JP2024019746A - Method for producing joined graphene body having larger area and larger thickness by depositing graphene mass in gap between joined graphene bodies and joining joined graphene bodies by friction-welding the graphene mass - Google Patents

Method for producing joined graphene body having larger area and larger thickness by depositing graphene mass in gap between joined graphene bodies and joining joined graphene bodies by friction-welding the graphene mass Download PDF

Info

Publication number
JP2024019746A
JP2024019746A JP2022122402A JP2022122402A JP2024019746A JP 2024019746 A JP2024019746 A JP 2024019746A JP 2022122402 A JP2022122402 A JP 2022122402A JP 2022122402 A JP2022122402 A JP 2022122402A JP 2024019746 A JP2024019746 A JP 2024019746A
Authority
JP
Japan
Prior art keywords
graphene
methanol
collection
container
bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022122402A
Other languages
Japanese (ja)
Inventor
博 小林
Hiroshi Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022122402A priority Critical patent/JP2024019746A/en
Publication of JP2024019746A publication Critical patent/JP2024019746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

To provide a method for producing a joined graphene body having a larger area and a larger thickness.SOLUTION: A suspension obtained by dispersing a graphene mass 3 in methanol and a mass of joined graphene bodies 4 are mixed and the resultant mixture is poured into a container. The three-direction vibrational acceleration is repeatedly given to the container to cause the graphene mass to be planarly arranged with its surface facing upward and to cause the mass of the joined graphene bodies to be planarly arranged with its surface facing upward. Then, the methanol is vaporized to condense the mass of the joined graphene bodies in the container. Thus, the graphene mass fully closing a gap between the joined graphene bodies is friction-welded onto the joined graphene bodies, pieces of the graphene are friction-welded onto each other, and the joined graphene bodies are joined to each other via the friction-welded graphene mass, thereby forming a joined graphene body having a larger area and a larger thickness.SELECTED DRAWING: Figure 3

Description

本発明は、全てのグラフェン接合体同士の間隙を、面を上にして析出したグラフェンの集まりで埋め尽くし、この後、グラフェン接合体の集まりを圧縮し、グラフェンの集まりをグラフェン接合体に摩擦圧接させるとともに、グラフェン同士が摩擦圧接し、該グラフェンの集まりの摩擦圧接を介してグラフェン接合体同士が接合され、より面積が広く、厚みが厚いグラフェン接合体を形成させる発明である。
つまり、グラフェンの厚みが0.332nmと極めて薄いため、グラフェンの厚みに対する面積の比率であるアスペクト比が極めて大きい。また、グラフェンの面同士を接合したグラフェン接合体は、グラフェン接合体の厚みの増大に比べ、グラフェン接合体の面積の増大が著しく大きくなるため、厚みに対する面積の比率であるアスペクト比がさらに大きい。いっぽう、グラフェンの大きさは、グラフェン接合体の大きさより著しく小さい。従って、より面積が広く、厚みが厚いグラフェン接合体を形成するに当たり、グラフェン接合体同士を直接摩擦圧接するより、グラフェン接合体同士の間隙に、グラフェンの集まりが面を上にして析出させ、該グラフェンの集まりの摩擦圧接によって、グラフェン接合体同士を接合する方が容易である。
これによって、接合するグラフェン接合体の数が多くなるほど、また、接合するグラフェン接合体の面積が大きいほど、ないしは、厚みが厚いほど、接合されたグラフェン接合体の面積が大きく、ないしは、厚みが厚い。
In the present invention, all the gaps between graphene bonded bodies are filled with aggregates of graphene precipitated with their faces up, and then the aggregates of graphene bonded bodies are compressed, and the graphene aggregates are friction welded to the graphene bonded bodies. At the same time, the graphenes are frictionally welded to each other, and the graphene bonded bodies are bonded together through the friction welding of the graphene groups to form a graphene bonded body that has a larger area and is thicker.
In other words, since the thickness of graphene is extremely thin at 0.332 nm, the aspect ratio, which is the ratio of the area to the thickness of graphene, is extremely large. Furthermore, in a graphene bonded body in which graphene surfaces are joined, the increase in the area of the graphene bonded body is significantly greater than the increase in the thickness of the graphene bonded body, so the aspect ratio, which is the ratio of area to thickness, is even larger. On the other hand, the size of graphene is significantly smaller than that of graphene conjugates. Therefore, when forming a graphene bonded body with a larger area and a thicker thickness, rather than directly friction welding the graphene bonded bodies together, a collection of graphene is precipitated with the surface facing up in the gap between the graphene bonded bodies. It is easier to join graphene bonded bodies together by friction welding of graphene aggregates.
As a result, the larger the number of graphene bonded bodies to be bonded, or the larger the area or thickness of the bonded graphene bonded bodies, the larger the area or the thicker the bonded graphene bonded bodies. .

面を上にしてグラフェン同士が接合したグラフェン接合体は、グラフェンに近い性質を持つ。また、グラフェン接合体同士を、面を上にしたグラフェンの集まりによって接合したグラフェン接合体は、グラフェンに近い性質を持つ。つまり、グラフェンの厚み方向の熱伝導率は小さく、面方向に熱が優先して伝わる。また、グラフェンの厚み方向の導電率は小さく、面方向に電子が優先して伝わる。このように、グラフェンの性質は異方性を持つ。従って、グラフェン接合体の面同士が、面同士で接合したグラフェンの集まりによって接合すれば、接合したグラフェン接合体は、全てのグラフェンが平面状に並んで接合したグラフェン接合体で構成されるため、グラフェンに近い性質を持つ。いっぽう、グラフェンの厚みが0.332nmと極めて薄く、グラフェンの厚みに対する面積の比率であるアスペクト比が極めて大きい。さらに、グラフェン同士を接合したグラフェン接合体は、接合したグラフェンの枚数に比べ、接合したグラフェンによる面積の増加の方が著しく大きくなり、グラフェン接合体のアスペクト比は、グラフェンのアスペクト比よりさらに大きい。このため、グラフェン同士を接合させる際には、面を上にしてグラフェン同士が接合する。また、グラフェン接合体同士を接合させる際に、面を上にしてグラフェン接合体同士が接合する。
ここで、グラフェンの性質を説明する。前記したように、グラフェンは異方性に基づく様々な優れた性質を持つ。つまり、グラフェンの厚みは0.332nmと極めて薄いため、グラフェンの性質は厚み方向に垂直な面方向の性質になる。
例えば、熱伝導率が1880W/mKで、金属の中で最も熱伝導率が高い銀の熱伝導率の4.5倍に相当する熱伝導率を持つ。体積固有抵抗率は1.3μΩcmで、金属の中で最も体積固有抵抗率が小さい銀の体積固有抵抗率である1.6μΩcmよりさらに小さい。融点が3000℃を超える単結晶材料で、耐熱温度が3000℃を超える。破断強度が42N/mであり、鋼の100倍を超える強度を持ち、ヤング率が1020GPaと極めて大きい強靭な素材である。酸およびアルカリと反応しないない極めて安定した物質である。いっぽう、グラフェンの面同士で接合したグラフェン接合体は、グラフェンの異方性によって、例えば、グラフェン同士が重なり合ったグラフェンの面の方向に、熱が優先して伝わり、また、グラフェンの面の方向に、電子が優先して移動する。このため、グラフェン接合体の熱伝導率はグラフェンの熱伝導率に近く、導電率はグラフェンの導電率に近い。さらに、グラフェン接合体の面同士が、面同士で接合したグラフェンの集まりによって接合したグラフェン接合体は、全てのグラフェンが平面状に並んで接合したグラフェン接合体で構成されるため、グラフェン接合体は、グラフェンの面の方向に、熱が優先して伝わり、また、グラフェンの面の方向に、電子が優先して移動する。このため、銀より優れた熱伝導性と電気導電性を持つ。
このグラフェン接合体の優れた熱伝導性と電気導電性を利用して、例えば、面積が1cm×1cmより小さく、厚みが0.1μmより薄い電極や接点として、また、例えば、面積が0.5cm×10cmで、厚みが0.1μm前後の細長い配線パターンとして用いることができる。いっぽう、グラフェンの導電性によって、グラフェン接合体は、グラフェンの体積固有抵抗率に応じた電磁波のシールド性を発揮し、電磁波遮蔽被膜として作用する。また、グラフェンの導電性によって、グラフェン接合体は、帯電防止被膜として作用する。また、グラフェンの熱伝導性によって、グラフェン接合体は、放熱被膜として作用する。さらに、グラフェン接合体の表面は、グラフェンの厚みに相当する0.332nmに過ぎない平坦度を有するため、完全な平面に近く、グラフェン接合体は、潤滑性被膜として作用する。また、グラフェンが耐食性と耐熱性とに優れているため、グラフェン接合体は、耐食性被膜や耐熱性被膜として作用する。さらに、グラフェンは、せん断弾性率が440GPaで、最も強靭な物質であるため、グラフェン接合体は、耐摩耗性被膜や非破壊性被膜として作用する。これらのグラフェン接合体からなる被膜の面積は、例えば、面積が1m×1mを超え、厚みが1μmを超える場合もある。こうした被膜を基材や部品の表面に摩擦圧接すれば、前記したグラフェン接合体の様々な性質が、基材や部品に付与できる。
前記のように、グラフェン接合体の用途が広いため、グラフェン接合体は、用途に応じた面積と厚みが必要になる。いっぽう、グラフェンのせん断弾性率が440GPaで、最も強靭な物質であるため、グラフェン接合体を切断することができない。
ところで、グラフェン接合体同士を接合し、より面積が広く、厚みが厚いグラフェン接合体を形成するに当たり、グラフェン接合体同士を重ね合わせた面でグラフェン接合体同士を直接摩擦圧接させる場合は、グラフェン接合体同士が重なり合った面の比率に応じて、接合したグラフェン接合体の接合強度が変わる。従って、グラフェン接合体同士が重なり合った面の比率が高まるように、グラフェン接合体同士を重ね合わせることが必要になる。しかし、グラフェン接合体の大きさと形状にバラツキがある場合は、グラフェン接合体同士が重なり合った面の比率を高めることが困難になる。また、接合するグラフェン接合体の集まりの面積が大きくなるほど、また、厚みが厚くなるほど、グラフェン接合体の集まりを、均一に圧縮することが難しくなり、全てのグラフェン接合体を、直接摩擦圧接させることが難しくなる。
これに対し、全てのグラフェン接合体同士の間隙にグラフェンの集まりを析出させ、該全てのグラフェン接合体同士の間隙をグラフェンの集まりで埋め尽くし、この後、全てのグラフェン接合体の集まりを圧縮する。この際、グラフェンの大きさがグラフェン接合体の大きさより著しく小さいため、グラフェンの集まりが全てのグラフェン接合体に摩擦圧接し、また、グラフェン同士が摩擦圧接し、全てのグラフェン接合体同士の間隙は、摩擦圧接したグラフェンの集まりで埋め尽くされる。この結果、摩擦圧接したグラフェンの集まりを介して、全てのグラフェン接合体同士が接合される。従って、グラフェン接合体同士が重なり合った面の比率の如何に関わらず、また、接合させるグラフェン接合体の集まりの大きさと厚みとに関わらず、グラフェン接合体同士が接合できる。本発明は、こうした考えに基づく。
Graphene bonded bodies, in which graphenes are bonded together with their faces up, have properties similar to graphene. In addition, a graphene bonded body in which two graphene bonded bodies are bonded together by a collection of graphenes with their surfaces facing up has properties similar to graphene. In other words, the thermal conductivity of graphene in the thickness direction is low, and heat is preferentially transferred in the plane direction. In addition, the conductivity of graphene in the thickness direction is low, and electrons are preferentially transmitted in the in-plane direction. In this way, graphene has anisotropic properties. Therefore, if the surfaces of a graphene conjugate are joined together by a collection of graphenes joined face to face, the joined graphene conjugate will be composed of a graphene conjugate in which all the graphenes are lined up in a plane and joined together. It has properties similar to graphene. On the other hand, the thickness of graphene is extremely thin at 0.332 nm, and the aspect ratio, which is the ratio of the area to the thickness of graphene, is extremely large. Furthermore, in a graphene bonded body in which graphene is bonded to each other, the increase in area due to the bonded graphene is significantly larger than the number of bonded graphene sheets, and the aspect ratio of the graphene bonded body is even larger than that of graphene. Therefore, when bonding graphenes together, the graphenes are bonded with their surfaces facing upward. Further, when bonding the graphene bonded bodies to each other, the graphene bonded bodies are bonded to each other with their surfaces facing upward.
Here, the properties of graphene will be explained. As mentioned above, graphene has various excellent properties based on its anisotropy. In other words, since the thickness of graphene is extremely thin at 0.332 nm, the properties of graphene are in the plane direction perpendicular to the thickness direction.
For example, it has a thermal conductivity of 1880 W/mK, which is 4.5 times the thermal conductivity of silver, which has the highest thermal conductivity among metals. The specific volume resistivity is 1.3 μΩcm, which is even smaller than the specific volume resistivity of 1.6 μΩcm of silver, which has the lowest specific volume resistivity among metals. A single crystal material with a melting point of over 3000°C and a heat resistance of over 3000°C. It is a tough material with a breaking strength of 42 N/m, which is over 100 times stronger than steel, and an extremely large Young's modulus of 1020 GPa. It is an extremely stable substance that does not react with acids and alkalis. On the other hand, in a graphene bonded body in which the graphene surfaces are joined, due to the anisotropy of graphene, for example, heat is preferentially transferred in the direction of the graphene surface where graphene overlaps, and heat is transferred in the direction of the graphene surface. , electrons move preferentially. Therefore, the thermal conductivity of the graphene composite is close to that of graphene, and the electrical conductivity is close to that of graphene. Furthermore, a graphene conjugate in which the surfaces of the graphene conjugate are joined by a collection of graphenes joined face to face is composed of a graphene conjugate in which all the graphenes are lined up in a plane and joined together, so the graphene conjugate is , heat is preferentially transferred in the direction of the graphene surface, and electrons are preferentially moved in the direction of the graphene surface. Therefore, it has better thermal and electrical conductivity than silver.
By utilizing the excellent thermal conductivity and electrical conductivity of this graphene composite, it can be used, for example, as an electrode or contact with an area of less than 1 cm x 1 cm and a thickness of less than 0.1 μm. It can be used as an elongated wiring pattern with a size of 10 cm x 10 cm and a thickness of about 0.1 μm. On the other hand, due to the conductivity of graphene, the graphene bond exhibits electromagnetic wave shielding properties that correspond to the volume resistivity of graphene, and acts as an electromagnetic wave shielding film. Additionally, due to the electrical conductivity of graphene, the graphene conjugate acts as an antistatic coating. Furthermore, due to the thermal conductivity of graphene, the graphene composite acts as a heat dissipation coating. Furthermore, since the surface of the graphene bond has a flatness of only 0.332 nm, which corresponds to the thickness of graphene, it is nearly perfectly flat, and the graphene bond acts as a lubricating film. Furthermore, since graphene has excellent corrosion resistance and heat resistance, the graphene bonded body acts as a corrosion-resistant film or a heat-resistant film. Furthermore, graphene has a shear modulus of 440 GPa and is the toughest substance, so the graphene bond acts as a wear-resistant film or a non-destructive film. The area of the coating made of these graphene conjugates may exceed, for example, 1 m x 1 m, and the thickness may exceed 1 μm. By friction welding such a film to the surface of a base material or component, various properties of the graphene bonded body described above can be imparted to the base material or component.
As described above, since the graphene bonded body has a wide range of uses, the graphene bonded body requires an area and thickness depending on the purpose. On the other hand, since graphene has a shear modulus of 440 GPa and is the strongest material, graphene bonded bodies cannot be cut.
By the way, when bonding graphene bonded bodies to form a graphene bonded body with a larger area and thickness, if the graphene bonded bodies are directly friction welded on the surface where the graphene bonded bodies are overlapped, graphene bonding is performed. The bonding strength of the bonded graphene bonded body changes depending on the ratio of the surfaces where the bodies overlap. Therefore, it is necessary to overlap the graphene bonded bodies so that the ratio of the surfaces where the graphene bonded bodies overlap increases. However, if there are variations in the size and shape of the graphene bonded bodies, it becomes difficult to increase the ratio of the overlapping surfaces of the graphene bonded bodies. In addition, the larger the area of the graphene bonded bodies to be joined and the thicker the thickness, the more difficult it becomes to uniformly compress the graphene bonded bodies. becomes difficult.
On the other hand, a collection of graphene is precipitated in the gaps between all the graphene conjugates, the gaps between all the graphene conjugates are filled with the collection of graphene, and after this, the collection of all the graphene conjugates is compressed. . At this time, since the size of the graphene is significantly smaller than the size of the graphene bonded bodies, the graphene clusters are frictionally welded to all the graphene bonded bodies, and the graphenes are also frictionally welded to each other, and the gaps between all the graphene bonded bodies are , filled with clusters of friction-welded graphene. As a result, all the graphene bonded bodies are bonded to each other via the friction-welded graphene clusters. Therefore, graphene bonded bodies can be bonded to each other regardless of the ratio of the overlapping surfaces of the graphene bonded bodies and regardless of the size and thickness of the group of graphene bonded bodies to be bonded. The present invention is based on this idea.

ここで、本発明に関わりがある本発明者の先行出願特許を説明する。
第一の先行出願特許は、メタノール中で、黒鉛粒子の集まりにおける黒鉛結晶の層間結合を同時に破壊して、グラフェンの集まりを容器内に製造し、該容器に3方向の振動を繰り返し加え、グラフェンの扁平面同士がメタノールを介して重なり合った該グラフェンの集まりを、容器の底面に該底面の形状として形成し、この後、グラフェンの集まりの上方の平面を均等に圧縮し、グラフェン同士を同時に摩擦圧接によってグラフェン接合体を製造する方法に関わる特許である(特許文献1)。
第二の先行出願特許は、有機化合物のメタノール希釈液中にグラフェンの集まりを分散させたペーストを製造し、該ペーストを新たな容器に移し、この後、新たな容器に3方向の振動加速度を繰り返し加え、グラフェン同士を有機化合物のメタノール希釈液を介して重なり合わせ、該グラフェン同士が前記有機化合物のメタノール希釈液を介して重なり合った該グラフェンの集まりを形成する方法に関わる特許である(特許文献2)。
Here, the patents previously filed by the present inventor that are related to the present invention will be explained.
The first prior patent application discloses that the interlayer bonds of graphite crystals in a collection of graphite particles are simultaneously destroyed in methanol, a collection of graphene is produced in a container, and vibrations are repeatedly applied in three directions to the container. A collection of graphenes in which the flat surfaces of the graphenes overlap with each other via methanol is formed on the bottom of the container in the shape of the bottom surface, and then the plane above the collection of graphenes is evenly compressed to simultaneously rub the graphenes together. This patent relates to a method of manufacturing a graphene bonded body by pressure welding (Patent Document 1).
The second prior application patent involves manufacturing a paste in which clusters of graphene are dispersed in a methanol diluted solution of an organic compound, transferring the paste to a new container, and then subjecting the new container to vibrational acceleration in three directions. This patent relates to a method of repeatedly adding graphenes to overlap each other via a diluted methanol solution of an organic compound, and forming a collection of graphenes in which the graphenes overlap each other via a diluted methanol solution of the organic compound (Patent Document 2).

