JP2021107313A - Method for directly joining graphene-joined body formed by directly joining graphenes, to surface of base material or component - Google Patents

Method for directly joining graphene-joined body formed by directly joining graphenes, to surface of base material or component Download PDF

Info

Publication number
JP2021107313A
JP2021107313A JP2019239995A JP2019239995A JP2021107313A JP 2021107313 A JP2021107313 A JP 2021107313A JP 2019239995 A JP2019239995 A JP 2019239995A JP 2019239995 A JP2019239995 A JP 2019239995A JP 2021107313 A JP2021107313 A JP 2021107313A
Authority
JP
Japan
Prior art keywords
graphene
graphenes
base material
container
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019239995A
Other languages
Japanese (ja)
Inventor
小林 博
Hiroshi Kobayashi
博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019239995A priority Critical patent/JP2021107313A/en
Publication of JP2021107313A publication Critical patent/JP2021107313A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

To provide a method for joining a graphene-joined body directly to a surface of a base material or component, the graphene-joined body being formed by joining graphenes directly.SOLUTION: Within methanol, a graphene aggregate is produced from an aggregate of graphite particles, and then is separated into sheets of graphene. Subsequently, the sheets of graphene are laminated through a fluid, the viscosity of which is enhanced by mixing an organic compound having high viscosity with the methanol. Moreover, the graphene laminate is arranged on a surface of a base material or component, and then the methanol and the organic component are gasified, thereby compressing the graphene laminate. Accordingly, a graphene-joined body formed by joining the graphenes directly is joined directly to the base material and component.SELECTED DRAWING: Figure 1

Description

本発明は、最初に、容器に充填されたメタノール中で、黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合の全てを破壊し、黒鉛結晶からなる基底面の集まり、すなわち、グラフェンの集まりをメタノール中に分散させる。次に、メタノールに溶解し、メタノールの粘度の30倍を超える粘度を持つ有機化合物をメタノールに混合し、メタノールの粘度の20倍を超える粘度になるメタノール溶解液を作成する。さらに、新たな容器で、粘度を高めたメタノール溶解液を介して、グラフェン同士を重ね合わせたグラフェンの集まりを、グラフェン接合体の形状として新たな容器の底面に作成する。この後、グラフェンの集まりを取り出し、基材ないしは部品の表面に配置させ、グラフェンの集まりの表面を均等に圧縮する。これによって、メタノールと有機化合物とが気化した後に、グラフェン同士が直接接合するとともに、基材ないしは部品の表面と接触するグラフェンが、基材ないしは部品の表面に直接接合し、グラフェン同士が接合したグラフェン接合体が、基材ないしは部品の表面に接合する。
なお、本発明は、先に出願した特願2019−107537(令和1年6月9日出願)の改良に関わる出願である。
In the present invention, first, in methanol filled in a container, all the interlayer bonds of the basal plane made of graphite crystals forming graphite particles are broken, and the basal plane aggregate made of graphite crystals, that is, the aggregate of graphene. Is dispersed in methanol. Next, an organic compound dissolved in methanol and having a viscosity exceeding 30 times the viscosity of methanol is mixed with methanol to prepare a methanol solution having a viscosity exceeding 20 times the viscosity of methanol. Further, in a new container, a collection of graphene in which graphenes are superposed with each other is created on the bottom surface of the new container as the shape of the graphene conjugate via a methanol solution having an increased viscosity. After this, the graphene aggregate is taken out and placed on the surface of the base material or component to evenly compress the surface of the graphene aggregate. As a result, after the methanol and the organic compound are vaporized, the graphenes are directly bonded to each other, and the graphene that comes into contact with the surface of the base material or the component is directly bonded to the surface of the base material or the component, and the graphene is bonded to each other. The bonded body is bonded to the surface of the base material or the component.
The present invention is an application relating to an improvement of Japanese Patent Application No. 2019-107537 (filed on June 9, 1991), which was filed earlier.

2004年に英国マンチェスター大学の物理学者が、セロハンテープを使用して、グラファイトから1枚の結晶子、すなわち、炭素原子が六角形からなる網目構造を二次元的に形成する基底面を引きはがし、炭素原子の大きさを厚みとする平面状の物質を取り出すことに初めて成功した。この新たな物質をグラフェンと呼んだ。この研究成果に対して、2010年のノーベル物理学書が授与されている。 In 2004, a physicist at the University of Manchester in the United Kingdom used cellophane tape to tear off a single crystallite from graphite, the basal plane, which two-dimensionally forms a network of hexagonal carbon atoms. For the first time, we succeeded in extracting a planar substance having the size of a carbon atom as the thickness. This new substance was called graphene. The 2010 Nobel Prize in Physics has been awarded for this research result.

