JP2024022092A - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
JP2024022092A
JP2024022092A JP2022125441A JP2022125441A JP2024022092A JP 2024022092 A JP2024022092 A JP 2024022092A JP 2022125441 A JP2022125441 A JP 2022125441A JP 2022125441 A JP2022125441 A JP 2022125441A JP 2024022092 A JP2024022092 A JP 2024022092A
Authority
JP
Japan
Prior art keywords
section
flow path
fluid
refrigerant
condensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022125441A
Other languages
Japanese (ja)
Inventor
真二 菊野
Shinji Kikuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukushima Galilei Co Ltd
Original Assignee
Fukushima Galilei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukushima Galilei Co Ltd filed Critical Fukushima Galilei Co Ltd
Priority to JP2022125441A priority Critical patent/JP2024022092A/en
Publication of JP2024022092A publication Critical patent/JP2024022092A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To reliably cool an evaporator to a desired low temperature, in a refrigeration device utilizing a non-azeotropic mixture refrigerant.
SOLUTION: A condenser 19 is composed of an upstream-side first condensation portion 43 and a downstream-side second condensation portion 44, and a second flow channel 22 is branched from a part between the condensation portions 43 and 44. A first fluid part of a gas phase of a non-azeotropic mixture refrigerant of a gas-liquid mixture phase cooled at the first condensation portion 43, is directed to the second condensation portion 44, and a second fluid part of a liquid phase is directed to the second flow channel 22. The second flow channel 22 is provided with a decompression portion 48 for decompressing the second fluid part, and a heat absorption portion 49 for vaporizing the second fluid part after the decompression. A heat radiation portion 55 constituting a heat exchanger 56 by being paired with the heat absorption portion 49 is disposed between the second condensation portion 44 of a first flow channel 21 and an expansion valve 20. In the heat exchanger 56, the first fluid part cooled at the second condensation portion 44 is further cooled by heat exchange with the second fluid part.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、非共沸混合冷媒を利用する冷凍装置に関する。 The present invention relates to a refrigeration system that uses a non-azeotropic mixed refrigerant.

沸点が異なる2種以上の冷媒の混合物すなわち非共沸混合冷媒を利用する冷凍装置は、相対的に高沸点の冷媒で低沸点の冷媒を冷却(凝縮)し、低温となった後者冷媒を蒸発器に送出して、被冷却対象を低温まで冷却するものである。この冷凍装置は、搭載される圧縮機が通常1台であることから、2台の圧縮機を搭載する二元冷凍装置などに比べて、小型かつ安価に製造することができる。 A refrigeration system that uses a mixture of two or more refrigerants with different boiling points, that is, a non-azeotropic mixed refrigerant, cools (condenses) a refrigerant with a lower boiling point with a refrigerant with a relatively higher boiling point, and evaporates the latter refrigerant at a lower temperature. The object to be cooled is cooled down to a low temperature. Since this refrigeration system is usually equipped with one compressor, it can be manufactured in a smaller size and at a lower cost than a binary refrigeration system equipped with two compressors.

このような非共沸混合冷媒(以下、単に混合冷媒と記す。)を利用する冷凍装置は、例えば特許文献1に開示されており公知である。特許文献1の冷凍装置は、冷凍サイクルを構成する圧縮機、第1凝縮器、第2凝縮器、第1膨張弁および蒸発器に加えて、混合冷媒を気相と液相に分離する気液分離器を備える。気液分離器は、第1凝縮器と第2凝縮器の間に配置されており、第1凝縮器から気液混相の混合冷媒を受け入れる流入ポートと、この混合冷媒のうち気相の第1流体部分を第2凝縮器へ向けて吐出する気体流出ポートと、液相の第2流体部分を吐出する液体流出ポートとを備える。第1流体部分の主成分は相対的に低沸点の第1冷媒であり、第2流体部分の主成分は相対的に高沸点の第2冷媒である。液体流出ポートから吐出された第2流体部分は、第2膨張弁で減圧されたのち第2凝縮器へ至り、そこを流れる第1流体部分を冷却する。第2流体部分により冷却されて凝縮した第1流体部分は、第1膨張弁で減圧されたのち蒸発器へ至り、被冷却対象を冷却する。 A refrigeration system using such a non-azeotropic mixed refrigerant (hereinafter simply referred to as mixed refrigerant) is disclosed in Patent Document 1, for example, and is well known. In addition to a compressor, a first condenser, a second condenser, a first expansion valve, and an evaporator that constitute a refrigeration cycle, the refrigeration system of Patent Document 1 includes a gas-liquid system that separates a mixed refrigerant into a gas phase and a liquid phase. Equipped with a separator. The gas-liquid separator is disposed between the first condenser and the second condenser, and has an inflow port that receives a gas-liquid mixed-phase mixed refrigerant from the first condenser, and a first gas-phase refrigerant of this mixed refrigerant. A gas outlet port for discharging a fluid portion toward a second condenser and a liquid outlet port for discharging a second fluid portion in a liquid phase. The primary component of the first fluid portion is a relatively low boiling point first refrigerant, and the primary component of the second fluid portion is a relatively high boiling point second refrigerant. The second fluid portion discharged from the liquid outflow port is depressurized by the second expansion valve and then reaches the second condenser to cool the first fluid portion flowing therethrough. The first fluid portion cooled and condensed by the second fluid portion is reduced in pressure by the first expansion valve, and then reaches the evaporator to cool the object to be cooled.

特開2021-148354号公報Japanese Patent Application Publication No. 2021-148354

特許文献1の冷凍装置において、気液分離器から吐出された気相の第1流体部分は、第2凝縮器と第1膨張弁を経由して蒸発器へ至っており、第1流体部分を熱交換により冷却する機会が第2凝縮器のみに限られてしまっている。そのため、例えば外気温度が極めて高い環境下では、第1凝縮器における混合冷媒の空冷が不十分となり、第1流体部分が比較的高温のまま第2凝縮器に至り、結果として第1流体部分ひいては蒸発器を所望の低温まで冷却することができなくなるおそれがある。 In the refrigeration system of Patent Document 1, the first fluid portion of the gas phase discharged from the gas-liquid separator reaches the evaporator via the second condenser and the first expansion valve, and heats the first fluid portion. Opportunities for cooling by replacement are limited to only the second condenser. Therefore, for example, in an environment where the outside air temperature is extremely high, air cooling of the mixed refrigerant in the first condenser becomes insufficient, and the first fluid portion reaches the second condenser while remaining at a relatively high temperature, resulting in There is a possibility that the evaporator cannot be cooled down to the desired low temperature.

本発明の目的は、非共沸混合冷媒を利用する冷凍装置において、蒸発器を所望の低温まで確実に冷却することにある。 An object of the present invention is to reliably cool an evaporator to a desired low temperature in a refrigeration system that uses a non-azeotropic mixed refrigerant.

本発明は、非共沸混合冷媒が封入された冷凍装置を対象とする。冷凍装置は、少なくとも圧縮機18と凝縮器19と膨張弁20と蒸発器11を冷媒配管でループ状に接続してなる第1流路21と、第1流路21から分岐して膨張弁20と蒸発器11を迂回する第2流路22とを備える。凝縮器19は、上流側の第1凝縮部43と下流側の第2凝縮部44とで構成されて、両凝縮部43・44の間から第2流路22が分岐している。第1凝縮部43で冷却された気液混相の非共沸混合冷媒のうち、気相の第1流体部分が第2凝縮部44へ向かい、液相の第2流体部分が第2流路22へ向かうように構成されている。第2流路22には、第2流体部分を減圧する減圧部48と、減圧後の第2流体部分を気化させる吸熱部49とが設けられている。第1流路21の第2凝縮部44と膨張弁20との間に、吸熱部49と対になり熱交換器56を構成する放熱部55が設けられており、熱交換器56において、第2凝縮部44で冷却された第1流体部分が、第2流体部分と熱交換してさらに冷却されることを特徴とする。 The present invention is directed to a refrigeration system in which a non-azeotropic mixed refrigerant is sealed. The refrigeration system includes a first flow path 21 in which at least a compressor 18, a condenser 19, an expansion valve 20, and an evaporator 11 are connected in a loop through refrigerant piping, and an expansion valve 20 branched from the first flow path 21. and a second flow path 22 that bypasses the evaporator 11. The condenser 19 includes a first condensing section 43 on the upstream side and a second condensing section 44 on the downstream side, and the second flow path 22 branches from between both the condensing sections 43 and 44. Of the gas-liquid multiphase non-azeotropic mixed refrigerant cooled in the first condensing section 43, the first fluid portion in the gas phase goes to the second condensing section 44, and the second fluid portion in the liquid phase flows through the second flow path 22. It is configured to go to. The second flow path 22 is provided with a pressure reducing section 48 that reduces the pressure of the second fluid portion, and a heat absorption section 49 that vaporizes the second fluid portion after being depressurized. A heat dissipation section 55 is provided between the second condensation section 44 of the first flow path 21 and the expansion valve 20, and the heat dissipation section 55 is paired with the heat absorption section 49 and constitutes the heat exchanger 56. The first fluid portion cooled in the second condensing section 44 is further cooled by exchanging heat with the second fluid portion.

