JP2024022631A - Isolation method - Google Patents

Isolation method Download PDF

Info

Publication number
JP2024022631A
JP2024022631A JP2023204508A JP2023204508A JP2024022631A JP 2024022631 A JP2024022631 A JP 2024022631A JP 2023204508 A JP2023204508 A JP 2023204508A JP 2023204508 A JP2023204508 A JP 2023204508A JP 2024022631 A JP2024022631 A JP 2024022631A
Authority
JP
Japan
Prior art keywords
fluorocarbon
acid
dicarboxylic acid
metal
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023204508A
Other languages
Japanese (ja)
Other versions
JP2024022631A5 (en
Inventor
みちる 賀川
Michiru Kagawa
義紀 田中
Yoshinori Tanaka
健治 隅田
Kenji Sumida
祐輔 藤井
Yusuke Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Atomis Inc
Original Assignee
Daikin Industries Ltd
Atomis Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Atomis Inc filed Critical Daikin Industries Ltd
Publication of JP2024022631A publication Critical patent/JP2024022631A/en
Publication of JP2024022631A5 publication Critical patent/JP2024022631A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/389Separation; Purification; Stabilisation; Use of additives by adsorption on solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/10Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/06Oxalic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

To provide a method for isolating a fluorocarbon having one carbon atom.SOLUTION: A fluorocarbon isolation method according to the present disclosure comprises isolating a fluorocarbon having one carbon atom from a mixture containing the fluorocarbon having one carbon atom and the fluorocarbon having equal to or more two carbon atoms. The isolation of fluorocarbon having one carbon atom is conducted by bringing the mixture into contact with an absorbent.SELECTED DRAWING: Figure 1

Description

本開示は、分離方法に関する。 The present disclosure relates to a separation method.

フルオロカーボンの分離方法として、フルオロカーボンの混合物を蒸留する方法が知られている。特許文献1には、2,3,3,3-テトラフルオロプロペンおよびヘキサフルオロプロペンを含む混合物と、抽出溶剤とを混合して抽出用混合物を得た後、かかる抽出用混合物を蒸留して、ヘキサフルオロプロペンを主成分とする留出物と、2,3,3,3-テトラフルオロプロペンを含む缶出物とを得ることが記載されている。 As a method for separating fluorocarbons, a method of distilling a mixture of fluorocarbons is known. Patent Document 1 discloses that a mixture containing 2,3,3,3-tetrafluoropropene and hexafluoropropene and an extraction solvent are mixed to obtain an extraction mixture, and then the extraction mixture is distilled. It is described that a distillate based on hexafluoropropene and a bottoms containing 2,3,3,3-tetrafluoropropene are obtained.

特開2018-002602号公報Japanese Patent Application Publication No. 2018-002602

特許文献1に記載のような蒸留法では、沸点の近い化合物や、共沸する化合物の分離が困難であり、炭素数1のフルオロカーボンを分離する際、十分に分離できないという不具合が生じ得ることを見出した。 In the distillation method as described in Patent Document 1, it is difficult to separate compounds with similar boiling points or azeotropic compounds, and when separating fluorocarbons having 1 carbon number, there may be problems such as insufficient separation. I found it.

本開示における課題は、炭素数1のフルオロカーボンを分離する方法を提供することにある。 An object of the present disclosure is to provide a method for separating fluorocarbons having one carbon number.

本開示は、以下の態様を含む。
[1]
炭素数1のフルオロカーボンと、炭素数2以上のフルオロカーボンとを含む混合物から、炭素数1のフルオロカーボンを分離することを含み、
前記炭素数1のフルオロカーボンの分離は、前記混合物と吸着材とを接触させることにより実施される、フルオロカーボンの分離方法。
[2]
前記炭素数1のフルオロカーボンが、ジフルオロメタンおよびジフルオロクロロメタンからなる群より選ばれる少なくとも1種以上である、[1]に記載の分離方法。
[3]
前記炭素数2以上のフルオロカーボンが、炭素数2~3のフルオロカーボンを含む、[1]または[2]に記載の分離方法。
[4]
前記吸着剤は、多孔体を含み、該多孔体の有効細孔径は、0.46nm以下である、[1]~[3]のいずれか1つに記載の分離方法。
[5]
前記多孔体は、金属有機構造体を含む、[4]に記載の分離方法。
[6]
前記金属有機構造体は、金属イオンと1種または2種以上の有機配位子とを含み、
前記有機配位子は、前記金属イオンに配位結合しうる基を1分子中に2個以上含む、[5]に記載の分離方法。
[7]
前記金属イオンは亜鉛を含み、前記有機配位子は、シュウ酸および1,2,4-トリアゾールを含む、[6]に記載の分離方法。
[8]
前記吸着材は、樹脂をさらに含む、[4]~[7]のいずれか1つに記載の分離方法。
[9]
前記吸着材は、粉末状、粒状、フレーク状、または、ペレット状である、[1]~[8]のいずれか1つに記載の分離方法。
[10]
前記分離された炭素数1のフルオロカーボンを精製することをさらに含む、[1]~[9]のいずれか1つに記載の分離方法。
[11]
金属有機構造体と、炭素数1のフルオロカーボンとを含み、
前記金属有機構造体は、金属イオンと1種または2種以上の有機配位子とを含み、
前記金属イオンは亜鉛を含み、前記有機配位子は、シュウ酸および1,2,4-トリアゾールを含む、複合材料。
The present disclosure includes the following aspects.
[1]
Separating a fluorocarbon having a carbon number of 1 from a mixture containing a fluorocarbon having a carbon number of 1 and a fluorocarbon having a carbon number of 2 or more,
A method for separating fluorocarbons, wherein the separation of the fluorocarbon having 1 carbon number is carried out by bringing the mixture into contact with an adsorbent.
[2]
The separation method according to [1], wherein the fluorocarbon having 1 carbon number is at least one selected from the group consisting of difluoromethane and difluorochloromethane.
[3]
The separation method according to [1] or [2], wherein the fluorocarbon having 2 or more carbon atoms includes a fluorocarbon having 2 to 3 carbon atoms.
[4]
The separation method according to any one of [1] to [3], wherein the adsorbent includes a porous body, and the effective pore diameter of the porous body is 0.46 nm or less.
[5]
The separation method according to [4], wherein the porous body includes a metal-organic structure.
[6]
The metal-organic framework contains a metal ion and one or more organic ligands,
The separation method according to [5], wherein the organic ligand contains two or more groups in one molecule that can coordinately bond to the metal ion.
[7]
The separation method according to [6], wherein the metal ion contains zinc, and the organic ligand contains oxalic acid and 1,2,4-triazole.
[8]
The separation method according to any one of [4] to [7], wherein the adsorbent further contains a resin.
[9]
The separation method according to any one of [1] to [8], wherein the adsorbent is in the form of powder, granules, flakes, or pellets.
[10]
The separation method according to any one of [1] to [9], further comprising refining the separated fluorocarbon having 1 carbon.
[11]
including a metal-organic framework and a fluorocarbon having 1 carbon number,
The metal-organic framework contains a metal ion and one or more organic ligands,
The composite material wherein the metal ion includes zinc and the organic ligand includes oxalic acid and 1,2,4-triazole.

本開示によれば、炭素数1のフルオロカーボンを分離することができる。 According to the present disclosure, a fluorocarbon having one carbon number can be separated.

図1は、実施例1の吸着等温線を示す。FIG. 1 shows the adsorption isotherm of Example 1. 図2は、実施例1の吸着等温線を示す。FIG. 2 shows the adsorption isotherm of Example 1. 図3は、比較例2、3の吸着等温線を示す。FIG. 3 shows adsorption isotherms of Comparative Examples 2 and 3. 図4は、実施例1の吸着破過曲線を示す。FIG. 4 shows the adsorption breakthrough curve of Example 1. 図5は、実施例2の吸着破過曲線を示す。FIG. 5 shows the adsorption breakthrough curve of Example 2. 図6は、実施例1の繰り返し吸脱着における吸着等温線を示す。FIG. 6 shows adsorption isotherms in repeated adsorption and desorption in Example 1. 図7は、実施例1の高温高湿保存後の吸着等温線を示す。FIG. 7 shows the adsorption isotherm of Example 1 after storage at high temperature and high humidity.

本開示の分離方法は、
炭素数1のフルオロカーボンと、炭素数2以上のフルオロカーボンとを含む混合物から、炭素数1のフルオロカーボンを分離することを含み、
上記炭素数1のフルオロカーボンの分離は、上記混合物と吸着材とを接触させることにより実施される。
The separation method of the present disclosure includes:
Separating a fluorocarbon having a carbon number of 1 from a mixture containing a fluorocarbon having a carbon number of 1 and a fluorocarbon having a carbon number of 2 or more,
The separation of the 1-carbon fluorocarbon is carried out by bringing the mixture into contact with an adsorbent.

本開示の分離方法によれば、炭素数1のフルオロカーボンが吸着材に吸着されることで、混合物から炭素数1のフルオロカーボンを分離することができる。一の態様において、上記混合物は、ガス(気体)の状態で、かかる吸着剤と接触される。 According to the separation method of the present disclosure, the fluorocarbon having 1 carbon number can be separated from the mixture by adsorbing the fluorocarbon having 1 carbon number on the adsorbent. In one embodiment, the mixture is contacted with the adsorbent in gaseous form.

(混合物)
上記混合物は、炭素数1のフルオロカーボンを含む。
(blend)
The mixture contains a fluorocarbon having 1 carbon atom.

上記炭素数1のフルオロカーボンの分子径は、例えば0.30nm以上0.430nm以下、好ましくは0.320nm以上0.420nm以下である。一の態様において、上記炭素数1のフルオロカーボンの分子径は、例えば0.300nm以上、好ましくは0.320nm以上であり、例えば0.430nm以下、好ましくは0.420nm以下である。 The molecular diameter of the above-mentioned fluorocarbon having 1 carbon number is, for example, 0.30 nm or more and 0.430 nm or less, preferably 0.320 nm or more and 0.420 nm or less. In one embodiment, the molecular diameter of the fluorocarbon having 1 carbon number is, for example, 0.300 nm or more, preferably 0.320 nm or more, and, for example, 0.430 nm or less, preferably 0.420 nm or less.

上記分子径は、以下の式により算出される値である。
d=(ma/(3×21/2ηπ))1/2 …(x1)
ただし、式(x1)中、dは分子径、mは分子1個の質量、aは分子速度、ηは粘性係数を表す。
aは、以下の式により算出される。
a=(γRT/M)1/2 …(x2)
ここで、γは比熱比であり、1.333として近似する。また、Rは気体定数、Tは絶対温度であり、Mは、モル分子質量である。
また、ηは、毛細管法により測定してよい。
The above molecular diameter is a value calculated by the following formula.
d=(ma/(3×21/2ηπ))1/2…(x1)
However, in formula (x1), d represents the molecular diameter, m represents the mass of one molecule, a represents the molecular velocity, and η represents the viscosity coefficient.
a is calculated by the following formula.
a=(γRT/M)1/2...(x2)
Here, γ is the specific heat ratio, which is approximated as 1.333. Further, R is a gas constant, T is an absolute temperature, and M is a molar molecular mass.
Further, η may be measured by a capillary method.