本発明は、全てのグラフェン接合体同士の間隙に、グラフェンの集まりを析出させ、全てのグラフェン接合体同士の間隙を、グラフェンの集まりで埋め尽くし、グラフェン接合体の集まりを圧縮し、グラフェンの集まりをグラフェン接合体に摩擦圧接させるとともに、グラフェン同士が摩擦圧接し、該摩擦圧接したグラフェンの集まりを介して、グラフェン接合体同士が接合し、より面積が広く、厚みが厚いグラフェン接合体を形成させる。
いっぽう、第一の先行出願は、容器の底面に重なり合ったグラフェンの集まりを形成し、グラフェンの集まりの上方の平面を均等に圧縮し、グラフェン同士を同時に摩擦圧接によってグラフェン接合体を製造する。このため、グラフェンの集まりの面積と厚みとが大きくなるほど、グラフェンの集まりを均等に圧縮することが困難になる。従って、製造するグラフェン接合体の大きさと厚みに制約がある。これに対し、本発明では、グラフェン接合体同士の間隙に、グラフェン接合体より面積が著しく小さく、厚みも著しく薄いグラフェンの集まりを析出させ、該グラフェンの集まりを摩擦圧接させ、グラフェン接合体同士を接合させるため、接合するグラフェン接合体の大きさと厚みに制約がない。このため、本発明は第一の先行出願に比べ、より面積が広く、より厚みが厚いグラフェン接合体が形成できる。
第二の先行出願では、有機化合物を介してグラフェン同士を重ね合わせたグラフェンの集まりからなるペーストを製造する方法に関わる。従って、第二の先行出願も、第一の先行出願と同様に、グラフェン接合体を製造するに当たり、グラフェン同士を同時に摩擦圧接することによってグラフェン接合体を製造するため、製造するグラフェン接合体の大きさと厚みに制約がある。これに対し、本発明では、グラフェンの集まりがメタノールに分散した懸濁液に、グラフェン接合体の集まりを混合し、該混合物を容器に注入し、メタノールを気化させた後に、混合物の表面全体を圧縮する。これによって、全てのグラフェン接合体同士の間隙を埋め尽くして析出したグラフェンの集まりが圧縮され、該グラフェンの集まりがグラフェン接合体に摩擦圧接し、また、グラフェン同士が摩擦圧接する。この摩擦圧接したグラフェンの集まりを介して、グラフェン接合体同士を接合される。従って、接合するグラフェン接合体の大きさは、容器の大きさで決まり、接合するグラフェン接合体の厚みは、容器に注入する混合物の量で決まる。従って、本発明は第二の先行出願に比べ、より面積が広く、厚みが厚いグラフェン接合体が形成できる。
つまり、グラフェン接合体同士を重ね合わせ、全てのグラフェン接合体同士を同時に摩擦圧接し、さらに面積が大きい、さらに厚みが厚いグラフェン接合体を製造する際に、製造するグラフェン接合体の面積が大きくなるほど、ないしは、製造するグラフェン接合体の厚みが厚くなるほど、重ね合わせるグラフェン接合体の数が多くなり、また、重ね合わせるグラフェン接合体の面積が大きくなり、全てのグラフェン接合体を均等に圧縮し、全てのグラフェン接合体を同時に摩擦圧接することが難しくなる。
これに対し、全てのグラフェン接合体同士の間隙にグラフェンの集まりを析出させ、全てのグラフェン接合体同士の間隙をグラフェンの集まりで埋め尽くし、この後、グラフェン接合体の集まりを圧縮すると、グラフェンが、グラフェン接合体より面積が著しく小さく、厚みが著しく薄いため、グラフェンの集まりが、グラフェン接合体に容易に摩擦圧接し、また、グラフェン同士が容易に摩擦圧接し、全てのグラフェン接合体同士の間隙は、摩擦圧接したグラフェンの集まりで埋め尽くされる。この結果、摩擦圧接したグラフェンの集まりを介して、グラフェン接合体同士が容易に接合される。これによって、より面積が広く、厚みが厚いグラフェン接合体が形成できる。
従って、接合するグラフェン接合体の数が多くなるほど、また、接合するグラフェン接合体の面積が大きいほど、ないしは、厚みが厚いほど、接合されたグラフェン接合体の面積が大きく、ないしは、厚みが厚い。
つまり、グラフェン接合体同士を直接摩擦圧接させる場合は、摩擦圧接されるグラフェン接合体の全ての面に圧縮応力を加える必要がある。これに対し、グラフェン接合体より著しく面積が小さく、厚みが薄いグラフェンに、圧縮応力を加えることは容易である。従って、全てのグラフェン接合体同士の間隙に、グラフェンの集まりを析出させ、該グラフェンの集まりの摩擦圧接を介して、グラフェン接合体同士を接合させることは容易である。この考えから本発明に至った。
The present invention precipitates clusters of graphene in the gaps between all the graphene junctions, fills the gaps between all the graphene junctions with the clusters of graphene, compresses the collection of graphene junctions, and is frictionally welded to the graphene bonded body, the graphenes are frictionally welded to each other, and the graphene bonded bodies are bonded to each other via the collection of frictionally welded graphenes, forming a graphene bonded body with a larger area and thicker thickness. .
On the other hand, the first prior application forms a cluster of overlapping graphene on the bottom of a container, uniformly compresses the plane above the cluster of graphene, and simultaneously frictionally welds the graphene to produce a graphene bonded body. For this reason, the larger the area and thickness of the graphene cluster, the more difficult it becomes to uniformly compress the graphene cluster. Therefore, there are restrictions on the size and thickness of the graphene bonded body to be manufactured. In contrast, in the present invention, clusters of graphene with a significantly smaller area and thickness than the graphene composites are precipitated in the gaps between the graphene composites, and the graphene clusters are frictionally welded to bond the graphene composites together. Because the graphene is bonded, there are no restrictions on the size and thickness of the graphene bonded bodies. Therefore, the present invention can form a graphene bonded body with a wider area and thicker thickness than the first prior application.
The second prior application relates to a method for producing a paste consisting of a collection of graphenes stacked on top of each other via an organic compound. Therefore, in the second prior application, as in the first prior application, the graphene bonded body is manufactured by friction welding graphenes together at the same time, so the size of the graphene bonded body to be manufactured is There are restrictions on thickness and thickness. In contrast, in the present invention, a collection of graphene conjugates is mixed with a suspension of graphene collections dispersed in methanol, the mixture is poured into a container, and after the methanol is vaporized, the entire surface of the mixture is Compress. As a result, the clusters of graphene precipitated filling all the gaps between the graphene bonded bodies are compressed, the graphene clusters are frictionally welded to the graphene bonded bodies, and the graphenes are frictionally welded to each other. The graphene bonded bodies are bonded together via this collection of friction-welded graphene. Therefore, the size of the graphene conjugate to be joined is determined by the size of the container, and the thickness of the graphene conjugate to be joined is determined by the amount of the mixture injected into the container. Therefore, the present invention can form a graphene bonded body that has a larger area and is thicker than the second prior application.
In other words, when stacking graphene bonded bodies on top of each other and friction welding all the graphene bonded bodies simultaneously to produce a graphene bonded body with a larger area and thickness, the larger the area of the graphene bonded bodies to be manufactured, the more , or, as the thickness of the graphene bonded bodies to be manufactured increases, the number of graphene bonded bodies to be stacked increases, and the area of the graphene bonded bodies to be stacked increases, so that all the graphene bonded bodies are compressed evenly, and all graphene bonded bodies are compressed evenly. It becomes difficult to frictionally weld two graphene bonded bodies at the same time.
On the other hand, if graphene aggregates are precipitated in the gaps between all the graphene bonded bodies, the gaps between all the graphene bonded bodies are filled with graphene aggregates, and then the graphene bonded bodies are compressed, the graphene Since the area is significantly smaller and the thickness is significantly thinner than that of the graphene bonded body, a collection of graphene easily frictionally welds to the graphene bonded body. is filled with clusters of friction-welded graphene. As a result, the graphene bonded bodies are easily joined to each other via the friction-welded graphene clusters. As a result, a graphene bonded body having a larger area and a larger thickness can be formed.
Therefore, the larger the number of graphene bonded bodies to be bonded, and the larger the area or thickness of the bonded graphene bonded bodies, the larger the area or the thicker the bonded graphene bonded bodies.
In other words, when directly friction-welding graphene bonded bodies, it is necessary to apply compressive stress to all surfaces of the graphene bonded bodies to be friction-welded. On the other hand, it is easy to apply compressive stress to graphene, which has a significantly smaller area and thinner thickness than the graphene bonded body. Therefore, it is easy to precipitate graphene aggregates in the gaps between all the graphene bonded bodies and join the graphene bonded bodies together through friction welding of the graphene aggregates. This idea led to the present invention.

特願2019-107537Patent application 2019-107537 特願2020-112197Patent application 2020-112197 特許第6166860号Patent No. 6166860

2段落で説明したように、グラフェン接合体の用途が広いため、グラフェン接合体は、用途に応じて面積と厚みとが大きく異なる。また、グラフェンが最も固い物質であるため、グラフェン接合体を切断することができない。従って、面積と厚みとが異なる多くの種類のグラフェン接合体が容易に製造できれば、用途に応じた面積と厚みとを有するグラフェン接合体が選択できる。
いっぽう、本発明におけるより面積が広く、厚みが厚いグラフェン接合体を形成するに当たっては、次の3つの課題がある。本発明が解決しようとする課題は、これら3つの課題である。
第一に、全てのグラフェン接合体同士の間隙に、グラフェンの集まりを析出させ、全てのグラフェン接合体同士の間隙を、グラフェンの集まりで埋め尽くす方法を見出す。なお、グラフェンは、グラフェン接合体同士を接合させる接合材の役割を担うため、グラフェン接合体同士の間隙に析出するグラフェンの集まりは、少なくてよい。
第二、面を上にしてグラフェンの集まりを平面状にランダムに並ばせ、また、面を上にしてグラフェン接合体の集まりを平面状にランダムに並ばせ、こうしたグラフェンの集まりと、こうしたグラフェン接合体の集まりが、ランダムに積層した混合物を作成する方法を見出す。つまり、この混合物の表面全体を均等に圧縮すると、平面状に並んだグラフェン接合体同士が圧縮され、これによって、グラフェン接合体同士の間隙に積層した平面状に並んだグラフェンの集まりが圧縮され、グラフェンがグラフェン接合体に摩擦圧接するとともに、グラフェン同士が摩擦圧接し、該摩擦圧接したグラフェンの集まりによって、グラフェン接合体同士が接合され、より面積が広く、厚みが厚いグラフェン接合体が容易に形成できる。
第三に、同一の形状と同一の厚みからなるグラフェン接合体を製造する方法を見出す。つまり、同一の形状と同一の厚みからなるグラフェン接合体同士を、摩擦圧接したグラフェンの集まりを介して接合したグラフェン接合体の集まりは、グラフェン接合体同士が重なり合う面積の割合が増えるため、接合したグラフェン接合体の集まりの機械的強度が高まる。
As explained in the second paragraph, the graphene conjugate has a wide range of uses, so the area and thickness of the graphene conjugate vary greatly depending on the application. Furthermore, since graphene is the hardest substance, it is impossible to cut the graphene bond. Therefore, if many types of graphene bonded bodies with different areas and thicknesses can be easily manufactured, graphene bonded bodies having areas and thicknesses depending on the application can be selected.
On the other hand, there are the following three problems when forming a graphene bonded body with a larger area and a thicker thickness according to the present invention. The problems to be solved by the present invention are these three problems.
First, we found a method to precipitate clusters of graphene in the gaps between all the graphene conjugates and fill the gaps between all the graphene conjugates with the clusters of graphene. Note that since graphene plays the role of a bonding material that joins the graphene bonded bodies, the number of graphene particles precipitated in the gaps between the graphene bonded bodies may be small.
Second, groups of graphene are arranged randomly in a plane with their faces up, and groups of graphene junctions are arranged randomly in a plane with their faces up. A collection of bodies finds a way to create randomly layered mixtures. In other words, when the entire surface of this mixture is compressed evenly, the graphene bonded bodies arranged in a plane are compressed, and thereby the collection of graphene arranged in a plane stacked in the gaps between the graphene bonded bodies is compressed. Graphene is frictionally welded to the graphene bonded body, and the graphenes are frictionally welded to each other, and the graphene bonded bodies are joined together by the collection of frictionally welded graphenes, and a graphene bonded body with a larger area and thickness is easily formed. can.
Third, we will find a method to manufacture graphene conjugates that have the same shape and thickness. In other words, in a group of graphene bonded bodies that have the same shape and the same thickness and are bonded together via a group of friction-welded graphene, the proportion of the area where the graphene bonded bodies overlap increases, so the bonded graphene bonded bodies are The mechanical strength of the graphene conjugate assembly increases.

本発明におけるグラフェン接合体同士の間隙にグラフェンの集まりを析出させ、該グラフェンの集まりの摩擦圧接によって、グラフェン接合体同士を接合させ、より面積が広く、厚みが厚いグラフェン接合体を製造する方法は、
グラフェンの集まりをメタノールに分散した懸濁液を作成し、グラフェン接合体の集まりを、前記グラフェンの集まりの重量より多い重量として秤量し、該グラフェン接合体の集まりを、前記懸濁液に混合して第一の混合物を作成する第一の工程と、
前記第一の混合物の一部を容器に注入し、該容器に、左右、前後、上下の3方向の0.3-0.5Gからなる振動加速度を、各々の方向に順番に繰り返し加え、最後に、0.3-0.5Gからなる上下方向の振動加速度を加える、これによって、前記グラフェンの集まりが、前記メタノールを介して面を上にして平面状に並ぶとともに、前記グラフェン接合体の集まりも、前記メタノールを介して面を上にして平面状に並び、該グラフェンの集まりと、該グラフェン接合体の集まりとが、ランダムにメタノール中で積層して、メタノール中に分散した第二の混合物を作成する第二の工程と、
前記容器を前記メタノールの沸点に昇温し、該容器から前記メタノールを気化させ、前記面を上にして平面状に並んだグラフェンの集まりと、前記面を上にして平面状に並んだグラフェン接合体の集まりが、互いに重なり合ってランダムに積層し、前記全てのグラフェン接合体同士の間隙が前記グラフェンの集まりで埋め尽くされた第三の混合物が、前記容器の底面に形成される第三の工程と、
前記第三の混合物の表面全体を板材で覆い、該板材の表面全体を均等に圧縮し、前記第三の混合物の表面全体を均等に圧縮する、これによって、前記全てのグラフェン接合体同士の間隙を埋め尽くした前記グラフェンの集まりが、前記グラフェン接合体に摩擦圧接するとともに、前記グラフェン同士が摩擦圧接し、前記全てのグラフェン接合体同士の間隙は、前記摩擦圧接したグラフェンの集まりで埋め尽くされ、該摩擦圧接したグラフェンの集まりを介して、前記グラフェン接合体同士が接合され、より面積が広く、厚みが厚いグラフェン接合体が前記容器の底面に該底面の形状として形成される第四の工程と、
前記容器の底面の5-9個所に、0.3-0.5Gからなる衝撃加速度を断続的に繰り返し加え、該容器の底面に形成された前記グラフェン接合体を、該容器の底面から引き剥がし、該グラフェン接合体を取り出す第五の工程とからなり、
前記した5つの工程における全ての処理を順番に連続して実施することで、グラフェン接合体同士の間隙にグラフェンの集まりを析出させ、該グラフェンの集まりの摩擦圧接によって、グラフェン接合体同士が接合され、より面積が広く、厚みが厚いグラフェン接合体が製造される方法である。
The method of the present invention for producing a larger and thicker graphene bonded body by precipitating graphene aggregates in the gaps between graphene bonded bodies and joining the graphene bonded bodies together by friction welding the graphene aggregates is ,
A suspension of a collection of graphene is dispersed in methanol, a collection of graphene conjugates is weighed as a weight greater than the weight of the collection of graphene, and the collection of graphene conjugates is mixed into the suspension. a first step of creating a first mixture;
A portion of the first mixture is poured into a container, and a vibration acceleration of 0.3-0.5G in three directions (left and right, front and back, and up and down) is repeatedly applied to each direction in order, and finally A vertical vibrational acceleration of 0.3-0.5G is applied to the graphene, whereby the graphene clusters are aligned in a plane with the surface facing up through the methanol, and the graphene conjugate clusters are arranged in a plane with the surface facing up. A second mixture is prepared in which the graphene clusters and the graphene conjugate clusters are arranged in a plane with their faces facing up through the methanol, and the clusters of graphene and the clusters of graphene conjugates are randomly stacked in methanol and dispersed in methanol. The second step of creating
The temperature of the container is raised to the boiling point of the methanol, and the methanol is vaporized from the container, resulting in a collection of graphene arranged in a planar shape with the surface facing up, and a graphene junction arranged in a planar shape with the surface facing up. A third step in which a third mixture is formed on the bottom surface of the container, in which the clusters of graphene bodies overlap each other and are randomly stacked, and the gaps between all the graphene bonded bodies are filled with the clusters of graphene bodies. and,
The entire surface of the third mixture is covered with a plate material, the entire surface of the plate material is evenly compressed, and the entire surface of the third mixture is evenly compressed, thereby reducing the gaps between all the graphene bonded bodies. The collection of graphene that has filled up is frictionally welded to the graphene bonded body, the graphenes are frictionally welded to each other, and the gaps between all the graphene bonded bodies are filled with the graphene that has been frictionally welded. , a fourth step in which the graphene bonded bodies are bonded to each other via the friction-welded cluster of graphene, and a graphene bonded body having a larger area and thickness is formed on the bottom surface of the container in the shape of the bottom surface. and,
An impact acceleration of 0.3-0.5G is intermittently and repeatedly applied to 5-9 locations on the bottom of the container, and the graphene bond formed on the bottom of the container is peeled off from the bottom of the container. , a fifth step of taking out the graphene conjugate,
By sequentially and continuously carrying out all of the processes in the five steps described above, clusters of graphene are precipitated in the gaps between the graphene bonded bodies, and the graphene bonded bodies are joined by friction welding of the graphene clusters. This is a method for producing a graphene bonded body with a larger area and thicker thickness.