凝縮器19が、筒状の入口ヘッダ25および出口ヘッダ26と、ヘッダ25・26どうしを繋ぐ多数本のチューブ27と、隣接するチューブ27の間に配置される放熱用のフィン28とを備えるマイクロチャンネル熱交換器で構成されており、各ヘッダ25・26が、仕切り33・37によって上流部34・38と下流部35・39に区分されており、入口ヘッダ25の上流部34に、圧縮機18の吐出管に接続される始端口36が設けられており、出口ヘッダ26の上流部38に、第1流路21から第2流路22への分岐点となる中間口40が設けられており、出口ヘッダ26の下流部39に、熱交換器56の放熱部55へと繋がる終端口41が設けられており、第1凝縮部43が、入口ヘッダ25の上流部34から出口ヘッダ26の上流部38へ冷媒を導く一群のチューブ27で構成されており、第2凝縮部44が、出口ヘッダ26の上流部38から入口ヘッダ25の下流部35へ冷媒を導く一群のチューブ27と、該下流部35から出口ヘッダ26の下流部39へ冷媒を導く一群のチューブ27とで構成されている形態を採ることができる。 The condenser 19 includes a cylindrical inlet header 25 and an outlet header 26, a large number of tubes 27 connecting the headers 25 and 26, and heat radiation fins 28 disposed between adjacent tubes 27. Each header 25, 26 is divided into upstream parts 34, 38 and downstream parts 35, 39 by partitions 33, 37, and a compressor is installed in the upstream part 34 of the inlet header 25. A starting end port 36 is provided that is connected to the 18 discharge pipes, and an intermediate port 40 that serves as a branching point from the first flow path 21 to the second flow path 22 is provided at the upstream portion 38 of the outlet header 26. A terminal port 41 that connects to the heat radiating section 55 of the heat exchanger 56 is provided at the downstream section 39 of the outlet header 26 , and the first condensing section 43 connects from the upstream section 34 of the inlet header 25 to the outlet header 26 . The second condensing section 44 includes a group of tubes 27 that guide the refrigerant to the upstream section 38 and a group of tubes 27 that guide the refrigerant from the upstream section 38 of the outlet header 26 to the downstream section 35 of the inlet header 25. A group of tubes 27 guiding the refrigerant from the downstream section 35 to the downstream section 39 of the outlet header 26 can be adopted.

中間口40は出口ヘッダ26の仕切り37の上面に臨んでおり、出口ヘッダ26の仕切り37からその上方に位置するチューブ27までの上下方向距離が、該仕切り37から中間口40までの上下方向距離よりも大きい形態を採ることができる。 The intermediate opening 40 faces the upper surface of the partition 37 of the outlet header 26, and the vertical distance from the partition 37 of the exit header 26 to the tube 27 located above it is equal to the vertical distance from the partition 37 to the intermediate opening 40. It can take on a larger form.

凝縮器19の1個所に、チューブ27の隣接間隔が他よりも大きいギャップ部60を設け、ギャップ部60の側方に出口ヘッダ26の仕切り37を配置することができる。 It is possible to provide a gap portion 60 at one location of the condenser 19 in which the spacing between adjacent tubes 27 is larger than the other portions, and to arrange the partition 37 of the outlet header 26 on the side of the gap portion 60.

ギャップ部60の通風抵抗を高める抵抗部材61を配置することができる。 A resistance member 61 that increases the ventilation resistance of the gap portion 60 can be arranged.

抵抗部材61が、チューブ27と平行なプレート62と、フィン28と同形でプレート62を上下から挟むスペーサー63とを含む形態を採ることができる。 The resistance member 61 may include a plate 62 parallel to the tube 27 and a spacer 63 having the same shape as the fin 28 and sandwiching the plate 62 from above and below.

仕切り37の上面が中間口40へ向かって下り傾斜している形態を採ることができる。 A configuration may be adopted in which the upper surface of the partition 37 is sloped downward toward the intermediate opening 40.

第2流路22を開閉する電磁弁47を備えており、第2流路22に対するガス状冷媒の流入が検知された場合に、電磁弁47が開状態から閉状態に切り換わる形態を採ることができる。 A solenoid valve 47 that opens and closes the second flow path 22 is provided, and when an inflow of gaseous refrigerant into the second flow path 22 is detected, the solenoid valve 47 switches from an open state to a closed state. Can be done.

第1流路21における凝縮器19の出口側に第1温度センサ51が設けられており、第2流路22における減圧部48の出口側に第2温度センサ52が設けられており、第2温度センサ52で計測される第2流体部分の温度が、第1温度センサ51で計測される第1流体部分の温度よりも所定温度以上高くなると、第2流路22にガス状冷媒が流入しているとみなして電磁弁47が閉状態に切り換わる形態を採ることができる。 A first temperature sensor 51 is provided on the exit side of the condenser 19 in the first flow path 21, a second temperature sensor 52 is provided on the exit side of the pressure reducing section 48 in the second flow path 22, and a When the temperature of the second fluid portion measured by the temperature sensor 52 becomes higher than the temperature of the first fluid portion measured by the first temperature sensor 51 by a predetermined temperature or more, the gaseous refrigerant flows into the second flow path 22. The electromagnetic valve 47 may be switched to the closed state by assuming that the state is in the closed state.

第2流路22の減圧部48がキャピラリチューブで構成されており、第2凝縮部44から熱交換器56の放熱部55へ向かう第1流体部分が、減圧部48を流れる第2流体部分と熱交換して冷却される形態を採ることができる。 The pressure reducing part 48 of the second flow path 22 is configured with a capillary tube, and the first fluid part flowing from the second condensing part 44 to the heat radiation part 55 of the heat exchanger 56 is the second fluid part flowing through the pressure reducing part 48. It can be cooled by heat exchange.

第2凝縮部44から熱交換器56の放熱部55へ向かう第1流体部分が、蒸発器11から圧縮機18へ向かう第1流体部分と熱交換して冷却される形態を採ることができる。 A configuration may be adopted in which the first fluid portion heading from the second condensing section 44 to the heat radiation section 55 of the heat exchanger 56 is cooled by exchanging heat with the first fluid section heading from the evaporator 11 to the compressor 18.

本発明に係る冷却装置では、凝縮器19を上流側の第1凝縮部43と下流側の第2凝縮部44とで構成し、第1凝縮部43を通過して冷却された気液混相の非共沸混合冷媒のうち、気相の第1流体部分が第2凝縮部44へ向かい、液相の第2流体部分が、両凝縮部43・44の間から分岐する第2流路22へ向かうようにした。ここで、第1流体部分の主成分は、非共沸混合冷媒を構成する相対的に低沸点の冷媒であり、第2流体部分の主成分は相対的に高沸点の冷媒である。 In the cooling device according to the present invention, the condenser 19 is configured with a first condensing section 43 on the upstream side and a second condensing section 44 on the downstream side, and the gas-liquid mixed phase cooled by passing through the first condensing section 43 is Of the non-azeotropic mixed refrigerant, the first fluid part in the gas phase heads to the second condensing part 44, and the second fluid part in the liquid phase goes to the second flow path 22 which branches from between both the condensing parts 43 and 44. I started heading there. Here, the main component of the first fluid portion is a relatively low boiling point refrigerant constituting a non-azeotropic mixed refrigerant, and the main component of the second fluid portion is a relatively high boiling point refrigerant.

そのうえで本発明では、第2流路22に減圧部48と吸熱部49を設けるとともに、第1流路21の第2凝縮部44と膨張弁20との間に放熱部55を設けた。そして、放熱部55と吸熱部49で構成される熱交換器56において、第2凝縮部44で冷却された第1流体部分が、第2流体部分と熱交換してさらに冷却されるようにした。このように、第2流体部分から分離した第1流体部分を複数個所で冷却すると、第1流体部分ひいては蒸発器11を所望の低温まで確実に冷却することができる。 In addition, in the present invention, the second flow path 22 is provided with a pressure reducing section 48 and a heat absorption section 49, and a heat radiation section 55 is provided between the second condensing section 44 of the first flow path 21 and the expansion valve 20. In the heat exchanger 56 composed of the heat radiation part 55 and the heat absorption part 49, the first fluid part cooled in the second condensing part 44 is further cooled by exchanging heat with the second fluid part. . In this way, by cooling the first fluid portion separated from the second fluid portion at a plurality of locations, the first fluid portion and thus the evaporator 11 can be reliably cooled to a desired low temperature.