上記炭素数1のフルオロカーボンの沸点は、例えば-80℃以上-20℃以下であってよく、さらに-60℃以上-30℃以下であってよい。一の態様において、上記混合物中、炭素数1のフルオロカーボンは、ガス(気体)として存在する。 The boiling point of the fluorocarbon having 1 carbon atom may be, for example, -80°C or more and -20°C or less, and further may be -60°C or more and -30°C or less. In one embodiment, the C1 fluorocarbon is present as a gas in the mixture.

上記炭素数1のフルオロカーボンとしては、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボンが挙げられる。上記ハイドロクロロフルオロカーボンとしては、クロロジフルオロメタンが挙げられ、上記ハイドロフルオロカーボンとしては、ジフルオロメタンが挙げられる。なお、本開示において、炭素数1のフルオロカーボンを吸着質ともいう。 Examples of the above-mentioned fluorocarbon having 1 carbon number include hydrochlorofluorocarbon and hydrofluorocarbon. Examples of the hydrochlorofluorocarbon include chlorodifluoromethane, and examples of the hydrofluorocarbon include difluoromethane. Note that in the present disclosure, a fluorocarbon having 1 carbon number is also referred to as an adsorbate.

上記炭素数1のフルオロカーボンは、1種または2種以上の化合物を含んでいてよい。炭素数1のフルオロカーボンが2種以上の化合物を含む場合、それぞれの化合物が、上記分子径および沸点の範囲内であることが好ましい。 The above-mentioned fluorocarbon having 1 carbon number may contain one or more kinds of compounds. When the fluorocarbon having 1 carbon number contains two or more kinds of compounds, each compound preferably has a molecular diameter and a boiling point within the above ranges.

上記混合物における炭素数1のフルオロカーボンの含有率は、混合物の全体において、例えば0.1モル%以上50モル%以下であってよく、さらに0.5モル%以上20モル%以下であってよい。 The content of the C1 fluorocarbon in the mixture may be, for example, 0.1 mol% or more and 50 mol% or less, and further 0.5 mol% or more and 20 mol% or less, in the entire mixture.

上記混合物は、炭素数2のフルオロカーボンを含む。 The above mixture contains a fluorocarbon having 2 carbon atoms.

上記炭素数2以上のフルオロカーボンにおける炭素数2~3のフルオロカーボンの含有率は、例えば50モル%以上100モル%以下であってよく、80モル%以上100モル%以下であってよい。 The content of the fluorocarbon having 2 to 3 carbon atoms in the fluorocarbon having 2 or more carbon atoms may be, for example, 50 mol% or more and 100 mol% or less, and 80 mol% or more and 100 mol% or less.

炭素数2以上のフルオロカーボンの分子径は、例えば0.430nm超であり、0.404nm以上2.00nm以下であってよく、0.440nm以上1.00nm以下であってよい。一の態様において、炭素数2以上のフルオロカーボンの分子径は、例えば0.430nm超、好ましくは0.440nm以上であり、例えば2.00nm以下、好ましくは1.00nm以下である。 The molecular diameter of the fluorocarbon having 2 or more carbon atoms is, for example, more than 0.430 nm, may be 0.404 nm or more and 2.00 nm or less, and may be 0.440 nm or more and 1.00 nm or less. In one embodiment, the molecular diameter of the fluorocarbon having 2 or more carbon atoms is, for example, more than 0.430 nm, preferably 0.440 nm or more, and is, for example, 2.00 nm or less, preferably 1.00 nm or less.

上記炭素数2以上のフルオロカーボンの沸点は、例えば-80℃以上-20℃以下であってよく、さらに-60℃以上-30℃以下であってよく、とりわけ-50℃以上-30℃以下であってよい。一の態様において、上記混合物中、炭素数2以上のフルオロカーボンは、ガス(気体)として存在する。 The boiling point of the fluorocarbon having 2 or more carbon atoms may be, for example, from -80°C to -20°C, further from -60°C to -30°C, especially from -50°C to -30°C. It's fine. In one embodiment, the fluorocarbon having two or more carbon atoms is present as a gas in the mixture.

また、炭素数1のフルオロカーボンの沸点と炭素数2以上のフルオロカーボンの沸点の差は、例えば0℃以上20℃以下であってよく、さらに0℃以上10℃以下であってよい。本開示の分離方法によれば、炭素数1のフルオロカーボンと炭素数2以上のフルオロカーボンの沸点が近い場合であっても、炭素数1のフルオロカーボンを分離できる。 Further, the difference between the boiling point of the fluorocarbon having 1 carbon number and the boiling point of the fluorocarbon having 2 or more carbon atoms may be, for example, 0°C or more and 20°C or less, and further may be 0°C or more and 10°C or less. According to the separation method of the present disclosure, even if the boiling points of the fluorocarbon having 1 carbon number and the fluorocarbon having 2 or more carbon atoms are close to each other, the fluorocarbon having 1 carbon number can be separated.

上記炭素数2以上のフルオロカーボンは、飽和フルオロカーボンまたは不飽和フルオロカーボンであってよく、好ましくは飽和フルオロカーボンである。 The fluorocarbon having 2 or more carbon atoms may be a saturated fluorocarbon or an unsaturated fluorocarbon, and is preferably a saturated fluorocarbon.

上記炭素数2以上のフルオロカーボンとしては、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボンが挙げられる。上記ハイドロクロロフルオロカーボンとしては、クロロトリフルオロエタン等の炭素数2のハイドロクロロフルオロカーボン等が挙げられる。上記ハイドロフルオロカーボンとしては、ジフルオロエタン(例えば、1,1-ジフルオロエタン、1,2-ジフルオロエタン、特に、1,1-ジフルオロエタン)、トリフルオロエタン(例えば、1,1,1-トリフルオロエタン、1,1,2-トリフルオロエタン、特に、1,1,1-トリフルオロエタン)、テトラフルオロエタン(例えば、1,1,1,2-テトラフルオロエタン、1,1,2,2-テトラフルオロエタン、特に1,1,1,2-テトラフルオロエタン)、ペンタフルオロエタン等の炭素数2のハイドロフルオロカーボン;テトラフルオロプロペン、ヘキサフルオロプロペン等の炭素数3のハイドロフルオロカーボン等が挙げられる。上記炭素数2以上のフルオロカーボンは、1種または2種以上を含んでいてよい。 Examples of the fluorocarbon having 2 or more carbon atoms include hydrochlorofluorocarbon and hydrofluorocarbon. Examples of the hydrochlorofluorocarbon include hydrochlorofluorocarbons having 2 carbon atoms such as chlorotrifluoroethane. The above-mentioned hydrofluorocarbons include difluoroethane (e.g., 1,1-difluoroethane, 1,2-difluoroethane, especially 1,1-difluoroethane), trifluoroethane (e.g., 1,1,1-trifluoroethane, 1,1-difluoroethane), , 2-trifluoroethane, especially 1,1,1-trifluoroethane), tetrafluoroethane (e.g. 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, In particular, hydrofluorocarbons having 2 carbon atoms such as 1,1,1,2-tetrafluoroethane) and pentafluoroethane; hydrofluorocarbons having 3 carbon atoms such as tetrafluoropropene and hexafluoropropene. The above-mentioned fluorocarbons having 2 or more carbon atoms may contain one type or two or more types.

好ましい態様において、上記炭素数2以上のフルオロカーボンは、例えば炭素数2~5のフルオロカーボンであってよく、好ましくは炭素数2~3のフルオロカーボンであってよい。 In a preferred embodiment, the fluorocarbon having 2 or more carbon atoms may be, for example, a fluorocarbon having 2 to 5 carbon atoms, preferably a fluorocarbon having 2 to 3 carbon atoms.

上記炭素数2以上のフルオロカーボンは、1種または2種以上の化合物を含んでいてよい。炭素数2以上のフルオロカーボンが2種以上の化合物を含む場合、それぞれの化合物の分子径および沸点が、上記範囲にあることが好ましい。 The above-mentioned fluorocarbon having 2 or more carbon atoms may contain one or more kinds of compounds. When the fluorocarbon having two or more carbon atoms contains two or more types of compounds, it is preferable that the molecular diameter and boiling point of each compound are within the above ranges.

上記混合物における炭素数1のフルオロカーボンおよび炭素数2以上のフルオロカーボンの含有率は、上記混合物の全体において、好ましくは90モル%以上100モル%以下、より好ましくは95モル%以上100モル%以下である。 The content of the fluorocarbon having 1 carbon number and the fluorocarbon having 2 or more carbon atoms in the above mixture is preferably 90 mol% or more and 100 mol% or less, more preferably 95 mol% or more and 100 mol% or less, based on the entire mixture. .

上記混合物は、炭素数1のフルオロカーボンおよび炭素数2以上のフルオロカーボン以外に、他の化合物を含んでいてもよい。かかる他の化合物の沸点は、例えば-100℃以下であってよく、-150℃以下であってよい。一の態様において、かかる他の化合物は、気体(ガス)として上記混合物に含まれる。 The above mixture may contain other compounds in addition to the fluorocarbon having 1 carbon number and the fluorocarbon having 2 or more carbon atoms. The boiling point of such other compounds may be, for example, -100°C or lower, or -150°C or lower. In one embodiment, such other compounds are included in the mixture as a gas.

上記他の化合物としては、窒素、酸素、二酸化炭素、水等が挙げられる。 Examples of the other compounds include nitrogen, oxygen, carbon dioxide, water, and the like.

(吸着剤)
上記吸着剤は、炭素数1のフルオロカーボンを吸着しうる。代表的には、上記吸着剤は、炭素数1のフルオロカーボンを吸着し、炭素数2以上のフルオロカーボンを吸着しない。そのため、炭素数1のフルオロカーボンおよび炭素数2以上のフルオロカーボンとを含む混合物と、吸着剤とを接触させることで、該混合物から炭素数1のフルオロカーボンを分離しうる。
(adsorbent)
The above-mentioned adsorbent can adsorb fluorocarbon having 1 carbon number. Typically, the adsorbent adsorbs fluorocarbons having 1 carbon number and does not adsorb fluorocarbons having 2 or more carbon atoms. Therefore, by bringing a mixture containing a fluorocarbon having 1 carbon number and a fluorocarbon having 2 or more carbon atoms into contact with an adsorbent, the fluorocarbon having 1 carbon number can be separated from the mixture.