本発明は、5つの工程からなる。
第一の工程は、グラフェンの集まりをメタノールに分散した懸濁液を作成し、グラフェン接合体の集まりを、グラフェンの集まりの重量より多い重量として秤量し、該グラフェン接合体の集まりを、懸濁液に混合して混合物を作成する。
つまり、グラフェンの厚みは0.332nmと極めて薄いため、殆ど質量を持たない。このグラフェンの集まりを、低粘度で低密度のメタノールに混合し、メタノールを撹拌すれば、グラフェンがメタノールに分散した懸濁液が作成される。この後、グラフェン同士を接合したグラフェン接合体を、グラフェンの集まりの重量より多い重量として秤量し、懸濁液に混合して混合物を作成する。つまり、グラフェンは、グラフェン接合体同士を接合させる接合材の役割を担うため、グラフェン接合体同士の間隙を埋め尽くすグラフェンの集まりの量は、グラフェン接合体を構成するグラフェンの量より少ない。また、グラフェン同士を接合したグラフェン接合体も、殆ど質量を持たないため、グラフェン接合体の集まりを懸濁液に混合し、メタノールを撹拌すれば、グラフェン接合体は、グラフェンとともにメタノールに容易に分散する。例えば、グラフェンを10枚重ね合わせて接合したグラフェン接合体の厚みは、僅かに3.32nmである。従って、グラフェン接合体の面積が1cm×1cmであっても、グラフェン接合体の質量は極僅かである。
第二の工程は、前記した混合物の一部を容器に注入し、容器の大きさに応じて、容器に、左右、前後、上下の3方向の0.3-0.5Gからなる振動加速度を、例えば、各々の方向の振動加速度を5秒間ずつ5回繰り返して加え、この後、上下方向の振動加速度を5秒間加える。
この際、グラフェンが殆ど質量を持たず、厚みに対する面積の比率であるアスペクト比が大きいため、メタノール中に分散されたグラフェンの集まりが、3方向の振動加速度を受けると、振動加速度の方向にメタノールとともに移動するが、グラフェンのアスペクト比が大きいため、面を上にしてメタノール中を移動するのが最もグラフェンに負荷が加わらない。このため、グラフェンは、面を上にしてメタノール中を移動する。グラフェンの集まりが3方向の振動加速度を繰り返し受けることで、グラフェンの集まりは、メタノール中でランダムに平面状に並ぶ。また、グラフェン接合体も殆ど質量を持たず、厚みに対する面積の比率であるアスペクト比は、グラフェンよりさらに大きい。このため、メタノール中に分散されたグラフェン接合体も、3方向の振動加速度を受けると、振動加速度の方向にメタノールとともに移動するが、グラフェン接合体のアスペクト比が大きいため、面を上にしてメタノール中を移動するのが最もグラフェン接合体に負荷が加わらない。このため、グラフェン接合体も、面を上にしてメタノール中を移動する。グラフェン接合体の集まりが3方向の振動加速度を繰り返し受けることで、グラフェン接合体の集まりは、メタノール中でランダムに平面状に並ぶ。なお、加える振動加速度の大きさは、溝の大きさに応じて、0.3-0.5Gからなる振動加速度を加える。
つまり、グラフェンとグラフェン接合体とは、低粘度で低密度のメタノールで覆われ、メタノール中に分散している。メタノール中に分散しているグラフェンとグラフェン接合体とが注入されている容器に、3方向の振動加速度を繰り返して加えると、低粘度で低密度のメタノールが、殆ど質量を持たないグラフェンとグラフェン接合体とを伴って振動加速度の方向に移動する。いっぽう、グラフェンのアスペクト比を、厚みに対する面積の比率とすると、厚みが僅かに0.322nmであるため、アスペクト比は極めて大きい。また、グラフェン接合体は、厚みがグラフェンより厚いが、面積がグラフェンより著しく大きいため、グラフェン接合体のアスペクト比は、グラフェンのアスペクト比より著しく大きい。いっぽう、グラフェンとグラフェン接合体は、アスペクト比が大きいため、面を上にしてメタノール中を移動するのが、グラフェンとグラフェン接合体に最も負荷が加わらない。このため、グラフェンとグラフェン接合体は、面を上にしてメタノール中を移動し、繰り返し3方向の振動加速度を受けることで、グラフェンとグラフェン接合体はメタノール中でランダムに平面状に並ぶ。この結果、面を上にして平面状に並んだグラフェンの集まりと、面を上にして平面状に並んだグラフェン接合体の集まりとが、ランダムにメタノール中で積層し、かつ、メタノール中に分散した混合物が、容器に形成される。最後に、上下方向の振動加速度を加え、平面状に並んだグラフェンの集まりと、平面状に並んだグラフェン接合体の集まりとが、互いに重なり合ってメタノール中にランダムに積層した混合物が、確実に容器に形成される。なお、容器に加える振動加速度の大きさは、容器の大きさに応じて、0.3-0.5Gからなる振動加速度を加える。これによって、6段落に記載した第二の課題が解決される。
第三の工程は、容器をメタノールの沸点に昇温し、容器からメタノールを気化させ、面を上にして平面状に並んだグラフェンの集まりと、面を上にして平面状に並んだグラフェン接合体の集まりが、互いに重なり合ってランダム積層した混合物が、容器の底面に該底面の形状として形成される。いっぽう、グラフェンの大きさが、グラフェン接合体の大きさより、著しく小さいため、メタノールを気化させると、グラフェン接合体同士の間隙を埋め尽くしてグラフェンの集まりが析出する。この結果、平面状に並んだ全てのグラフェン接合体同士の間隙が、平面状に並んだグラフェンの集まりで埋め尽くされる。これによって、6段落に記載した第一の課題が解決される。
第四の工程は、容器内に形成された混合物の表面全体を板材で覆い、該板材の表面全体を均等に圧縮し、混合物の表面全体を均等に圧縮する。これによって、全てのグラフェン接合体同士の間隙を埋め尽くして析出したグラフェンの集まりが、グラフェン接合体に摩擦圧接するとともに、グラフェン同士が摩擦圧接し、グラフェン接合体同士の全ての間隙は、摩擦圧接したグラフェンの集まりで埋め尽くされる。この結果、摩擦圧接したグラフェンの集まりを介して、グラフェン接合体同士が接合され、より面積が広く、厚みが厚いグラフェン接合体が容器の底面に該底面の形状として形成される。なお、混合物の表面に存在するグラフェン接合体と、混合物の裏面に存在するグラフェン接合体との双方のグラフェン接合体も、面を埋め尽くして析出したグラフェンの集まりが、グラフェン接合体の表面に摩擦圧接するとともに、グラフェン同士が摩擦圧接し、摩擦圧接したグラフェンがグラフェン接合体の表面に摩擦圧接する。
第五の工程は、容器の底面の5-9個所に、0.3-0.5Gからなる衝撃加速度を断続的に繰り返し加え、容器の底面に形成されたグラフェン接合体を、容器の底面から引き剥がし、グラフェン接合体を取り出す。
The present invention consists of five steps.
The first step is to create a suspension by dispersing a collection of graphene in methanol, weigh the collection of graphene conjugates as a weight greater than the weight of the collection of graphene, and suspend the collection of graphene conjugates. to create a mixture.
In other words, graphene has a thickness of 0.332 nm, which is extremely thin, so it has almost no mass. By mixing this collection of graphene with low-viscosity, low-density methanol and stirring the methanol, a suspension of graphene dispersed in methanol is created. Thereafter, a graphene bonded body in which graphenes are bonded to each other is weighed as a weight greater than the weight of the graphene aggregate, and mixed into a suspension to create a mixture. In other words, since graphene plays the role of a bonding material that joins the graphene bonded bodies together, the amount of graphene aggregates that fill the gaps between the graphene bonded bodies is smaller than the amount of graphene constituting the graphene bonded bodies. In addition, graphene conjugates made by joining graphene to each other have almost no mass, so if a collection of graphene conjugates is mixed into a suspension and methanol is stirred, the graphene conjugates can be easily dispersed in methanol along with graphene. do. For example, the thickness of a graphene bonded body made by stacking and bonding 10 graphene sheets is only 3.32 nm. Therefore, even if the area of the graphene bonded body is 1 cm×1 cm, the mass of the graphene bonded body is extremely small.
In the second step, a portion of the mixture described above is poured into a container, and depending on the size of the container, a vibration acceleration of 0.3-0.5G is applied to the container in three directions: left and right, front and back, and up and down. For example, vibration acceleration in each direction is applied five times for 5 seconds each, and then vibration acceleration in the vertical direction is applied for 5 seconds.
At this time, graphene has almost no mass and has a large aspect ratio, which is the ratio of area to thickness, so when a collection of graphene dispersed in methanol is subjected to vibrational acceleration in three directions, methanol However, because the aspect ratio of graphene is large, it is best to move the graphene in methanol with its surface facing up, which will cause the least amount of stress on the graphene. Therefore, graphene moves in methanol with its surface facing up. By repeatedly subjecting a collection of graphene to vibrational acceleration in three directions, the collection of graphene is randomly arranged in a planar shape in methanol. Furthermore, the graphene composite also has almost no mass, and its aspect ratio, which is the ratio of area to thickness, is even larger than that of graphene. Therefore, when the graphene conjugate dispersed in methanol is subjected to vibrational acceleration in three directions, it moves along with the methanol in the direction of the vibrational acceleration, but because the aspect ratio of the graphene conjugate is large, it is placed face up and placed in the methanol. Moving inside the graphene is the best way to apply the least load to the graphene composite. Therefore, the graphene conjugate also moves in methanol with its surface facing up. By repeatedly subjecting a collection of graphene conjugates to vibrational acceleration in three directions, the collection of graphene conjugates is randomly arranged in a planar shape in methanol. Note that the magnitude of the vibration acceleration to be applied is 0.3 to 0.5G depending on the size of the groove.
In other words, graphene and graphene conjugate are covered with low-viscosity, low-density methanol and are dispersed in methanol. When vibrational acceleration in three directions is repeatedly applied to a container containing graphene dispersed in methanol and a graphene bond, the low-viscosity, low-density methanol forms a graphene bond with graphene, which has almost no mass. It moves along with the body in the direction of vibrational acceleration. On the other hand, if the aspect ratio of graphene is defined as the ratio of area to thickness, since the thickness is only 0.322 nm, the aspect ratio is extremely large. Further, although the graphene conjugate is thicker than graphene, the area is significantly larger than that of graphene, so the aspect ratio of the graphene conjugate is significantly larger than that of graphene. On the other hand, since graphene and graphene conjugates have a large aspect ratio, moving them through methanol with their faces facing up places the least stress on graphene and graphene conjugates. For this reason, the graphene and the graphene conjugate are moved in methanol with their faces facing up, and are repeatedly subjected to vibrational acceleration in three directions, so that the graphene and the graphene conjugate are randomly arranged in a planar manner in the methanol. As a result, a collection of graphene arranged in a plane with the face up and a collection of graphene conjugates arranged in a plane with the face up are randomly stacked in methanol and dispersed in methanol. A mixture is formed in a container. Finally, by applying vibrational acceleration in the vertical direction, the collection of graphene arranged in a plane and the collection of graphene conjugates arranged in a plane overlap each other, and the mixture randomly stacked in methanol is securely placed in the container. is formed. Note that the magnitude of the vibrational acceleration applied to the container is 0.3-0.5G depending on the size of the container. This solves the second problem described in paragraph 6.
The third step is to raise the temperature of the container to the boiling point of methanol, vaporize the methanol from the container, and form a collection of graphene arranged in a planar shape with the surface facing up, and a graphene junction arranged in a planar shape with the surface facing up. A mixture of randomly stacked bodies overlapping each other is formed on the bottom of the container in the shape of the bottom. On the other hand, since the size of graphene is significantly smaller than the size of the graphene conjugates, when methanol is vaporized, a collection of graphene precipitates filling the gaps between the graphene conjugates. As a result, the gaps between all the graphene bonded bodies arranged in a plane are filled with a collection of graphene arranged in a plane. This solves the first problem described in paragraph 6.
In the fourth step, the entire surface of the mixture formed in the container is covered with a plate material, the entire surface of the plate material is evenly compressed, and the entire surface of the mixture is evenly compressed. As a result, the graphene particles precipitated by filling all the gaps between the graphene bonded bodies are frictionally welded to the graphene bonded bodies, the graphenes are frictionally welded to each other, and all the gaps between the graphene bonded bodies are welded by friction welding. It is filled with a collection of graphene. As a result, the graphene bonded bodies are bonded to each other via the friction-welded graphene clusters, and a graphene bonded body having a larger area and thickness is formed on the bottom surface of the container in the shape of the bottom surface. In addition, both the graphene bonded bodies existing on the surface of the mixture and the graphene bonded bodies present on the back side of the mixture, the collection of graphene precipitated filling the surface causes friction on the surface of the graphene bonded body. At the same time, the graphenes are frictionally welded together, and the frictionally welded graphene is frictionally welded to the surface of the graphene bonded body.
In the fifth step, impact acceleration of 0.3-0.5G is applied repeatedly intermittently to 5-9 locations on the bottom of the container, and the graphene bond formed on the bottom of the container is removed from the bottom of the container. Peel it off and take out the graphene bond.

以上に説明した方法で形成したグラフェン接合体は、グラフェン同士が面を上にして重なり合い、重なり合ったグラフェン同士が摩擦熱で直接接合し、また、摩擦圧接したグラフェンの集まりを介して、グラフェン接合体同士が接合した。このため、グラフェン接合体は、面同士が重なり合ったグラフェンの集まりで構成されるため、2段落に記載したグラフェンに近い性質を持つ。
第一に、グラフェンが20枚重なり合って接合したグラフェン接合体の厚みは、僅かに6.64nmであり、大きさが1cm×1cmのグラフェン接合体であっても、重量は僅かである。このグラフェン接合体の10枚が、10層を形成して重なり合ったグラフェンによって接合しても、厚みは僅かに3.32nmに過ぎない。従って、グラフェン接合体同士が接合しても、重量は極めて小さい。このため、グラフェン接合体の重量は極めて小さく、殆ど質量を持たない。
第二に、グラフェン接合体が、面を上にして接合したグラフェンの集まりで構成されるため、グラフェン接合体は、重なり合ったグラフェンの面の方向に熱が優先して伝わる。このため、グラフェン接合体の熱伝導率は、グラフェンの熱伝導率に近い。つまり、グラフェンの厚み方向の熱伝導率は極めて小さく、面方向に熱が優先して伝わる。従って、グラフェン接合体は、銀より優れた熱伝導性を持つ基板として作用する。
第三に、グラフェン接合体に照射された電磁波は、重なり合ったグラフェンの面の方向に電磁波が伝わり、グラフェンの体積固有抵抗率に応じた電磁波のシールド性を発揮する。このため、銀より優れた電磁波シールド性を被膜として作用する。
第四に、厚みに対する面積の比率であるアスペクト比が極めて大きいグラフェンが、グラフェン同士が重なり合った面で強固に接合するため、グラフェン接合体の機械的強度は、グラフェンの機械的強度に近い。グラフェンの破断強度が42N/mと大きく、鋼の100倍を超える強度を持つため、極めて高い破断強度を持つ被膜として作用する。
第五に、摩擦熱でグラフェン同士が接合したグラフェン接合体の耐熱性は、グラフェンの耐熱性に近い。このため、金属の融点を超える耐熱性を持つ被膜として作用する。
第六に、グラフェン接合体の形状と面積は、混合物を注入する容器の形状に応じて自在に変えられる。いっぽう、グラフェンの大きさが、グラフェン接合体の大きさより著しく小さいため、混合物からメタノールを気化させると、全てのグラフェン接合体同士の間隙を埋め尽くして平面状に並んだグラフェンの集まりが析出する。この結果、全てのグラフェン接合体同士の間隙が、平面状に並んだグラフェンの集まりで埋め尽くされる。この後、混合物を圧縮すると、グラフェンの集まりが、全てのグラフェン接合体に摩擦圧接するとともに、グラフェン同士が摩擦圧接し、全てのグラフェン接合体同士が、摩擦圧接したグラフェンの集まりを介して接合される。従って、製造するグラフェン接合体の形状と面積に制約がない。
第七に、接合するグラフェン接合体の数が多くなるほど、また、接合するグラフェン接合体の面積が大きいほど、ないしは、厚みが厚いほど、接合されたグラフェン接合体の面積が大きく、ないしは、厚みが厚くなる。従って、本発明におけるより面積が広く、厚みが厚いグラフェン接合体を製造するグラフェン接合体の大きさと厚みに制約がない。このため、面積と厚みとが異なる多くの種類のグラフェン接合体が容易に製造でき、用途に応じた面積と厚みとを有するグラフェン接合体が選択できる。
In the graphene bonded body formed by the method described above, the graphenes overlap each other with their faces upward, and the overlapping graphenes are directly bonded to each other by frictional heat. were joined together. Therefore, since the graphene conjugate is composed of a collection of graphene whose surfaces overlap each other, it has properties similar to those of graphene described in the second paragraph.
First, the thickness of a graphene bonded body made of 20 graphene sheets overlapped and bonded is only 6.64 nm, and even if the graphene bonded body has a size of 1 cm x 1 cm, its weight is small. Even if 10 sheets of this graphene bonded body are bonded by overlapping graphene layers forming 10 layers, the thickness will be only 3.32 nm. Therefore, even if the graphene bonded bodies are bonded together, their weight is extremely small. Therefore, the weight of the graphene composite is extremely small and has almost no mass.
Second, since the graphene bond is composed of a group of graphenes bonded with their surfaces facing upward, heat is preferentially transferred in the direction of the overlapping graphene surfaces. Therefore, the thermal conductivity of the graphene composite is close to that of graphene. In other words, the thermal conductivity of graphene in the thickness direction is extremely low, and heat is preferentially transferred in the plane direction. Therefore, the graphene composite acts as a substrate with better thermal conductivity than silver.
Thirdly, the electromagnetic waves irradiated to the graphene composite are transmitted in the direction of the overlapping graphene surfaces, and exhibit electromagnetic wave shielding properties according to the specific volume resistivity of graphene. Therefore, it acts as a film with better electromagnetic shielding properties than silver.
Fourth, graphene, which has an extremely large aspect ratio (the ratio of area to thickness), is strongly bonded to each other at the surfaces where they overlap, so the mechanical strength of the graphene bond is close to that of graphene. Graphene has a high breaking strength of 42 N/m, which is more than 100 times stronger than steel, so it acts as a coating with extremely high breaking strength.
Fifth, the heat resistance of a graphene bonded body in which graphene is bonded together by frictional heat is close to that of graphene. Therefore, it acts as a film with heat resistance exceeding the melting point of the metal.
Sixth, the shape and area of the graphene conjugate can be freely changed depending on the shape of the container into which the mixture is injected. On the other hand, since the size of graphene is significantly smaller than the size of the graphene conjugates, when methanol is vaporized from the mixture, a collection of graphene arranged in a planar shape precipitates, filling the gaps between all the graphene conjugates. As a result, all the gaps between the graphene conjugates are filled with a collection of graphene arranged in a plane. After that, when the mixture is compressed, the graphene clusters are frictionally welded to all the graphene bonded bodies, the graphenes are frictionally welded to each other, and all the graphene bonded bodies are joined via the frictionally welded graphene clusters. Ru. Therefore, there are no restrictions on the shape and area of the graphene bonded body to be manufactured.
Seventh, the larger the number of graphene bonded bodies to be bonded, and the larger the area or thickness of the bonded graphene bonded bodies, the larger the area or the thicker the bonded graphene bonded bodies. It gets thicker. Therefore, there are no restrictions on the size and thickness of the graphene bonded body for producing a graphene bonded body with a larger area and thicker thickness in the present invention. Therefore, many types of graphene conjugates having different areas and thicknesses can be easily produced, and a graphene conjugate having an area and thickness depending on the application can be selected.