本発明に係る凝縮器19は、入口ヘッダ25と出口ヘッダ26を多数本のチューブ27で繋いだマイクロチャンネル熱交換器で構成することができる。具体的には、各ヘッダ25・26を仕切り33・37によって上流部34・38と下流部35・39に区分し、入口ヘッダ25の上流部34に始端口36を設け、出口ヘッダ26の上流部38に第2流路22への分岐点となる中間口40を設け、出口ヘッダ26の下流部39に終端口41を設ける。そして第1凝縮部43を、入口ヘッダ25の上流部34から出口ヘッダ26の上流部38へ冷媒を導く一群のチューブ27で構成し、第2凝縮部44を、出口ヘッダ26の上流部38から入口ヘッダ25の下流部35へ冷媒を導く一群のチューブ27と、該下流部35から出口ヘッダ26の下流部39へ冷媒を導く一群のチューブ27とで構成することができる。このように、1個の凝縮器19に第1凝縮部43と第2凝縮部44を設けると、各凝縮部43・44を個別の凝縮器で構成し、その間に気液分離器を配置する場合に比べて、冷凍装置の小型化と製造コストの削減を図ることができる。冷凍装置を構成する部材を削減することは、その製造時の溶接個所を減らして、冷媒漏れのリスクを低減することにも寄与する。 The condenser 19 according to the present invention can be configured with a microchannel heat exchanger in which an inlet header 25 and an outlet header 26 are connected by a plurality of tubes 27. Specifically, each header 25 , 26 is divided into upstream parts 34 , 38 and downstream parts 35 , 39 by partitions 33 , 37 , a starting end port 36 is provided in the upstream part 34 of the inlet header 25 , and a starting end port 36 is provided in the upstream part 34 of the inlet header 25 . An intermediate port 40 serving as a branching point to the second flow path 22 is provided in the section 38 , and a terminal port 41 is provided in the downstream section 39 of the outlet header 26 . The first condensing section 43 is constituted by a group of tubes 27 that guide the refrigerant from the upstream section 34 of the inlet header 25 to the upstream section 38 of the outlet header 26, and the second condensing section 44 is configured from the upstream section 38 of the outlet header 26. It can be comprised of a group of tubes 27 that guide the refrigerant to the downstream section 35 of the inlet header 25 and a group of tubes 27 that guide the refrigerant from the downstream section 35 to the downstream section 39 of the outlet header 26 . In this way, when the first condensing section 43 and the second condensing section 44 are provided in one condenser 19, each condensing section 43 and 44 is constituted by an individual condenser, and a gas-liquid separator is arranged between them. Compared to the conventional case, the refrigeration equipment can be made smaller and the manufacturing cost can be reduced. Reducing the number of members constituting a refrigeration system also contributes to reducing the number of welding points during manufacturing, thereby reducing the risk of refrigerant leakage.

出口ヘッダ26の仕切り37からその上方に位置するチューブ27までの上下方向距離を、該仕切り37から中間口40までの上下方向距離よりも大きくすると、換言すれば、該仕切り37の上面からチューブ27を中間口40よりも遠ざけると、第1凝縮部43を通過して該仕切り37の上面に滴下した第2流体部分を、中間口40すなわち第2流路22の側へ優先的に向かわせて、第2流体部分がチューブ27(第2凝縮部44)の側へ流出することを抑制することができる。このように、第2凝縮部44へ向かう気相の第1流体部分に対する液相の第2流体部分の混入を抑制すると、第2凝縮部44で第1流体部分を効率良く冷却することができ、また、蒸発器11の入口から出口に向かって冷媒温度が上昇する現象いわゆる温度グライドを低減することができる。 If the vertical distance from the partition 37 of the exit header 26 to the tube 27 located above is larger than the vertical distance from the partition 37 to the intermediate opening 40, in other words, the distance from the upper surface of the partition 37 to the tube 27 When the fluid is moved away from the intermediate port 40, the second fluid portion that has passed through the first condensing section 43 and dripped onto the upper surface of the partition 37 is directed preferentially toward the intermediate port 40, that is, the second flow path 22. , it is possible to suppress the second fluid portion from flowing out to the tube 27 (second condensing section 44) side. In this way, by suppressing the mixing of the liquid phase second fluid portion into the gas phase first fluid portion heading toward the second condensing portion 44, the first fluid portion can be efficiently cooled in the second condensing portion 44. Furthermore, it is possible to reduce the so-called temperature glide, a phenomenon in which the temperature of the refrigerant increases from the inlet to the outlet of the evaporator 11.

チューブ27の隣接間隔が他よりも大きいギャップ部60を設け、その側方に出口ヘッダ26の仕切り37を配置すると、該仕切り37の上方に位置するチューブ27を、該仕切り37の上面からさらに遠ざけることができ、これにより、液相の第2流体部分がチューブ27(第2凝縮部44)の側へ流出することをより抑えることができる。 By providing a gap portion 60 in which the distance between adjacent tubes 27 is larger than the other gap portions and arranging the partition 37 of the outlet header 26 on the side thereof, the tubes 27 located above the partition 37 are further moved away from the upper surface of the partition 37. This makes it possible to further suppress the second fluid portion of the liquid phase from flowing out to the tube 27 (second condensing section 44) side.

仮にギャップ部60が空洞であると、凝縮器19を流れる熱交換風がギャップ部60に集中し、その反作用でギャップ部60の上下のチューブ群を流れる熱交換風が不足し、各チューブ27を流れる冷媒が十分に冷却されないおそれがある。そこで本発明では、ギャップ部60の通風抵抗を高める抵抗部材61を配置した。これにより、熱交換風を上下のチューブ群へ向かわせて、各チューブ27を流れる冷媒を的確に冷却することができる。 If the gap portion 60 were hollow, the heat exchange air flowing through the condenser 19 would concentrate on the gap portion 60, and as a reaction, the heat exchange air flowing through the tube groups above and below the gap portion 60 would be insufficient, causing each tube 27 to There is a risk that the flowing refrigerant may not be sufficiently cooled. Therefore, in the present invention, a resistance member 61 that increases the ventilation resistance of the gap portion 60 is arranged. Thereby, the heat exchange air can be directed toward the upper and lower tube groups, and the refrigerant flowing through each tube 27 can be accurately cooled.

抵抗部材61が、チューブ27と平行なプレート62と、フィン28と同形でプレート62を上下から挟むスペーサー63とを含むものであると、この抵抗部材61でギャップ部60の上側のチューブ群を支持することができる。また、抵抗部材61自身はギャップ部60の下側のチューブ群で支持されるようにして、凝縮器19の全体の強度を高めることができる。 If the resistance member 61 includes a plate 62 parallel to the tube 27 and a spacer 63 having the same shape as the fin 28 and sandwiching the plate 62 from above and below, the resistance member 61 can support the tube group above the gap part 60. Can be done. Further, the resistance member 61 itself is supported by the tube group below the gap portion 60, so that the overall strength of the condenser 19 can be increased.

仕切り37の上面を中間口40へ向かって下り傾斜させると、該仕切り37の上面に滴下した第2流体部分をより確実に中間口40すなわち第2流路22の側へ向かわせて、第2流体部分がチューブ27(第2凝縮部44)の側へ流出することをより抑えることができる。 When the upper surface of the partition 37 is sloped downward toward the intermediate port 40, the second fluid portion dripping onto the upper surface of the partition 37 is more reliably directed toward the intermediate port 40, that is, the second flow path 22, and It is possible to further suppress the fluid portion from flowing out to the side of the tube 27 (second condensing section 44).

第2流路22に対するガス状冷媒の流入が検知された場合に、同流路22を開閉する電磁弁47を開状態から閉状態に切り換えると、ガス状冷媒が減圧部48を流れ続けることによるその故障や不具合を防止することができる。 When the inflow of gaseous refrigerant into the second flow path 22 is detected and the solenoid valve 47 that opens and closes the flow path 22 is switched from the open state to the closed state, the gaseous refrigerant continues to flow through the pressure reducing part 48. Failures and malfunctions thereof can be prevented.

減圧部48の出口側における第2流体部分の温度が、凝縮器19の出口側における第1流体部分の温度よりも所定温度以上高くなると、第2流路22にガス状冷媒が流入しているとみなすことができる。これによれば、各流体部分の温度を計測する温度センサ51・52を設けるだけで、ガス状冷媒の流入を低コストで検知することができる。 When the temperature of the second fluid portion on the outlet side of the pressure reducing part 48 becomes higher than the temperature of the first fluid portion on the outlet side of the condenser 19 by a predetermined temperature or more, gaseous refrigerant is flowing into the second flow path 22. It can be considered as According to this, the inflow of the gaseous refrigerant can be detected at low cost by simply providing the temperature sensors 51 and 52 that measure the temperature of each fluid portion.