上記吸着材は、吸着媒として、細孔を有する多孔体を含むことが好ましい。かかる細孔に炭素数1のフルオロカーボンが吸着されることで、上記混合物から炭素数1のフルオロカーボンを分離しうる。 The adsorbent preferably includes a porous body having pores as an adsorbent. By adsorbing the fluorocarbon having 1 carbon into such pores, the fluorocarbon having 1 carbon can be separated from the above mixture.

好ましくは、上記多孔体の有効細孔径は、炭素数2のフルオロカーボンの分子径よりも小さい。上記有効細孔径が、炭素数2のフルオロカーボンの分子径よりも小さいと、炭素数1のフルオロカーボンをより確実に分離しうる。 Preferably, the effective pore diameter of the porous body is smaller than the molecular diameter of the fluorocarbon having 2 carbon atoms. When the effective pore diameter is smaller than the molecular diameter of the fluorocarbon having 2 carbon atoms, the fluorocarbon having 1 carbon number can be separated more reliably.

ここで、有効細孔径は、多孔体と吸着質とを接触させた場合において、該吸着質の吸着の程度と分子径とから決定される多孔体の細孔径であり、具体的には、Horvath-Kawazoe法を用い、窒素吸着等温線の相対圧を有効細孔径に換算することによおり求めることができる。換算式としては、J.Chem.Eng.Jpn.,1983,16,6,470-475に記載の計算式を用いてよく、換算式中のパラメータ値としては、カーボンと窒素の組合せに基づく値を使用してよい。 Here, the effective pore diameter is the pore diameter of a porous body determined from the degree of adsorption and molecular diameter of the adsorbate when the porous body and adsorbate are brought into contact with each other. - It can be determined by converting the relative pressure of the nitrogen adsorption isotherm into the effective pore diameter using the Kawazoe method. The conversion formula is J. Chem. Eng. Jpn. , 1983, 16, 6, 470-475 may be used, and the parameter values in the conversion equation may be values based on the combination of carbon and nitrogen.

上記多孔体の有効細孔径は、例えば0.30nm以上0.46nm以下、好ましくは0.32nm以上0.44nm以下である。一の態様において、上記多孔体の有効細孔径は、例えば0.30nm以上、好ましくは0.32nm以上であり、例えば0.46nm以下、好ましくは0.44nm以下である。 The effective pore diameter of the porous body is, for example, 0.30 nm or more and 0.46 nm or less, preferably 0.32 nm or more and 0.44 nm or less. In one aspect, the effective pore diameter of the porous body is, for example, 0.30 nm or more, preferably 0.32 nm or more, and is, for example, 0.46 nm or less, preferably 0.44 nm or less.

上記多孔体の比表面積は、例えば40m/g以上、好ましくは100m/g以上、より好ましくは300m/g以上であることができ、例えば2,000m/g以下であってよく、1,000m/g以下であってよい。上記多孔体の比表面積は、窒素ガスの吸着等温線から、BET法を用いて算出される。 The specific surface area of the porous body may be, for example, 40 m 2 /g or more, preferably 100 m 2 /g or more, more preferably 300 m 2 /g or more, and may be, for example, 2,000 m 2 /g or less, It may be 1,000 m 2 /g or less. The specific surface area of the porous body is calculated from the nitrogen gas adsorption isotherm using the BET method.

上記多孔体における、炭素数1のフルオロカーボンの平衡吸着量は、温度303K、圧力0,4Pa~1MPaの範囲で測定した場合、例えば、1g/10g以上であってよく、100g/10g以下であってよい。 The equilibrium adsorption amount of fluorocarbon having 1 carbon in the porous body may be, for example, 1 g/10 g or more and 100 g/10 g or less when measured at a temperature of 303 K and a pressure of 0.4 Pa to 1 MPa. good.

上記多孔体は、粉末状(粒子状)、膜状、粒状、成型体(ペレット状等)等であってよく、成型体であることが好ましく、ペレット状であることがさらに好ましい。ペレットは、円柱状でも球状でもよい。円柱状の場合、該円柱の半径は1.6mm以上6mm以下であることが好ましく、該円柱の厚みは2mm以上6mm以下であることが好ましい。球状の場合、真球でないものも含み、該球の半径は4mm以上12mm以下であることが好ましい。 The porous body may be in the form of a powder (particulate), film, granule, molded body (pellet shape, etc.), preferably a molded body, and more preferably a pellet shape. Pellets may be cylindrical or spherical. In the case of a cylindrical shape, the radius of the cylinder is preferably 1.6 mm or more and 6 mm or less, and the thickness of the cylinder is preferably 2 mm or more and 6 mm or less. In the case of a spherical shape, including a shape that is not a perfect sphere, the radius of the sphere is preferably 4 mm or more and 12 mm or less.

上記多孔体は、例えば、ゼオライト、活性炭、シリカゲルおよび金属有機構造体(PCP:Porous Coordination Polymer、または、MOF:Metal-Organic Framework)からなる群より選ばれる少なくとも1種を含むことが好ましく、代表的には、金属有機構造体を含む。 The porous body preferably contains at least one member selected from the group consisting of zeolite, activated carbon, silica gel, and metal-organic framework (PCP: Porous Coordination Polymer, or MOF: Metal-Organic Framework). includes metal-organic frameworks.

上記金属有機構造体は、金属イオンと、1種または2種以上の有機配位子とを含むことが好ましい。有機配位子は、代表的には、金属イオンに配位結合しうる基を1分子中に2個以上含み、有機配位子が、金属イオンに配位することで、規則性が高く、3次元的に連続した構造(例えば、ネットワーク構造)が形成され、金属イオンおよび有機配位子の間に細孔が形成される。かかる3次元構造において、金属イオンの種類と有機配位子を組み合わせることで、金属有機構造体の有効細孔径や柔軟性、金属有機構造体と吸着質との相互作用を制御できる。
また、金属有機構造体は、吸着質の吸着と脱着を繰り返した後でも吸着量(最大吸着量)が低下せず、繰り返し耐久性が高い。さらに、金属有機構造体は、温度(熱)や湿度の影響を受けにくく、高温高湿下で長時間保存した場合であっても、吸着量が低下せず、高温高湿耐久性が高い。
Preferably, the metal-organic framework contains a metal ion and one or more organic ligands. Typically, an organic ligand contains two or more groups in one molecule that can coordinate to a metal ion, and the organic ligand has high regularity by coordinating with the metal ion. A three-dimensionally continuous structure (for example, a network structure) is formed, and pores are formed between the metal ion and the organic ligand. In such a three-dimensional structure, by combining the types of metal ions and organic ligands, the effective pore diameter and flexibility of the metal-organic structure and the interaction between the metal-organic structure and the adsorbate can be controlled.
In addition, the metal-organic structure does not reduce its adsorption amount (maximum adsorption amount) even after repeated adsorption and desorption of adsorbate, and has high repeat durability. Furthermore, the metal-organic structure is not easily affected by temperature (heat) and humidity, and even when stored for a long time under high temperature and high humidity, the amount of adsorption does not decrease, and it has high high temperature and high humidity durability.

上記金属イオンは、特に限定されないが、例えば、Ia族、IIa族、IIIa族、IVa~VIII族、Ib~VIb族からなる群から選択される金属のイオンである。かかる金属は、好ましくは、Mg、Ca、Sr、Ba、Sc、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ro、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Hg、Al、Ga、In、TI、Si、Ge、Sn、Pb、As、Sb、Bi、La、Ce、Pr、Nd、Pm、Sm、En、Gd、Tb、Dy、Ho、Er、Tm、およびYbであり得る。 The above-mentioned metal ions are, for example, metal ions selected from the group consisting of Group Ia, Group IIa, Group IIIa, Groups IVa to VIII, and Groups Ib to VIb, although they are not particularly limited. Such metals are preferably Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ro, Os, Co, Rh. , Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, TI, Si, Ge, Sn, Pb, As, Sb, Bi, La, Ce, Pr, Nd , Pm, Sm, En, Gd, Tb, Dy, Ho, Er, Tm, and Yb.

具体的には、かかる金属イオンは、Mg2+、Ca2+、Sr2+、Ba2+、Sc3+、Y3+、Ln3+、Ti4+、Zr4+、Hf4+、V4+、V3+、V2+、Nb3+、Ta3+、Cr3+、Mo3+、W3+、Mn3+、Mn2+、Re3+、Re2+、Fe3+、Fe2+、Ru3+、Ru2+、Os3+、Os2+、Co3+、Co2+、Rh2+、Rh、Ir2+、Ir、Ni2+、Ni、Pd2+、Pd、Pt2+、Pt、Cu2+、Cu、Ag、Au、Zn2+、Cd2+、Hg2+、Al3+、Ga3+、ln3+、TI3+、Si4+、Si2+、Ge4+、Ge2+、Sn4+、Sn2+、Pb4+、Pb2+、As5+、As3+、As、Sb5+、Sb3+、Sb、Bi5+、Bi3+、Bi、La3+、Ce3+、Pr3+、Nd3+、Pm3+、Sm3+、En3+、Gd3+、Tb3+、Dy3+、Ho3+、Er3+、Tm3+、またはYb3+であり得る。 Specifically, such metal ions include Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Sc 3+ , Y 3+ , Ln 3+ , Ti 4+ , Zr 4+ , Hf 4+ , V 4+ , V 3+ , V 2+ , Nb 3+ , Ta 3+ , Cr 3+ , Mo 3+ , W 3+ , Mn 3+ , Mn 2+ , Re 3+ , Re 2+ , Fe 3+ , Fe 2+ , Ru 3+ , Ru 2+ , Os 3+ , Os 2+ , Co 3+ , Co 2+ , Rh 2+ , Rh + , Ir 2+ , Ir + , Ni 2+ , Ni + , Pd 2+ , Pd + , Pt 2+ , Pt + , Cu 2+ , Cu + , Ag + , Au + , Zn 2+ , Cd 2+ , Hg 2+ , Al 3+ , Ga 3+ , ln 3+ , TI 3+ , Si 4+ , Si 2+ , Ge 4+ , Ge 2+ , Sn 4+ , Sn 2+ , Pb 4+ , Pb 2+ , As 5+ , As 3+ , As + , Sb 5+ , Sb 3+ , Sb + , Bi 5+ , Bi 3+ , Bi + , La 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Pm 3+ , Sm 3+ , En 3+ , Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , It can be Tm 3+ or Yb 3+ .

上記金属イオンは、1種のみであっても2種以上であってもよい。好ましくは、上記金属イオンは1種である。 The number of the above-mentioned metal ions may be one type or two or more types. Preferably, the number of metal ions is one.

好ましい態様において、上記金属イオンは、Znイオンであり、好ましくはZn2+である。 In a preferred embodiment, the metal ion is a Zn ion, preferably Zn 2+ .

