1流路25内及び第2流路26内の圧力が仕切りプレート21に作用したときでも、当該圧力に耐えることができる。
なお、図1の熱交換器10は、第1流路25と第2流路26のみが設けられた熱交換器10であるがこれに限られるものでない。例えば、熱交換器10は、第1流路25及び第2流路26に加えて第3流路(図示省略)が設けられ、第1流体と第2流体と第3流体との間で熱交換を行う構成であってもよい。この場合、例えば、第1流体を流通させる多数の第1流路25に、第2流体を流通させる多数の第2流路26が隣接し、この多数の第2流路26に、第3流体を流通させる多数の第3流路が隣接する構成であってもよい。
次に、図3を参照しつつ、熱交換器10が組み上がった後に行う、熱交換器10の品質確認方法について説明する。この熱交換器10の品質確認方法では、まず液圧試験を行う(液圧試験工程ST11)。液圧試験は、第1流路25及び第2流路26を液体で満たし、流路25,26内を加圧された状態に保持する試験である。このため、第1流路25に連通する第1分配ヘッダ11及び第1集合ヘッダ12の一方の開口を図略の栓部材で閉じ、他方に図略の配管を接続する。この配管を通して液体(例えば水)を第1流路25内に導入する。このとき、熱交換器10の要求仕様で定められた圧力よりも高い圧力で第1流路25内が満たされるように、液体を第1流路25内に封入する。この圧力は、少なくとも大気圧よりも高い圧力である。
そして、予め定められた時間だけ、この状態で放置する。このとき、第2流路26は、大気開放されていてもよいが、第2流路26を封鎖しておいてもよい。予め定められた時間が経過すると、栓部材を外して、第1流路25内の液体を排出する(排出工程ST12)。
続いて、第2流路26についても、第1流路25に対する液圧試験と同じように液体で満たす液圧試験を行う(液圧試験工程ST11)。そして、予め定められた時間が経過すると、第2流路26内の液体を排出する(排出工程ST12)。なお、液圧試験は、第1流路25及び第2流路26の何れを先に行ってもよい。
次に、第1流路25内及び第2流路26内に残留している液体を蒸発させるための蒸発促進工程ST13を行う。蒸発促進工程ST13は、流路25,26内の減圧及び加熱により、流路25,26内に残留する液体の蒸発を促す工程である。蒸発促進工程ST13には、第1流路25内を減圧する一方で第2流路26内の減圧は行わない第1工程ST13aと、第2流路26内を減圧する一方で第1流路25内の減圧は行わない第2工程ST13bとが、含まれている。なお、ここでは、第2工程ST13bを第1工程ST13aの後で行うようしているが、第2工程ST13bを第1工程ST13aの前に行ってもよい。
第1工程ST13aでは、図4に示すように、第1流路25を減圧できるように、第1分配ヘッダ11及び第1集合ヘッダ12の一方に真空ポンプ37及び真空計38が設けられた吸引配管40を接続し、他方に真空計41を接続する。また、第2分配ヘッダ13及び第2集合ヘッダ14の一方に、加熱された気体(熱風)を送り込むための加熱用配管43を接続し、他方は開放された状態にしておく。
そして、第1工程ST13aにおいて、真空ポンプ37を作動させて第1流路25内を減圧するとともに、加熱用配管43を通して第2流路26に加熱された気体を送り込む。また、第1工程ST13aでは、熱交換器10自体の加温も行う。すなわち、熱交換器10を断熱材からなるカバー45で覆い、このカバー45の内側空間に加熱された気体(熱風)を送り込む。送り込む気体(熱風)は、100℃以上の温度でもよく、あるいは、100℃以下の温度でもよい。
第1工程ST13aにおいては、真空計38、41によって第1流路25内の真空度を確認し、真空度が予め定められた値に到達するまで、真空ポンプ37を作動させる。すなわち、第1流路25内の圧力が所定の圧力以下に減圧されたことが確認されたことを条件として、第1工程ST13aを終了する。第1流路25内に液体が残留していて、この液体が蒸発し続ける限り、第1流路25内の圧力は所定の圧力以下に下がらない。したがって、第1流路25内の圧力が所定の圧力以下に低下するまで、真空ポンプ37の作動を継続することにより、第1流路25内に液体が残留した状態を解消することができる。このとき、第2流路26内が加熱されるとともに、熱交換器10自体も加温されているため、第1流路25内も昇温している。したがって、第1流路25内が減圧されるだけでなく、加温されることにより、第1流路25内の液体の蒸発が促進される。なお、第1流路25内が減圧されているため、第1流路25から流出する気体の温度は、使用液体の大気圧下での沸点以下であってもよい。例えば、液体が水の場合には、第1流路25から流出する気体の温度は100℃以下であってもよい。
第1工程ST13aが終了すると、第2工程ST13bに移る。第2工程ST13bでは、図5に示すように、吸引配管40を、第1分配ヘッダ11及び第1集合ヘッダ12の一方から、第2分配ヘッダ13及び第2集合ヘッダ14の一方に接続し直し、また、第1分配ヘッダ11及び第1集合ヘッダ12の他方に接続されていた真空計41を取り外して、この真空計41を第2分配ヘッダ13及び第2集合ヘッダ14の他方に取り付ける。また第2分配ヘッダ13及び第2集合ヘッダ14の一方に取り付けられていた加熱用配管43を取り外すとともに、加熱用配管43を第1分配ヘッダ11及び第1集合ヘッダ12の一方に接続する。カバー45は、熱交換器10を覆った状態のままにしておく。
そして、第2工程ST13bにおいて、真空ポンプ37を作動させて第2流路26内を減圧するとともに、加熱用配管43を通して第1流路25に加熱された気体を送り込む。また、第2工程ST13bにおいても、熱交換器10自体の加温も行う。これにより、第2流路26内が減圧されるだけでなく加温されることにより、第2流路26内の液体の蒸発が促進される。
そして、真空計38,41により第2流路26内の真空度を確認し、第2流路26内の圧力が所定の圧力以下に減圧されたことが確認されたことを条件として、第2工程ST13bを終了する。
次に、液体が第1流路25内及び第2流路26内に残留していないことを確認する(確認工程ST14)。具体的に、第1流路25及び第2流路26にそれぞれ、露点が分かっていて、要求露点よりも低い露点を有する気体を封入し、予め定められた時間だけ、その状態で放置する。露点が分かっている気体として、窒素ガス、ヘリウムガス、アルゴンガス、乾燥空気等を採用できる。なお、これ以外の気体でもよいが、その場合、熱交換器10内に封入する前に露点計で露点を測定しておく。
予め定められた時間が経過した後、第1流路25から封入気体を流出させ、流出した気体の露点を露点計で測定する。第2流路26に封入されていた気体についても、同様に露点を測定する。
そして、露点が所定値(要求露点)以下であれば、第1流路25内及び第2流路26内に水分が残留していないことになるので、品質確認を終了する。なお、露点が所定値を超えている場合には、再度、蒸発促進工程ST13を行う。