7段落に記載したグラフェンの集まりがメタノールに分散した懸濁液を作成する方法は、
2枚の平行平板電極からなる電極板対の一方の平行平板電極を容器に配置させ、該一方の平行平板電極の表面に、鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりを平坦に引き詰め、さらに、前記容器にメタノールを注入し、前記一方の平行平板電極と前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりを、前記メタノール中に浸漬させる、さらに、前記電極板対を構成する他方の平行平板電極板を、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりを介して、前記一方の平行平板電極の上に重ね合わせ、前記2枚の平行平板電極からなる電極板対を前記メタノール中に浸漬させる、この後、該電極板対の間隙に、前記鱗片状黒鉛粒子ないしは前記塊状黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合を破壊させることができる大きさからなる直流の電位差を印加する、これによって、該直流の電位差の大きさを前記電極板対の間隙の大きさで割った値に相当する電界が、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりに印加され、該電界の印加によって、前記鱗片状黒鉛粒子ないしは前記塊状黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合の全てが同時に破壊され、前記電極板対の間隙に前記基底面からなるグラフェンの集まりが析出する、この後、前記電極板対の間隙を拡大し、さらに、該電極板対をメタノール中で傾斜させ、さらに、前記容器に左右、前後、上下の3方向の0.2-0.3Gからなる振動加速度を、各々の方向に順番に加え、前記グラフェンの集まりを、前記電極板対の間隙から前記メタノール中に移動させる、この後、前記容器から前記電極板対を取り出す、
前記した全ての処理を順番に連続して実施することで、グラフェンの集まりがメタノールに分散した懸濁液が製造される方法である。
The method for creating a suspension of graphene aggregates dispersed in methanol described in paragraph 7 is as follows:
One parallel plate electrode of a pair of electrode plates consisting of two parallel plate electrodes is arranged in a container, and a collection of scale-like graphite particles or a collection of lumpy graphite particles are packed flat on the surface of the one parallel plate electrode. Further, methanol is injected into the container, and the one parallel plate electrode and the collection of scale-like graphite particles or the collection of lumpy graphite particles are immersed in the methanol, further forming the electrode plate pair. The other parallel plate electrode plate is superimposed on the one parallel plate electrode via the collection of scale-like graphite particles or the collection of massive graphite particles, thereby forming an electrode plate pair consisting of the two parallel plate electrodes. is immersed in the methanol, and then, in the gap between the pair of electrode plates, the size is such that it can destroy the interlayer bond of the basal plane made of graphite crystals forming the flaky graphite particles or the massive graphite particles. Applying a direct current potential difference of By applying the electric field, all the interlayer bonds of the basal planes made of graphite crystals forming the flaky graphite particles or the massive graphite particles are simultaneously destroyed, and the basal planes are applied to the gap between the electrode plate pair. A collection of graphene consisting of planes is precipitated. After this, the gap between the electrode plate pair is enlarged, the electrode plate pair is tilted in methanol, and the container is placed in three directions: left and right, front and back, and top and bottom. A vibrational acceleration of 0.2-0.3G is applied in each direction in turn to move the graphene mass from the gap between the electrode plates into the methanol. After this, the electrode plates are removed from the container. Take out the pair,
This is a method in which a suspension of graphene aggregates dispersed in methanol is produced by sequentially and continuously performing all of the above-described processes.

つまり、極めて簡単な以下の処理を連続して実施すると、グラフェンの集まりがメタノールに分散した懸濁液が製造される。
最初に、2枚の平行平板電極の間隙に引き詰められた鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりを、絶縁体であるメタノール中に浸漬させ、2枚の平行平板電極間に予め決めた大きさからなる直流の電位差を印加させる。これによって、電位差を2枚の平行平板電極の間隙の大きさで割った値に相当する電界が、鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりが存在する電極間隙に発生する。この電界は、前記した黒鉛粒子の全てに対し、黒鉛結晶からなる基底面の層間結合を破壊させるのに十分なクーロン力を、基底面の層間結合の担い手である全てのπ電子に同時に与える。これによって、π電子はπ軌道上の拘束から解放され、全てのπ電子がπ軌道から離れて自由電子となる。つまり、π電子に作用するクーロン力が、π軌道の相互作用より大きな力としてπ電子に与えられると、π電子はπ軌道の拘束から解放されて自由電子になる。この結果、基底面の層間結合の担い手である全てのπ電子が、π軌道上に存在しなくなり、黒鉛粒子の全てについて、黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合の全てが同時に破壊される。この結果、2枚の平行平板電極の間隙に、基底面の集まり、すなわちグラフェンの集まりが瞬時に製造される。製造されたグラフェンは、不純物がなく、黒鉛結晶のみからなる真性な物質である。なお、2枚の平行平板電極がメタノール中に浸漬しているため、2枚の平行平板電極の間隙に析出したグラフェンの集まりは飛散しない。
なお、絶縁体であるメタノール中に浸漬した2枚の平行平板電極間に、電位差を印加させると、2枚の平行平板電極の間隙に電界が発生する。すなわち、メタノールは比抵抗が3MΩcm以上で、誘電率が33の絶縁体である。また、エタノールも誘電率が24からなる絶縁体である。なお、エタノールの電気導電率は7.5×10-6S/mで、鱗片状黒鉛粒子の電気伝導度が43.9S/mである。従って、エタノールは、導電体である鱗片状黒鉛粒子に比べ、電気導電度が1.7×10倍低い絶縁体である。
次に、グラフェンの集まりを、2枚の平行平板電極の間隙からメタノール中に移動させる。このため、2枚の平行平板電極の間隙を、メタノール中で拡大させ、さらに、メタノール中で傾斜させ、この後、メタノールが充填された容器に3方向の振動加速度を加える。これによって、グラフェンの集まりが、2枚の平行平板電極の間隙からメタノール中に移動する。この後、2枚の平行平板電極を容器から取り出す。この結果、容器内に、グラフェンの集まりがメタノールに分散した懸濁液が製造される。
In other words, by successively performing the following extremely simple process, a suspension of graphene aggregates dispersed in methanol is produced.
First, a collection of scale-like graphite particles or a collection of massive graphite particles packed in the gap between two parallel plate electrodes is immersed in methanol, which is an insulator, and a predetermined distance between the two parallel plate electrodes is immersed. A direct current potential difference with a magnitude of As a result, an electric field corresponding to the potential difference divided by the size of the gap between the two parallel plate electrodes is generated in the electrode gap where the collection of scaly graphite particles or the collection of massive graphite particles exists. This electric field simultaneously applies a Coulomb force sufficient to destroy the interlayer bonds in the basal plane made of graphite crystal to all the π electrons, which are responsible for the interlayer bonds in the basal plane, to all of the graphite particles described above. As a result, the π electrons are released from the constraints on the π orbital, and all π electrons leave the π orbital and become free electrons. In other words, when the Coulomb force acting on the π electron is applied to the π electron as a force greater than the interaction of the π orbital, the π electron is released from the constraints of the π orbital and becomes a free electron. As a result, all the π electrons, which are responsible for the interlayer bonds in the basal plane, no longer exist on the π orbitals, and for all graphite particles, all the interlayer bonds in the basal plane, which are made of graphite crystals that form graphite particles, are simultaneously removed. Destroyed. As a result, a collection of basal planes, ie, a collection of graphene, is instantaneously produced in the gap between the two parallel plate electrodes. The produced graphene is a genuine substance that is free of impurities and consists only of graphite crystals. Note that since the two parallel plate electrodes are immersed in methanol, the graphene aggregates deposited in the gap between the two parallel plate electrodes are not scattered.
Note that when a potential difference is applied between two parallel plate electrodes immersed in methanol, which is an insulator, an electric field is generated in the gap between the two parallel plate electrodes. That is, methanol is an insulator with a specific resistance of 3 MΩcm or more and a dielectric constant of 33. Further, ethanol is also an insulator with a dielectric constant of 24. Note that the electrical conductivity of ethanol is 7.5×10 −6 S/m, and the electrical conductivity of flaky graphite particles is 43.9 S/m. Therefore, ethanol is an insulator whose electrical conductivity is 1.7×10 7 times lower than that of scaly graphite particles, which are conductors.
Next, the graphene cluster is transferred from the gap between the two parallel plate electrodes into methanol. For this purpose, the gap between the two parallel plate electrodes is enlarged in methanol, and then tilted in methanol, and then vibrational acceleration is applied in three directions to the container filled with methanol. As a result, a collection of graphene moves from the gap between the two parallel plate electrodes into methanol. After this, the two parallel plate electrodes are removed from the container. As a result, a suspension of graphene aggregates dispersed in methanol is produced in the container.

ここで、2枚の平行平板電極対の間隙に印加した電界によって、2枚の平行平板電極対の間隙に引き詰められた黒鉛粒子において、黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合の全てが、同時に破壊される現象を説明する。
黒鉛粒子における黒鉛結晶からなる基底面を形成する炭素原子は4つの価電子を持つ。このうちの3つの価電子は、黒鉛結晶からなる基底面、すなわち、グラフェンを形成するσ電子である。このσ電子は、基底面上で隣り合う3つの炭素原子が持つσ電子と互いに120度の角度をなして共有結合し、六角形の強固な網目構造を2次元的に形成する。残り一つの価電子はπ電子であり、基底面に垂直な方向に伸びるπ軌道上に存在する。このπ電子は、基底面に垂直な上下方向で隣り合う炭素原子が持つπ電子と弱い結合力で結合し、この弱い結合力に基づいて基底面同士が層状に積層される。つまり、基底面、すなわち、グラフェンは、弱い結合力であるπ軌道の相互作用によって互いに層状に結合されている。このため、黒鉛粒子は、黒鉛結晶からなる基底面で剥がれ易い性質、すなわち、機械的な異方性を持つ。この機械的な異方性は、黒鉛粒子の潤滑性として知られている。
こうした黒鉛粒子に電界を印加させると、全てのπ電子に電界によるクーロン力が作用する。π電子に作用するクーロン力が、π電子に作用しているπ軌道の相互作用より大きな力としてπ電子に作用すると、π電子はπ軌道上の拘束から解放される。この結果、全てのπ電子がπ軌道から離れて自由電子となる。これによって、黒鉛結晶からなる基底面の層間結合の担い手である全てのπ電子がπ軌道上にいなくなるため、全ての基底面の層間結合は同時に破壊される。すなわち、π電子がクーロン力Fによって黒鉛結晶の層間距離bの距離を動く際に、π電子は仕事W(W=b・F)を行う。この仕事Wが、π電子に作用する1原子当たりのπ軌道の相互作用の大きさである35ミリエレクトロンボルト (エレクトロンボルトは電子が持つエネルギーの大きさを表す単位で、1エレクトロンボルトは1.62×10-19ジュールに相当する)を超えると、π電子はπ軌道の相互作用の拘束から解放されて自由電子になる。例えば、2枚の平行平板電極対の間隙を100μmで離間させ、この電極間に10.6キロボルト以上の直流の電位差を印加させると、黒鉛結晶からなる全ての基底面の層間結合が瞬時に破壊される。このように、安価な黒鉛粒子の集まりに電界を印加するという極めて簡単な手段によって、大量のグラフェンが安価に製造できる。また、全ての基底面の層間結合が同時に破壊するため、得られる微細な物質は、確実に黒鉛結晶からなる基底面、すなわち、グラフェンである。
なお、ここで言う黒鉛粒子の集まりとは、1gから100g程度の比較的少量の黒鉛粒子の集まりを言う。つまり、鱗片状黒鉛粒子ないしは塊状黒鉛粒子は、嵩密度が0.2-0.5g/cmで、粒子の大きさが1-300ミクロンの分布を持つ微細な粒子である。従って、黒鉛粒子の集まりを2枚の平行平板電極対の間隙に引き詰めることは容易で、2枚の平行平板電極対に電位差を印加することも容易である。2枚の平行平板電極対の間隙に電位差を印加すると、黒鉛粒子が引きつめられた全ての領域に電界が発生する。この電界が、π軌道の相互作用より大きなクーロン力としてπ電子に作用し、π電子はπ軌道上の拘束から解放され、自由電子になる。この結果、黒鉛粒子における黒鉛結晶からなる基底面の層間結合の全てが同時に破壊され、2枚の平行平板電極対の間隙に、黒鉛結晶からなる基底面、すなわち、グラフェンの集まりが製造される。
ここで、グラフェンの数を算術で求める。ここでは、全ての黒鉛粒子が、直径が25ミクロンの球から構成されると仮定し、黒鉛の真密度が2.25×10kg/mであるから、黒鉛粒子の1個の重さは僅かに1.84×10-8gになる。また、黒鉛粒子の厚みの平均値が10ミクロンと仮定すると、層間距離が3.354オングストロームであるので、10ミクロンの厚みを持つ鱗片状黒鉛粒子には297,265個の基底面、すなわち、グラフェンが積層されている。従って、黒鉛結晶からなる基底面の層間結合を全て破壊することで、僅か1個の球状の黒鉛粒子から297,265個のグラフェンの集まりが得られる。このため、球状の黒鉛粒子の僅か1gの集まりについて、基底面の層間結合の全てを破壊した際に、1.62×1013個からなるグラフェンの集まりが得られる。従って、僅かな量の黒鉛粒子の集まりから、莫大な数からなるグラフェンの集まりが得られる。なお、以上に説明した黒鉛粒子の集まりからグラフェンの集まりを製造する方法は、本発明者による特許文献3に記載されている。
Here, in the graphite particles that are packed into the gap between the two parallel plate electrode pairs by an electric field applied to the gap between the two parallel plate electrode pairs, interlayer bonding between the basal planes made of graphite crystals forming the graphite particle This explains the phenomenon in which all of the above are destroyed at the same time.
Carbon atoms forming the basal plane of graphite crystals in graphite particles have four valence electrons. Three of these valence electrons are σ electrons that form the basal plane of graphite crystal, that is, graphene. These σ electrons are covalently bonded to the σ electrons of three adjacent carbon atoms on the basal plane at an angle of 120 degrees, forming a two-dimensional hexagonal strong network structure. The remaining valence electron is a π electron, which exists on a π orbital extending perpendicular to the basal plane. These π electrons bond with the π electrons of carbon atoms adjacent in the vertical direction perpendicular to the basal plane with a weak bonding force, and based on this weak bonding force, the basal planes are stacked together in a layered manner. In other words, the base planes, that is, graphene, are bonded to each other in a layered manner by interactions of π orbitals, which are weak binding forces. Therefore, graphite particles have a property of being easily peeled off at the base surface made of graphite crystal, that is, they have mechanical anisotropy. This mechanical anisotropy is known as the lubricity of graphite particles.
When an electric field is applied to such graphite particles, a Coulomb force due to the electric field acts on all π electrons. When the Coulomb force acting on the π electron acts on the π electron as a force greater than the interaction of the π orbital acting on the π electron, the π electron is released from the restraint on the π orbital. As a result, all the π electrons leave the π orbital and become free electrons. As a result, all the π electrons, which are carriers of interlayer bonds in the basal plane made of graphite crystal, are no longer on the π orbit, so that all the interlayer bonds in the basal plane are destroyed at the same time. That is, when the π electrons move through the interlayer distance b of the graphite crystal due to the Coulomb force F, the π electrons perform work W (W=b·F). This work W is 35 millielectron volts, which is the magnitude of the interaction of π orbital per atom acting on π electrons (electron volt is a unit that expresses the amount of energy possessed by electrons, and 1 electron volt is 1. (equivalent to 62×10 −19 Joules), the π electrons are released from the constraints of the π orbital interaction and become free electrons. For example, if the gap between two pairs of parallel plate electrodes is set at 100 μm and a DC potential difference of 10.6 kilovolts or more is applied between the electrodes, the interlayer bonds of all the basal planes made of graphite crystal will be instantly destroyed. be done. In this way, a large amount of graphene can be produced at low cost by the extremely simple method of applying an electric field to a collection of inexpensive graphite particles. Moreover, since the interlayer bonds of all the basal planes are destroyed at the same time, the obtained fine substance is definitely a basal plane made of graphite crystals, that is, graphene.
Note that the term "collection of graphite particles" as used herein refers to a collection of graphite particles in a relatively small amount of about 1 g to 100 g. That is, the scaly graphite particles or massive graphite particles are fine particles with a bulk density of 0.2-0.5 g/cm 3 and a particle size distribution of 1-300 microns. Therefore, it is easy to pack a collection of graphite particles into the gap between the two pairs of parallel plate electrodes, and it is also easy to apply a potential difference between the two pairs of parallel plate electrodes. When a potential difference is applied across the gap between the two pairs of parallel plate electrodes, an electric field is generated in all regions where the graphite particles are tightly packed. This electric field acts on the π electron as a Coulomb force that is stronger than the interaction of the π orbital, and the π electron is released from the constraints on the π orbital and becomes a free electron. As a result, all the interlayer bonds of the basal plane made of graphite crystals in the graphite particles are simultaneously destroyed, and a basal plane made of graphite crystals, that is, a collection of graphene, is produced in the gap between the two parallel plate electrode pairs.
Here, the number of graphenes is calculated using arithmetic. Here, it is assumed that all graphite particles are composed of spheres with a diameter of 25 microns, and since the true density of graphite is 2.25 × 10 3 kg/m 3 , the weight of one graphite particle is is only 1.84×10 −8 g. Furthermore, assuming that the average thickness of graphite particles is 10 microns, the interlayer distance is 3.354 angstroms, so a scaly graphite particle with a thickness of 10 microns has 297,265 basal planes, that is, graphite particles. are layered. Therefore, by destroying all the interlayer bonds in the basal plane made of graphite crystals, a collection of 297,265 graphenes can be obtained from just one spherical graphite particle. Therefore, for a collection of only 1 g of spherical graphite particles, when all the interlayer bonds in the basal plane are destroyed, a collection of 1.62×10 13 graphene particles is obtained. Therefore, from a small amount of graphite particles, a huge number of graphene particles can be obtained. Note that the method for producing a graphene cluster from a graphite particle cluster described above is described in Patent Document 3 by the present inventor.