第2流路22の減圧部48をキャピラリチューブで構成し、第2凝縮部44から熱交換器56の放熱部55へ向かう第1流体部分が、減圧部48を流れる第2流体部分と熱交換して冷却されるようにすると、第1流体部分が冷却される機会をさらに増やして、第1流体部分ひいては蒸発器11を所望の低温までより確実に冷却することができる。 The pressure reduction part 48 of the second flow path 22 is configured with a capillary tube, and the first fluid part going from the second condensation part 44 to the heat radiation part 55 of the heat exchanger 56 exchanges heat with the second fluid part flowing through the pressure reduction part 48. By cooling the first fluid portion, the chances of the first fluid portion being cooled are further increased, and the first fluid portion and thus the evaporator 11 can be more reliably cooled to a desired low temperature.

第2凝縮部44から熱交換器56の放熱部55へ向かう第1流体部分が、蒸発器11から圧縮機18へ向かう第1流体部分と熱交換して冷却されるようにすると、第1流体部分が減圧前に冷却される機会をさらに増やして、第1流体部分ひいては蒸発器11を所望の低温までより確実に冷却することができる。 When the first fluid portion heading from the second condensing section 44 to the heat radiation section 55 of the heat exchanger 56 is cooled by exchanging heat with the first fluid section heading from the evaporator 11 to the compressor 18, the first fluid It is possible to further increase the chance that the portion is cooled before depressurization, thereby more reliably cooling the first fluid portion and thus the evaporator 11 to the desired low temperature.

本発明の第1実施形態に係る冷凍装置の回路図である。FIG. 1 is a circuit diagram of a refrigeration system according to a first embodiment of the present invention. 同冷凍装置が搭載された急速冷凍庫の正面図である。It is a front view of a deep freezer equipped with the same freezing device. 同急速冷凍庫で冷却される蓄冷材とコンテナの斜視図である。It is a perspective view of the cold storage material and container cooled by the same deep freezer. 同冷凍装置を構成する凝縮器の構成図である。It is a block diagram of the condenser which comprises the same refrigeration apparatus. 凝縮器を構成するチューブの断面図である。It is a sectional view of the tube which constitutes a condenser. 本発明の第2実施形態に係る冷凍装置を構成する凝縮器の構成図である。It is a block diagram of the condenser which comprises the refrigeration apparatus based on 2nd Embodiment of this invention. 本発明の第3実施形態に係る冷凍装置を構成する凝縮器の構成図である。It is a block diagram of the condenser which comprises the refrigeration apparatus based on 3rd Embodiment of this invention. 本発明の第4実施形態に係る冷凍装置の回路図である。It is a circuit diagram of a refrigeration system concerning a 4th embodiment of the present invention.

(第1実施形態) 本発明に係る冷凍装置を蓄冷材用の急速冷凍庫に適用した第1実施形態を図1ないし図5に示す。本実施形態における前後、左右、上下とは、図2および図4に示す交差矢印と、各矢印の近傍に表記した前後、左右、上下の表示に従う。図2において急速冷凍庫1は、前面が開口する断熱箱体からなる庫本体2と、該開口を開閉する扉3とを備える。庫本体2と扉3で囲まれる庫内4は、垂直な隔壁5で左側の収容室6と右側の冷却室7とに区分されている。収容室6には、多数の通気孔を有する棚板8が上下多段状に設置されており、各棚板8には蓄冷材Mを収容するコンテナC(図3参照)が載置される。コンテナCの壁面にも多数の通気孔が形成されている。 (First Embodiment) A first embodiment in which a refrigeration apparatus according to the present invention is applied to a deep freezer for cold storage material is shown in FIGS. 1 to 5. In this embodiment, front and back, left and right, and up and down follow the cross arrows shown in FIGS. 2 and 4 and the front and back, left and right, and up and down indications written near each arrow. In FIG. 2, the deep freezer 1 includes a refrigerator main body 2 made of a heat insulating box with an open front, and a door 3 that opens and closes the opening. A refrigerator interior 4 surrounded by a refrigerator body 2 and a door 3 is divided by a vertical partition wall 5 into a storage chamber 6 on the left side and a cooling chamber 7 on the right side. In the storage chamber 6, shelf boards 8 having a large number of ventilation holes are installed in a vertically multi-tiered manner, and a container C (see FIG. 3) containing a cold storage material M is placed on each shelf board 8. A large number of ventilation holes are also formed on the wall of the container C.

冷却室7の上下中央には、冷凍装置10を構成する蒸発器11が設けられており、その上下それぞれに庫内ファン12が設けられている。隔壁5において、各庫内ファン12に正対する部分には一群の吹出孔13が形成されており、蒸発器11に正対する部分には一群の吸込孔14が形成されている。庫内ファン12が駆動することにより、蒸発器11で冷却された庫内空気が吹出孔13から収容室6へ吹き出され、同空気は棚板8上のコンテナCを冷却したのち吸込孔14から冷却室7へ吸い込まれる。 An evaporator 11 constituting the refrigeration system 10 is provided in the upper and lower center of the cooling chamber 7, and an internal fan 12 is provided above and below the evaporator 11, respectively. In the partition wall 5, a group of blow-off holes 13 are formed in a portion directly facing each internal fan 12, and a group of suction holes 14 is formed in a portion directly facing the evaporator 11. When the internal fan 12 is driven, the internal air cooled by the evaporator 11 is blown out from the outlet hole 13 into the storage chamber 6, and after cooling the container C on the shelf board 8, the air is blown out from the suction hole 14. It is sucked into the cooling chamber 7.

庫本体2の上側に画成された機械室17には、蒸発器11と共に冷凍装置10を構成する圧縮機18と凝縮器19などが収容されている。図1において冷凍装置10は、圧縮機18と凝縮器19と膨張弁20と蒸発器11などを冷媒配管でループ状に接続してなる第1流路21と、凝縮器19の中途部で第1流路21から分岐して蒸発器11と圧縮機18の間で第1流路21に合流する第2流路22とを備える。この冷凍装置10には、沸点が異なる2種の冷媒を混合してなる非共沸混合冷媒(以下、単に混合冷媒と記す。)が封入されている。 A machine room 17 defined above the storage body 2 houses a compressor 18, a condenser 19, and the like that constitute the refrigeration system 10 together with the evaporator 11. In FIG. 1, the refrigeration system 10 includes a first flow path 21 formed by connecting a compressor 18, a condenser 19, an expansion valve 20, an evaporator 11, etc. in a loop through refrigerant piping, and a first flow path 21 in the middle of the condenser 19. The second flow path 22 is branched from the first flow path 21 and joins the first flow path 21 between the evaporator 11 and the compressor 18. This refrigeration device 10 is sealed with a non-azeotropic mixed refrigerant (hereinafter simply referred to as mixed refrigerant), which is a mixture of two types of refrigerants having different boiling points.

図4に示すように凝縮器19は、マイクロチャンネル熱交換器で構成されており、上下に伸びる中空状の入口ヘッダ25および出口ヘッダ26と、ヘッダ25・26どうしを繋いで水平に伸びる多数本の扁平なチューブ27と、上下に隣接するチューブ27・27の間にそれぞれ配置される放熱用のフィン28とを備える。各チューブ27の内部には、表面張力の影響が現れる数ミリ径以下の多数本のチャンネル29が形成されている(図5参照)。各フィン28は、波状に湾曲してその上下のチューブ27に当接しており、凝縮器ファン30(図1参照)は、チューブ27とフィン28で囲まれる細長い空間と平行な(図4で紙面に直交する方向の)熱交換風を凝縮器19へ送給する。 As shown in FIG. 4, the condenser 19 is composed of a microchannel heat exchanger, and includes a hollow inlet header 25 and an outlet header 26 that extend vertically, and a large number of hollow inlet headers 25 and 26 that extend horizontally by connecting the headers 25 and 26. , and heat dissipation fins 28 disposed between the vertically adjacent tubes 27, 27, respectively. A large number of channels 29 having a diameter of several millimeters or less are formed inside each tube 27 (see FIG. 5), where the influence of surface tension occurs. Each fin 28 is curved in a wave-like manner and abuts the tube 27 above and below it, and the condenser fan 30 (see FIG. 1) is parallel to the elongated space surrounded by the tube 27 and the fin 28 (in FIG. The heat exchange air (in the direction perpendicular to the direction) is fed to the condenser 19.

入口ヘッダ25は、凝縮器19の上下中央よりも上方に配置された仕切り33によって、上側の上流部34と下側の下流部35とに区分されており、このうち上流部34に、圧縮機18の吐出管に接続される始端口36が設けられている。出口ヘッダ26は、凝縮器19の上下中央よりも下方に配置された仕切り37によって、上側の上流部38と下側の下流部39とに区分されている。出口ヘッダ26の上流部38には、第1流路21から第2流路22への分岐点を構成する中間口40が設けられており、同下流部39には、後述する熱交換器56を介して膨張弁20へと繋がる終端口41が設けられている。 The inlet header 25 is divided into an upper upstream section 34 and a lower downstream section 35 by a partition 33 arranged above the vertical center of the condenser 19. A starting end port 36 connected to 18 discharge pipes is provided. The outlet header 26 is divided into an upper upstream section 38 and a lower downstream section 39 by a partition 37 arranged below the vertical center of the condenser 19 . An upstream portion 38 of the outlet header 26 is provided with an intermediate port 40 that constitutes a branch point from the first flow path 21 to the second flow path 22, and a heat exchanger 56 (described later) is provided in the downstream portion 39 of the outlet header 26. A terminal port 41 is provided which connects to the expansion valve 20 via the terminal port 41 .