上記有機配位子は、金属イオンに配位結合しうる基を1分子中に2個以上含むものであれば特に限定されない。上記配位結合は、例えば、金属イオンと配位結合を形成しうる官能基により形成される。 The organic ligand is not particularly limited as long as it contains two or more groups in one molecule that can coordinately bond to a metal ion. The coordinate bond is formed by, for example, a functional group that can form a coordinate bond with a metal ion.

上記配位結合を形成することができる官能基としては、例えば、-COOH、-CSH、-NO、-B(OH)、-SOH、-Si(OH)、-Ge(OH)、-Sn(OH)、-Si(SH)、-Ge(SH)、-Sn(SH)、-POH、-AsOH、-AsOH、-P(SH)、-As(SH)、-CH(RSH)、-C(RSH)、-CH(RNH、-C(RNH、-CH(ROH)、-C(ROH)、-CH(RCN)、および-C(RCN)が挙げられる。上記式中、Rは、単結合、炭素数1~5のアルキレン基(例えば、メチレン、エチレン、n-プロピレン、i-プロピレン、n-ブチレン、i-ブチレン、tert-ブチレンまたはn-ペンチレン基)、炭素数6~14の2価の芳香族基(例えば、例えばフェニレン)、または上記アルキレン基と芳香族基の組み合わせ(例えば、-フェニレン-アルキレン-フェニレン-)である。また、上記配位結合を形成することができる官能基は、複素環中に含まれるヘテロ原子(例えば、N、O、S、B、P、Si、Al)であってよく、好ましくは複素環中に含まれる窒素原子であってもよい。 Examples of the functional groups capable of forming the coordinate bond include -COOH, -CS 2 H, -NO 2 , -B(OH) 2 , -SO 3 H, -Si(OH) 3 , -Ge (OH) 3 , -Sn(OH) 3 , -Si(SH) 4 , -Ge(SH) 4 , -Sn(SH) 3 , -PO 3 H, -AsO 3 H, -AsO 4 H, -P (SH) 3 , -As(SH) 3 , -CH(RSH) 2 , -C(RSH) 3 , -CH(RNH 2 ) 2 , -C(RNH 2 ) 3 , -CH(ROH) 2 , - Examples include C(ROH) 3 , -CH(RCN) 3 , and -C(RCN) 3 . In the above formula, R is a single bond or an alkylene group having 1 to 5 carbon atoms (for example, methylene, ethylene, n-propylene, i-propylene, n-butylene, i-butylene, tert-butylene or n-pentylene group) , a divalent aromatic group having 6 to 14 carbon atoms (for example, phenylene), or a combination of the above alkylene group and an aromatic group (for example, -phenylene-alkylene-phenylene-). Further, the functional group capable of forming the coordinate bond may be a heteroatom contained in a heterocycle (for example, N, O, S, B, P, Si, Al), and preferably a heteroatom contained in a heterocycle. It may also be a nitrogen atom contained therein.

好ましい態様において、上記配位結合を形成することができる官能基は、-COOHおよび複素環に含まれる窒素原子等であり得る。 In a preferred embodiment, the functional group capable of forming the coordinate bond may be -COOH, a nitrogen atom included in a heterocycle, or the like.

上記有機配位子は、好ましくは、二座以上となるように上記官能基を有する。かかる有機配位子において、官能基以外の部分は、有機配位子が金属イオンと配位結合を形成できる限り、限定されない。 The organic ligand preferably has the functional group so as to be bidentate or more. In such an organic ligand, the parts other than the functional group are not limited as long as the organic ligand can form a coordinate bond with a metal ion.

一の態様において、上記有機配位子は、飽和もしくは不飽和の脂肪族化合物または芳香族化合物に由来する。また、上記配位子は、かかる脂肪族化合物と芳香族化合物が結合した化合物(以下、「脂肪族芳香族化合物」ともいう)に由来していてもよい。 In one embodiment, the organic ligand is derived from a saturated or unsaturated aliphatic or aromatic compound. Moreover, the above-mentioned ligand may be derived from a compound in which such an aliphatic compound and an aromatic compound are bonded (hereinafter also referred to as "aliphatic aromatic compound").

上記脂肪族化合物または脂肪族芳香族化合物の脂肪族部分は、直鎖、分枝鎖、または環状であってもよい。脂肪族部分は、環状である場合、複数の環を有していてもよい。上記脂肪族化合物または脂肪族芳香族化合物の脂肪族部分は、好ましくは1~15個の炭素原子を有し、より好ましくは1~10個の炭素原子、例えば1、2、3、4、5、6、7、8、9または10個の炭素原子を有する。好ましい態様において、上記脂肪族部分は、メタン、アダマンタン、アセチレン、エチレンまたはブタジエンに由来する。 The aliphatic portion of the aliphatic compound or aliphatic aromatic compound may be linear, branched, or cyclic. When the aliphatic moiety is cyclic, it may have multiple rings. The aliphatic moiety of the aliphatic compound or aliphatic aromatic compound preferably has 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, such as 1, 2, 3, 4, 5 , 6, 7, 8, 9 or 10 carbon atoms. In a preferred embodiment, the aliphatic moiety is derived from methane, adamantane, acetylene, ethylene or butadiene.

上記芳香族化合物または芳香族脂肪族化合物の芳香族部分は、1個以上の環、例えば2、3、4または5個の環を有していてもよい。これらの環は、縮合していても、縮合していなくてもよい。上記芳香族化合物または脂肪族芳香族化合物の芳香族部分は、好ましくは1、2、または3個、より好ましくは1または2個の環を有する。また、上記化合物の各環は、環中に少なくとも1種のヘテロ原子、例えばN、O、S、B、P、Si、Al、好ましくはN、OまたはSを有していてもよい。芳香族化合物または芳香族脂肪族化合物の芳香族部分は、炭素数6の環を1または2個含むことが好ましい。芳香族部分は、2個である場合、かかる2個の環は縮合していても、縮合していなくてもよい。好ましい態様において、かかる芳香族部分は、ベンゼン、ナフタレン、ビフェニル、ビピリジルまたはピリジルに由来する。 The aromatic moiety of the aromatic compound or araliphatic compound may have one or more rings, for example 2, 3, 4 or 5 rings. These rings may be fused or unfused. The aromatic moiety of the aromatic compound or aliphatic aromatic compound preferably has 1, 2 or 3 rings, more preferably 1 or 2 rings. Each ring of the above compounds may also have at least one heteroatom in the ring, such as N, O, S, B, P, Si, Al, preferably N, O or S. The aromatic compound or the aromatic moiety of the aromatic aliphatic compound preferably contains one or two rings each having 6 carbon atoms. When there are two aromatic moieties, the two rings may or may not be fused. In preferred embodiments, such aromatic moieties are derived from benzene, naphthalene, biphenyl, bipyridyl or pyridyl.

一の態様において、上記有機配位子は、ジカルボン酸、トリカルボン酸またはテトラカルボン酸に由来する。 In one embodiment, the organic ligand is derived from dicarboxylic, tricarboxylic or tetracarboxylic acids.