グラフェンは、厚みが炭素原子の大きさに相当する極めて薄い物質で、かつ、質量をほとんど持たない全く新しい炭素材料である。このため、従来の物質とは大きくかけ離れた物性を持ち、幅広い用途に応用できる材料として注目されている。
例えば、厚みが0.332nmで、最も薄い材料である。また、単位質量当たりの表面積が3000m/gで、最も広い表面積を持つ。さらに、ヤング率が1020GPaで、最も伸長でき、折り曲げができる。また、せん断弾性率が440GPaで、最も強靭な物質である。さらに、熱伝導率は19.5W/Cmで、金属の中で最も熱伝導率が高い銀の熱伝導率の4.5倍に相当する。また、電流密度は銅の1000倍を超える。さらに、銅の比抵抗の23倍に過ぎない電気導電性を持つ。また、電子移動度が15000cm/ボルト・秒であり、シリコーンの移動度の1400cm/ボルト・秒より一桁高い値を持つ。さらに、融点が3000℃を超える単結晶材料で、耐熱性が極めて高い。
Graphene is an extremely thin substance whose thickness corresponds to the size of a carbon atom, and is a completely new carbon material having almost no mass. For this reason, it has physical characteristics far from those of conventional substances, and is attracting attention as a material that can be applied to a wide range of applications.
For example, it is the thinnest material with a thickness of 0.332 nm. The surface area per unit mass is 3000 m 2 / g, which is the largest surface area. Furthermore, with Young's modulus of 1020 GPa, it is most stretchable and bendable. In addition, it has a shear modulus of 440 GPa and is the toughest substance. Further, the thermal conductivity is 19.5 W / Cm, which corresponds to 4.5 times the thermal conductivity of silver, which has the highest thermal conductivity among metals. Moreover, the current density exceeds 1000 times that of copper. Furthermore, it has electrical conductivity that is only 23 times the specific resistance of copper. Further, the electron mobility is 15000 cm 2 / volt / sec, which is an order of magnitude higher than the mobility of silicone of 1400 cm 2 / volt / sec. Further, it is a single crystal material having a melting point of more than 3000 ° C. and has extremely high heat resistance.

いっぽう、グラフェンは様々な方法で製造される。例えば、前記したマンチェンスター大学の教授は、人の手でグラファイトからグラフェンを物理的に引きはがした。この方法は、大量のグラフェンを短時間に引き剥がすことは困難で、また、剥がされたものが黒鉛結晶の単一層、つまり、グラフェンになるとは限らない。
また、特許文献1に、炭化ケイ素の単結晶を熱分解することでグラフェンを製造する方法が記載されている。つまり、炭化ケイ素を不活性雰囲気で加熱し、表面を熱分解させる。この際、昇華温度が相対的に低いケイ素が優先的に昇華され、残存した炭素によってグラフェンが生成される。しかし、炭化ケイ素の単結晶が非常に高価な材料である。さらに、1600℃を超える高温で、かつ、真空度が高い雰囲気でケイ素を昇華させるが、ケイ素が僅かでも残存した場合は、熱分解後の残渣物としてグラフェンが生成されない。このため、炭化ケイの単結晶の生成と、単結晶の熱分解処理に係わる費用は非常に高価になる。また、大量のグラフェンを製造するには、さらに高価な費用が掛かる。
さらに、特許文献2に、シート状の単結晶のグラファイト化金属触媒に、炭素系物質を接触させ、還元性雰囲気で熱処理することで、グラフェンを製造する方法が記載されている。しかしながら、この製造方法も、安価な製造方法とは言えず、かつ、量産性に優れた製造方法ではない。第一に、単結晶のグラファイト化金属触媒を製造する製造コストは、炭化ケイ素の単結晶よりさらに高い。第二に、単結晶のグラファイト化金属触媒を炭素系物質に接触させる方法は量産性に劣る。第三に、水素ガスを含む窒素ガスがリッチな雰囲気で、1000℃を超える高温度で、グラファイト化金属触媒を還元処理する方法は、熱処理費用が高価になる。大量のグラフェンを製造するには、さらに高価な費用が掛かる。
Graphene, on the other hand, is produced in a variety of ways. For example, the aforementioned professor at Manchenster University physically peeled graphene from graphite by hand. In this method, it is difficult to peel off a large amount of graphene in a short time, and the peeled material is not always a single layer of graphite crystals, that is, graphene.
Further, Patent Document 1 describes a method for producing graphene by thermally decomposing a single crystal of silicon carbide. That is, the silicon carbide is heated in an inert atmosphere to thermally decompose the surface. At this time, silicon having a relatively low sublimation temperature is preferentially sublimated, and graphene is produced by the remaining carbon. However, a single crystal of silicon carbide is a very expensive material. Further, silicon is sublimated at a high temperature exceeding 1600 ° C. and in an atmosphere having a high degree of vacuum, but if even a small amount of silicon remains, graphene is not produced as a residue after thermal decomposition. Therefore, the cost of producing a single crystal of silicon carbide and the thermal decomposition treatment of the single crystal becomes very expensive. In addition, producing a large amount of graphene is more expensive.
Further, Patent Document 2 describes a method for producing graphene by bringing a carbon-based substance into contact with a sheet-shaped single crystal graphitized metal catalyst and heat-treating it in a reducing atmosphere. However, this manufacturing method is not an inexpensive manufacturing method, and is not a manufacturing method having excellent mass productivity. First, the production cost of producing a single crystal graphitized metal catalyst is even higher than that of a single crystal of silicon carbide. Second, the method of contacting a single crystal graphitized metal catalyst with a carbon-based substance is inferior in mass productivity. Third, the method of reducing the graphitized metal catalyst in an atmosphere rich in nitrogen gas containing hydrogen gas at a high temperature exceeding 1000 ° C. increases the heat treatment cost. Producing large quantities of graphene is even more expensive.