圧縮機18から吐出されたガス状の混合冷媒は、始端口36を介して入口ヘッダ25の上流部34に流れ込み、そこから出口ヘッダ26の上流部38へ向かってチューブ27を流れる。入口ヘッダ25と出口ヘッダ26の上流部34・38どうしを繋ぎ、混合冷媒を流す一群のチューブ27が、本発明の第1凝縮部43を構成する。第1凝縮部43を流れる間に混合冷媒は空冷され、その一部が凝縮する。つまり混合冷媒は、気液混相の状態で出口ヘッダ26の上流部38へ流れ込む。当該上流部38における混合冷媒の気相部分を以下では第1流体部分と呼称し、同液相部分を第2流体部分と呼称する。混合冷媒を構成する低沸点冷媒と高沸点冷媒のうち、前者は第1流体部分の主成分となり、後者は第2流体部分の主成分となる。 The gaseous mixed refrigerant discharged from the compressor 18 flows into the upstream portion 34 of the inlet header 25 via the start port 36 and from there flows through the tube 27 toward the upstream portion 38 of the outlet header 26 . A group of tubes 27 that connect the upstream sections 34 and 38 of the inlet header 25 and the outlet header 26 and allow the mixed refrigerant to flow constitute the first condensing section 43 of the present invention. The mixed refrigerant is air-cooled while flowing through the first condensing section 43, and a portion thereof is condensed. That is, the mixed refrigerant flows into the upstream portion 38 of the outlet header 26 in a gas-liquid multiphase state. Hereinafter, the gas phase portion of the mixed refrigerant in the upstream portion 38 will be referred to as a first fluid portion, and the liquid phase portion will be referred to as a second fluid portion. Of the low boiling point refrigerant and the high boiling point refrigerant constituting the mixed refrigerant, the former becomes the main component of the first fluid portion, and the latter becomes the main component of the second fluid portion.

出口ヘッダ26の上流部38に至った混合冷媒のうち第1流体部分(気相)は、該上流部38の下半部へ移動し、そこから入口ヘッダ25の下流部35へ向かってチューブ27を流れる。入口ヘッダ25の下流部35に至った第1流体部分は、該下流部35の下半部へ移動し、そこから出口ヘッダ26の下流部39へ向かってチューブ27を流れて、最終的に該下流部39に設けられた終端口41に至る。つまり第1流体部分は、出口ヘッダ26の上流部38で第2流体部分と分離した後、二本のチューブ27を流れて空冷される。出口ヘッダ26の上流部38から入口ヘッダ25の下流部35へ第1流体部分を導く一群のチューブ27と、該下流部35から出口ヘッダ26の下流部39へ第1流体部分を導く一群のチューブ27とが、本発明の第2凝縮部44を構成する。 The first fluid portion (gas phase) of the mixed refrigerant that has reached the upstream section 38 of the outlet header 26 moves to the lower half of the upstream section 38 and from there toward the downstream section 35 of the inlet header 25 through the tube 27. flows. The first fluid portion that reaches the downstream section 35 of the inlet header 25 travels to the lower half of the downstream section 35 and from there flows through the tube 27 towards the downstream section 39 of the outlet header 26 and finally reaches the downstream section 35 of the inlet header 25. It reaches a terminal port 41 provided in the downstream section 39. That is, after the first fluid portion is separated from the second fluid portion at the upstream portion 38 of the outlet header 26, it flows through the two tubes 27 and is air cooled. a group of tubes 27 leading a first fluid portion from an upstream portion 38 of the outlet header 26 to a downstream portion 35 of the inlet header 25; and a group of tubes guiding a first fluid portion from the downstream portion 35 to a downstream portion 39 of the outlet header 26. 27 constitutes the second condensing section 44 of the present invention.

一方、混合冷媒のうち第2流体部分(液相)は、出口ヘッダ26の上流部38を仕切り37の上面へ向かって滴下する。当該上面に臨む出口ヘッダ26の壁面に中間口40が形成されており、この中間口40から第2流体部分が第2流路22へと流出するように構成されている。図4に拡大して示すように、中間口40の下縁の上下位置は仕切り37の上面と略等しい。仕切り37の上下位置は、上下に隣接するチューブ27の間で、かつ、その中間よりも下方とされている。このように、仕切り37を下側のチューブ27に寄せて配置して、仕切り37からその上方に位置するチューブ27までの上下方向距離を、該仕切り37から中間口40までの上下方向距離よりも大きくすると、換言すれば、該仕切り37の上面からチューブ27を中間口40よりも遠ざけると、第1凝縮部43を通過して該仕切り37の上面に滴下した第2流体部分を、中間口40すなわち第2流路22の側へ優先的に向かわせて、第2流体部分がチューブ27(第2凝縮部44)の側へ流出することを抑制することができる。 On the other hand, the second fluid portion (liquid phase) of the mixed refrigerant drips down the upstream portion 38 of the outlet header 26 toward the upper surface of the partition 37 . An intermediate port 40 is formed in the wall surface of the outlet header 26 facing the upper surface thereof, and the second fluid portion is configured to flow out from the intermediate port 40 into the second flow path 22 . As shown in an enlarged view in FIG. 4, the upper and lower positions of the lower edge of the intermediate opening 40 are approximately equal to the upper surface of the partition 37. The vertical position of the partition 37 is between the vertically adjacent tubes 27 and below the middle thereof. In this way, the partition 37 is arranged closer to the lower tube 27 so that the vertical distance from the partition 37 to the tube 27 located above it is longer than the vertical distance from the partition 37 to the intermediate opening 40. In other words, when the tube 27 is moved further away from the upper surface of the partition 37 than the intermediate port 40, the second fluid portion that has passed through the first condensation section 43 and dripped onto the upper surface of the partition 37 is transferred to the intermediate port 40. That is, it is possible to suppress the second fluid portion from flowing out toward the tube 27 (second condensing section 44) by preferentially directing it toward the second flow path 22 side.

図1に示すように第2流路22には、同流路22を開閉する電磁弁47と、キャピラリチューブで構成される減圧部48と、減圧後の第2流体部分を気化させる吸熱部49とが、上流側から記載順に配置されている。吸熱部49で気化した第2流体部分は、蒸発器11の下流側で第1流路21に流入し、アキュムレータ50を経て圧縮機18へ戻る。 As shown in FIG. 1, the second flow path 22 includes a solenoid valve 47 that opens and closes the flow path 22, a pressure reducing section 48 that is composed of a capillary tube, and a heat absorption section 49 that vaporizes the second fluid portion after pressure reduction. are arranged in the order listed from the upstream side. The second fluid portion vaporized in the heat absorption section 49 flows into the first flow path 21 on the downstream side of the evaporator 11 and returns to the compressor 18 via the accumulator 50 .

電磁弁47は通常は開状態に保持される。ただし、冷凍装置10の過負荷時などには、第1凝縮部43(凝縮器19)で放熱不足が生じて冷媒が十分に凝縮せず、結果として第2流路22にガス状冷媒が流入することがあり、このような場合には減圧部48を保護すべく電磁弁47が閉状態に切り換わる。この制御を可能とするため、第1流路21における凝縮器19の出口側に第1温度センサ51が設けられており、第2流路22における減圧部48の出口側に第2温度センサ52が設けられている。第2温度センサ52で計測される第2流体部分の温度T2が、第1温度センサ51で計測される第1流体部分の温度T1よりも所定温度α以上高くなると(T2≧T1+α)、第2流路22をガス状冷媒が流れているとみなして電磁弁47が閉状態に切り換わる。電磁弁47を閉じてから所定時間(例えば10分間)が経過すると、電磁弁47は再び開放される。 The solenoid valve 47 is normally kept open. However, when the refrigeration system 10 is overloaded, heat radiation is insufficient in the first condensing section 43 (condenser 19), and the refrigerant is not sufficiently condensed, resulting in gaseous refrigerant flowing into the second flow path 22. In such a case, the solenoid valve 47 is switched to the closed state to protect the pressure reducing part 48. To enable this control, a first temperature sensor 51 is provided on the exit side of the condenser 19 in the first flow path 21, and a second temperature sensor 52 is provided on the exit side of the pressure reducing section 48 in the second flow path 22. is provided. When the temperature T2 of the second fluid portion measured by the second temperature sensor 52 is higher than the temperature T1 of the first fluid portion measured by the first temperature sensor 51 by a predetermined temperature α or more (T2≧T1+α), the second It is assumed that gaseous refrigerant is flowing through the flow path 22, and the solenoid valve 47 is switched to the closed state. When a predetermined period of time (for example, 10 minutes) has elapsed since the solenoid valve 47 was closed, the solenoid valve 47 is opened again.