上記ジカルボン酸としては、例えば、シュウ酸、コハク酸、酒石酸、マレイン酸、1,4-ブタンジカルボン酸、1,4-ブテンジカルボン酸、4-オキソピラン-2,6-ジカルボン酸、1,6-ヘキサンジカルボン酸、デカンジカルボン酸、1,8-ヘプタデカンジカルボン酸、1,9-ヘプタデカンジカルボン酸、ヘプタデカンジカルボン酸、アセチレンジカルボン酸、1,2-ベンゼンジカルボン酸、1,3-ベンゼンジカルボン酸、2,3-ピリジンジカルボン酸、ピリジン-2,3-ジカルボン酸、1,3-ブタジエン-1,4-ジカルボン酸、1,4-ベンゼンジカルボン酸、p-ベンゼンジカルボン酸、イミダゾール-2,4-ジカルボン酸、2-メチルキノリン-3,4-ジカルボン酸、キノリン-2,4-ジカルボン酸、キノキサリン-2,3-ジカルボン酸、6-クロロキノキサリン-2,3-ジカルボン酸、4,4’-ジアミノフェニルメタン-3,3’-ジカルボン酸、キノリン-3,4-ジカルボン酸、7-クロロ-4-ヒドロキシキノリン-2,8-ジカルボン酸、ジイミドジカルボン酸、ピリジン-2,6-ジカルボン酸、2-メチルイミダゾール-4,5-ジカルボン酸、チオフェン-3,4-ジカルボン酸、2-イソプロピルイミダゾール-4,5-ジカルボン酸、テトラハイドロピラン-4,4-ジカルボン酸、ペリレン-3,9-ジカルボン酸、ペリレンジカルボン酸、プルリオールE200-ジカルボン酸、3,6-ジオキサオクタンジカルボン酸、3,5-シクロヘキサジエン-1,2-ジカルボン酸、オクタンジカルボン酸、ペンタン-3,3-ジカルボン酸、4,4’-ジアミノ-1,1’-ビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、ベンジジン-3,3’-ジカルボン酸、1,4-ビス(フェニルアミノ)ベンゼン-2,5-ジカルボン酸、1,1’-ビナフチルジカルボン酸、7-クロロ-8-メチルキノリン-2,3-ジカルボン酸、1-アニリノ-アントラキノン-2,4’-ジカルボン酸、ポリテトラヒドロフラン250-ジカルボン酸、1,4-ビス(カルボキシメチル)ピペラジン-2,3-ジカルボン酸、7-クロロキノリン-3,8-ジカルボン酸、1-(4-カルボキシ)フェニル-3-(4-クロロ)フェニルピラゾリン-4,5-ジカルボン酸、1,4,5,6,7,7-ヘキサクロロ-5-ノルボルネン-2,3-ジカルボン酸、フェニルインダンジカルボン酸、1,3-ジベンジル-2-オキソイミダゾリジン-4,5-ジカルボン酸、1,4-シクロヘキサンジカルボン酸、ナフタレン-1,8-ジカルボン酸、2-ベンゾイルベンゼン-1,3-ジカルボン酸、1,3-ジベンジル-2-オキソイミダゾリデン-4,5-cis-ジカルボン酸、2,2’-ビキノリン-4,4’-ジカルボン酸、ピリジン-3,4-ジカルボン酸、3,6,9-トリオキサウンデカンジカルボン酸、ヒドロキシベンゾフェノンジカルボン酸、プルリオールE300-ジカルボン酸、プルリオールE400-ジカルボン酸、プルリオールE600-ジカルボン酸、ピラゾール-3,4-ジカルボン酸、2,3-ピラジンジカルボン酸、5,6-ジメチル-2,3-ピラジンジカルボン酸、4,4’-ジアミノ(ジフェニルエーテル)ジイミドジカルボン酸、4,4’-ジアミノジフェニルメタンジイミドジカルボン酸、4,4’-ジアミノ(ジフェニルスルホン)ジイミドジカルボン酸、1,4-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,3-アダマンタンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、8-メトキシ-2,3-ナフタレンジカルボン酸、8-ニトロ-2,3-ナフタレンジカルボン酸、8-スルホ-2,3-ナフタレンジカルボン酸、アントラセン-2,3-ジカルボン酸、2’,3’-ジフェニル-p-ターフェニル-4,4”-ジカルボン酸、(ジフェニルエーテル)-4,4’-ジカルボン酸、イミダゾール-4,5-ジカルボン酸、4(1H)-オキオチオクロメン-2,8-ジカルボン酸、5-tert-ブチル-1,3-ベンゼンジカルボン酸、7,8-キノリンジカルボン酸、4,5-イミダゾールジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸、ヘキサトリアコンタンジカルボン酸、テトラデドカンジカルボン酸、1,7-ヘプタンジカルボン酸、5-ヒドロキシ-1,3-ベンゼンジカルボン酸、2,5-ジヒドロキシ-1,4-ジカルボン酸、ピラジン-2,3-ジカルボン酸、フラン-2,5-ジカルボン酸、1-ノネン-6,9-ジカルボン酸、エイコセンジカルボン酸、4,4’-ジヒドロキシジフェニルメタン-3,3’-ジカルボン酸、1-アミノ-4-メチル-9,10-ジオキソ-9,10-ジヒドロアントラセン-2,3-ジカルボン酸、2,5-ピリジンジカルボン酸、シクロヘキセン-2,3-ジカルボン酸、2,9-ジクロロフルオルビン-4,11-ジカルボン酸、7-クロロ-3-メチルキノリン-6,8-ジカルボン酸、2,4-ジクロロベンゾフェノン-2’,5’-ジカルボン酸、1,3-ベンゼンジカルボン酸、2,6-ピリジンジカルボン酸、1-メチルピロール-3,4-ジカルボン酸、1-ベンジル-1H-ピロール-3,4-ジカルボン酸、アントラキノン-1,5-ジカルボン酸、3,5-ピラゾールジカルボン酸、2-ニトロベンゼン-1,4-ジカルボン酸、ヘプタン-1,7-ジカルボン酸、シクロブタン-1,1-ジカルボン酸、1,14-テトラデドカンジカルボン酸、5,6-デヒドロノルボルナン-2,3-ジカルボン酸、5-エチル-2,3-ピリジンジカルボン酸、およびカンファージカルボン酸が挙げられる。 Examples of the dicarboxylic acids include oxalic acid, succinic acid, tartaric acid, maleic acid, 1,4-butanedicarboxylic acid, 1,4-butenedicarboxylic acid, 4-oxopyran-2,6-dicarboxylic acid, 1,6- Hexanedicarboxylic acid, decanedicarboxylic acid, 1,8-heptadecanedicarboxylic acid, 1,9-heptadecanedicarboxylic acid, heptadecanedicarboxylic acid, acetylenedicarboxylic acid, 1,2-benzenedicarboxylic acid, 1,3-benzenedicarboxylic acid , 2,3-pyridinedicarboxylic acid, pyridine-2,3-dicarboxylic acid, 1,3-butadiene-1,4-dicarboxylic acid, 1,4-benzenedicarboxylic acid, p-benzenedicarboxylic acid, imidazole-2,4 -dicarboxylic acid, 2-methylquinoline-3,4-dicarboxylic acid, quinoline-2,4-dicarboxylic acid, quinoxaline-2,3-dicarboxylic acid, 6-chloroquinoxaline-2,3-dicarboxylic acid, 4,4' -diaminophenylmethane-3,3'-dicarboxylic acid, quinoline-3,4-dicarboxylic acid, 7-chloro-4-hydroxyquinoline-2,8-dicarboxylic acid, diimidodicarboxylic acid, pyridine-2,6-dicarboxylic acid , 2-methylimidazole-4,5-dicarboxylic acid, thiophene-3,4-dicarboxylic acid, 2-isopropylimidazole-4,5-dicarboxylic acid, tetrahydropyran-4,4-dicarboxylic acid, perylene-3,9 -dicarboxylic acid, perylene dicarboxylic acid, Pluriol E200-dicarboxylic acid, 3,6-dioxaoctane dicarboxylic acid, 3,5-cyclohexadiene-1,2-dicarboxylic acid, octane dicarboxylic acid, pentane-3,3-dicarboxylic acid , 4,4'-diamino-1,1'-biphenyl-3,3'-dicarboxylic acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, benzidine-3,3'-dicarboxylic acid, 1 , 4-bis(phenylamino)benzene-2,5-dicarboxylic acid, 1,1'-binaphthyldicarboxylic acid, 7-chloro-8-methylquinoline-2,3-dicarboxylic acid, 1-anilino-anthraquinone-2, 4'-dicarboxylic acid, polytetrahydrofuran 250-dicarboxylic acid, 1,4-bis(carboxymethyl)piperazine-2,3-dicarboxylic acid, 7-chloroquinoline-3,8-dicarboxylic acid, 1-(4-carboxylic) Phenyl-3-(4-chloro)phenylpyrazoline-4,5-dicarboxylic acid, 1,4,5,6,7,7-hexachloro-5-norbornene-2,3-dicarboxylic acid, phenylindanedicarboxylic acid, 1,3-dibenzyl-2-oxoimidazolidine-4,5-dicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, naphthalene-1,8-dicarboxylic acid, 2-benzoylbenzene-1,3-dicarboxylic acid, 1, 3-dibenzyl-2-oxoimidazolidene-4,5-cis-dicarboxylic acid, 2,2'-biquinoline-4,4'-dicarboxylic acid, pyridine-3,4-dicarboxylic acid, 3,6,9-trio Xaoundecane dicarboxylic acid, hydroxybenzophenone dicarboxylic acid, Pluriol E300-dicarboxylic acid, Pluriol E400-dicarboxylic acid, Pluriol E600-dicarboxylic acid, pyrazole-3,4-dicarboxylic acid, 2,3-pyrazinedicarboxylic acid, 5,6-dimethyl -2,3-pyrazine dicarboxylic acid, 4,4'-diamino(diphenyl ether) diimide dicarboxylic acid, 4,4'-diaminodiphenylmethane diimide dicarboxylic acid, 4,4'-diamino(diphenylsulfone) diimide dicarboxylic acid, 1,4 -Naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, 1,3-adamantanedicarboxylic acid, 1,8-naphthalene dicarboxylic acid, 2,3-naphthalene dicarboxylic acid, 8-methoxy-2,3-naphthalene dicarboxylic acid, 8 -Nitro-2,3-naphthalene dicarboxylic acid, 8-sulfo-2,3-naphthalene dicarboxylic acid, anthracene-2,3-dicarboxylic acid, 2',3'-diphenyl-p-terphenyl-4,4"- Dicarboxylic acid, (diphenyl ether)-4,4'-dicarboxylic acid, imidazole-4,5-dicarboxylic acid, 4(1H)-okiothiochromene-2,8-dicarboxylic acid, 5-tert-butyl-1,3 -Benzenedicarboxylic acid, 7,8-quinolinedicarboxylic acid, 4,5-imidazoledicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid, hexatriacontanedicarboxylic acid, tetradedocanedicarboxylic acid, 1,7-heptanedicarboxylic acid acid, 5-hydroxy-1,3-benzenedicarboxylic acid, 2,5-dihydroxy-1,4-dicarboxylic acid, pyrazine-2,3-dicarboxylic acid, furan-2,5-dicarboxylic acid, 1-nonene-6 , 9-dicarboxylic acid, eicosene dicarboxylic acid, 4,4'-dihydroxydiphenylmethane-3,3'-dicarboxylic acid, 1-amino-4-methyl-9,10-dioxo-9,10-dihydroanthracene-2, 3-dicarboxylic acid, 2,5-pyridinedicarboxylic acid, cyclohexene-2,3-dicarboxylic acid, 2,9-dichlorofluorobin-4,11-dicarboxylic acid, 7-chloro-3-methylquinoline-6,8- Dicarboxylic acid, 2,4-dichlorobenzophenone-2',5'-dicarboxylic acid, 1,3-benzenedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 1-methylpyrrole-3,4-dicarboxylic acid, 1-benzyl -1H-pyrrole-3,4-dicarboxylic acid, anthraquinone-1,5-dicarboxylic acid, 3,5-pyrazoledicarboxylic acid, 2-nitrobenzene-1,4-dicarboxylic acid, heptane-1,7-dicarboxylic acid, cyclobutane -1,1-dicarboxylic acid, 1,14-tetradedokanedicarboxylic acid, 5,6-dehydronorbornane-2,3-dicarboxylic acid, 5-ethyl-2,3-pyridinedicarboxylic acid, and camphordicarboxylic acid. It will be done.

上記トリカルボン酸としては、例えば、2-ヒドロキシ-1,2,3-プロパントリカルボン酸、7-クロロ-2,3,8-キノリントリカルボン酸、1,2,3-、1,2,4-ベンゼントリカルボン酸、1,2,4-ブタントリカルボン酸、2-ホスフォノ-1,2,4-ブタントリカルボン酸、1,3,5-ベンゼントリカルボン酸、4,4’,4”-(1,3,5-ベンゼントリイル)トリス安息香酸、1-ヒドロキシ-1,2,3-プロパントリカルボン酸、4,5-ジヒドロ-4,5-ジオキソ-1H-ピロロ[2,3-F]キノリン-2,7,9-トリカルボン酸、5-アセチル-3-アミノ-6-メチルベンゼン-1,2,4-トリカルボン酸、3-アミノ-5-ベンゾイル-6-メチルベンゼン-1,2,4-トリカルボン酸、1,2,3-プロパントリカルボン酸、およびオーリントリカルボン酸が挙げられる。 Examples of the above tricarboxylic acids include 2-hydroxy-1,2,3-propanetricarboxylic acid, 7-chloro-2,3,8-quinolinetricarboxylic acid, 1,2,3-,1,2,4-benzene Tricarboxylic acid, 1,2,4-butanetricarboxylic acid, 2-phosphono-1,2,4-butanetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, 4,4',4''-(1,3, 5-benzentriyl) trisbenzoic acid, 1-hydroxy-1,2,3-propanetricarboxylic acid, 4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-F]quinoline-2, 7,9-tricarboxylic acid, 5-acetyl-3-amino-6-methylbenzene-1,2,4-tricarboxylic acid, 3-amino-5-benzoyl-6-methylbenzene-1,2,4-tricarboxylic acid , 1,2,3-propanetricarboxylic acid, and aurinetricarboxylic acid.