現在までのグラフェンの製造方法はいずれも、第一に、安価な製造方法で大量のグラフェンを同時に製造する方法ではない。第二に、製造したグラフェンが必ずしもグラフェンでない。つまり、グラフェンは、炭素原子が六角形からなる網目構造を二次元的に形成する炭素原子の集まりからなる単結晶材料であり、不純物が全くない雰囲気で、炭素原子の結晶成長ができなければ、グラフェンが生成されない。さらに、生成したグラフェンの厚みが極薄く、極軽量であるため、グラフェンであることを確認する方法が困難を極める。
このため、本発明者は、製造したグラフェンが全て完全なグラフェンで、かつ、極めて簡単な方法で大量のグラフェンを瞬時に製造する方法を見出した(特許文献3)。すなわち、黒鉛の単結晶のみで構成され、黒鉛の結晶化が100%進み、さらに、最も安価な炭素材料である、天然の黒鉛結晶の塊を破砕し、該破砕した黒鉛結晶から黒鉛粒子の集まりのみを精製して選別した、鱗片状黒鉛粒子ないしは塊状黒鉛粒子の集まりを、2枚の平行平板電極の間隙に引き詰め、該2枚の平行平板電極に電界を印加し、該電界の印加によって、黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合の全てを同時に破壊し、基底面、すなわち、グラフェンを大量に製造する方法である。この方法に依れば、鱗片状黒鉛粒子ないしは塊状黒鉛粒子の僅か1gから、1.62×1013個に及ぶグラフェンの集まりが得られる。
None of the graphene production methods to date have been, first of all, a method of simultaneously producing a large amount of graphene by an inexpensive production method. Second, the graphene produced is not necessarily graphene. In other words, graphene is a single crystal material consisting of a collection of carbon atoms that two-dimensionally forms a network structure consisting of hexagons of carbon atoms. Graphene is not produced. Furthermore, since the graphene produced is extremely thin and extremely lightweight, it is extremely difficult to confirm that it is graphene.
Therefore, the present inventor has found a method in which all the graphene produced is complete graphene and a large amount of graphene is instantly produced by an extremely simple method (Patent Document 3). That is, it is composed of only a single crystal of graphite, the crystallization of graphite progresses 100%, and a mass of natural graphite crystal, which is the cheapest carbon material, is crushed, and a collection of graphite particles is collected from the crushed graphite crystal. A collection of scaly graphite particles or lump graphite particles obtained by purifying and selecting only the graphite particles is narrowed into the gap between the two parallel plate electrodes, an electric field is applied to the two parallel plate electrodes, and the electric field is applied. This is a method of simultaneously destroying all the interlayer bonds of the basal plane made of graphite crystals forming graphite particles to produce a large amount of the basal plane, that is, graphene. According to this method, a collection of 1.62 × 10 13 graphenes can be obtained from only 1 g of scaly graphite particles or massive graphite particles.

特開2015−110485号公報JP-A-2015-110485 特開2009−143799号公報JP-A-2009-143799 特許第6166860号Patent No. 6166860