7段落に記載したより面積が広く、厚みが厚いグラフェン接合体を製造する方法は、
7段落に記載したグラフェン接合体の集まりが、同一の形状と同一の厚みからなる複数のグラフェン接合体であって、該同一の形状と同一の厚みからなる複数のグラフェン接合体を、7段落に記載したグラフェン接合体の集まりとして用い、7段落に記載した製造方法に従って、より面積が広く、厚みが厚いグラフェン接合体を製造する方法である。
The method of manufacturing a graphene bonded body having a larger area and a thicker thickness than described in paragraph 7 is as follows:
The collection of graphene conjugates described in paragraph 7 is a plurality of graphene conjugates having the same shape and the same thickness, and the plurality of graphene conjugates having the same shape and the same thickness are described in paragraph 7. This is a method of manufacturing a graphene conjugate having a larger area and a larger thickness by using the graphene conjugate described above as a collection and following the manufacturing method described in paragraph 7.

つまり、同一の形状と同一の厚みからなる複数のグラフェン接合体を、7段落に記載したグラフェン接合体の集まりとして用い、7段落に記載した製造方法に従って、グラフェン接合体同士を、摩擦圧接したグラフェンの集まりを介して接合すると、グラフェン接合体同士が重なり合う面積の割合が増えるため、接合したグラフェン接合体の集まりの機械的強度が高まる。
最初に、同一の形状と同一の厚みからなる複数のグラフェン接合体を製造する。この複数のグラフェン接合体を、7段落に記載した製造方法に従って、グラフェンの集まりの重量より多い重量として秤量し、該グラフェン接合体の集まりを、グラフェンの集まりがメタノールに分散した懸濁液に混合して混合物を作成する。
次に、7段落に記載した製造方法に従って、混合物の一部を容器に注入し、容器の大きさに応じて、容器に、左右、前後、上下の3方向の0.3-0.5Gからなる振動加速度を、例えば、各々の方向の振動加速度を5秒間ずつ5回繰り返して加え、この後、上下方向の振動加速度を5秒間加える。
この際、グラフェンが殆ど質量を持たず、アスペクト比が大きいため、グラフェンが振動加速度を受けると、面を上にしてメタノール中を移動する移動が、グラフェンに最も負荷が加わらない。このため、グラフェンの集まりが3方向の振動加速度を繰り返し受けると、メタノール中でグラフェンが面を上にして平面状にランダムに並ぶ。また、グラフェン接合体も殆ど質量を持たず、厚みに対する面積の比率であるアスペクト比がさらに大きいため、グラフェン接合体が振動加速度を受けると、面を上にしてメタノール中を移動する移動が、グラフェン接合体に最も負荷が加わらない。このため、メタノール中に分散されたグラフェン接合体も、3方向の振動加速度を繰り返し受けると、メタノール中でグラフェン接合体が面を上にして平面状にランダムに並ぶ。こうした面を上にして平面状に並んだグラフェンの集まりと、面を上にして平面状に並んだグラフェン接合体の集まりとが、ランダムにメタノール中で積層して、メタノール中に分散する。
つまり、グラフェンと同一の形状と同一の厚みからなる複数のグラフェン接合体との双方は、低粘度で低密度のメタノールで覆われ、メタノール中に分散している。グラフェンの集まりと同一の形状と同一の厚みからなる複数のグラフェン接合体がメタノール中に分散している容器に、3方向の振動加速度を加えると、低粘度で低密度のメタノールが、殆ど質量を持たないグラフェンとグラフェン接合体とを伴って振動加速度の方向に移動する。いっぽう、グラフェンのアスペクト比を、厚みに対する面積の比率とすると、厚みが僅かに0.322nmであるため、アスペクト比は極めて大きい。また、同一の形状と同一の厚みからなるグラフェン接合体は、厚みがグラフェンより厚いが、面積がグラフェンより著しく大きいため、グラフェン接合体のアスペクト比は、グラフェンのアスペクト比より著しく大きい。このため、グラフェンと同一の形状と同一の厚みからなる複数のグラフェン接合体の双方は、面を上にしてメタノール中を移動する移動が、グラフェンとグラフェン接合体とに最も負荷が加わらない。このため、グラフェンとグラフェン接合体は、面を上にしてメタノール中を移動し、グラフェンとグラフェン接合体は、メタノール中でメタノールを介してランダムに平面状にランダムに並ぶ。この結果、平面状に並んだグラフェンの集まりと、平面状に並んだグラフェン接合体の集まりの双方が、互いにランダムに積層し、メタノール中に分散した混合物が、容器に形成される。この後、上下方向の振動加速度を加え、平面状に並んだグラフェンの集まりとグラフェン接合体の集まりとが、互いに重なり合ってメタノール中にランダムに積層した集まりが、確実に容器に形成される。
この後、7段落に記載した製造方法に従って、容器をメタノールの沸点に昇温し、容器からメタノールを気化させると、面を上にして平面状に並んだグラフェンの集まりと、面を上にして平面状に並んだ同一の形状と同一の厚みからなる複数のグラフェン接合体が、互いにランダム重なり合って積層した混合物が、容器の底面に該底面の形状として形成される。いっほう、グラフェンの大きさが、グラフェン接合体の大きさより著しく小さいため、メタノールを気化させると、全てのグラフェン接合体同士の間隙を埋め尽くしてグラフェンの集まりが析出する。この結果、全てのグラフェン接合体同士の間隙が、平面状に並んだグラフェンの集まりで埋め尽くされる。
この後、7段落に記載した製造方法に従って、容器内に形成された混合物の表面全体を板材で覆い、板材の表面全体を均等に圧縮し、混合物の表面全体を均等に圧縮する。これによって、同一の形状と同一の厚みからなる全てのグラフェン接合体同士の間隙を埋め尽くして析出したグラフェンの集まりが、グラフェン接合体に摩擦圧接するとともに、グラフェン同士が摩擦圧接し、全てのグラフェン接合体同士の間隙は、摩擦圧接したグラフェンの集まりで埋め尽くされる。なお、混合物の表面に存在するグラフェン接合体と、混合物の裏面に存在するグラフェン接合体との双方も、面を埋め尽くして析出したグラフェンの集まりが、グラフェン接合体の表面に摩擦圧接するとともに、グラフェン同士が摩擦圧接し、摩擦圧接したグラフェンがグラフェン接合体を埋め尽くす。この結果、摩擦圧接したグラフェンの集まりを介して、同一の形状と同一の厚みからなる全てのグラフェン接合体同士が接合され、より面積が広く、厚みが厚いグラフェン接合体が容器の底面に該底面の形状として形成される。
なお、グラフェン接合体の集まりが、同一の形状と同一の厚みからなるグラフェン接合体の集まりである場合は、グラフェン接合体同士が重なり合う面積の割合が増えるため、接合したグラフェン接合体の集まりの機械的強度が高まる。
In other words, a plurality of graphene bonded bodies having the same shape and the same thickness are used as a group of graphene bonded bodies described in paragraph 7, and the graphene bonded bodies are frictionally welded together according to the manufacturing method described in paragraph 7. When bonded through a group of graphene bonded bodies, the proportion of the area where the graphene bonded bodies overlap increases, so the mechanical strength of the bonded graphene bonded body increases.
First, a plurality of graphene conjugates having the same shape and the same thickness are manufactured. The plurality of graphene conjugates are weighed according to the manufacturing method described in paragraph 7, and the mass of graphene conjugates is mixed into a suspension in which the graphene aggregates are dispersed in methanol. to create a mixture.
Next, according to the manufacturing method described in paragraph 7, a part of the mixture is poured into a container, and depending on the size of the container, it is poured into the container from 0.3 to 0.5 G in three directions: left and right, front and back, and up and down. For example, vibration acceleration in each direction is applied five times for 5 seconds each, and then vibration acceleration in the vertical direction is applied for 5 seconds.
At this time, since graphene has almost no mass and has a large aspect ratio, when graphene is subjected to vibrational acceleration, movement through methanol with its surface facing up places the least load on graphene. Therefore, when a collection of graphene is repeatedly subjected to vibrational acceleration in three directions, the graphene is randomly arranged in a plane with the surface facing up in methanol. In addition, the graphene bond has almost no mass and has a large aspect ratio, which is the ratio of area to thickness, so when the graphene bond is subjected to vibrational acceleration, the movement of the graphene bond in methanol with its face up is The least load is applied to the joint. Therefore, when the graphene conjugates dispersed in methanol are repeatedly subjected to vibrational acceleration in three directions, the graphene conjugates are randomly arranged in a planar manner with the surface facing up in the methanol. A collection of graphene arranged in a planar shape with its face up and a collection of graphene conjugates arranged in a planar shape with its face up are randomly stacked in methanol and dispersed in methanol.
In other words, both the graphene and the plurality of graphene conjugates having the same shape and thickness are covered with low-viscosity, low-density methanol and are dispersed in the methanol. When vibrational acceleration is applied in three directions to a container in which multiple graphene conjugates having the same shape and thickness as graphene aggregates are dispersed in methanol, the low-viscosity, low-density methanol loses almost all of its mass. The graphene and the graphene bonded body move in the direction of the vibrational acceleration. On the other hand, if the aspect ratio of graphene is defined as the ratio of area to thickness, since the thickness is only 0.322 nm, the aspect ratio is extremely large. Further, graphene conjugates having the same shape and the same thickness are thicker than graphene, but have a significantly larger area than graphene, so the aspect ratio of the graphene conjugates is significantly larger than that of graphene. Therefore, when both of the plurality of graphene bonded bodies having the same shape and thickness as graphene are moved in methanol with their faces facing up, the least load is applied to the graphene and the graphene bonded bodies. Therefore, the graphene and the graphene conjugate move in methanol with their faces facing up, and the graphene and the graphene conjugate are randomly arranged in a planar manner in the methanol via the methanol. As a result, both the collection of graphene arranged in a plane and the collection of graphene conjugates arranged in a plane are randomly stacked on each other, and a mixture dispersed in methanol is formed in the container. After that, vibrational acceleration in the vertical direction is applied to ensure that a collection of graphene arranged in a plane and a collection of graphene conjugates overlap each other to form a randomly stacked collection in methanol in the container.
After that, according to the manufacturing method described in paragraph 7, when the temperature of the container is raised to the boiling point of methanol and methanol is vaporized from the container, a collection of graphene arranged in a plane with the surface facing up and a collection of graphene with the surface facing up are formed. A mixture in which a plurality of graphene bonded bodies arranged in a plane having the same shape and the same thickness and stacked on top of each other at random is formed on the bottom surface of the container in the shape of the bottom surface. On the other hand, since the size of graphene is significantly smaller than the size of the graphene conjugates, when methanol is vaporized, a collection of graphene precipitates filling the gaps between all the graphene conjugates. As a result, all the gaps between the graphene conjugates are filled with a collection of graphene arranged in a plane.
Thereafter, according to the manufacturing method described in paragraph 7, the entire surface of the mixture formed in the container is covered with a plate material, the entire surface of the plate material is evenly compressed, and the entire surface of the mixture is evenly compressed. As a result, a collection of precipitated graphene fills the gaps between all the graphene bonded bodies that have the same shape and the same thickness, and is frictionally welded to the graphene bonded body, and the graphenes are frictionally welded to each other, and all the graphene The gaps between the bonded bodies are filled with a collection of friction-welded graphene. In addition, both the graphene bonded body existing on the surface of the mixture and the graphene bonded body present on the back side of the mixture, a collection of graphene precipitated filling the surface is frictionally welded to the surface of the graphene bonded body, and Graphene is friction-welded to each other, and the friction-welded graphene fills the graphene bonded body. As a result, all graphene bonded bodies having the same shape and thickness are bonded to each other through the friction-welded cluster of graphene, and a graphene bonded body with a larger area and thickness is attached to the bottom surface of the container. It is formed as a shape.
In addition, when a collection of graphene conjugates is a collection of graphene conjugates that have the same shape and the same thickness, the proportion of the area where the graphene conjugates overlap increases, so the machine of the aggregate of the bonded graphene conjugates increases. The strength of the objective increases.

13段落に記載した同一の形状と同一の厚みからなる複数のグラフェン接合体を同時に製造する方法は、
同一の形状と、同一の深さとからなる複数の溝を容器に形成し、7段落に記載したグラフェンの集まりがメタノールに分散した懸濁液の同じ量を、前記複数の溝の各々の溝に注入し、さらに、前記容器に対し、左右、前後、上下の3方向の0.3-0.5Gからなる振動加速度を、各々の方向に順番に繰り返し加え、最後に、0.3-0.5Gからなる上下方向の振動加速度を加える、これによって、前記溝に注入した懸濁液における前記メタノール中に分散されたグラフェンの集まりが、前記メタノール中で面を上にして平面状に並ぶとともに、該平面状に並んだグラフェンの集まりが、前記メタノールを介して互いに重なり合ったグラフェンの集まりが前記溝内に形成される第一の工程と、
前記容器を前記メタノールの沸点に昇温し、前記複数の溝から前記メタノールを気化させ、該複数の溝の底面に、前記平面状に並んだグラフェンの集まりが、互いに重なり合って積層した該グラフェンの集まりを形成させる、この後、前記容器の複数の溝の側面と接触する位置に形成される第一の特徴と、前記複数の溝の深さより長さが長い同一の長さを持つ第二の特徴と、前記複数の溝と同じ数からなる第三の特徴とを兼備する複数の突起を形成した板材を用意し、該板材の複数の突起が、前記容器の複数の溝に挿入するように、該板材を前記容器の上に重ね合わせ、該板材の前記突起が形成された反対側の表面の全体を均等に圧縮し、前記複数の突起の先端が、前記複数の溝の底面に形成された前記平面状に並んだグラフェンの集まりが互いに重なり合って積層した該グラフェンの集まりを圧縮する、これによって、該平面状に並んで重なり合ったグラフェン同士が、該重なり合った面で摩擦圧接し、該摩擦圧接で接合したグラフェンの集まりからなるグラフェン接合体が前記複数の溝の底面に、該底面の形状として形成される第二の工程と、
前記複数の溝が形成された前記容器の底面に該当する複数の部位に、0.3-0.5Gからなる衝撃加速度を断続的に繰り返し加え、前記複数の溝の底面に形成された前記グラフェン接合体を、該複数の溝の底面から引き剥がし、該グラフェン接合体を前記複数の溝から取り出す第三の工程とからなり、
前記した3つの工程における全ての処理を順番に連続して実施することで、同一の形状と同一の厚みからなる複数のグラフェン接合体が複数の溝に同時に製造される、同一の形状と同一の厚みからなる複数のグラフェン接合体を同時に製造する方法である。
The method for simultaneously manufacturing a plurality of graphene bonded bodies having the same shape and the same thickness described in paragraph 13 is as follows:
A plurality of grooves having the same shape and the same depth are formed in the container, and the same amount of the suspension of graphene aggregates dispersed in methanol described in paragraph 7 is poured into each of the plurality of grooves. Then, vibration acceleration of 0.3-0.5G in three directions (left and right, front and back, and up and down) is repeatedly applied to the container in each direction, and finally, vibration acceleration of 0.3-0.5G is applied to the container in each direction. A vertical vibration acceleration of 5G is applied, whereby the graphene particles dispersed in the methanol in the suspension injected into the groove are arranged in a plane with the surface facing up in the methanol, and a first step in which a collection of graphene arranged in a plane is formed in the groove, in which a collection of graphene overlaps each other via the methanol;
The temperature of the container is raised to the boiling point of the methanol, the methanol is vaporized from the plurality of grooves, and the graphene is formed on the bottom surface of the plurality of grooves, in which the graphenes arranged in a planar manner overlap each other and are stacked. a first feature formed in a position in contact with a side surface of the plurality of grooves of the container, and a second feature having the same length that is longer than the depth of the plurality of grooves. and a third feature having the same number of grooves as the plurality of grooves. , the plate material is superimposed on the container, and the entire surface of the plate material on the opposite side where the protrusions are formed is evenly compressed, so that the tips of the plurality of protrusions are formed on the bottom surface of the plurality of grooves. The clusters of graphene arranged in a planar shape overlap each other and compress the stacked cluster of graphenes. As a result, the stacked graphenes arranged in a planar shape are frictionally welded on the overlapping surfaces, and the friction a second step in which a graphene bonded body consisting of a group of graphene bonded by pressure welding is formed on the bottom surface of the plurality of grooves in the shape of the bottom surface;
Impact acceleration of 0.3-0.5G is intermittently and repeatedly applied to a plurality of parts corresponding to the bottom surface of the container where the plurality of grooves are formed, and the graphene formed on the bottom surface of the plurality of grooves is a third step of peeling off the bonded body from the bottom surfaces of the plurality of grooves and taking out the graphene bonded body from the plurality of grooves,
By sequentially performing all the processes in the three steps described above, a plurality of graphene bonded bodies having the same shape and the same thickness are simultaneously manufactured in a plurality of grooves. This is a method for simultaneously manufacturing multiple graphene conjugates of various thicknesses.