上記テトラカルボン酸としては、1,1-ジオキシドペリロ[1,12-BCD]チオフェン-3,4,9,10-テトラカルボン酸、ペリレン-3,4,9,10-テトラカルボン酸または(ペリレン-1,12-スルホン)-3,4,9,10-テトラカルボン酸などのペリレンテトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸またはメソ-1,2,3,4-ブタンテトラカルボン酸などのブタンテトラカルボン酸、デカン-2,4,6,8-テトラカルボン酸、1,4,7,10,13,16-ヘキサオキサシクロオクタデカン-2,3,11,13-テトラカルボン酸、1,2,4,5-ベンゼンテトラカルボン酸、1,2,11,12-ドデカンテトラカルボン酸、1,2,5,6-ヘキサンテトラカルボン酸、1,2,7,8-オクタンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、1,2,9,10-デカンテトラカルボン酸、ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、テトラヒドロフランテトラカルボン酸、およびシクロペンタン-1,2,3,4-テトラカルボン酸などのシクロペンタンテトラカルボン酸が挙げられる。 The above-mentioned tetracarboxylic acid includes 1,1-dioxidoperillo[1,12-BCD]thiophene-3,4,9,10-tetracarboxylic acid, perylene-3,4,9,10-tetracarboxylic acid, or (perylene- Perylenetetracarboxylic acids such as 1,12-sulfone)-3,4,9,10-tetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid or meso-1,2,3,4-butanetetracarboxylic acid Carboxylic acids such as butanetetracarboxylic acid, decane-2,4,6,8-tetracarboxylic acid, 1,4,7,10,13,16-hexaoxacyclooctadecane-2,3,11,13-tetracarboxylic acid acid, 1,2,4,5-benzenetetracarboxylic acid, 1,2,11,12-dodecanetetracarboxylic acid, 1,2,5,6-hexanetetracarboxylic acid, 1,2,7,8-octane Tetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 1,2,9,10-decanetetracarboxylic acid, benzophenonetetracarboxylic acid, 3,3',4,4'-benzophenonetetracarboxylic acid, Examples include cyclopentanetetracarboxylic acids such as tetrahydrofurantetracarboxylic acid and cyclopentane-1,2,3,4-tetracarboxylic acid.

一の態様において、上記有機配位子は、環ヘテロ原子により配位結合を形成することができる複素環に由来する。かかる複素環としては、以下の複素環が挙げられる。該複素環は、非置換であっても置換されていてもよい。 In one embodiment, the organic ligand is derived from a heterocycle capable of forming coordination bonds through ring heteroatoms. Such heterocycles include the following heterocycles. The heterocycle may be unsubstituted or substituted.

Figure 2024022631000002
Figure 2024022631000002

一の態様において、有機配位子は、ジアゾール、トリアゾール等のアゾールに由来し、好ましくはトリアゾールに由来する。 In one embodiment, the organic ligand is derived from an azole, such as a diazole, a triazole, preferably a triazole.

好ましい態様において、上記有機配位子は、ジカルボン酸に由来する有機配位子およびアゾールに由来する有機配位子を含み、好ましくは、シュウ酸に由来する有機配位子および1,2,4-トリアゾールに由来する有機配位子を含む。 In a preferred embodiment, the organic ligand includes an organic ligand derived from dicarboxylic acid and an organic ligand derived from azole, preferably an organic ligand derived from oxalic acid and 1,2,4 - Contains organic ligands derived from triazoles.

上記の有機配位子は、1種のみであっても、2種以上であってもよい。 The number of the above-mentioned organic ligands may be one, or two or more.

なお、本開示において「化合物に由来する」ことには、化合物そのものであることに加え、かかる化合物の一部がプロトン化した形態のものや、完全にプロトン化した形態のものであることが含まれる。 In addition, in this disclosure, "derived from a compound" includes not only the compound itself but also a partially protonated form or a completely protonated form of the compound. It will be done.

上記金属有機構造体は、金属イオンと有機配位子を接触させることにより製造しうる。
かかる金属イオンと有機配位子の接触は、溶媒の存在下で実施してよい。上記溶媒としては、水、エタノール、ジメチルホルムアミド、トルエン、メタノール、クロロベンゼン、ジエチルホルムアミド、ジメチルスルホキシド、水、過酸化水素、メチルアミン、水酸化ナトリウム溶液、N-メチルピロリドンエーテル、アセトニトリル、塩化ベンジル、トリエチルアミン、もしくはエチレングリコール、またはこれらの混合物であり得る。
The above-mentioned metal-organic framework can be produced by bringing a metal ion into contact with an organic ligand.
Such contact between metal ions and organic ligands may be carried out in the presence of a solvent. The above solvents include water, ethanol, dimethylformamide, toluene, methanol, chlorobenzene, diethylformamide, dimethyl sulfoxide, water, hydrogen peroxide, methylamine, sodium hydroxide solution, N-methylpyrrolidone ether, acetonitrile, benzyl chloride, triethylamine. or ethylene glycol, or a mixture thereof.

上記金属イオンと有機配位子の接触は、加圧下で実施してもよく、常圧下で実施してもよい。また、かかる接触を実施する際の温度は、例えば、10~200℃であってよく、10~150℃であってよい。また、かかる接触を実施する際、撹拌を行ってもよい。 The above-mentioned contact between the metal ion and the organic ligand may be carried out under pressure or under normal pressure. Further, the temperature at which such contact is carried out may be, for example, 10 to 200°C, or 10 to 150°C. Further, when carrying out such contact, stirring may be performed.

金属イオンがZn2+を含み、有機配位子がシュウ酸および1,2,4-トリアゾールを含む場合、かかる金属イオンと有機配位子の接触の際、溶媒として水およびエタノールの混合液を用い、常圧下、例えば10~30℃の温度で撹拌することで金属有機構造体を製造でき、生産性が良好である。 When the metal ion contains Zn 2+ and the organic ligand contains oxalic acid and 1,2,4-triazole, a mixture of water and ethanol is used as a solvent during contact between the metal ion and the organic ligand. The metal-organic structure can be produced by stirring under normal pressure at a temperature of, for example, 10 to 30°C, and the productivity is good.

上記吸着材における多孔体の含有率は、例えば50質量%以上100質量%以下、好ましくは70質量%以上100質量%以下、さらに好ましくは90質量%以上100質量%以下である。 The content of the porous material in the adsorbent is, for example, 50% by mass or more and 100% by mass or less, preferably 70% by mass or more and 100% by mass or less, and more preferably 90% by mass or more and 100% by mass or less.

吸着材は、上記多孔体の他に、樹脂を含んでいてもよい。かかる樹脂としては、樹脂としては、アクリル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン樹脂、ビニルエーテル樹脂、ポリビニルアルコール樹脂、ポリカーボネート樹脂およびポリスルホン樹脂等が挙げられる。 The adsorbent may contain a resin in addition to the above-mentioned porous body. Examples of such resins include acrylic resins, polyurethane resins, polyolefin resins, polyester resins, polyamide resins, vinyl chloride resins, styrene resins, vinyl ether resins, polyvinyl alcohol resins, polycarbonate resins, and polysulfone resins.

上記吸着材は、乳化剤、消泡剤、界面活性剤、レベリング剤、増粘剤、粘弾性調整剤、消泡剤、湿潤剤、分散剤、防腐剤、可塑剤、浸透剤、香料、殺菌剤、殺ダニ剤、防かび剤、紫外線吸収剤、酸化防止剤、帯電防止剤、難燃剤、染料、顔料等の添加剤を含んでいてもよい。また、前記吸着材は、粉末状、粒状、フレーク状、または、ペレット状であってよい。 The above adsorbents include emulsifiers, antifoaming agents, surfactants, leveling agents, thickeners, viscoelastic modifiers, antifoaming agents, wetting agents, dispersants, preservatives, plasticizers, penetrants, fragrances, and bactericidal agents. , acaricides, fungicides, ultraviolet absorbers, antioxidants, antistatic agents, flame retardants, dyes, pigments, and other additives. Further, the adsorbent may be in the form of powder, granules, flakes, or pellets.

(混合物と吸着材の接触)
上記混合物と上記吸着材とを接触させることにより、混合物に含まれる炭素数1のフルオロカーボンが吸着材に吸着され、混合物から炭素数1のフルオロカーボンを分離することができる。一の態様において、かかる混合物と吸着材の接触の際、混合物は、ガス(気体)として接触させることが好ましい。
(Contact between mixture and adsorbent)
By bringing the mixture into contact with the adsorbent, the 1-carbon fluorocarbon contained in the mixture is adsorbed by the adsorbent, and the 1-carbon fluorocarbon can be separated from the mixture. In one embodiment, when contacting such a mixture with an adsorbent, the mixture is preferably contacted as a gas.

混合物と吸着材の接触は、例えば、バッチ法またはカラム法により実施してよい。バッチ法は、密閉可能な容器に吸着材と混合物とを入れ、所定温度および所定圧力の条件下で、一定時間静置することにより、混合物と吸着材とを接触させる方法である。また、カラム法は、吸着材を容器(カラム)に充填し、混合物を該容器(カラム)内に流すことにより、混合物と吸着材とを接触させる方法である。 Contacting the mixture with the adsorbent may be carried out, for example, by a batch method or a column method. The batch method is a method in which the adsorbent and the mixture are placed in a sealable container and allowed to stand for a certain period of time under conditions of a predetermined temperature and a predetermined pressure, thereby bringing the mixture and the adsorbent into contact with each other. Further, the column method is a method in which a container (column) is filled with an adsorbent and the mixture is caused to come into contact with the adsorbent by flowing the mixture into the container (column).

上記接触の際の温度は、例えば10℃以上40℃以下であってよく、さらに15℃以上35℃以下であってよい。また、上記接触の際の圧力(ゲージ圧)は、0.2MPaG以上2MPaG以下であってよく、0.4MPaG以上1.5MPaG以下であってよい。接触の際の圧力が上記範囲にあることで、吸着質が吸着媒に吸着されやすくなり分離効率が向上しうるとともに、吸着媒の細孔構造を保持しうる。 The temperature during the above-mentioned contact may be, for example, 10°C or more and 40°C or less, and further 15°C or more and 35°C or less. Moreover, the pressure (gauge pressure) at the time of the above-mentioned contact may be 0.2 MPaG or more and 2 MPaG or less, and may be 0.4 MPaG or more and 1.5 MPaG or less. When the pressure at the time of contact is within the above range, the adsorbate is easily adsorbed by the adsorbent, the separation efficiency can be improved, and the pore structure of the adsorbent can be maintained.

上記接触をカラム法により実施する場合、上記混合物の流量は、50mL/分以上1,000mL/分以下であってよく、100mL/分以上500mL/分以下であってよい。 When the above-mentioned contact is carried out by a column method, the flow rate of the above-mentioned mixture may be 50 mL/min or more and 1,000 mL/min or less, and may be 100 mL/min or more and 500 mL/min or less.