3段落で説明したように、グラフェンが従来の素材とは全くかけ離れた驚異的な物性を持つため、グラフェンを用いた様々な部品やデバイの研究開発が行われている。いっぽう、安価な製造方法でグラフェンを製造し、さらに、グラフェン同士を自在に重ね合わせ、該重なり合ったグラフェン同士を直接接合し、グラフェンの集まりからなるグラフェン接合体が製造できれば、面積と厚みと形状との制約がないグラフェン接合体が製造できる。このグラフェン接合体は、グラフェン同士を直接接合したため、グラフェンの性質に近い性質を持つ。さらに、グラフェン接合体を基材や部品に直接接合できれば、基材や部品にグラフェンに近い性質が付与できるとともに、グラフェン接合体の面積と厚みと形状との制約がないため、グラフェン接合体を接合する基材ないしは部品の制約がない。
いっぽう、特許文献3による製造方法で大量のグラフェンを瞬時に製造できるが、このグラフェンの集まりから、グラフェン同士を直接接合したグラフェン接合体を製造する方法は見出されていない。また、特許文献3における電界の印加によって、黒鉛粒子における黒鉛結晶からなる基底面を同時に破壊して製造したグラフェンは、製造時と製造後において、容易に飛散する。さらに、グラフェンは、厚みが極めて薄く、厚みに対する基底面の大きさの比率であるアスペクト比が極めて大きい扁平面である。このため、特許文献3によってグラフェンの集まりを製造する際に、グラフェンン同士が重なり合う。さらに、重なり合ったグラフェンの枚数は一定でない。また、グラフェンン同士で重なり合ったか否かを識別することは容易でなく、電子顕微鏡の観察に依る。さらに、重なり合ったグラフェン同士の接合力が微弱であるため、重なり合った部位で容易に分離する。このため、グラフェン同士を強固に接合しなければ、グラフェン接合体にならない。
As explained in paragraph 3, graphene has amazing physical properties that are completely different from conventional materials, so research and development of various parts and devices using graphene are being carried out. On the other hand, if graphene can be manufactured by an inexpensive manufacturing method, graphenes can be freely overlapped with each other, and the overlapping graphenes can be directly bonded to each other to produce a graphene conjugate consisting of a collection of graphenes, the area, thickness, and shape can be obtained. Graphene conjugates can be manufactured without any restrictions. Since this graphene conjugate directly bonds graphene to each other, it has properties close to those of graphene. Furthermore, if the graphene junction can be directly bonded to the base material or component, the base material or component can be imparted with properties similar to graphene, and since there are no restrictions on the area, thickness and shape of the graphene junction, the graphene junction is bonded. There are no restrictions on the base material or parts to be used.
On the other hand, a large amount of graphene can be instantly produced by the production method according to Patent Document 3, but a method for producing a graphene conjugate in which graphenes are directly bonded to each other has not been found from this group of graphenes. Further, graphene produced by simultaneously destroying the basal plane made of graphite crystals in graphite particles by applying an electric field in Patent Document 3 is easily scattered during and after production. Further, graphene is a flat surface having an extremely thin thickness and an extremely large aspect ratio, which is the ratio of the size of the basal plane to the thickness. Therefore, when producing a group of graphene according to Patent Document 3, graphenes overlap each other. Moreover, the number of overlapping graphenes is not constant. In addition, it is not easy to distinguish whether graphenes overlap each other, and it depends on the observation with an electron microscope. Furthermore, since the bonding force between the overlapping graphenes is weak, they can be easily separated at the overlapping parts. Therefore, unless the graphenes are firmly bonded to each other, the graphene bonded body cannot be formed.