最初に、同一の底面の形状と同一の深さとからなる複数の溝を有する容器を用意し、複数の溝の各々に、7段落に記載したグラフェンの集まりがメタノールに分散した懸濁液の同じ量を注入する。なお、溝の底面に予め設定した厚みからなるグラフェン接合体を形成するのに必要な懸濁液の量を予め明らかにし、該懸濁液の同じ量を複数の溝の各々の溝に注入する。さらに、容器に対し、左右、前後、上下の3方向の0.3-0.5Gからなる振動加速度を、例えば、各々の方向の振動加速度を5秒間ずつ5回繰り返して加え、この後、上下方向の振動加速度を5秒間加える。この際、グラフェンのアスペクト比が大きいため、面を上にしてグラフェンがメタノール中を移動する移動が、グラフェンに最も負荷が加わらない。このため、3方向の振動加速度が繰り返しグラフェンの集まりに加えられることで、グラフェンの集まりは、メタノール中でグラフェンが面を上にして平面状にランダムに並ぶ。なお、加える振動加速度の大きさは、溝の大きさに応じて、0.3-0.5Gからなる振動加速度を加える。
つまり、グラフェンは、低粘度で低密度のメタノールで覆われ、メタノール中に分散している。メタノール中に分散しているグラフェンの集まりが注入されている溝に、3方向の振動加速度を加えると、低粘度で低密度のメタノールが、殆ど質量を持たないグラフェンを伴って振動加速度の方向に移動する。いっぽう、グラフェンのアスペクト比を、厚みに対する長径の比率とすると、黒鉛粒子から製造したグラフェンのアスペクト比は、3×10-9×10と極めて大きい。この際、グラフェンは、面を上にして、メタノール中を振動加速度の方向に移動する移動が、最もグラフェンに負荷が加わらない。このため、3方向の振動加速度を繰り返し受けることで、グラフェンの集まりが、メタノール中で面を上にして平面状に並ぶ。この結果、平面状に並んだグラフェンが、メタノールを介して重なり合ってランダムに積層したグラフェンの集まりが、全ての溝に形成される。最後に、上下方向の振動加速度を加え、平面状に並んだグラフェンが、メタノールを介して重なり合って積層したグラフェンの集まりが、確実に溝に形成される。これによって、平面状に並んだグラフェンがメタノールを介して重なり合って積層した該グラフェンの集まりの同じ量が、全ての溝に形成される。なお、容器に加える振動加速度の大きさは、溝の大きさに応じて、0.3-0.5Gからなる振動加速度を加える。
なお、黒鉛粒子における黒鉛結晶を破壊して製造したグラフェンは、黒鉛粒子が微細な粒子であるため、グラフェンの大きさは1-300μmである。また、グラフェンの厚みは、0.332nmと極めて薄い。従って、グラフェンのアスペクト比を、厚みに対する長径の比率とすると、アスペクト比は、前記したように、3×10-9×10と極めて大きい。このため、メタノール中に分散したグラフェンの集まりに3方向の振動加速度を加えると、最もグラフェンに負荷が加わらない面を上にしてメタノールと共に、振動加速度の方向にグラフェンが移動する。このため、3方向の振動加速度が繰り返し加わることで、グラフェンがメタノール中で面を上にして平面状に並ぶとともに、平面状に並んだグラフェンが、メタノールを介して重なり合って積層したグラフェンの集まりが、溝に形成される。
次に、容器をメタノールの沸点に昇温し、全ての溝からメタノールを気化させる。これによって、平面状に並んだグラフェンの集まりが、重なり合って積層した該グラフェンの集まりが、各々の溝に形成される。この後、複数の溝の側面と接触する位置に形成され、複数の溝の深さより長さが長く、同一の長さを持ち、複数の溝と同数からなる複数の突起を有する板材を用意する。この板材を、容器の上に重ね合わせる。さらに、板材の表面の全体を均等に圧縮し、複数の突起によって、複数の溝の底面に形成されたグラフェンの集まりを圧縮する。これによって、平面状に並んで重なり合って積層した全てのグラフェンが圧縮され、重なり合った全てのグラフェン同士が該重なり合った面で摩擦圧接し、摩擦圧接で接合したグラフェンの集まりからなるグラフェン接合体が、複数の溝の底面に、該底面の形状として同時に形成される。さらに、複数の溝が形成された容器の複数の底面に該当する部位に、衝撃加速度を、例えば、5秒間断続的に加え、複数の溝に形成されたグラフェン接合体を、複数の溝の底面から引き剥がす。なお、容器に加える衝撃加速度の大きさは、容器の大きさに応じて、0.3-0.5Gからなる振動加速度を加える。この結果、同一の形状と同一の厚みからなる複数のグラフェン接合体が、同時に製造される。これによって、6段落に記載した第三の課題が解決される。この結果、6段落に記載した全ての課題が解決される。なお、同一の形状と同一の厚みからなる複数のグラフェン接合体が、複数の溝の底面に、該底面の形状として同時に形成されるため、グラフェン接合体の形状は、溝の底面の形状になる。また、グラフェン接合体の厚みは、溝に注入するグラフェンの集まりがメタノールに分散した懸濁液の量によって決まる。従って、溝の底面の大きさを変えることで、また、溝に注入する懸濁液の量を変えることで、製造されるグラフェン接合体の形状とグラフェン接合体の厚みとが、自在に変えられる。
First, prepare a container having a plurality of grooves with the same bottom shape and the same depth, and fill each of the plurality of grooves with the same suspension of graphene aggregates dispersed in methanol as described in paragraph 7. Inject amount. Note that the amount of suspension required to form a graphene bond with a preset thickness on the bottom of the groove is determined in advance, and the same amount of the suspension is injected into each of the plurality of grooves. . Furthermore, a vibration acceleration of 0.3-0.5G in three directions (left and right, front and back, and up and down) is applied to the container, for example, by repeating the vibration acceleration in each direction five times for 5 seconds, and then Apply directional vibrational acceleration for 5 seconds. At this time, since the aspect ratio of graphene is large, the movement of graphene in methanol with its surface facing up places the least load on graphene. Therefore, vibrational acceleration in three directions is repeatedly applied to the graphene cluster, so that the graphene cluster is randomly arranged in a plane with the graphene face up in methanol. Note that the magnitude of the vibration acceleration to be applied is 0.3 to 0.5G depending on the size of the groove.
In other words, graphene is covered with and dispersed in methanol, which has a low viscosity and low density. When vibrational acceleration is applied in three directions to a groove in which a collection of graphene dispersed in methanol is injected, the low-viscosity, low-density methanol moves in the direction of the vibrational acceleration, accompanied by graphene, which has almost no mass. Moving. On the other hand, if the aspect ratio of graphene is defined as the ratio of the major axis to the thickness, the aspect ratio of graphene produced from graphite particles is extremely large at 3×10 3 -9×10 6 . At this time, the least load is applied to the graphene when the graphene is moved in the direction of vibrational acceleration in methanol with its surface facing up. Therefore, by repeatedly receiving vibrational acceleration in three directions, a collection of graphene is arranged in a plane with the surface facing up in methanol. As a result, a collection of graphenes, in which graphenes arranged in a plane are overlapped with each other via methanol and randomly stacked, is formed in all the grooves. Finally, vibrational acceleration in the vertical direction is applied to ensure that a collection of stacked graphenes, in which graphenes arranged in a plane overlap each other via methanol, is formed into a groove. As a result, the same amount of graphene, in which graphene arranged in a plane is stacked on top of each other via methanol, is formed in all the grooves. The magnitude of the vibrational acceleration applied to the container is 0.3-0.5G depending on the size of the groove.
Note that graphene produced by destroying graphite crystals in graphite particles has a size of 1 to 300 μm because the graphite particles are fine particles. Furthermore, the thickness of graphene is extremely thin at 0.332 nm. Therefore, if the aspect ratio of graphene is the ratio of the major axis to the thickness, the aspect ratio is extremely large, 3×10 3 -9×10 6 , as described above. Therefore, when vibrational acceleration is applied in three directions to a collection of graphene dispersed in methanol, the graphene moves along with the methanol in the direction of the vibrational acceleration, with the surface on which the least load is applied to the graphene facing upward. For this reason, by repeatedly applying vibrational acceleration in three directions, the graphene is arranged in a plane with its surface facing up in methanol, and the graphene arranged in a plane overlaps with the methanol intervening, forming a collection of stacked graphene. , formed in a groove.
Next, the temperature of the container is raised to the boiling point of methanol, and methanol is vaporized from all grooves. As a result, a collection of graphene arranged in a plane and stacked on top of each other is formed in each groove. After this, a plate material is prepared that has a plurality of protrusions that are formed at positions that contact the side surfaces of the plurality of grooves, are longer than the depth of the plurality of grooves, have the same length, and have the same number as the plurality of grooves. . Lay this plate material on top of the container. Furthermore, the entire surface of the plate material is compressed evenly, and the graphene clusters formed on the bottom surfaces of the plurality of grooves are compressed by the plurality of protrusions. As a result, all the stacked graphenes arranged in a plane are compressed, and all the stacked graphenes are frictionally welded to each other on the overlapping surfaces, resulting in a graphene bonded body consisting of a collection of graphenes joined by friction welding. The shapes of the bottom surfaces are simultaneously formed on the bottom surfaces of a plurality of grooves. Furthermore, impact acceleration is applied intermittently for, for example, 5 seconds to the parts corresponding to the bottom surfaces of the container in which the plurality of grooves are formed, and the graphene bond formed in the plurality of grooves is transferred to the bottom surface of the plurality of grooves. Peel it off. Note that the magnitude of the impact acceleration applied to the container is a vibrational acceleration of 0.3-0.5G depending on the size of the container. As a result, a plurality of graphene bonded bodies having the same shape and the same thickness are manufactured at the same time. This solves the third problem described in paragraph 6. As a result, all the problems described in paragraph 6 are solved. Note that since a plurality of graphene conjugates having the same shape and the same thickness are simultaneously formed on the bottom surfaces of a plurality of grooves in the shape of the bottom surfaces, the shape of the graphene conjugates becomes the shape of the bottom surfaces of the grooves. . Furthermore, the thickness of the graphene conjugate is determined by the amount of a suspension of graphene aggregates dispersed in methanol injected into the grooves. Therefore, by changing the size of the bottom surface of the groove and by changing the amount of suspension injected into the groove, the shape and thickness of the graphene bonded body to be manufactured can be freely changed. .

同一の形状と同一の厚みからなる複数のグラフェン接合体を同時に製造する際に用いる100個の溝を形成した板材の正面図である。FIG. 2 is a front view of a plate material in which 100 grooves are formed, which is used when simultaneously manufacturing a plurality of graphene bonded bodies having the same shape and the same thickness. 同一の形状と同一の厚みからなる100枚のグラフェン接合体を同時に製造した該グラフェン接合体の側面を模式的に表した図である。1 is a diagram schematically showing the side surface of 100 graphene bonded bodies having the same shape and the same thickness manufactured at the same time. FIG. 100枚のグラフェン接合体を、25枚のグラフェン接合体が1層のグラフェン接合体を形成し、該グラフェン接合体の4層を、摩擦圧接したグラフェンの集まりを介して接合したグラフェン接合体の側面を模式的に表した図である。A side surface of a graphene bonded body made of 100 sheets of graphene bonded bodies, 25 sheets of graphene bonded bodies forming one layer of graphene bonded bodies, and four layers of the graphene bonded bodies joined via a collection of graphenes frictionally welded. FIG.

実施例1
本実施例は、10段落に記載した方法に従って、グラフェンの集まりがメタノールに分散した懸濁液を作成する。
最初に、3リットルのメタノールを、1.2m×1.2mの底面をもち、底が浅い容器に充填した。
次に、2枚の平行平板電極の間隙に電界が発生する電極の有効面積が、1m×1mである平行平板電極を用意し、2枚の平行平板電極を100μmの間隙で重ね合わせ、この間隙に黒鉛粒子を満遍なく引き詰め、メタノール中に浸漬する。なお、黒鉛粒子を粒径が25μmの球と仮定し、2枚の平行平板電極で作られる100μmの間隙に、黒鉛粒子を満遍なく引き詰めた場合、6.4×10個の黒鉛粒子が存在する。この黒鉛粒子の集まりに、10.6キロボルト以上の直流電圧を印加すると、全ての黒鉛粒子の基底面の層間結合が同時に破壊される。この際、1.9×1013個のグラフェンの集まりが得られ、用いる黒鉛粒子の集まりは、僅かに1.18gである。
このため、電界が発生する電極の有効面積が1m×1mである平行平板電極の表面に、鱗片状黒鉛粒子(例えば、伊藤黒鉛工業株式会社のXD100)の12gを重ねて引き詰めた。この平行平板電極を、メタノールが充填された容器に浸漬し、さらに、もう一方の平行平板電極を前記の平行平板電極の上に重ね合わせ、2枚の平行平板電極を100μmの間隙で離間させ、12キロボルトの直流電圧を電極間に加えた。次に、2枚の平行平板電極の間隙を拡大し、さらに、2枚の平行平板電極をメタノール中で傾斜させ、0.2Gからなる3方向の振動加速度を容器に繰り返し加え、この後、容器から2枚の平行平板電極を取り出した。
次に、作成した試料の一部を取り出し、電子顕微鏡を用いて、試料の観察と分析を行なった。電子顕微鏡は、JFEテクノリサーチ株式会社の極低加速電圧SEMを用いた。この装置は、100ボルトからの極低加速電圧による表面観察が可能で、試料に導電性の被膜を形成せずに直接試料の表面が観察できる特徴を持つ。
試料の表面からの反射電子線の900-1000ボルトの間にある2次電子線を取り出して画像処理を行った。試料は、厚みが極めて薄い扁平な物質であることが確認できた。さらに、特性エックス線のエネルギーとその強度を画像処理した結果、炭素原子のみ存在した。このため、試料は、グラフェンであることが確認できた。
これによって、2枚の平行平板電極の間隙に、鱗片状黒鉛粒子の集まりを引き詰め、電極間に直流の電位差を与え、この電位差を2枚の平行平板電極対の間隙の大きさで割った値に相当する電界が、鱗片状黒鉛粒子の集まりが存在する電極間隙に発生し、この電界によって、全ての黒鉛粒子に対し、黒鉛結晶からなる基底面の層間結合を破壊させるのに十分なクーロン力を、基底面の層間結合の担い手である全てのπ電子に同時に与えられ、この結果、黒鉛結晶の層間結合の全てが同時に破壊され、黒鉛結晶からなる基底面、すなわち、グラフェンの集まりが製造できることが確認された。
Example 1
In this example, a suspension of graphene aggregates dispersed in methanol is created according to the method described in paragraph 10.
First, 3 liters of methanol was filled into a shallow container measuring 1.2 m x 1.2 m.
Next, prepare parallel plate electrodes in which the effective area of the electrode that generates an electric field in the gap between the two parallel plate electrodes is 1 m x 1 m, and overlap the two parallel plate electrodes with a gap of 100 μm. Graphite particles are evenly packed into the container and immersed in methanol. Assuming that the graphite particles are spheres with a particle size of 25 μm, if the graphite particles are evenly packed into a 100 μm gap created by two parallel plate electrodes, there will be 6.4 × 10 7 graphite particles. do. When a DC voltage of 10.6 kilovolts or more is applied to this collection of graphite particles, the interlayer bonds of the basal surfaces of all graphite particles are simultaneously destroyed. At this time, a collection of 1.9×10 13 graphene particles was obtained, and the collection of graphite particles used was only 1.18 g.
For this purpose, 12 g of flaky graphite particles (for example, XD100 from Ito Graphite Industries Co., Ltd.) were stacked and packed on the surface of a parallel plate electrode whose effective area for generating an electric field was 1 m x 1 m. This parallel plate electrode is immersed in a container filled with methanol, and further, the other parallel plate electrode is superimposed on the above parallel plate electrode, and the two parallel plate electrodes are separated by a gap of 100 μm, A DC voltage of 12 kilovolts was applied between the electrodes. Next, the gap between the two parallel plate electrodes was enlarged, the two parallel plate electrodes were tilted in methanol, and vibrational acceleration of 0.2G in three directions was repeatedly applied to the container. Two parallel plate electrodes were taken out from the.
Next, a part of the prepared sample was taken out, and the sample was observed and analyzed using an electron microscope. As the electron microscope, an extremely low acceleration voltage SEM manufactured by JFE Techno Research Co., Ltd. was used. This device is capable of surface observation using an extremely low accelerating voltage of 100 volts, and has the feature of directly observing the surface of a sample without forming a conductive film on the sample.
Image processing was performed by extracting a secondary electron beam between 900 and 1000 volts from the reflected electron beam from the surface of the sample. It was confirmed that the sample was a flat material with an extremely thin thickness. Furthermore, image processing of the energy and intensity of characteristic X-rays revealed that only carbon atoms were present. Therefore, it was confirmed that the sample was graphene.
As a result, a collection of scaly graphite particles was packed into the gap between the two parallel plate electrodes, a direct current potential difference was applied between the electrodes, and this potential difference was divided by the size of the gap between the two parallel plate electrodes. An electric field corresponding to the value is generated in the electrode gap where a collection of scale-like graphite particles exists, and this electric field generates a Coulomb force of sufficient magnitude to break the interlayer bonding of the basal plane of graphite crystals for all graphite particles. A force is applied simultaneously to all the π electrons that are responsible for the interlayer bonds in the basal plane, and as a result, all the interlayer bonds in the graphite crystal are simultaneously destroyed, producing a basal plane made of graphite crystal, that is, a collection of graphene. It was confirmed that it can be done.

実施例2
本実施例は、15段落に記載した方法に従って、同一の形状と同一の厚みからなる複数のグラフェン接合体を同時に製造する実施例で、実施例1で製造したグラフェンがメタノールに分散した懸濁液を用い、直径が20mmの円板からなるグラフェン接合体の100枚を同時に製造する。
31cm×31cm×2cm(厚み)からなる第一の板材に、直径が20mmで、深さが10mmからなる円柱の溝を、10mmの等間隔で横方向に10個、縦方向に10個形成した。図1に第一の板材の正面図を示す。1は円柱からなる溝である。また、31cm×31cm×2cm(厚み)からなる第二の板材に、直径が20mmで、長さが15mmからなる円柱の突起を形成した。次に、100個からなる各々の溝に、実施例1で製造したグラフェンがメタノールに分散した懸濁液の0.15gずつを注入し、第一の板材に0.3Gの3方向の振動加速度を、各々の方向の振動加速度を5秒間ずつ5回繰り返して加え、この後、上下方向の振動加速度を5秒間加えた。さらに、第一の板材をメタノールの沸点に昇温し、100個の円柱の溝からメタノールを気化させた。この後、円柱の突起が設けられた第二の板材を重ね合わせ、円柱の突起が形成された部位に該当する反対側の表面に、1kgからなる100個の重りを置いて、円柱の突起の先端で、円柱の溝の底面に存在するグラフェンの集まりを圧縮した。この後、重ね合わせた第二の板材を取り外し、円柱の溝が形成された部位に相当する裏面の100か所に、0.4Gからなる衝撃加速度を3回繰り返し同時に加え、溝の底面に形成された試料を、溝の底面から引き剥がした。溝から剥がした試料の表面に、板材をかぶせ、板材に10kgの重りを置いたが、試料に変化は見られなかったので、一定の接合力で接合されている。
次に、溝の底面から剥がした試料を、実施例1で用いた電子顕微鏡を用いて観察と分析を行なった。最初に、試料の側面からの反射電子線の900-1000ボルトの間にある2次電子線を取り出して画像処理を行った。試料の側面は、極めて厚みが薄い物質が積層して6.64nmの厚みを形成しているのが確認できた。次に、特性エックス線のエネルギーとその強度を画像処理した結果、炭素原子のみが存在した。従って、試料は、グラフェンの扁平面同士が20層積層した試料であることが確認できた。図2に、グラフェンの扁平面同士が重なり合ったグラフェン接合体の側面の一部を拡大し、模式的に表した。2は重なり合ったグラフェンの集まりである。
なお、第一の板材に形成する溝を円柱形状にした。この理由は、溝の底面の形状が円になり、円は中心から端部までの距離が同一である。これに対し、四角形は中心から端部までの距離は同一でなく、角部で最も長くなる。従って、底面が円からなる溝に注入したグラフェンの集まりを圧縮すると、グラフェンの集まりが均一に圧縮されやすい。これに対し、底面が四角形からなる溝に注入したグラフェンの集まりは、同一の形状の四角柱の突起で圧縮しても、角部で同一の圧縮応力が加わりにくいため、角部に近い領域では、グラフェン同士が摩擦圧接しない恐れがある。つまり、黒鉛粒子における黒鉛結晶の基底面同士の層間結合を同時に破壊して製造したグラフェンの大きさが、1-300μmの幅である。このため、微細なグラフェンほど、角部に近い領域に存在するグラフェンが圧縮されにくくなる。このため、第一の板材に形成する溝を円柱形状にした。
Example 2
This example is an example in which multiple graphene conjugates having the same shape and thickness are simultaneously manufactured according to the method described in paragraph 15, and a suspension in which the graphene manufactured in Example 1 is dispersed in methanol is used. Using this method, 100 graphene bonded bodies each consisting of a disk with a diameter of 20 mm were manufactured at the same time.
In a first plate material of 31 cm x 31 cm x 2 cm (thickness), 10 cylindrical grooves with a diameter of 20 mm and a depth of 10 mm were formed at equal intervals of 10 mm in the horizontal direction and 10 in the vertical direction. . FIG. 1 shows a front view of the first plate material. 1 is a groove made of a cylinder. Further, a cylindrical protrusion with a diameter of 20 mm and a length of 15 mm was formed on a second plate material of 31 cm x 31 cm x 2 cm (thickness). Next, 0.15 g of the suspension of graphene produced in Example 1 dispersed in methanol was injected into each of the 100 grooves, and the first plate was subjected to vibration acceleration of 0.3 G in three directions. Vibration acceleration in each direction was applied repeatedly for 5 seconds five times, and then vibration acceleration in the vertical direction was applied for 5 seconds. Furthermore, the temperature of the first plate material was raised to the boiling point of methanol, and methanol was vaporized from the 100 cylindrical grooves. After this, the second plate material provided with the cylindrical protrusions is placed one on top of the other, and 100 weights of 1 kg are placed on the opposite surface corresponding to the area where the cylindrical protrusions are formed. At the tip, the graphene clusters present at the bottom of the cylinder's grooves were compressed. After this, the stacked second plate material is removed, and an impact acceleration of 0.4G is simultaneously applied three times to 100 locations on the back surface corresponding to the areas where the cylindrical grooves were formed, forming grooves on the bottom surface. The sample was peeled off from the bottom of the groove. A plate material was placed over the surface of the sample that had been peeled off from the groove, and a 10 kg weight was placed on the plate material, but no change was observed in the sample, so it was bonded with a constant bonding force.
Next, the sample peeled off from the bottom of the groove was observed and analyzed using the electron microscope used in Example 1. First, a secondary electron beam between 900 and 1000 volts of the reflected electron beam from the side of the sample was taken out and subjected to image processing. On the side surface of the sample, it was confirmed that extremely thin materials were stacked to form a thickness of 6.64 nm. Next, image processing of the energy and intensity of characteristic X-rays revealed that only carbon atoms were present. Therefore, it was confirmed that the sample was a sample in which 20 layers of graphene flat surfaces were laminated. FIG. 2 schematically shows an enlarged part of the side surface of a graphene bonded body in which flat surfaces of graphene overlap each other. 2 is a collection of overlapping graphenes.
Note that the groove formed in the first plate material was made into a cylindrical shape. The reason for this is that the shape of the bottom of the groove is a circle, and the distance from the center to the end of the circle is the same. On the other hand, in a quadrilateral, the distance from the center to the edge is not the same, and is longest at the corner. Therefore, when a group of graphene injected into a groove with a circular bottom surface is compressed, the group of graphene is likely to be compressed uniformly. On the other hand, even if a group of graphene injected into a groove with a square bottom is compressed by a square prism protrusion of the same shape, it is difficult to apply the same compressive stress at the corners; , there is a possibility that the graphenes will not be frictionally welded together. In other words, the size of graphene produced by simultaneously destroying the interlayer bonds between the basal planes of graphite crystals in graphite particles is 1 to 300 μm wide. Therefore, the finer the graphene, the more difficult it is for the graphene present in regions near the corners to be compressed. For this reason, the groove formed in the first plate material was made into a cylindrical shape.