一方、凝縮器19の終端口41から流れ出た第1流体部分は、ドライヤ53を経てまずは第2流路22の減圧部48の近傍を通過し、該減圧部48を流れる第2流体部分と熱交換して冷却される。つまり減圧部48は、その近傍を通る第1流路21の冷媒配管と共に補助熱交換器57を構成する。補助熱交換器57を通過した第1流体部分は自己熱交換器54に至る。この自己熱交換器54では、高圧(膨張弁20の上流側)と低圧(蒸発器11の下流側)の第1流体部分どうしの熱交換が行われる。詳しくは、補助熱交換器57から流れ込む高圧の第1流体部分が、蒸発器11からアキュムレータ50へ向かう低圧の第1流体部分により冷却される。 On the other hand, the first fluid portion flowing out from the terminal port 41 of the condenser 19 passes through the dryer 53 and first passes near the pressure reducing section 48 of the second flow path 22, and heats up with the second fluid portion flowing through the pressure reducing section 48. It is replaced and cooled. In other words, the pressure reducing section 48 constitutes the auxiliary heat exchanger 57 together with the refrigerant pipe of the first flow path 21 passing near it. The first fluid portion that has passed through the auxiliary heat exchanger 57 reaches the autogenous heat exchanger 54 . In the self-heat exchanger 54, heat is exchanged between the high pressure (upstream side of the expansion valve 20) and low pressure (downstream side of the evaporator 11) first fluid portions. Specifically, a high pressure first fluid portion flowing from the auxiliary heat exchanger 57 is cooled by a low pressure first fluid portion flowing from the evaporator 11 to the accumulator 50 .

補助熱交換器57と自己熱交換器54を通過した高圧の第1流体部分は放熱部55に至る。この放熱部55は、第2流路22の吸熱部49と対になり熱交換器56を構成する。吸熱部49には、減圧部48で減圧された第2流体部分が流れており、この第2流体部分が気化するときに放熱部55から熱を奪うことで、第1流体部分は効果的に冷却される。 The high-pressure first fluid portion that has passed through the auxiliary heat exchanger 57 and the self-heat exchanger 54 reaches the heat radiation section 55 . This heat radiation part 55 forms a pair with the heat absorption part 49 of the second flow path 22 and constitutes a heat exchanger 56. A second fluid portion whose pressure has been reduced by the pressure reducing portion 48 flows through the heat absorption portion 49, and when this second fluid portion vaporizes, it removes heat from the heat radiation portion 55, thereby effectively reducing the first fluid portion. cooled down.

以上のように、凝縮器19の第1凝縮部43を経て第2流体部分と分離した第1流体部分は、第2凝縮部44と補助熱交換器57と自己熱交換器54と熱交換器56(放熱部55)を順に通過し、これらを流れる間に十分に冷却されて凝縮する。凝縮した第1流体部分は、膨張弁20で減圧されたのち蒸発器11へ至り、急速冷凍庫の庫内4の空気を的確に冷却する。高沸点冷媒を主成分とする第2流体部分を第2流路22へと分岐させ、低沸点冷媒を主成分とする第1流体部分のみを蒸発器11へ導くと、蒸発器11の入口から出口に向かって冷媒温度が上昇する現象いわゆる温度グライドを低減することができる。 As described above, the first fluid part separated from the second fluid part through the first condensing part 43 of the condenser 19 is connected to the second condensing part 44, the auxiliary heat exchanger 57, the self-heat exchanger 54, and the heat exchanger. 56 (heat radiation part 55) in order, and while flowing through these, it is sufficiently cooled and condensed. The condensed first fluid portion is depressurized by the expansion valve 20 and then reaches the evaporator 11, where it accurately cools the air in the interior 4 of the deep freezer. If the second fluid portion containing a high boiling point refrigerant as a main component is branched to the second flow path 22 and only the first fluid portion containing a low boiling point refrigerant as a main component is led to the evaporator 11, the inlet of the evaporator 11 It is possible to reduce the so-called temperature glide, a phenomenon in which the temperature of the refrigerant increases toward the outlet.

凝縮器19を、入口ヘッダ25と出口ヘッダ26を多数本のチューブ27で繋いだマイクロチャンネル熱交換器で構成し、1個の凝縮器19に第1凝縮部43と第2凝縮部44を設けると、各凝縮部43・44を個別の凝縮器で構成し、その間に気液分離器を配置する場合に比べて、冷凍装置10の小型化と製造コストの削減を図ることができる。冷凍装置10を構成する部材を削減することは、その製造時の溶接個所を減らして、冷媒漏れのリスクを低減することにも寄与する。 The condenser 19 is constituted by a microchannel heat exchanger in which an inlet header 25 and an outlet header 26 are connected with a plurality of tubes 27, and one condenser 19 is provided with a first condensing section 43 and a second condensing section 44. Compared to the case where each of the condensing sections 43 and 44 is configured with an individual condenser and a gas-liquid separator is disposed between them, the refrigeration apparatus 10 can be made smaller and the manufacturing cost can be reduced. Reducing the number of members constituting the refrigeration device 10 also contributes to reducing the number of welding points during manufacturing, thereby reducing the risk of refrigerant leakage.

出口ヘッダ26の仕切り37の上面からチューブ27を中間口40よりも遠ざけると、第1凝縮部43を通過して該仕切り37の上面に滴下した第2流体部分を、中間口40すなわち第2流路22の側へ優先的に向かわせることができる。このように、第2凝縮部44へ向かう気相の第1流体部分に対する液相の第2流体部分の混入を抑制すると、第2凝縮部44で第1流体部分を効率良く冷却することができ、また、蒸発器11における温度グライドを低減することができる。 When the tube 27 is moved away from the upper surface of the partition 37 of the outlet header 26 than the intermediate port 40, the second fluid portion that has passed through the first condensing section 43 and dripped onto the upper surface of the partition 37 is transferred to the intermediate port 40, that is, the second flow. It is possible to preferentially head to the road 22 side. In this way, by suppressing the mixing of the liquid phase second fluid portion into the gas phase first fluid portion heading toward the second condensing portion 44, the first fluid portion can be efficiently cooled in the second condensing portion 44. Also, temperature glide in the evaporator 11 can be reduced.

(第2実施形態) 本発明の第2実施形態に係る冷凍装置の凝縮器19を図6に示す。この凝縮器19は、チューブ27の隣接間隔が他よりも大きいギャップ部60を備える点で第1実施形態と相違する。ギャップ部60の上下寸法は、ギャップ部60を除くチューブ27の隣接ピッチの約3倍に設定されており、このギャップ部60の下端部の側方に出口ヘッダ26の仕切り37と中間口40とが配置されている。またギャップ部60には、その通風抵抗を高める抵抗部材61が配置されている。具体的には、抵抗部材61は、チューブ27と平行な2枚の金属製のプレート62と、これらプレート62を上下から挟む3枚のスペーサー63とで構成される。プレート62はチューブ27と同等の上下厚みを有し、スペーサー63はフィン28と同一の素材で同一の形状に形成されている。プレート62は熱伝導率の高いアルミニウムで形成されており、スペーサー63と共に放熱作用を発揮する。他は第1実施形態と同様であるため、同じ部材には同じ符号を付してその説明を省略する。第3実施形態以降においても同様とする。 (Second Embodiment) FIG. 6 shows a condenser 19 of a refrigeration system according to a second embodiment of the present invention. This condenser 19 differs from the first embodiment in that it includes a gap portion 60 in which the intervals between adjacent tubes 27 are larger than those of the other tubes. The vertical dimension of the gap part 60 is set to about three times the adjacent pitch of the tubes 27 excluding the gap part 60, and the partition 37 of the outlet header 26 and the intermediate opening 40 are arranged on the side of the lower end of the gap part 60. is located. Further, a resistance member 61 is arranged in the gap portion 60 to increase its ventilation resistance. Specifically, the resistance member 61 is composed of two metal plates 62 parallel to the tube 27 and three spacers 63 that sandwich these plates 62 from above and below. The plate 62 has the same vertical thickness as the tube 27, and the spacer 63 is made of the same material and has the same shape as the fin 28. The plate 62 is made of aluminum with high thermal conductivity, and works together with the spacer 63 to dissipate heat. Since the rest is the same as in the first embodiment, the same members are given the same reference numerals and their explanations will be omitted. The same applies to the third embodiment and subsequent embodiments.

チューブ27の隣接間隔が他よりも大きいギャップ部60を設け、その側方に出口ヘッダ26の仕切り37を配置すると、該仕切り37の上方に位置するチューブ27を、該仕切り37の上面からさらに遠ざけることができ、これにより、液相の第2流体部分がチューブ27(第2凝縮部44)の側へ流出することをより抑えることができる。 By providing a gap portion 60 in which the distance between adjacent tubes 27 is larger than the other gap portions and arranging the partition 37 of the outlet header 26 on the side thereof, the tubes 27 located above the partition 37 are further moved away from the upper surface of the partition 37. This makes it possible to further suppress the second fluid portion of the liquid phase from flowing out to the tube 27 (second condensing section 44) side.