グラフェン同士を直接接合させたグラフェンの集まりからなるグラフェン接合体を、基材ないしは部品の表面に直接接合するには、グラフェン同士が重なり合ったグラフェンの集まりを、基材ないしは部品の表面に配置しなければならない。しかし、グラフェンは、極めて僅かな質量で、厚みが極めて薄く、アスペクト比が極めて大きい扁平粉である。このため、粘度の高い液体を介してグラフェン同士を自在に重ね合わせれば、粘度に応じた吸着力で液体がグラフェンに吸着するため、グラフェン同士が重なり合ったグラフェンの集まりを容器から取り出すことができる。さらに、グラフェン同士が粘度の高い液体を介して重なり合った状態を壊わすことなく、基材ないしは部品の表面に、グラフェンの集まりを配置させることができる。この考えに基づき、本発明に至った。
しかしながら、グラフェン同士を直接接合したグラフェン接合体を、基材ないしは部品の表面に直接接合させるに当たり、解決すべき課題として次の5つの課題がある。
第一の課題は、粘度と密度との双方が低い液体中で、黒鉛粒子における黒鉛結晶からなる基底面の層間結合の全てを同時に破壊し、基底面の集まり、すなわち、グラフェンの集まりを製造する方法を見出すことである。これによって、グラフェンの製造時と製造後に、グラフェンは飛散しない。つまり、液体の粘度が低いほど、グラフェンに液体が吸着しにくく、また、密度が低いほど、液体中でグラフェンが移動しやすい。このため、グラフェンの集まりは、粘度と密度との双方が低い液体中に分散する。しかし、黒鉛粒子における黒鉛結晶からなる基底面の全ての層間結合を同時に破壊する際に、一部のグラフェンが、グラフェンン同士で重なり合う。
第二の課題は、前記の液体中で、グラフェンの集まりを、1枚1枚のグラフェンに分離させる方法を見出すことである。つまり、1枚1枚のグラフェンに分離させることは、液体を介してグラフェン同士を重ね合わせる前処理になる。
第三の課題は、粘度を高めた液体中で、グラフェンン同士を自在に重ね合わせたグラフェンの集まりを、基材ないしは部品の表面に形成するグラフェン接合体の形状として形成する方法を見出すことである。
第四の課題は、前記したグラフェンの集まりを、基材ないしは部品の表面に配置させ、さらに、グラフェン同士を直接接合するとともに、基材ないしは部品の表面と接触するグラフェンを、基材ないしは部品の表面に直接接合させ、グラフェンン同士が接合したグラフェン接合体を、基材ないしは部品に接合する方法を見出すことである。
なお、グラフェンは、破断強度が42N/mであり、鋼の100倍を超える強度を持つ強靭な素材である。従って、この特徴を活かすことによって、グラフェンン同士が接合したグラフェン接合体を、基材ないしは部品に接合できる。
第五の課題は、上記した4つの課題を解決する手段が、何れも極めて簡単な処理からなり、また、汎用的な安価な材料を用いる。これによって、安価な黒鉛粒子の集まりを用いて、安価な方法でグラフェンの集まりを製造し、安価な方法で面積と厚みと形状との制約がないグラフェン接合体を、様々な形状を持つ基材ないしは部品の表面に接合できる。この結果、グラフェンの性質に近いグラフェン接合体の性質が、様々な形状を持つ基材ないしは部品に付与でき、グラフェンを用いた新たな製品が実現される。
In order to directly bond a graphene junction consisting of a group of graphenes directly bonded to each other to the surface of a base material or a part, a group of graphenes in which graphenes overlap must be placed on the surface of the base material or the part. Must be. However, graphene is a flat powder having an extremely small mass, an extremely thin thickness, and an extremely large aspect ratio. Therefore, if graphenes are freely overlapped with each other via a highly viscous liquid, the liquid is adsorbed on the graphenes with an adsorption force according to the viscosity, so that a collection of graphenes in which the graphenes overlap can be taken out from the container. Further, the graphene cluster can be arranged on the surface of the base material or the component without breaking the state in which the graphenes are overlapped with each other through the highly viscous liquid. Based on this idea, the present invention was reached.
However, there are the following five problems to be solved when the graphene bonded body in which graphenes are directly bonded to each other is directly bonded to the surface of the base material or the component.
The first challenge is to simultaneously destroy all of the interlayer bonds of the basal plane consisting of graphite crystals in the graphite particles in a liquid with low viscosity and low density to produce a basal plane aggregate, that is, a graphene aggregate. Find a way. This ensures that graphene does not scatter during and after graphene production. That is, the lower the viscosity of the liquid, the more difficult it is for the liquid to be adsorbed on graphene, and the lower the density, the easier it is for graphene to move in the liquid. Therefore, the graphene aggregate is dispersed in a liquid having low viscosity and low density. However, when all the interlayer bonds of the basal plane made of graphite crystals in the graphite particles are broken at the same time, some graphenes overlap with each other.
The second task is to find a way to separate the graphene aggregates into individual graphenes in the above liquid. In other words, separating each graphene into individual graphenes is a pretreatment for superimposing graphenes on top of each other via a liquid.
The third problem is to find a method of forming a group of graphene in which graphenes are freely overlapped with each other in a liquid having an increased viscosity as the shape of a graphene conjugate formed on the surface of a base material or a part. be.
The fourth task is to dispose the above-mentioned group of graphene on the surface of the base material or part, and to directly join the graphene to each other and to obtain the graphene that comes into contact with the surface of the base material or part of the base material or part. It is to find a method of joining a graphene bonded body, which is directly bonded to the surface and the graphenes are bonded to each other, to a base material or a component.
Graphene is a tough material having a breaking strength of 42 N / m, which is more than 100 times stronger than steel. Therefore, by utilizing this feature, a graphene bonded body in which graphenes are bonded to each other can be bonded to a base material or a component.
The fifth problem is that the means for solving the above four problems all consist of extremely simple processing, and general-purpose inexpensive materials are used. As a result, a graphene aggregate can be produced by an inexpensive method using an inexpensive graphite particle aggregate, and a graphene conjugate having no restrictions on the area, thickness, and shape can be produced by an inexpensive method as a base material having various shapes. Or it can be joined to the surface of a part. As a result, the properties of the graphene conjugate, which is close to the properties of graphene, can be imparted to the base material or component having various shapes, and a new product using graphene is realized.