実施例3
本実施例は、実施例1で製造したグラフェンがメタノールに分散した懸濁液に、実施例2で作成したグラフェン接合体の集まりを混合し、実施例2で作成した全てのグラフェン接合体同士の間隙を、摩擦圧接したグラフェンの集まりを介して、全てのグラフェン接合体同士を接合する実施例である。
11cm×11cm×2cm(厚み)からなる容器に、10cm×10cm×1cm(深さ)からなる溝を形成した。実施例1で製造したグラフェンがメタノールに分散した懸濁液の3gを容器に注入し、さらに、実施例2で作成したグラフェン接合体の100枚を混合し、容器に0.3Gの3方向の振動加速度を、各々の方向の振動加速度を5秒間ずつ5回繰り返して加え、この後、上下方向の振動加速度を5秒間加えた。さらに、容器をメタノールの沸点に昇温し、容器からメタノールを気化させた。次に、10cm×10cm×2cm(厚み)からなる板材を用意し、該板材を容器内の試料の表面全体を覆うように被せ、この後、板材の上に10kgの重り9個を等間隔において試料を圧縮し、この後、板材を取り除き、容器の底面の等間隔なる9個所に、0.4Gからなる衝撃加速度を同時に3回繰り返し加え、容器の底面に形成された試料を底面から引き剥がした。剥がした試料の表面に、再度板材をかぶせ、板材の上に10kgの重り9個を等間隔に置いたが、試料に変化は見られなかったので、一定の接合力で接合されている。
次に、容器の底面から剥がした試料を、実施例1で用いた電子顕微鏡を用いて観察と分析を行なった。最初に、試料の側面からの反射電子線の900-1000ボルトの間にある2次電子線を取り出して画像処理を行った。試料の側面は、極めて微細な物質が重なり合って1.66nmの厚みを成して積層した層が5層を形成し、極めて厚みが薄い物質が積層して6.64nmの厚みを形成している層が4層を形成し、両者の1層ずつが互いに重なり合って積層しているのが確認できた。次に、特性エックス線のエネルギーとその強度を画像処理した結果、全ての物質が炭素原子のみが存在した。従って、試料は、実施例2で作成したグラフェン接合体の4枚が、グラフェンの集まりを介して、グラフェン接合体同士が接合した試料であることが確認できた。従って、試料の面積は100cmで、厚みは34.86nmになる。図3に、試料の側面の一部を拡大し、模式的に表した。3はグラフェンの集まりで、4はグラフェン接合体である。
また、作成した試料を2mの高さから自然落下させたが、試料に変化は見られなかった。さらに、作成した試料を4mの高さから自然落下させたが、試料に変化は見られなかった。このため、グラフェンの集まりを介して、グラフェン接合体同士が一定の接合力で接合されている。また、摩擦圧接したグラフェンの集まりも、一定の接合力で接合されている。
Example 3
In this example, a suspension of graphene manufactured in Example 1 dispersed in methanol was mixed with a collection of graphene conjugates created in Example 2, and all graphene conjugates created in Example 2 were mixed with each other. This is an example in which all the graphene bonded bodies are bonded to each other via a collection of graphene friction-welded in the gap.
A groove of 10 cm x 10 cm x 1 cm (depth) was formed in a container of 11 cm x 11 cm x 2 cm (thickness). 3 g of the suspension of graphene produced in Example 1 dispersed in methanol was poured into a container, 100 sheets of the graphene conjugate produced in Example 2 were mixed, and the container was charged with 0.3 G in three directions. Vibration acceleration was applied repeatedly for 5 seconds in each direction five times, and then vibration acceleration in the vertical direction was applied for 5 seconds. Furthermore, the temperature of the container was raised to the boiling point of methanol, and methanol was vaporized from the container. Next, prepare a plate of 10 cm x 10 cm x 2 cm (thickness), cover the entire surface of the sample in the container with the plate, and then place nine 10 kg weights on the plate at equal intervals. The sample was compressed, then the plate material was removed, and an impact acceleration of 0.4G was applied three times at the same time to nine equally spaced locations on the bottom of the container, and the sample formed on the bottom of the container was peeled off from the bottom. Ta. The surface of the peeled sample was covered with a plate again, and nine 10 kg weights were placed on the plate at equal intervals, but no change was observed in the sample, so it was joined with a constant bonding force.
Next, the sample peeled off from the bottom of the container was observed and analyzed using the electron microscope used in Example 1. First, a secondary electron beam between 900 and 1000 volts of the reflected electron beam from the side of the sample was taken out and subjected to image processing. On the side of the sample, five layers are formed by stacking extremely fine materials with a thickness of 1.66 nm, and a layer of extremely thin materials is stacked to form a thickness of 6.64 nm. It was confirmed that four layers were formed and each layer was stacked one on top of the other. Next, as a result of image processing of the energy and intensity of characteristic X-rays, all substances contained only carbon atoms. Therefore, it was confirmed that the four graphene bonded bodies produced in Example 2 were a sample in which the graphene bonded bodies were bonded to each other via a collection of graphene. Therefore, the area of the sample is 100 cm 2 and the thickness is 34.86 nm. FIG. 3 schematically shows an enlarged part of the side surface of the sample. 3 is a collection of graphene, and 4 is a graphene conjugate.
Furthermore, the prepared sample was allowed to fall naturally from a height of 2 m, but no change was observed in the sample. Furthermore, the prepared sample was allowed to fall naturally from a height of 4 m, but no change was observed in the sample. Therefore, the graphene bonded bodies are bonded to each other with a constant bonding force via the graphene clusters. Furthermore, the friction-welded clusters of graphene are also joined together with a constant joining force.

実施例4
本実施例は、実施例1で製造したグラフェンがメタノールに分散した懸濁液に、実施例2で作成したグラフェン接合体の集まりの400個を混合し、実施例2で作成した全てのグラフェン接合体同士の間隙を、摩擦圧接したグラフェンの集まりを介して、全てのグラフェン接合体同士を接合する実施例である。
つまり、実施例3では、直径が20mmの円板からなるグラフェン接合体の100枚を、25枚のグラフェン接合体が1層を形成し、合計で4層を形成させて積層させた。このため、11cm×11cm×2cm(厚み)からなる容器に、10cm×10cm×1cm(深さ)からなる溝を形成した。従って、実施例3で製造したグラフェン接合体の面積は、100cmになる。
これに対し、本実施例では、直径が20mmの円板からなるグラフェン接合体の400枚を、100枚のグラフェン接合体が1層を形成し、合計で4層を形成させて積層させる。このため、21cm×21cm×2cm(厚み)からなる容器に、20cm×20cm×1cm(深さ)からなる溝を形成した。本実施例で製造するグラフェン接合体の面積は、400cmになる。このように、グラフェンの集まりをメタノールに分散した懸濁液と、グラフェン接合体の集まりとからなる混合物を注入する容器の形状によって、グラフェン接合体の大きさが変わる。
最初に、実施例2に記載した方法に従って、直径が20mmの円板からなるグラフェン接合体の100枚を4回繰り返して製造し、直径が20mmの円板からなるグラフェン接合体の400個を製造する。
次に、21cm×21cm×2cm(厚み)からなる容器に、20cm×20cm×1cm(深さ)からなる溝を形成した。実施例1で製造したグラフェンがメタノールに分散した懸濁液の12gを容器に注入し、さらに、実施例2で作成したグラフェン接合体の400枚を混合し、容器に0.4Gの3方向の振動加速度を、各々の方向の振動加速度を5秒間ずつ5回繰り返して加え、この後、上下方向の振動加速度を5秒間加えた。さらに、容器をメタノールの沸点に昇温し、容器からメタノールを気化させた。次に、20cm×20cm×2cm(厚み)からなる板材を用意し、該板材を容器内の試料の表面全体を覆うように被せ、この後、板材の上に15kgの重り9個を等間隔において試料を圧縮し、この後、板材を取り除き、容器の底面の等間隔なる9個所に、0.5Gからなる衝撃加速度を同時に3回繰り返し加え、容器の底面に形成された試料を底面から引き剥がした。剥がした試料の表面に、再度板材をかぶせ、板材の上に15kgの重り9個を等間隔に置いたが、試料に変化は見られなかったので、一定の接合力で接合されている。
次に、容器の底面から剥がした試料を、実施例1で用いた電子顕微鏡を用いて観察と分析を行なった。最初に、試料の側面からの反射電子線の900-1000ボルトの間にある2次電子線を取り出して画像処理を行った。試料の側面は、極めて微細な物質が重なり合って1.66nmの厚みを成して積層した層が5層を形成し、極めて厚みが薄い物質が積層して6.64nmの厚みを形成している層が4層を形成し、両者の1層ずつが互いに重なり合って積層しているのが確認できた。次に、特性エックス線のエネルギーとその強度を画像処理した結果、全ての物質が炭素原子のみが存在した。従って、試料は、実施例2で作成したグラフェン接合体の4枚が、グラフェンの集まりを介して、グラフェン接合体同士が接合した試料であることが確認できた。従って、試料の面積は400cmで、厚みは34.86nmになる。
Example 4
In this example, 400 of the graphene junctions created in Example 2 were mixed into a suspension in which the graphene produced in Example 1 was dispersed in methanol, and all the graphene junctions created in Example 2 were mixed. This is an example in which all the graphene bonded bodies are joined together through a collection of graphene friction-welded in the gap between the bodies.
That is, in Example 3, 100 sheets of graphene bonded bodies each consisting of a disk with a diameter of 20 mm were stacked such that 25 sheets of graphene bonded bodies formed one layer, forming a total of 4 layers. For this purpose, a groove of 10 cm x 10 cm x 1 cm (depth) was formed in a container of 11 cm x 11 cm x 2 cm (thickness). Therefore, the area of the graphene bonded body manufactured in Example 3 is 100 cm 2 .
On the other hand, in this example, 400 sheets of graphene bonded bodies each consisting of a disk having a diameter of 20 mm are stacked such that 100 sheets of graphene bonded bodies form one layer, forming a total of 4 layers. For this purpose, a groove of 20 cm x 20 cm x 1 cm (depth) was formed in a container of 21 cm x 21 cm x 2 cm (thickness). The area of the graphene bonded body manufactured in this example is 400 cm 2 . In this way, the size of the graphene conjugate changes depending on the shape of the container into which the mixture consisting of the suspension of graphene aggregates dispersed in methanol and the graphene conjugate aggregate is injected.
First, according to the method described in Example 2, 100 pieces of graphene conjugated bodies each consisting of a disk with a diameter of 20 mm were manufactured by repeating the process four times to produce 400 pieces of graphene conjugated bodies each consisting of a disk with a diameter of 20 mm. do.
Next, a groove of 20 cm x 20 cm x 1 cm (depth) was formed in a container of 21 cm x 21 cm x 2 cm (thickness). 12 g of the suspension of graphene produced in Example 1 dispersed in methanol was poured into a container, and 400 sheets of the graphene conjugate produced in Example 2 were mixed, and the container was charged with 0.4 G in three directions. Vibration acceleration was applied repeatedly for 5 seconds in each direction five times, and then vibration acceleration in the vertical direction was applied for 5 seconds. Furthermore, the temperature of the container was raised to the boiling point of methanol, and methanol was vaporized from the container. Next, prepare a plate of 20 cm x 20 cm x 2 cm (thickness), cover the entire surface of the sample in the container with the plate, and then place nine 15 kg weights on the plate at equal intervals. The sample was compressed, then the plate was removed, and an impact acceleration of 0.5G was applied three times at the same time to nine equally spaced locations on the bottom of the container, and the sample formed on the bottom of the container was peeled off from the bottom. Ta. The surface of the peeled sample was covered with a plate again, and nine 15 kg weights were placed on the plate at equal intervals, but no change was observed in the sample, so it was joined with a constant bonding force.
Next, the sample peeled off from the bottom of the container was observed and analyzed using the electron microscope used in Example 1. First, a secondary electron beam between 900 and 1000 volts of the reflected electron beam from the side of the sample was taken out and subjected to image processing. On the side of the sample, five layers are formed by stacking extremely fine materials with a thickness of 1.66 nm, and a layer of extremely thin materials is stacked to form a thickness of 6.64 nm. It was confirmed that four layers were formed and each layer was stacked one on top of the other. Next, as a result of image processing of the energy and intensity of characteristic X-rays, all substances contained only carbon atoms. Therefore, it was confirmed that the four graphene bonded bodies produced in Example 2 were a sample in which the graphene bonded bodies were bonded to each other via a collection of graphene. Therefore, the area of the sample is 400 cm 2 and the thickness is 34.86 nm.

実施例3および実施例4で作成したグラフェン接合体は一例に過ぎない。つまり、グラフェン接合体の形状と面積は、グラフェンの集まりがメタノールに分散した懸濁液に、グラフェン接合体の集まりを混合し、該混合物を注入する容器の形状に応じて自在に変えられる。また、混合物からメタノールを気化させると、全てのグラフェン接合体同士の間隙を埋め尽くして平面状に並んだグラフェンの集まりが析出し、この後、混合物を圧縮すると、グラフェンの集まりが、全てのグラフェン接合体に摩擦圧接するとともに、グラフェン同士が摩擦圧接し、全てのグラフェン接合体同士が、摩擦圧接したグラフェンの集まりを介して接合される。従って、製造するグラフェン接合体の形状と面積に制約がない。
つまり、グラフェンの大きさは、グラフェン接合体より著しく小さいため、混合物からメタノールを気化させると、全てのグラフェン接合体同士の間隙が、平面状に並んだグラフェンの集まりで埋め尽くされる。また、グラフェンが極めて強靭な素材であり、グラフェンを重なり合わせたグラフェンの集まりに、過大な圧縮応力を加えても、グラフェンは破壊しない。従って、重なり合ったグラフェンに過大な圧縮応力を加えると、重なり合った部位に摩擦熱が発生し、グラフェン同士が摩擦熱で接合する。また、グラフェンがグラフェン接合体に摩擦圧接する。従って、混合物を注入する容器の形状に応じて、グラフェン接合体の形状と面積は自在に変えられるため、実施例3-4で作成したグラフェン接合体は一例に過ぎない。
The graphene conjugates created in Example 3 and Example 4 are only examples. That is, the shape and area of the graphene conjugate can be freely changed depending on the shape of the container into which the graphene conjugate is mixed with a suspension of graphene conjugates dispersed in methanol and the mixture is poured into the suspension. In addition, when methanol is vaporized from the mixture, a collection of graphene arranged in a plane fills the gaps between all the graphene conjugates, and when the mixture is compressed, the collection of graphene is separated from all the graphene conjugates. While friction welding is applied to the bonded body, the graphenes are also friction welded to each other, and all the graphene bonded bodies are joined via a collection of frictionally welded graphenes. Therefore, there are no restrictions on the shape and area of the graphene bonded body to be manufactured.
In other words, since the size of graphene is significantly smaller than the graphene conjugate, when methanol is vaporized from the mixture, all the gaps between the graphene conjugates are filled with a collection of graphene arranged in a plane. Additionally, graphene is an extremely strong material, and even if excessive compressive stress is applied to a collection of stacked graphenes, the graphene will not break. Therefore, when excessive compressive stress is applied to overlapping graphenes, frictional heat is generated at the overlapped portions, and the graphenes are bonded together by the frictional heat. Further, the graphene is frictionally welded to the graphene bonded body. Therefore, the shape and area of the graphene bonded body can be freely changed depending on the shape of the container into which the mixture is injected, so the graphene bonded body created in Example 3-4 is only an example.