以上説明したように、本実施形態での品質確認方法では、液体を加圧状態で第1流路25及び第2流路26内に封入する液圧試験を行うため、熱交換器10から液体の漏洩が生じないかを確認することができる。また、液圧試験で用いられた液体を熱交換器10から排出した後、流路25,26内を減圧して、流路25,26内に残留する液体の蒸発を促進させる。このため、液体が熱交換器10内に残留することによる弊害が生じないようにすることができる。しかも、流路25,26内を減圧することによって残留液体の蒸発を促進させるため、大気圧下で熱交換器10内に熱風を吹き込んで熱交換器10の内部を乾燥させる場合に比べて、熱交換器10内を乾燥させるのに必要なエネルギーを減らすことができる。したがって、熱交換器10の品質確認を行うためのコストが嵩むことを抑制できる。
また、前記品質確認方法では、第1流路25の減圧と第2流路26の減圧とが別々に行なわれる。第1流路25内が減圧される第1工程ST13aでは、第2流路26内が加熱されるため、第2流路26内の加熱に伴って第1流路25も昇温する。つまり、第2流路26内が加熱されると第2流路26の熱が第1流路25に伝熱するため、第1流路25内は、減圧されるだけでなく昇温もする。したがって、第1流路25内の減圧度合いを抑えながら、残留液体の蒸発促進を行うことができる。つまり、第1流路25内の真空度をそれほど高度にしなくても(つまり、圧力をそれほど低くしなくても)、液体を蒸発させることができる。したがって、蒸発促進工程ST13に必要なポンプ動力を低減できる。また、第2工程ST13bにおいても、同様にして、第2流路26内に残留する液体の蒸発を促進できる。すなわち、流路25,26内を減圧しながら加熱することによって液体を蒸発させるため、流路25,26内を減圧することなく液体を加熱して蒸発させる方法に比べ、流路25,26内に送り込む気体の温度を低く抑えることができる。このため、熱交換器10が例えばアルミニウム材で構成される場合でも、材質劣化を防止することができる。
しかも、第1工程ST13a及び第2工程ST13bを終了する条件として設定された所定の圧力として、例えば、流路25,26内の液体がほぼ残留していない状態に到達できる圧力が設定される。流路25,26内の圧力が、この設定された圧力に到達することによって第1工程ST13a及び第2工程ST13bを終了するため、熱交換器10の流路25,26内に液体がほぼ残留していない状態を得ることができる。
さらに、確認工程ST14も行うため、第1流路25内及び第2流路26内に液体が残留していないことを、熱交換器10の使用者に保証することができる。
なお、本実施形態では、蒸発促進工程ST13において、第1流路25及び第2流路26に熱風を送り込んで流路25,26の加熱も行うようにしたが、第1流路25及び第2流路26の加熱を省略してもよい。この場合、第1工程ST13aと第2工程ST13bに分けること無く、第1流路25及び第2流路26の減圧を同時に行ってもよい。
また、本実施形態では、蒸発促進工程ST13において、加熱された気体を第1流路25内及び第2流路26内に送り込むとともに熱交換器10自体を加熱するようにしたが、蒸発促進工程ST13において熱交換器10自体の加熱を行わないようにしてもよい。
また、確認工程ST14を省略することが可能である。この場合、第1工程ST13a及び第2工程ST13bにおいて、真空度が所定値以下に下がったことにより、液体が残留していないことの確認を行ってもよい。
また、確認工程ST14に代えて、要求露点よりも低い露点を有する気体を所定時間以上第1流路25内及び第2流路26内に流通させ続ける工程を行ってもよい。つまり、露点を積極的に計測することなく、露点が十分に下がった状態を確保するようにしてもよい。
(その他の実施形態)
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明は、前記実施形態に限られるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。例えば、前記実施形態の品質確認方法では、蒸発促進工程ST13において、熱交換器10自体を加熱するとともに、第1流路25及び第2流路26に加熱された気体を送り込むが、これに限られない。すなわち、蒸発促進工程ST13において、熱交換器10自体を加熱する一方で、第1流路25及び第2流路26に加熱された気体を送り込まないようにしてもよい。例えば、図6に示すように、蒸発促進工程ST13においては、熱交換器10をカバー45で覆い、このカバー45で覆われた内側空間に加熱された気体(熱風)を送り込んで熱交換器10を加熱する。また、第1流路25を減圧できるように、第1分配ヘッダ11及び第1集合ヘッダ12の一方に真空ポンプ37及び真空計38が設けられた吸引配管40を接続し、他方に真空計41を接続する。そして、真空ポンプ37を作動して第1流路25内を減圧する(第1工程ST13a)。第1工程ST13aにおいては、真空計38,41によって第1流路25内の真空度を確認し、真空度が予め定められた値に到達すると第1工程ST13aを終了する。
次に、第2流路26を減圧できるように、第2分配ヘッダ13及び第2集合ヘッダ14の一方に真空ポンプ37及び真空計38が設けられた吸引配管40を接続し、他方に真空計41を接続する。そして、真空ポンプ37を作動して第2流路26内を減圧する(第2工程ST13b)。第2工程ST13bにおいては、真空計38,41によって第1流路25内の真空度を確認し、真空度が予め定められた値に到達すると第2工程ST13bを終了する。
この方法では、第1流路25内及び第2流路26内を真空ポンプ37によって減圧する際の減圧度合いを抑えることができる。つまり、熱交換器10自体が加温されることにより、第1流路25及び第2流路26内の真空度をそれほど高度にしなくても(つまり、圧力をそれほど低くしなくても)、液体を蒸発させることができる。したがって、蒸発促進工程ST13に必要なポンプ動力を低減できる。なお、熱交換器10を加熱するための加熱源が必要になるが、この加熱源は流路25,26内に残留する液体を直接的に加熱して蒸発させるために用いられるのではなく、減圧された流路25,26を加熱するために用いられる。したがって、液体を直接加熱して蒸発させる方法に比べ、熱交換器10の温度を低く抑えることができるため、コストが嵩むことを抑制できる。
なお、図6の場合、吸引配管40を第1流路25だけでなく第2流路26にも連通させて、第1流路25の減圧を行う第1工程ST13aと第2流路26の減圧を行う第2工程ST13bとを同時に行ってもよい。
10 :熱交換器
23 :流路
25 :第1流路
26 :第2流路
37 :真空ポンプ
ST11 :液圧試験工程
ST12 :排出工程
ST13 :蒸発促進工程
ST13a :第1工程
ST13b :第2工程
ST14 :確認工程