グラフェン同士を直接接合したグラフェン接合体を、基材ないしは部品の表面に直接接合する方法は、
2枚の平行平板電極からなる電極対を構成する一方の平行平板電極の表面に、鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりを平坦に引き詰め、該一方の平行平板電極を、容器に充填したメタノール中に浸漬させ、他方の平行平板電極を、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりを介して、前記一方の平行平板電極の上に重ね合わせ、2枚の平行平板電極からなる電極対を前記メタノール中に浸漬させる、この後、該電極対の間隙に直流の電位差を印加する、これによって、該電位差の大きさを前記電極対の間隙の大きさで割った値に相当する電界が、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりに印加され、該電界の印加によって、前記鱗片状黒鉛粒子ないしは前記塊状黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合の全てが同時に破壊され、前記電極対の間隙に前記基底面からなるグラフェンの集まりが形成される、この後、前記電極対の間隙を拡大し、該電極対を前記メタノール中で傾斜させ、さらに、前記容器に左右、前後、上下の3方向の振動を繰り返し加え、前記グラフェンの集まりを、前記電極対の間隙から前記メタノール中に移動させる、この後、前記容器から前記2枚の平行平板電極を取り出す、さらに、該容器内の前記メタノール中でホモジナイザー装置を稼働させ、該メタノールを介して前記グラフェンの集まりに衝撃を繰り返し加え、該グラフェンの集まりを、前記メタノール中で1枚1枚のグラフェンに分離させる、この後、前記容器から前記ホモジナイザー装置を取り出す、さらに、メタノールに溶解する第一の性質と、メタノールの粘度の30倍を超える粘度を有する第二の性質とを兼備する有機化合物を、前記容器内のメタノールの粘度が該粘度の20倍を超える粘度になる量として前記容器内に混合し、前記1枚1枚のグラフェンに分離された該グラフェンの集まりを、前記有機化合物が前記メタノールに溶解した溶解液中に分散させる、この後、前記容器に左右、前後、上下の3方向の振動を繰り返し加え、最後に上下方向の振動を加え、前記溶解液を介してグラフェン同士を重ね合わせ、該重なり合ったグラフェンの集まりを、前記容器の底面に該底面の形状として形成する第一の工程と、
グラフェン同士を接合したグラフェン接合体の形状を、底面の形状として有する新たな容器に、前記溶解液を介してグラフェン同士が重なり合ったグラフェンの集まりの一部を充填し、該容器に左右、前後、上下の3方向の振動を繰り返し加え、最後に上下方向の振動を加え、前記溶解液を介してグラフェン同士が重なり合ったグラフェンの集まりを、前記新たな容器の底面に該底面の形状として形成する第二の工程と、
前記新たな容器から、前記溶解液を介してグラフェン同士が重なり合ったグラフェンの集まりを取り出し、該グラフェンの集まりを、基材ないしは部品の表面に接合する位置に配置させ、さらに、該グラフェンの集まりの形状を持つ圧縮部材を、前記グラフェンの集まりの表面に重ね合わせる、この後、前記基材ないしは前記部品を、前記有機化合物の沸点に昇温するとともに、前記圧縮部材によって、前記グラフェンの集まりを圧縮する、これによって、前記グラフェンの集まりから前記メタノールと前記有機化合物とが順番に気化し、また、該グラフェンの集まりにおける重なり合ったグラフェンの接触面同士が接合するとともに、前記基材ないしは前記部品の表面と接触する前記グラフェンが、該基材ないしは該部品の表面に接合し、前記グラフェン同士が接合したグラフェンの集まりからなるグラフェン接合体が、前記基材ないしは前記部品の表面に接合される第三の工程と、
前記グラフェンの集まりを圧縮した前記圧縮部材について、該圧縮部材の厚みをなす側面に衝撃を加え、該圧縮部材を、前記基材ないしは前記部品の表面に接合され前記グラフェン接合体から引き離す第四の工程とからなり、
これら4つの工程を連続して実施する方法が、グラフェン同士を直接接合したグラフェン接合体を、基材ないしは部品の表面に直接接合する方法である。
The method of directly joining the graphene bonded body, which is directly bonded to each other, to the surface of the base material or parts, is
A collection of scaly graphite particles or a collection of massive graphite particles is flatly packed on the surface of one of the parallel plate electrodes forming an electrode pair consisting of two parallel plate electrodes, and the one parallel plate electrode is placed in a container. Immersed in packed methanol, the other parallel plate electrode is superposed on the one parallel plate electrode via the aggregate of scaly graphite particles or the aggregate of the massive graphite particles, and two parallel plates are superposed. An electrode pair composed of electrodes is immersed in the graphite, and then a DC potential difference is applied to the gap between the electrode pairs, whereby the magnitude of the potential difference is divided by the size of the gap between the electrode pairs. An electric field corresponding to is applied to the aggregate of the scaly graphite particles or the aggregate of the lump graphite particles, and the application of the electric field causes the basal plane made of graphite crystals forming the scaly graphite particles or the lump graphite particles. All of the interlayer bonds are simultaneously broken to form an aggregate of graphene composed of the basal plane in the gap between the electrode pairs, after which the gap between the electrode pairs is expanded and the electrode pair is tilted in the methanol. Further, vibrations in three directions of left-right, front-back, and up-down are repeatedly applied to the container to move the graphene