吸着材に吸着された炭素数1のフルオロカーボンは、減圧、昇温等により吸着材から脱離することができる。これにより、吸着材を再生し、炭素数1のフルオロカーボンを回収することができる。 The 1-carbon fluorocarbon adsorbed on the adsorbent can be desorbed from the adsorbent by reducing the pressure, increasing the temperature, or the like. Thereby, the adsorbent can be regenerated and the fluorocarbon having one carbon number can be recovered.

(精製)
本開示の分離方法は、分離された炭素数1のフルオロカーボンを精製することをさらに含んでいてもよい。これにより、炭素数1のフルオロカーボンを再利用することが可能である。
(purification)
The separation method of the present disclosure may further include purifying the separated 1-carbon fluorocarbon. Thereby, it is possible to reuse the fluorocarbon having one carbon number.

一態様において、上記精製は、蒸留または精留により実施することができる。かかる蒸留は、一般に使用される蒸留塔、例えば、充填塔または棚段塔を用いて実施してよい。蒸留塔の塔頂部より、精製物が留出物として留出され、残部が蒸留塔の塔底部より、缶出物として留出される。蒸留塔の理論段数は、例えば1~100段であってよい。蒸留または精留の際の圧力(ゲージ圧)は、0MPaG以上5MPaG以下であってよい。また、蒸留塔の塔頂部の温度は、例えば-60℃以上100℃以下であってよく、蒸留塔の塔底部の温度は、例えば50℃以上200℃以下であってよい。蒸留の際、抽出溶剤を共存させてもよい。 In one embodiment, the purification can be performed by distillation or rectification. Such distillation may be carried out using commonly used distillation columns, such as packed columns or tray columns. The purified product is distilled out as a distillate from the top of the distillation column, and the remainder is distilled out as a bottom product from the bottom of the distillation column. The number of theoretical plates in the distillation column may be, for example, 1 to 100 plates. The pressure (gauge pressure) during distillation or rectification may be 0 MPaG or more and 5 MPaG or less. Further, the temperature at the top of the distillation column may be, for example, -60°C or more and 100°C or less, and the temperature at the bottom of the distillation column may be, for example, 50°C or more and 200°C or less. An extraction solvent may be present during distillation.

上記留出物を再度蒸留する操作(2回以上の蒸留をする操作)を行うことで、精留を実施できる。 Rectification can be carried out by performing an operation of distilling the above-mentioned distillate again (an operation of distilling the distillate twice or more).

(複合材料)
吸着材と、炭素数1のフルオロカーボンとを含む複合材料も、本開示の技術的範囲に包含される。かかる複合材料において、吸着材としては、上記で説明したものをいずれも用いることができ、金属有機構造体を含むことが好ましい。金属有機構造体における金属イオンは、亜鉛を含むことが好ましく、有機配位子は、シュウ酸および1,2,4-トリアゾールを含むことが好ましい。
(composite material)
A composite material including an adsorbent and a fluorocarbon having 1 carbon number is also included within the technical scope of the present disclosure. In such a composite material, any of the adsorbents described above can be used, and it is preferable that the adsorbent contains a metal-organic framework. Preferably, the metal ion in the metal-organic framework includes zinc, and the organic ligand preferably includes oxalic acid and 1,2,4-triazole.

複合材料において、炭素数1のフルオロカーボンの含有量は、吸着剤100質量部に対して、例えば1質量部以上100質量部以下、好ましくは10質量部以上50質量部以下である。 In the composite material, the content of the fluorocarbon having 1 carbon atom is, for example, 1 part by mass or more and 100 parts by mass or less, preferably 10 parts by mass or more and 50 parts by mass or less, based on 100 parts by mass of the adsorbent.

以下の実施例により本開示をさらに具体的に説明するが、本開示はこれらに限定されない。 The present disclosure will be explained in more detail with reference to the following examples, but the present disclosure is not limited thereto.

実施例1~3、比較例1~3
吸着材として、表1、3に示す金属有機構造体1(CALF-20、Atomis社製)、金属有機構造体2(NEJSAY、Atomis社製)、金属有機構造体3(MIL-120、Atomis社製)、金属有機構造体4(ZIF-8、Atomis社製)、ゼオライト1(MS-4A、ユニオン昭和製)、ゼオライト2(MS-13X、ユニオン昭和製)を用いた。用いる吸着材の前処理として、110℃、12h真空処理した。
Examples 1 to 3, Comparative Examples 1 to 3
As adsorbents, metal-organic structure 1 (CALF-20, manufactured by Atomis), metal-organic structure 2 (NEJSAY, manufactured by Atomis), and metal-organic structure 3 (MIL-120, manufactured by Atomis) shown in Tables 1 and 3 were used. (manufactured by Union Showa), metal organic framework 4 (ZIF-8, manufactured by Atomis), zeolite 1 (MS-4A, manufactured by Union Showa), and zeolite 2 (MS-13X, manufactured by Union Showa) were used. As a pretreatment for the adsorbent used, vacuum treatment was performed at 110° C. for 12 hours.

(比表面積測定)
前処理を行った金属有機構造体(PCP)1~3について、比表面積の測定を行った。比表面積は、マイクロトラック・ベル株式会社製の自動比表面積/細孔分布測定装置「BELSORP-mini II」を用いて測定し、BET法により算出した。結果を表1に示す。
(Specific surface area measurement)
The specific surface areas of pretreated metal-organic structures (PCP) 1 to 3 were measured. The specific surface area was measured using an automatic specific surface area/pore distribution measuring device "BELSORP-mini II" manufactured by Microtrac Bell Co., Ltd., and calculated by the BET method. The results are shown in Table 1.

Figure 2024022631000003
Figure 2024022631000003

(吸着量測定)
上述のように前処理を行った実施例1~3の金属有機構造体(PCP)1~3について、303Kにおいて、クロロジフルオロメタン(R22)及びペンタフルオロエタン(R125)の吸着量の測定を行った。吸着量測定装置として、測定圧力範囲に応じて下記の表に示す2種の装置を用いた。
また、前処理を行った金属有機構造体(PCP)1~4、ゼオライト1、2について、吸着量を測定し、吸着等温線を取得した。吸着等温線取得時の吸着量は、マイクロトラック・ベル株式会社製の自動比表面積/細孔分布測定装置「BELSORP-max」または「BELSORP-HP」を用いて測定した。
(Adsorption amount measurement)
The amount of adsorption of chlorodifluoromethane (R22) and pentafluoroethane (R125) was measured at 303 K for the metal organic frameworks (PCP) 1 to 3 of Examples 1 to 3 that were pretreated as described above. Ta. As the adsorption amount measuring device, two types of devices shown in the table below were used depending on the measurement pressure range.
In addition, adsorption amounts were measured for pretreated metal-organic structures (PCP) 1 to 4 and zeolites 1 and 2, and adsorption isotherms were obtained. The adsorption amount at the time of obtaining the adsorption isotherm was measured using an automatic specific surface area/pore distribution measuring device "BELSORP-max" or "BELSORP-HP" manufactured by Microtrac Bell Co., Ltd.

Figure 2024022631000004
Figure 2024022631000004

図1に、実施例1の金属有機構造体(PCP)1(粉末状)について、303Kにおいて測定した、クロロジフルオロメタン(R22)、ジフルオロメタン(R32)、ペンタフルオロエタン(R125)、1,1,1-トリフルオロエタン(R143a)の吸着等温線を示す。図1より、炭素数1のフルオロカーボンであるR22、R32は金属有機構造体1に吸着し、炭素数2のフルオロカーボンであるR125、R143aはほとんど吸着しなかったことがわかる。 FIG. 1 shows chlorodifluoromethane (R22), difluoromethane (R32), pentafluoroethane (R125), 1,1 measured at 303 K for the metal-organic framework (PCP) 1 (powder) of Example 1. , 1-trifluoroethane (R143a). From FIG. 1, it can be seen that R22 and R32, which are fluorocarbons having one carbon number, were adsorbed to the metal-organic structure 1, while R125 and R143a, which are fluorocarbons having two carbon atoms, were hardly adsorbed.

図2に、実施例1の金属有機構造体(PCP)1(粉末状)について、283K、293K、303、313Kにおいて測定した、R22の吸着等温線を示す。図2より、283Kでの吸着量が一番多く、293~313Kの吸着量にほとんど差が無いことが分かる。測定には、「BELSORP-max」を用いた。 FIG. 2 shows adsorption isotherms of R22 measured at 283 K, 293 K, 303 K, and 313 K for the metal-organic framework (PCP) 1 (powder) of Example 1. From FIG. 2, it can be seen that the amount of adsorption at 283K is the largest, and there is almost no difference in the amount of adsorption between 293 and 313K. "BELSORP-max" was used for the measurement.

実施例2、3の金属有機構造体(PCP)2、3、比較例1の金属有機構造体(PCP)4、比較例2、3のゼオライト1、2(粉末状)についても、同様に、R22、R125の吸着等温線を取得し、平衡に達した吸着量を表3にまとめた。測定には、「BELSORP-HP」を用いた。 Similarly, for the metal organic frameworks (PCP) 2 and 3 of Examples 2 and 3, the metal organic framework (PCP) 4 of Comparative Example 1, and the zeolites 1 and 2 (powdered) of Comparative Examples 2 and 3, Adsorption isotherms of R22 and R125 were obtained, and the amounts of adsorption that reached equilibrium are summarized in Table 3. "BELSORP-HP" was used for the measurement.

Figure 2024022631000005
Figure 2024022631000005

図3に吸着材(多孔体)として、比較例2のMS-4A、比較例3のMS-13Xについて、303Kにおいて測定したR22、R125の吸着等温線を示す。測定には、「BELSORP-HP」を用いた。 FIG. 3 shows adsorption isotherms of R22 and R125 measured at 303 K for MS-4A of Comparative Example 2 and MS-13X of Comparative Example 3 as adsorbents (porous bodies). "BELSORP-HP" was used for the measurement.

(混合ガスの吸着破過測定)
図4にR125/R22=98mol%/2mol%混合ガスを実施例1のCALF-20(ペレット状)を充填した吸着塔へ、全圧0.6MPaG、温度298K、流量250mL/minで流通させ、吸着塔出口のR22、R125濃度を計測した吸着破過曲線を示す。吸着破過曲線から得られたR22吸着量は0.223g/gであり、吸着等温線の平衡吸着量とほぼ同じ値を示した。R125の分子径は0.446nm、R22の分子径は0.418nmであった。
(Adsorption breakthrough measurement of mixed gas)
In Figure 4, a mixed gas of R125/R22 = 98 mol%/2 mol% was passed through an adsorption tower filled with CALF-20 (pellet form) of Example 1 at a total pressure of 0.6 MPaG, a temperature of 298 K, and a flow rate of 250 mL/min. An adsorption breakthrough curve obtained by measuring the R22 and R125 concentrations at the outlet of the adsorption tower is shown. The adsorption amount of R22 obtained from the adsorption breakthrough curve was 0.223 g/g, which was approximately the same value as the equilibrium adsorption amount of the adsorption isotherm. The molecular diameter of R125 was 0.446 nm, and the molecular diameter of R22 was 0.418 nm.