Claims (6)

  1. 熱交換器の品質確認方法であって、
    第1流路と前記第1流路に隣接する第2流路とを有する熱交換器の前記第1流路及び前記第2流路に液体を加圧状態で封入する液圧試験を行う工程と、
    前記第1流路内及び前記第2流路内から前記液体を排出する工程と、
    前記第1流路内及び前記第2流路内を真空ポンプによって減圧して、前記第1流路内及び前記第2流路内に残留する液体の蒸発を促進させる工程と、を含む熱交換器の品質確認方法。
  2. 前記液体の蒸発を促進させる工程には、前記第1流路内を減圧する第1工程と、前記第1工程の実施前、前記第1工程と同時又は前記第1工程の実施後に前記第2流路内を減圧する第2工程と、が含まれ、
    前記第1工程において、加熱された気体を前記第2流路に送り込み、
    前記第2工程において、加熱された気体を前記第1流路に送り込む請求項1に記載の熱交換器の品質確認方法。
  3. 前記第1工程は、前記第1流路内の圧力が所定の圧力以下に減圧されたことが確認されたことを条件として終了し、
    前記第2工程は、前記第2流路内の圧力が所定の圧力以下に減圧されたことが確認されたことを条件として終了する請求項2に記載の熱交換器の品質確認方法。
  4. 前記液体の蒸発を促進させる工程において、前記熱交換器を加温する請求項1に記載の熱交換器の品質確認方法。
  5. 前記第1流路内及び前記第2流路内に前記液体が残留していないことを確認する工程をさらに含む請求項1~4の何れか1項に記載の熱交換器の品質確認方法。
  6. 前記熱交換器は、積層式の熱交換器である請求項1~4の何れか1項に記載の熱交換器の品質確認方法。
JP2022126609A 2022-08-08 2022-08-08 熱交換器の品質確認方法 Pending JP2024023056A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022126609A JP2024023056A (ja) 2022-08-08 2022-08-08 熱交換器の品質確認方法
US18/354,716 US20240044759A1 (en) 2022-08-08 2023-07-19 Method for checking quality of heat exchanger
EP23186675.7A EP4321849A1 (en) 2022-08-08 2023-07-20 Method for checking quality of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022126609A JP2024023056A (ja) 2022-08-08 2022-08-08 熱交換器の品質確認方法