aggregate into the methanol through the gap between the electrode pairs, and then the two parallel sheets are moved from the container in parallel. The flat plate electrode is taken out, and further, the homogenizer device is operated in the methanol in the container, and impact is repeatedly applied to the graphene aggregate via the graphite, and the graphene aggregates are collected one by one in the graphite. The homogenizer device is taken out from the container, and the homogenizer device is taken out from the container. The compound is mixed in the container in an amount such that the viscosity of methanol in the container becomes more than 20 times the viscosity, and the aggregate of the graphite separated into each graphite is the organic compound. Is dispersed in the solution dissolved in the methanol. After that, vibrations in three directions of left and right, front and back, and up and down are repeatedly applied to the container, and finally, vibrations in the up and down directions are applied to the graphenes via the solution. In the first step of superimposing the graphite and forming a collection of the overlapping graphene on the bottom surface of the container as the shape of the bottom surface.
A new container having the shape of a graphene junction in which graphenes are joined as the shape of the bottom surface is filled with a part of a collection of graphenes in which graphenes overlap each other via the solution, and the container is filled with left and right, front and back, and so on. The graphenes are repeatedly vibrated in three directions, up and down, and finally vibrated in the up and down direction to form a collection of graphene in which graphenes are overlapped with each other via the solution, as the shape of the bottom surface of the new container. The second step and
From the new container, a group of graphene in which graphenes are overlapped with each other is taken out through the solution, and the group of graphene is placed at a position where it is joined to the surface of a base material or a component, and further, the group of graphene is placed. A compression member having a shape is superposed on the surface of the graphene aggregate, after which the base material or the component is heated to the boiling point of the organic compound and the graphene aggregate is compressed by the compression member. As a result, the methanol and the organic compound are vaporized in order from the graphene aggregate, and the contact surfaces of the overlapping graphenes in the graphene aggregate are bonded to each other, and the surface of the base material or the component is formed. The graphene in contact with the base material or the surface of the component is bonded to the surface of the base material or the component, and the graphene junction composed of a collection of graphene bonded to the graphene is bonded to the surface of the base material or the component. Process and
A fourth method in which an impact is applied to a side surface forming the thickness of the compressed member with respect to the compressed member obtained by compressing a collection of graphene, and the compressed member is bonded to the surface of the base material or the component and separated from the graphene joint. Consists of processes
A method of continuously carrying out these four steps is a method of directly joining a graphene bonded body in which graphenes are directly bonded to the surface of a base material or a component.