1 円柱からなる溝 2 重なり合ったグラフェンの集まり 3 グラフェンの集まり 4 グラフェン接合体
1 Groove made of cylinder 2 Collection of overlapping graphene 3 Collection of graphene 4 Graphene conjugate

Claims (4)

グラフェン接合体同士の間隙にグラフェンの集まりを析出させ、該グラフェンの集まりの摩擦圧接によって、グラフェン接合体同士を接合させ、より面積が広く、厚みが厚いグラフェン接合体を製造する方法は、
グラフェンの集まりをメタノールに分散した懸濁液を作成し、グラフェン接合体の集まりを、前記グラフェンの集まりの重量より多い重量として秤量し、該グラフェン接合体の集まりを、前記懸濁液に混合して第一の混合物を作成する第一の工程と、
前記第一の混合物の一部を容器に注入し、該容器に、左右、前後、上下の3方向の0.3-0.5Gからなる振動加速度を、各々の方向に順番に繰り返し加え、最後に、0.3-0.5Gからなる上下方向の振動加速度を加える、これによって、前記グラフェンの集まりが前記メタノールを介して面を上にして平面状に並ぶとともに、前記グラフェン接合体の集まりも前記メタノールを介して面を上にして平面状に並び、該グラフェンの集まりと、該グラフェン接合体の集まりとが、ランダムにメタノール中で積層して、メタノール中に分散した第二の混合物を作成する第二の工程と、
前記容器を前記メタノールの沸点に昇温し、該容器から前記メタノールを気化させ、前記面を上にして平面状に並んだグラフェンの集まりと、前記面を上にして平面状に並んだグラフェン接合体の集まりが、互いに重なり合ってランダムに積層し、前記全てのグラフェン接合体同士の間隙が前記グラフェンの集まりで埋め尽くされた第三の混合物が、前記容器の底面に形成される第三の工程と、
前記第三の混合物の表面全体を板材で覆い、該板材の表面全体を均等に圧縮し、前記第三の混合物の表面全体を均等に圧縮する、これによって、前記全てのグラフェン接合体同士の間隙を埋め尽くした前記グラフェンの集まりが、前記グラフェン接合体に摩擦圧接するとともに、前記グラフェン同士が摩擦圧接し、前記全てのグラフェン接合体同士の間隙が、前記摩擦圧接したグラフェンの集まりで埋め尽くされ、該摩擦圧接したグラフェンの集まりを介して、前記グラフェン接合体同士が接合され、より面積が広く、厚みが厚いグラフェン接合体が前記容器の底面に該底面の形状として形成される第四の工程と、
前記容器の底面の5-9個所に、0.3-0.5Gからなる衝撃加速度を断続的に繰り返し加え、該容器の底面に形成された前記グラフェン接合体を、該容器の底面から引き剥がし、該グラフェン接合体を取り出す第五の工程とからなり、
前記した5つの工程における全ての処理を順番に連続して実施することで、グラフェン接合体同士の間隙にグラフェンの集まりを析出させ、該グラフェンの集まりの摩擦圧接によって、グラフェン接合体同士が接合され、より面積が広く、厚みが厚いグラフェン接合体が製造される方法。
A method for producing a graphene bonded body with a larger area and thickness by precipitating graphene aggregates in the gaps between graphene bonded bodies and joining the graphene bonded bodies together by friction welding the graphene aggregates is as follows:
A suspension of a collection of graphene is dispersed in methanol, a collection of graphene conjugates is weighed as a weight greater than the weight of the collection of graphene, and the collection of graphene conjugates is mixed into the suspension. a first step of creating a first mixture;
A portion of the first mixture is poured into a container, and a vibration acceleration of 0.3-0.5G in three directions (left and right, front and back, and up and down) is repeatedly applied to each direction in order, and finally A vertical vibrational acceleration of 0.3 to 0.5 G is applied to the graphene, whereby the graphene clusters are aligned in a plane with the surface facing up through the methanol, and the graphene conjugate clusters are also aligned. The collection of graphene and the collection of graphene conjugates arranged in a plane with their faces facing up through the methanol are randomly stacked in methanol to create a second mixture dispersed in methanol. A second step of
The temperature of the container is raised to the boiling point of the methanol, and the methanol is vaporized from the container, resulting in a collection of graphene arranged in a planar shape with the surface facing up, and a graphene junction arranged in a planar shape with the surface facing up. A third step in which a third mixture is formed on the bottom surface of the container, in which the clusters of graphene bodies overlap each other and are randomly stacked, and the gaps between all the graphene bonded bodies are filled with the clusters of graphene bodies. and,
The entire surface of the third mixture is covered with a plate material, the entire surface of the plate material is evenly compressed, and the entire surface of the third mixture is evenly compressed, thereby reducing the gaps between all the graphene bonded bodies. The collection of graphene that has filled up is frictionally welded to the graphene bonded body, the graphenes are frictionally welded to each other, and the gaps between all the graphene bonded bodies are filled with the graphene group that has been frictionally welded. , a fourth step in which the graphene bonded bodies are bonded to each other via the friction-welded cluster of graphene, and a graphene bonded body having a larger area and thickness is formed on the bottom surface of the container in the shape of the bottom surface. and,
An impact acceleration of 0.3-0.5G is intermittently and repeatedly applied to 5-9 locations on the bottom of the container, and the graphene bond formed on the bottom of the container is peeled off from the bottom of the container. , a fifth step of taking out the graphene conjugate,
By sequentially and continuously carrying out all of the processes in the five steps described above, clusters of graphene are precipitated in the gaps between the graphene bonded bodies, and the graphene bonded bodies are joined by friction welding of the graphene clusters. , a method in which graphene conjugates with larger area and thickness are produced.
請求項1に記載したグラフェンの集まりがメタノールに分散した懸濁液を作成する方法は、
2枚の平行平板電極からなる電極板対の一方の平行平板電極を容器に配置させ、該一方の平行平板電極の表面に、鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりを平坦に引き詰め、さらに、前記容器にメタノールを注入し、前記一方の平行平板電極と前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりを、前記メタノール中に浸漬させる、さらに、前記電極板対を構成する他方の平行平板電極板を、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりを介して、前記一方の平行平板電極の上に重ね合わせ、前記2枚の平行平板電極からなる電極板対を前記メタノール中に浸漬させる、この後、該電極板対の間隙に、前記鱗片状黒鉛粒子ないしは前記塊状黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合を破壊させることができる大きさからなる直流の電位差を印加する、これによって、該直流の電位差の大きさを前記電極板対の間隙の大きさで割った値に相当する電界が、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりに印加され、該電界の印加によって、前記鱗片状黒鉛粒子ないしは前記塊状黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合の全てが同時に破壊され、前記電極板対の間隙に前記基底面からなるグラフェンの集まりが析出する、この後、前記電極板対の間隙を拡大し、さらに、該電極板対をメタノール中で傾斜させ、さらに、前記容器に左右、前後、上下の3方向の0.2-0.3Gからなる振動加速度を、各々の方向に順番に加え、前記グラフェンの集まりを、前記電極板対の間隙から前記メタノール中に移動させる、この後、前記容器から前記電極板対を取り出す、
前記した全ての処理を順番に連続して実施することで、グラフェンの集まりがメタノールに分散した懸濁液が作成される方法。
The method for creating a suspension in which a collection of graphene is dispersed in methanol according to claim 1 includes:
One parallel plate electrode of a pair of electrode plates consisting of two parallel plate electrodes is arranged in a container, and a collection of scale-like graphite particles or a collection of lumpy graphite particles are packed flat on the surface of the one parallel plate electrode. Further, methanol is injected into the container, and the one parallel plate electrode and the collection of scale-like graphite particles or the collection of lumpy graphite particles are immersed in the methanol, further forming the electrode plate pair. The other parallel plate electrode plate is superimposed on the one parallel plate electrode via the collection of scale-like graphite particles or the collection of massive graphite particles, thereby forming an electrode plate pair consisting of the two parallel plate electrodes. is immersed in the methanol, and then, in the gap between the pair of electrode plates, the size is such that it can destroy the interlayer bond of the basal plane made of graphite crystals forming the flaky graphite particles or the massive graphite particles. Applying a direct current potential difference of By applying the electric field, all the interlayer bonds of the basal planes made of graphite crystals forming the flaky graphite particles or the massive graphite particles are simultaneously destroyed, and the basal planes are applied to the gap between the electrode plate pair. A collection of graphene consisting of planes is precipitated. After this, the gap between the electrode plate pair is enlarged, the electrode plate pair is tilted in methanol, and the container is placed in three directions: left and right, front and back, and top and bottom. A vibrational acceleration of 0.2-0.3G is applied in each direction in turn to move the graphene mass from the gap between the electrode plates into the methanol. After this, the electrode plates are removed from the container. Take out the pair,
A method in which a suspension of graphene aggregates dispersed in methanol is created by sequentially performing all of the processes described above.
請求項1に記載したより面積が広く、厚みが厚いグラフェン接合体を製造する方法は、
請求項1に記載したグラフェン接合体の集まりが、同一の形状と同一の厚みからなる複数のグラフェン接合体であって、該同一の形状と同一の厚みからなる複数のグラフェン接合体を、請求項1に記載したグラフェン接合体の集まりとして用い、請求項1に記載した製造方法に従って、より面積が広く、厚みが厚いグラフェン接合体を製造する方法。
The method of manufacturing a graphene bonded body having a larger area and a thicker thickness as described in claim 1 includes:
The collection of graphene conjugates described in claim 1 is a plurality of graphene conjugates having the same shape and the same thickness, and the plurality of graphene conjugates having the same shape and the same thickness are defined in claim 1. A method for producing a graphene bonded body having a larger area and a thicker thickness, using the graphene bonded body as a collection of the graphene bonded bodies described in claim 1, and according to the manufacturing method described in claim 1.
請求項3に記載した同一の形状と同一の厚みからなる複数のグラフェン接合体を同時に製造する方法は、
同一の形状と、同一の深さとからなる複数の溝を容器に形成し、請求項1に記載したグラフェンの集まりがメタノールに分散した懸濁液の同じ量を、前記複数の溝の各々の溝に注入し、さらに、前記容器に対し、左右、前後、上下の3方向の0.3-0.5Gからなる振動加速度を、各々の方向に順番に繰り返し加え、最後に、0.3-0.5Gからなる上下方向の振動加速度を加える、これによって、前記溝に注入した懸濁液における前記メタノール中に分散されたグラフェンの集まりが、前記メタノール中で面を上にして平面状に並ぶとともに、該平面状に並んだグラフェンの集まりが、前記メタノールを介して互いに重なり合ったグラフェンの集まりが前記溝内に形成される第一の工程と、
前記容器を前記メタノールの沸点に昇温し、前記複数の溝から前記メタノールを気化させ、該複数の溝の底面に、前記平面状に並んだグラフェンの集まりが、互いに重なり合って積層した該グラフェンの集まりを形成させる、この後、前記容器の複数の溝の側面と接触する位置に形成される第一の特徴と、前記複数の溝の深さより長さが長い同一の長さを持つ第二の特徴と、前記複数の溝と同じ数からなる第三の特徴とを兼備する複数の突起を形成した板材を用意し、該板材の複数の突起が、前記容器の複数の溝に挿入するように、該板材を前記容器の上に重ね合わせ、該板材の前記突起が形成された反対側の表面の全体を均等に圧縮し、前記複数の突起の先端が、前記複数の溝の底面に形成された前記平面状に並んだグラフェンの集まりが互いに重なり合って積層した該グラフェンの集まりを圧縮する、これによって、該平面状に並んで重なり合ったグラフェン同士が、該重なり合った面で摩擦圧接し、該摩擦圧接で接合したグラフェンの集まりからなるグラフェン接合体が前記複数の溝の底面に、該底面の形状として形成される第二の工程と、
前記複数の溝が形成された前記容器の底面に該当する複数の部位に、0.3-0.5Gからなる衝撃加速度を断続的に繰り返し加え、前記複数の溝の底面に形成された前記グラフェン接合体を、該複数の溝の底面から引き剥がし、該グラフェン接合体を前記複数の溝から取り出す第三の工程とからなり、
前記した3つの工程における全ての処理を順番に連続して実施することで、同一の形状と同一の厚みからなる複数のグラフェン接合体が複数の溝に同時に製造される、同一の形状と同一の厚みからなる複数のグラフェン接合体を同時に製造する方法。
The method of simultaneously manufacturing a plurality of graphene bonded bodies having the same shape and the same thickness according to claim 3,
A plurality of grooves having the same shape and the same depth are formed in the container, and the same amount of the suspension of graphene aggregates dispersed in methanol according to claim 1 is poured into each of the plurality of grooves. Further, vibration acceleration consisting of 0.3-0.5G in three directions (left and right, front and back, and up and down) is repeatedly applied to the container in each direction, and finally, 0.3-0. A vertical vibrational acceleration of .5 G is applied, whereby the graphene particles dispersed in the methanol in the suspension injected into the groove are arranged in a plane in the methanol with their faces facing up. a first step in which a collection of graphene arranged in a plane is formed in the groove, in which a collection of graphene overlaps each other via the methanol;
The temperature of the container is raised to the boiling point of the methanol, the methanol is vaporized from the plurality of grooves, and the graphene is formed on the bottom surface of the plurality of grooves, in which the graphenes arranged in a planar manner overlap each other and are stacked. a first feature formed in a position in contact with a side surface of the plurality of grooves of the container, and a second feature having the same length that is longer than the depth of the plurality of grooves. and a third feature having the same number of grooves as the plurality of grooves. , the plate material is superimposed on the container, and the entire surface of the plate material on the opposite side where the protrusions are formed is evenly compressed, so that the tips of the plurality of protrusions are formed on the bottom surface of the plurality of grooves. The clusters of graphene arranged in a planar shape overlap each other and compress the stacked cluster of graphenes. As a result, the stacked graphenes arranged in a planar shape are frictionally welded on the overlapping surfaces, and the friction a second step in which a graphene bonded body consisting of a group of graphene bonded by pressure welding is formed on the bottom surface of the plurality of grooves in the shape of the bottom surface;
Impact acceleration of 0.3-0.5G is intermittently and repeatedly applied to a plurality of parts corresponding to the bottom surface of the container where the plurality of grooves are formed, and the graphene formed on the bottom surface of the plurality of grooves is a third step of peeling off the bonded body from the bottom surfaces of the plurality of grooves and taking out the graphene bonded body from the plurality of grooves,
By sequentially performing all the processes in the three steps described above, a plurality of graphene bonded bodies having the same shape and the same thickness are simultaneously manufactured in a plurality of grooves. A method for simultaneously manufacturing graphene conjugates of multiple thicknesses.
JP2022122402A 2022-07-31 2022-07-31 Method for producing joined graphene body having larger area and larger thickness by depositing graphene mass in gap between joined graphene bodies and joining joined graphene bodies by friction-welding the graphene mass Pending JP2024019746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022122402A JP2024019746A (en) 2022-07-31 2022-07-31 Method for producing joined graphene body having larger area and larger thickness by depositing graphene mass in gap between joined graphene bodies and joining joined graphene bodies by friction-welding the graphene mass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022122402A JP2024019746A (en) 2022-07-31 2022-07-31 Method for producing joined graphene body having larger area and larger thickness by depositing graphene mass in gap between joined graphene bodies and joining joined graphene bodies by friction-welding the graphene mass

Publications (1)

Publication Number Publication Date
JP2024019746A true JP2024019746A (en) 2024-02-13

Family

ID=89852680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022122402A Pending JP2024019746A (en) 2022-07-31 2022-07-31 Method for producing joined graphene body having larger area and larger thickness by depositing graphene mass in gap between joined graphene bodies and joining joined graphene bodies by friction-welding the graphene mass

Country Status (1)

Country Link
JP (1) JP2024019746A (en)

Similar Documents

Publication Publication Date Title
Han et al. Synergistic effect of graphene and carbon nanotube on lap shear strength and electrical conductivity of epoxy adhesives
Messina et al. Double-wall nanotubes and graphene nanoplatelets for hybrid conductive adhesives with enhanced thermal and electrical conductivity
Das et al. Resistance spot welding of dissimilar AISI-1008 steel/Al-1100 alloy lap joints with a graphene interlayer
Bo et al. Gallium–indium–tin liquid metal nanodroplet-based anisotropic conductive adhesives for flexible integrated electronics
Zhao et al. Mechanical robustness of metal nanocomposites rendered by graphene functionalization
Shi et al. Creep property of composite solders reinforced by nano-sized particles
JP2024019746A (en) Method for producing joined graphene body having larger area and larger thickness by depositing graphene mass in gap between joined graphene bodies and joining joined graphene bodies by friction-welding the graphene mass
Montazerian et al. Effect of graphene and process parameters on mechanical performance and electrical resistance of aluminum to copper friction stir joint
Alian et al. Comprehensive atomistic modeling of copper nanowires-based surface connectors
Zhu et al. Intuitive analysis of the microtribological behavior of copper-coated graphite–graphite/Cu composites with high graphite contents
Tan et al. Applications of multi-walled carbon nanotube in electronic packaging
Lazarova et al. Microstructure and Mechanical Properties of Aluminum: Graphene Composites Produced by Powder Metallurgical Method
Wu et al. Dielectric properties and thermal conductivity of poly (vinylidene fluoride)-based composites with graphite nanosheet and nickel particle
Uyor et al. Network structural hardening of polypropylene matrix using hybrid of 0D, 1D and 2D carbon-ceramic nanoparticles with enhanced mechanical and thermomechanical properties
JP2023166917A (en) Method for stacking graphene sheets, pressing and joining the stacked graphene group by friction to make graphene joint, and then pressing and welding the graphene joint by friction onto surface of substrate or component
JP2021138566A (en) Method for producing graphene aggregate in which graphenes are superposed and joined to each other through collection of nano-level size fine particles composed of metal or metal oxide
Depaifve et al. Combination of micro-computed X-ray tomography and electronic microscopy to understand the influence of graphene nanoplatelets on the thermal conductivity of epoxy composites
Felba Thermally conductive nanocomposites
JP2024006468A (en) Method for producing graphene joint having graphenes joined to each other as graphene joint consisting of predetermined area size and thickness
JP2024053153A (en) Method for preparing thermally conductive sheet having insulating surface covered with collection of insulating and thermally conductive powder on graphene joint made by joining superposed graphenes to each other by frictional press bonding
JP2024067552A (en) METHOD FOR FORMING FILM THINNER THAN 50 μm BY JOINING FOIL MADE OF METAL OR ALLOY AND THINNER THAN 20 μm TO BOTH SURFACES OF GRAPHENE JOINED BODY BY FRICTION WELDING
JP2024074349A (en) Method of forming film having thickness of 10 micrometers or less by friction welding coating film formed by friction welding flake powders of soft metal to both surfaces of graphene conjugate
JP2021107313A (en) Method for directly joining graphene-joined body formed by directly joining graphenes, to surface of base material or component
JP2022011208A (en) Method for producing paste comprising collection of graphenes in which graphenes are superimposed with each other
JP2024025947A (en) Method for depositing collection of graphene in gap between flat faces of flat powders made of metal, and bonding flat powders made of metal by friction compression of the collection of graphene