Publications (1)

Publication Number Publication Date
JP2024023056A true JP2024023056A (ja) 2024-02-21

Family

ID=87426548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022126609A Pending JP2024023056A (ja) 2022-08-08 2022-08-08 熱交換器の品質確認方法

Country Status (3)

Country Link
US (1) US20240044759A1 (ja)
EP (1) EP4321849A1 (ja)
JP (1) JP2024023056A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117968986A (zh) * 2024-04-01 2024-05-03 中国核动力研究设计院 双向定位微通道换热器异常流道检测装置及检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118643A (ja) 1984-11-14 1986-06-05 Mitsubishi Heavy Ind Ltd 熱交換器の耐圧試験方法
US7886580B2 (en) * 2007-12-06 2011-02-15 Apv North America, Inc. Heat exchanger leak testing method and apparatus
FR3119924A1 (fr) 2021-02-18 2022-08-19 L'air Liquide, Société Anonyme Pour L’Étude Et L'exploitation Des Procédés Georges Claude Gestion de la distribution des bouteilles de gaz dans un établissement hospitalier

Also Published As

Publication number Publication date
US20240044759A1 (en) 2024-02-08
EP4321849A1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
US10399191B2 (en) Method for producing a heat exchanger module having at least two fluid flow circuits
US11002469B2 (en) Integral heat superconducting plate heat exchanger and fabrication method therefor
US11549763B2 (en) Plate fin heat exchanger and repair method for plate fin heat exchanger
US20100181053A1 (en) Plate Heat Exchanger
WO2017018127A1 (ja) 熱交換器
JP2024023056A (ja) 熱交換器の品質確認方法
US9638471B2 (en) Balanced heat exchanger systems and methods
US20090260775A1 (en) Heat exchanger, in particular an exhaust gas evaporator of a motor vehicle
WO2000034729A1 (fr) Echangeur thermique du type a plaques pour trois fluides et procede de fabrication
US20120160900A1 (en) Method for manufacturing a module with a hollow region, preferably for fluid circulation
US20090065184A1 (en) Heat exchanger
JP2007017132A (ja) 熱交換用チューブおよび熱交換器
US9845729B2 (en) Method of manufacturing recuperator air cells
DK178441B1 (en) Method of producing a heat exchanger and a heat exchanger
JP2010256006A (ja) 形材製プレート式熱交換器
US10989485B2 (en) Heat exchanger tube, and corresponding heat exchanger production method
CN110319729A (zh) 基于仿生堆叠三维构型的换热器芯体及换热器
CN105737453B (zh) 冷却装置及其使用方法
ITRM20000226A1 (it) Scambiatore di calore a tubi flessibili, in particolare per autoveicolo.
WO2019203115A1 (ja) 扁平多穴管、熱交換器及び熱交換器の製造方法
US3024002A (en) Heat exchanger
US20200096259A1 (en) Microtube heat exchanger header
TWI437201B (zh) 熱交換器
KR20170049456A (ko) 증발기
WO2012043380A1 (ja) 熱交換器