ギャップ部60の通風抵抗を高める抵抗部材61を配置すると、凝縮器19を流れる熱交換風がギャップ部60に集中するのを避けて、これを上下のチューブ群へ向かわせて、各チューブ27を流れる冷媒を的確に冷却することができる。また抵抗部材61が、チューブ27と平行なプレート62と、フィン28と同形でプレート62を上下から挟むスペーサー63とを含むものであると、この抵抗部材61でギャップ部60の上側のチューブ群を支持することができる。また、抵抗部材61自身はギャップ部60の下側のチューブ群で支持されるようにして、凝縮器19の全体の強度を高めることができる。 By arranging the resistance member 61 that increases the ventilation resistance of the gap portion 60, the heat exchange air flowing through the condenser 19 is prevented from concentrating on the gap portion 60, and is directed toward the upper and lower tube groups, thereby increasing the airflow resistance of each tube 27. It is possible to accurately cool the flowing refrigerant. Further, if the resistance member 61 includes a plate 62 parallel to the tube 27 and a spacer 63 having the same shape as the fin 28 and sandwiching the plate 62 from above and below, the resistance member 61 supports the tube group above the gap portion 60. be able to. Further, the resistance member 61 itself is supported by the tube group below the gap portion 60, so that the overall strength of the condenser 19 can be increased.

(第3実施形態) 本発明の第3実施形態に係る冷凍装置の凝縮器19を図7に示す。この凝縮器19は、その全体が入口ヘッダ25から出口ヘッダ26へ向かって緩やかに下り傾斜している点で第1実施形態と相違する。出口ヘッダ26の仕切り37の上面も、中間口40へ向かって下り傾斜しており、これによれば、該仕切り37の上面に滴下した第2流体部分をより確実に中間口40すなわち第2流路22の側へ向かわせて、第2流体部分がチューブ27(第2凝縮部44)の側へ流出することをより抑えることができる。 (Third Embodiment) FIG. 7 shows a condenser 19 of a refrigeration system according to a third embodiment of the present invention. This condenser 19 differs from the first embodiment in that the entire condenser is sloped gently downward from the inlet header 25 toward the outlet header 26. The upper surface of the partition 37 of the outlet header 26 is also sloped downward toward the intermediate port 40. Accordingly, the second fluid portion dripping onto the upper surface of the partition 37 is more reliably directed to the intermediate port 40, that is, the second flow. By directing it toward the path 22, it is possible to further suppress the second fluid portion from flowing out toward the tube 27 (second condensing section 44).

(第4実施形態) 本発明に係る冷凍装置の第4実施形態を図8に示す。本実施形態では第1凝縮部43と第2凝縮部44がそれぞれ個別の凝縮器、例えばフィンチューブ式熱交換器で構成されており、両凝縮部43・44の間に気液分離器70が配置されている。気液分離器70の流入ポートは第1凝縮部43の出口に接続され、気体流出ポートは第2凝縮部44の入口に接続され、液体流出ポートは第1流路21から第2流路22への分岐点を構成する。 (4th Embodiment) 4th Embodiment of the refrigeration apparatus based on this invention is shown in FIG. In this embodiment, the first condensing section 43 and the second condensing section 44 are each composed of an individual condenser, for example, a fin-tube heat exchanger, and a gas-liquid separator 70 is provided between the two condensing sections 43 and 44. It is located. The inflow port of the gas-liquid separator 70 is connected to the outlet of the first condensing section 43, the gas outflow port is connected to the inlet of the second condensing section 44, and the liquid outflow port is connected from the first flow path 21 to the second flow path 22. Configure a branch point to.

本発明に係る冷凍装置の適用対象は、第1実施形態で示した蓄冷材用の急速冷凍庫に限られず、食品用の冷凍庫や冷凍ショーケース、または製氷機などの各種の冷却機器に適用することができる。 The application of the refrigeration device according to the present invention is not limited to the quick freezer for cold storage materials shown in the first embodiment, but can also be applied to various types of cooling equipment such as food freezers, frozen showcases, and ice makers. Can be done.

10 冷凍装置
11 蒸発器
18 圧縮機
19 凝縮器
20 膨張弁
21 第1流路
22 第2流路
25 入口ヘッダ
26 出口ヘッダ
27 チューブ
28 フィン
33 入口ヘッダの仕切り
34 入口ヘッダの上流部
35 入口ヘッダの下流部
36 始端口
37 出口ヘッダの仕切り
38 出口ヘッダの上流部
39 出口ヘッダの下流部
40 中間口
41 終端口
43 第1凝縮部
44 第2凝縮部
48 減圧部
49 吸熱部
51 第1温度センサ
52 第2温度センサ
54 自己熱交換器
55 放熱部
56 熱交換器
57 補助熱交換器
60 ギャップ部
61 抵抗部材
62 プレート
63 スペーサー
70 気液分離器
10 Refrigeration device 11 Evaporator 18 Compressor 19 Condenser 20 Expansion valve 21 First channel 22 Second channel 25 Inlet header 26 Outlet header 27 Tube 28 Fin 33 Inlet header partition 34 Upstream part of inlet header 35 Inlet header Downstream section 36 Start port 37 Partition of the outlet header 38 Upstream section of the outlet header 39 Downstream section of the outlet header 40 Intermediate port 41 Terminal port 43 First condensing section 44 Second condensing section 48 Pressure reducing section 49 Heat absorption section 51 First temperature sensor 52 Second temperature sensor 54 Self-heat exchanger 55 Heat radiation section 56 Heat exchanger 57 Auxiliary heat exchanger 60 Gap section 61 Resistance member 62 Plate 63 Spacer 70 Gas-liquid separator

Claims (11)