図5にR125/R32=92mol%/8mol%混合ガスを実施例1のCALF-20(ペレット状)を充填した吸着塔へ、全圧0.6MPaG、温度298K、流量320mL/minで流通させ、吸着塔出口のR32、R125濃度を計測した吸着破過曲線を示す。吸着破過曲線から得られたR32吸着量は0.129g/gであり、吸着等温線の平衡吸着量とほぼ同じ値を示した。R32の分子径は、0.363nmであった。 In Figure 5, a mixed gas of R125/R32 = 92 mol%/8 mol% was passed through an adsorption tower filled with CALF-20 (pellet form) of Example 1 at a total pressure of 0.6 MPaG, a temperature of 298 K, and a flow rate of 320 mL/min. An adsorption breakthrough curve obtained by measuring the R32 and R125 concentrations at the outlet of the adsorption tower is shown. The amount of R32 adsorbed obtained from the adsorption breakthrough curve was 0.129 g/g, which was approximately the same value as the equilibrium adsorption amount of the adsorption isotherm. The molecular diameter of R32 was 0.363 nm.

(金属有機構造体の繰り返し吸脱着耐久性試験)
図6に、実施例1の金属有機構造体(PCP)1について、温度303Kにおいて、クロロジフルオロメタン(R22)の吸着と脱着を繰り返し、吸着量を測定して得られた吸着等温線を示す。測定には、「BELSORP-HP」を用いた。300回の繰り返し試験を行った後においても最大吸着量に低下がなく、繰り返し吸脱着において、耐久性が高いといえる。
(Repeated adsorption/desorption durability test of metal-organic structures)
FIG. 6 shows an adsorption isotherm obtained by repeating adsorption and desorption of chlorodifluoromethane (R22) on the metal organic framework (PCP) 1 of Example 1 at a temperature of 303 K and measuring the amount of adsorption. "BELSORP-HP" was used for the measurement. There was no decrease in the maximum adsorption amount even after 300 repeated tests, and it can be said that it has high durability in repeated adsorption and desorption.

(高温高湿耐久性試験)
図7に、実施例1の金属有機構造体(PCP)1と、実施例1の金属有機構造体(PCP)1を、温度85℃、湿度95%RHの条件下で14日、28日、42日、56日保存した各試料について、303Kにおいて、クロロジフルオロメタン(R22)の吸着量を測定した吸着等温線を示す。吸着等温線測定には、「BELSORP-HP」を用いた。高温高湿下で保存した後の試料において、高温高湿下で保存していない場合と比較しても吸着量の低下が抑制されており、高温高湿耐久性が良好であるといえる。
(High temperature and high humidity durability test)
FIG. 7 shows the metal-organic structure (PCP) 1 of Example 1 and the metal-organic structure (PCP) 1 of Example 1 for 14 days and 28 days under conditions of a temperature of 85° C. and a humidity of 95% RH. The adsorption isotherms obtained by measuring the adsorption amount of chlorodifluoromethane (R22) at 303K for each sample stored for 42 and 56 days are shown. "BELSORP-HP" was used for adsorption isotherm measurement. In the sample stored under high temperature and high humidity, the decrease in adsorption amount was suppressed compared to the case where the sample was not stored under high temperature and high humidity, and it can be said that the high temperature and high humidity durability is good.

Claims (11)

炭素数1のフルオロカーボンと、炭素数2以上のフルオロカーボンとを含む混合物から、炭素数1のフルオロカーボンを分離することを含み、
前記炭素数1のフルオロカーボンの分離は、前記混合物と吸着材とを接触させることにより実施される、フルオロカーボンの分離方法。
Separating a fluorocarbon having a carbon number of 1 from a mixture containing a fluorocarbon having a carbon number of 1 and a fluorocarbon having a carbon number of 2 or more,
A method for separating fluorocarbons, wherein the separation of the fluorocarbon having 1 carbon number is carried out by bringing the mixture into contact with an adsorbent.
前記炭素数1のフルオロカーボンが、ジフルオロメタンおよびジフルオロクロロメタンからなる群より選ばれる少なくとも1種以上である、請求項1に記載の分離方法。 The separation method according to claim 1, wherein the fluorocarbon having 1 carbon number is at least one selected from the group consisting of difluoromethane and difluorochloromethane. 前記炭素数2以上のフルオロカーボンが、炭素数2~3のフルオロカーボンを含む、請求項1に記載の分離方法。 The separation method according to claim 1, wherein the fluorocarbon having 2 or more carbon atoms includes a fluorocarbon having 2 to 3 carbon atoms. 前記吸着材は多孔体を含み、該多孔体の有効細孔径は、0.46nm以下である、請求項1に記載の分離方法。 The separation method according to claim 1, wherein the adsorbent includes a porous body, and the porous body has an effective pore diameter of 0.46 nm or less. 前記多孔体は、金属有機構造体を含む、請求項4に記載の分離方法。 The separation method according to claim 4, wherein the porous body includes a metal organic framework. 前記金属有機構造体は、金属イオンと1種または2種以上の有機配位子とを含み、
前記有機配位子は、前記金属イオンに配位結合しうる基を1分子中に2個以上含む、請求項5に記載の分離方法。
The metal-organic framework contains a metal ion and one or more organic ligands,
6. The separation method according to claim 5, wherein the organic ligand contains two or more groups in one molecule that can coordinately bond to the metal ion.
前記金属イオンは亜鉛を含み、前記有機配位子は、シュウ酸および1,2,4-トリアゾールを含む、請求項6に記載の分離方法。 7. The separation method according to claim 6, wherein the metal ion includes zinc, and the organic ligand includes oxalic acid and 1,2,4-triazole. 前記吸着材は、樹脂をさらに含む、請求項4に記載の分離方法。 The separation method according to claim 4, wherein the adsorbent further contains a resin. 前記吸着材は、粉末状、粒状、フレーク状、または、ペレット状である、請求項1~8のいずれか1項に記載の分離方法。 The separation method according to any one of claims 1 to 8, wherein the adsorbent is in the form of powder, granules, flakes, or pellets. 前記分離された炭素数1のフルオロカーボンを精製することをさらに含む、請求項1~9のいずれか1項に記載の分離方法。 The separation method according to any one of claims 1 to 9, further comprising refining the separated 1-carbon fluorocarbon. 金属有機構造体と、炭素数1のフルオロカーボンとを含み、
前記金属有機構造体は、金属イオンと1種または2種以上の有機配位子とを含み、
前記金属イオンは亜鉛を含み、前記有機配位子は、シュウ酸および1,2,4-トリアゾールを含む、複合材料。
including a metal-organic framework and a fluorocarbon having 1 carbon number,
The metal-organic framework contains a metal ion and one or more organic ligands,
The composite material wherein the metal ion includes zinc and the organic ligand includes oxalic acid and 1,2,4-triazole.
JP2023204508A 2022-02-21 2023-12-04 Isolation method Pending JP2024022631A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2022024980 2022-02-21
JP2022024980 2022-02-21
JP2022155183 2022-09-28
JP2022155183 2022-09-28
JP2023025319A JP7441985B2 (en) 2022-02-21 2023-02-21 Separation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2023025319A Division JP7441985B2 (en) 2022-02-21 2023-02-21 Separation method

Publications (2)

Publication Number Publication Date
JP2024022631A true JP2024022631A (en) 2024-02-16
JP2024022631A5 JP2024022631A5 (en) 2024-05-15

Family

ID=87578753

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2023025319A Active JP7441985B2 (en) 2022-02-21 2023-02-21 Separation method
JP2023204508A Pending JP2024022631A (en) 2022-02-21 2023-12-04 Isolation method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2023025319A Active JP7441985B2 (en) 2022-02-21 2023-02-21 Separation method

Country Status (4)

Country Link
JP (2) JP7441985B2 (en)
KR (1) KR20240136403A (en)
TW (1) TW202342408A (en)
WO (1) WO2023157982A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471448B2 (en) * 2000-04-28 2010-06-02 昭和電工株式会社 Tetrafluoromethane purification method and use thereof
JP4666874B2 (en) * 2002-07-02 2011-04-06 昭和電工株式会社 Purification and production method of pentafluoroethane and use thereof
US6669760B1 (en) * 2003-04-08 2003-12-30 Air Products And Chemicals, Inc. Separation of C2F6 from CF4 by adsorption on activated carbon
JP2013241390A (en) * 2012-04-27 2013-12-05 Asahi Glass Co Ltd Method for purifying fluoroolefin, and method for producing fluoroolefin
CN105051269B (en) * 2013-03-11 2019-03-19 乌第有限合伙公司 Metal organic frame and its preparation and use
WO2014150889A1 (en) * 2013-03-15 2014-09-25 Honeywell International Inc. Methods for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene product
US10654775B2 (en) * 2015-08-17 2020-05-19 Daikin Industries, Ltd. Separation method for halogenated unsaturated carbon compound
JP2018002602A (en) 2016-06-27 2018-01-11 旭硝子株式会社 Process for separating 2,3,3,3-tetrafluoropropene and hexafluoropropene, and process for producing 2,3,3,3-tetrafluoropropene

Also Published As

Publication number Publication date
TW202342408A (en) 2023-11-01
KR20240136403A (en) 2024-09-13
JP7441985B2 (en) 2024-03-01
WO2023157982A1 (en) 2023-08-24
JP2023121747A (en) 2023-08-31

Similar Documents

Publication Publication Date Title
EP3311913B1 (en) Porous films comprising metal-organic framework materials
EP2089137B1 (en) Method for the separation of carbon dioxide using a porous metal-organic framework material
KR20100118580A (en) Porous metal-organic framework materials as drying agents
KR20110139222A (en) Process for separating off acidic gases by means of metal-organic frameworks impregnated with amines
JP4971429B2 (en) Gas pressure vessel with filter or gas pressure vessel containing storage agent
KR101289492B1 (en) Method for the controlled storage and release of gases using an electrochemically produced crystalline, porous, organometallic skeleton material
US7901619B2 (en) Suspension for reducing odors
US20080190289A1 (en) Gas Odorous Substance Separation
JP2019528200A (en) Composite material
ES2588052T3 (en) Organometallic structural materials in cooling / heating machines
KR20080091225A (en) Process for preparing porous organic framework materials
EP2985075A1 (en) Shaped body made of a porous material
JP2014500143A (en) Method of coating the surface of a support with a porous metal organic structure
KR20080091111A (en) Acid-functionalized organometallic framework materials
JP7441985B2 (en) Separation method
CN118696021A (en) Separation method
WO2023209342A1 (en) Method and apparatus for carbon dioxide separation
MX2008009086A (en) Process for preparing porous organic framework materials

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240507