非共沸混合冷媒が封入された冷凍装置であって、
少なくとも圧縮機(18)と凝縮器(19)と膨張弁(20)と蒸発器(11)を冷媒配管でループ状に接続してなる第1流路(21)と、第1流路(21)から分岐して膨張弁(20)と蒸発器(11)を迂回する第2流路(22)とを備えており、
凝縮器(19)が、上流側の第1凝縮部(43)と下流側の第2凝縮部(44)とで構成されて、両凝縮部(43・44)の間から第2流路(22)が分岐しており、
第1凝縮部(43)で冷却された気液混相の非共沸混合冷媒のうち、気相の第1流体部分が第2凝縮部(44)へ向かい、液相の第2流体部分が第2流路(22)へ向かうように構成されており、
第2流路(22)には、第2流体部分を減圧する減圧部(48)と、減圧後の第2流体部分を気化させる吸熱部(49)とが設けられており、
第1流路(21)の第2凝縮部(44)と膨張弁(20)との間に、吸熱部(49)と対になり熱交換器(56)を構成する放熱部(55)が設けられており、
熱交換器(56)において、第2凝縮部(44)で冷却された第1流体部分が、第2流体部分と熱交換してさらに冷却されることを特徴とする冷凍装置。
A refrigeration device sealed with a non-azeotropic mixed refrigerant,
A first flow path (21) formed by connecting at least a compressor (18), a condenser (19), an expansion valve (20), and an evaporator (11) in a loop through refrigerant piping; ) is provided with a second flow path (22) that branches off from the expansion valve (20) and bypasses the evaporator (11),
The condenser (19) is composed of a first condensing section (43) on the upstream side and a second condensing section (44) on the downstream side, and a second flow path ( 22) is branched,
Of the gas-liquid multiphase non-azeotropic mixed refrigerant cooled in the first condensing part (43), the first fluid part in the gas phase goes to the second condensing part (44), and the second fluid part in the liquid phase goes to the second condensing part (44). 2 flow path (22),
The second flow path (22) is provided with a pressure reducing part (48) that reduces the pressure of the second fluid part, and a heat absorption part (49) that vaporizes the second fluid part after the pressure reduction.
Between the second condensing section (44) and the expansion valve (20) of the first flow path (21), a heat dissipating section (55) which pairs with the heat absorbing section (49) and constitutes the heat exchanger (56) is provided. It is provided,
A refrigeration system characterized in that, in the heat exchanger (56), the first fluid portion cooled in the second condensing section (44) exchanges heat with the second fluid portion to be further cooled.
凝縮器(19)が、筒状の入口ヘッダ(25)および出口ヘッダ(26)と、ヘッダ(25・26)どうしを繋ぐ多数本のチューブ(27)と、隣接するチューブ(27)の間に配置される放熱用のフィン(28)とを備えるマイクロチャンネル熱交換器で構成されており、
各ヘッダ(25・26)が、仕切り(33・37)によって上流部(34・38)と下流部(35・39)に区分されており、
入口ヘッダ(25)の上流部(34)に、圧縮機(18)の吐出管に接続される始端口(36)が設けられており、
出口ヘッダ(26)の上流部(38)に、第1流路(21)から第2流路(22)への分岐点となる中間口(40)が設けられており、
出口ヘッダ(26)の下流部(39)に、熱交換器(56)の放熱部(55)へと繋がる終端口(41)が設けられており、
第1凝縮部(43)が、入口ヘッダ(25)の上流部(34)から出口ヘッダ(26)の上流部(38)へ冷媒を導く一群のチューブ(27)で構成されており、
第2凝縮部(44)が、出口ヘッダ(26)の上流部(38)から入口ヘッダ(25)の下流部(35)へ冷媒を導く一群のチューブ(27)と、該下流部(35)から出口ヘッダ(26)の下流部(39)へ冷媒を導く一群のチューブ(27)とで構成されている請求項1に記載の冷凍装置。
A condenser (19) is located between a cylindrical inlet header (25) and an outlet header (26), a number of tubes (27) connecting the headers (25 and 26), and adjacent tubes (27). It consists of a microchannel heat exchanger with heat dissipation fins (28) arranged,
Each header (25, 26) is divided into an upstream part (34, 38) and a downstream part (35, 39) by a partition (33, 37),
A starting end port (36) connected to the discharge pipe of the compressor (18) is provided at the upstream portion (34) of the inlet header (25),
An intermediate port (40) serving as a branching point from the first flow path (21) to the second flow path (22) is provided at the upstream portion (38) of the outlet header (26).
A terminal port (41) connected to the heat dissipation section (55) of the heat exchanger (56) is provided in the downstream section (39) of the outlet header (26),
The first condensing section (43) is composed of a group of tubes (27) that guide the refrigerant from the upstream section (34) of the inlet header (25) to the upstream section (38) of the outlet header (26);
A second condensing section (44) comprises a group of tubes (27) that conduct refrigerant from an upstream section (38) of the outlet header (26) to a downstream section (35) of the inlet header (25); 2. A refrigeration system according to claim 1, comprising a group of tubes (27) conducting the refrigerant from the outlet header (26) to the downstream part (39) of the outlet header (26).
中間口(40)は出口ヘッダ(26)の仕切り(37)の上面に臨んでおり、
出口ヘッダ(26)の仕切り(37)からその上方に位置するチューブ(27)までの上下方向距離が、該仕切り(37)から中間口(40)までの上下方向距離よりも大きい請求項2に記載の冷凍装置。
The intermediate opening (40) faces the top surface of the partition (37) of the exit header (26),
The vertical distance from the partition (37) of the outlet header (26) to the tube (27) located above it is larger than the vertical distance from the partition (37) to the intermediate opening (40). Refrigeration equipment as described.
凝縮器(19)の1個所に、チューブ(27)の隣接間隔が他よりも大きいギャップ部(60)が設けられており、
ギャップ部(60)の側方に出口ヘッダ(26)の仕切り(37)が配置されている請求項3に記載の冷凍装置。
A gap portion (60) is provided at one location of the condenser (19), where the interval between adjacent tubes (27) is larger than the other gap portions;
The refrigeration system according to claim 3, wherein the partition (37) of the outlet header (26) is arranged on the side of the gap (60).
ギャップ部(60)の通風抵抗を高める抵抗部材(61)が配置されている請求項4に記載の冷凍装置。 The refrigeration system according to claim 4, further comprising a resistance member (61) that increases the ventilation resistance of the gap portion (60). 抵抗部材(61)が、チューブ(27)と平行なプレート(62)と、フィン(28)と同形でプレート(62)を上下から挟むスペーサー(63)とを含む請求項5に記載の冷凍装置。 The refrigeration device according to claim 5, wherein the resistance member (61) includes a plate (62) parallel to the tube (27), and a spacer (63) having the same shape as the fin (28) and sandwiching the plate (62) from above and below. . 出口ヘッダ(26)の仕切り(37)の上面が中間口(40)へ向かって下り傾斜している請求項3に記載の冷凍装置。 The refrigeration system according to claim 3, wherein the upper surface of the partition (37) of the outlet header (26) is sloped downward toward the intermediate port (40). 第2流路(22)を開閉する電磁弁(47)を備えており、
第2流路(22)に対するガス状冷媒の流入が検知された場合に、電磁弁(47)が開状態から閉状態に切り換わる請求項1から7のいずれかひとつに記載の冷凍装置。
Equipped with a solenoid valve (47) that opens and closes the second flow path (22),
The refrigeration system according to any one of claims 1 to 7, wherein the electromagnetic valve (47) switches from an open state to a closed state when the inflow of gaseous refrigerant into the second flow path (22) is detected.
第1流路(21)における凝縮器(19)の出口側に第1温度センサ(51)が設けられており、
第2流路(22)における減圧部(48)の出口側に第2温度センサ(52)が設けられており、
第2温度センサ(52)で計測される第2流体部分の温度が、第1温度センサ(51)で計測される第1流体部分の温度よりも所定温度以上高くなると、第2流路(22)にガス状冷媒が流入しているとみなして電磁弁(47)が閉状態に切り換わる請求項8に記載の冷凍装置。
A first temperature sensor (51) is provided on the outlet side of the condenser (19) in the first flow path (21),
A second temperature sensor (52) is provided on the outlet side of the pressure reducing part (48) in the second flow path (22),
When the temperature of the second fluid portion measured by the second temperature sensor (52) is higher than the temperature of the first fluid portion measured by the first temperature sensor (51) by a predetermined temperature or more, the temperature of the second fluid portion measured by the second temperature sensor (52) becomes higher than the temperature of the first fluid portion measured by the first temperature sensor (51). 9. The refrigeration system according to claim 8, wherein the electromagnetic valve (47) is switched to the closed state by assuming that the gaseous refrigerant is flowing into the refrigerant.
第2流路(22)の減圧部(48)がキャピラリチューブで構成されており、
第2凝縮部(44)から熱交換器(56)の放熱部(55)へ向かう第1流体部分が、減圧部(48)を流れる第2流体部分と熱交換して冷却される請求項1から7のいずれかひとつに記載の冷凍装置。
The pressure reducing part (48) of the second flow path (22) is composed of a capillary tube,
Claim 1: The first fluid portion flowing from the second condensing portion (44) to the heat radiating portion (55) of the heat exchanger (56) is cooled by exchanging heat with the second fluid portion flowing through the pressure reducing portion (48). 7. The refrigeration device according to any one of 7.
第2凝縮部(44)から熱交換器(56)の放熱部(55)へ向かう第1流体部分が、蒸発器(11)から圧縮機(18)へ向かう第1流体部分と熱交換して冷却される請求項1から7のいずれかひとつに記載の冷凍装置。 The first fluid portion going from the second condensing section (44) to the heat radiation section (55) of the heat exchanger (56) exchanges heat with the first fluid section going from the evaporator (11) to the compressor (18). The refrigeration device according to any one of claims 1 to 7, wherein the refrigeration device is cooled.
JP2022125441A 2022-08-05 2022-08-05 Refrigeration device Pending JP2024022092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022125441A JP2024022092A (en) 2022-08-05 2022-08-05 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022125441A JP2024022092A (en) 2022-08-05 2022-08-05 Refrigeration device

Publications (1)

Publication Number Publication Date
JP2024022092A true JP2024022092A (en) 2024-02-16

Family

ID=89855135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022125441A Pending JP2024022092A (en) 2022-08-05 2022-08-05 Refrigeration device

Country Status (1)

Country Link
JP (1) JP2024022092A (en)

Similar Documents

Publication Publication Date Title
US10371422B2 (en) Condenser with tube support structure
US10612823B2 (en) Condenser
US11333401B2 (en) Refrigeration cycle apparatus
EP2869000B1 (en) Refrigeration cycle of refrigerator
JP2005114345A (en) Evaporator for refrigerated merchandiser
JP2009085569A (en) Evaporator unit
JP2016095094A (en) Heat exchanger and refrigeration cycle device
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
JP5847198B2 (en) refrigerator
CN110998215B (en) Heat exchanger
JP2019039597A (en) Double-pipe heat exchanger, and heat exchange system with the same
JP2024022092A (en) Refrigeration device
US20230288145A1 (en) Heat exchanger
JP2008089213A (en) Refrigerant evaporator
JP2013204913A (en) Heat exchanger
JP2019163893A (en) Heat exchanger and refrigeration cycle device
KR102148722B1 (en) Heat exchanger and air conditional having the same
JP6878550B2 (en) Refrigerator
WO2023068023A1 (en) Refrigerator
KR100581565B1 (en) A refrigerants distributing apparatus of an evaporator
KR20150098141A (en) Heat exchanger and air conditional having the same
JP2023058069A (en) refrigerator
KR20140035640A (en) Evaporator and refrigerating machine using there of
KR20180086637A (en) Refrigerating machine condenser