本発明は、先に出願した特願2019−107537に対して、以下の3つの点が異なり、3つの異なる点は以下の作用効果をもたらす。
第一の点は、メタノールの粘度の20倍を超える粘度からなる液体を介して、グラフェン同士を重ね合わせる。つまり、粘度の高い液体を介してグラフェン同士を重ね合わせると、グラフェンに吸着する液体の粘着力は液体の粘度に応じて増大する。1m×1mに及ぶ広さからなる面積と、積層したグラフェンの数が100枚に及ぶ厚みからなる様々なグラフェン接合体について、液体の粘度を増大して実験を繰り返した結果、液体の粘度を、メタノールの粘度の20倍を超える粘度まで増大させると、グラフェン同士が重なり合ったグラフェンの集まりの一部を容器から取り出し、グラフェン同士が重なり合った状態を壊わすことなく、新たな容器にグラフェンの集まりを移すことができることが分かった。これによって、新たな容器に移したグラフェンの集まりを、基材ないしは部品の表面に配置させ、該グラフェンの集まりを、基材ないしは部品の表面に接合させるグラフェン接合体に加工することが可能になる。いっぽう、新たな容器の形状に制約がないため、グラフェン接合体を接合させる基材ないしは部品の形状の制約がなくなる。
これに対し先願では、メタノールを介して、グラフェン同士を重ね合わせる。このため、先願では、粘度が低いメタノールがグラフェンに吸着する吸着力が小さいため、グラフェン同士が重なり合ったグラフェンの集まりを、グラフェン同士を重ね合わせた状態で、グラフェンの集まりを容器から取り出すことができない。従って、先願においては、グラフェンの集まりを製造した容器内で、グラフェン同士を摩擦熱で接合したグラフェン接合体を製造した。このため、グラフェンの集まりを製造した容器は、2枚の平行平板電極対が存在するため、該容器内で製造できるグラフェン接合体の形状に制約がある。
第二の点は、グラフェン接合体の形状を底面の形状として有する新たな容器の底面に、メタノールの粘度の20倍を超える粘度まで粘度を高めた液体を介して、グラフェン同士を重ね合わせる。つまり、グラフェンの集まりを移した新たな容器に、3方向の振動を繰り返し加えると、液体を介して重なり合ったグラフェンの集まりにおいて、グラフェンが質量を殆ど持たないため、液体が容器内で優先して移動する。いっぽう、グラフェンの形状が個々のグラフェンで異なるため、液体が移動すると、容器の全体にグラフェンの集まりが液体を伴って広がるとともに、グラフェンの集まりが再配列する。つまり、液体の粘度が高いため、グラフェンの表面から液体は解離しない。このため、液体が移動すると、液体を伴ったグラフェンが容器内を移動し、容器の全体にグラフェンの集まりが広がる。最後に、上下方向の振動を加えると、液体を介してグラフェン同士が重なり合ったグラフェンの集まりが、容器の底面に底面の形状として形成される。このため、グラフェンの集まりを製造した容器から、新たな容器にグラフェンの集まりを移し、該新たな容器の底面に、液体を介してグラフェン同士が重なり合ったグラフェンの集まりが形成できる。いっぽう、新たな容器の底面の形状に制約がないため、基材ないしは部品に接合させるグラフェン接合体の形状に制約がなくなり、グラフェン接合体を接合する基材ないしは部品の制約がなくなる。なお、容器に加える振動加速度は、グラフェン同士が液体を介して重なり合ったグラフェンの集まりの質量に応じて、0.2−0.4Gの振動加速度を加える。
ところで、黒鉛結晶からなる基底面同士が積層された黒鉛粒子は、固有の外形形状を持つため、基底面の形状は個々の基底面で異なる。さらに、黒鉛粒子の集まりにおける黒鉛粒子の形状は、個々の黒鉛粒子で異なる。このため、黒鉛結晶からなる基底面の全ての層間結合を同時に破壊して製造したグラフェンの集まりにおいて、個々のグラフェンの形状が異なる。このため、液体を介して重なり合ったグラフェンの集まりに、3方向の振動を加えると、前記したように、液体が移動することで、液体を伴ったグラフェンの集まりが容器の底面の全体に広がるとともに、グラフェンの集まりが再配列する。最後に、上下方向の振動を加えると、液体を介してグラフェン同士が重なり合ったグラフェンの集まりが、容器の底面に底面の形状として形成される。
これに対し先願では、グラフェンの集まりを製造した容器内で、グラフェン接合体を製造する。このため、先願では、2枚の平行平板電極対が存在した容器内で、グラフェン接合体を製造するため、製造できるグラフェン接合体の形状に制約がある。
第三の点は、基材ないしは部品の表面に接合したグラフェン接合体は、グラフェンのみからなるため、グラフェンの性質に近い。つまり、粘度を高めた液体を介してグラフェン同士を重ね合わせたグラフェンの集まりを、基材ないしは部品の表面のグラフェン接合体を接合する位置に直接配置させ、基材ないしは部品を有機化合物の沸点に昇温するとともに、グラフェンの集まりの表面を均等に圧縮する。これによって、基材ないしは部品の表面に、直接グラフェン接合体を接する。このグラフェン接合体は、グラフェンのみからなるため、グラフェンの性質に近い。
これに対し先願では、グラフェン接合体を製造した後に、グラフェン接合体を金属微粒子ないしは金属酸化物の微粒子で覆い、グラフェン接合体を基材ないしは部品に圧着させる手段として、金属微粒子ないしは金属酸化物の微粒子を用いる。このため、先願では、金属微粒子ないしは金属酸化物の微粒子の集まりを介して、グラフェン接合体を基材ないしは部品に圧着させるため、圧着させたグラフェン接合体の性質は、金属微粒子ないしは金属酸化物の微粒子の集まりの存在によって、本発明のグラフェン接合体に比べると、グラフェンの性質から解離する。
The present invention differs from Japanese Patent Application No. 2019-107537 filed earlier in the following three points, and the three differences bring about the following effects.
The first point is to superimpose graphene on top of each other through a liquid having a viscosity that is more than 20 times the viscosity of methanol. That is, when graphenes are superposed on each other via a highly viscous liquid, the adhesive force of the liquid adsorbed on the graphene increases according to the viscosity of the liquid. As a result of repeating the experiment by increasing the viscosity of the liquid for various graphene conjugates having an area of 1 m × 1 m and a thickness of 100 laminated graphenes, the viscosity of the liquid was determined. When the viscosity is increased to more than 20 times the viscosity of methanol, a part of the graphene cluster with the graphene overlapped is taken out from the container, and the graphene cluster is put in a new container without breaking the graphene overlapping state. It turned out that it could be transferred. This makes it possible to place a group of graphene transferred to a new container on the surface of the base material or part, and process the group of graphene into a graphene joint to be bonded to the surface of the base material or part. .. On the other hand, since there are no restrictions on the shape of the new container, there are no restrictions on the shape of the base material or parts to which the graphene joint is bonded.
On the other hand, in the prior application, graphenes are superposed on each other via methanol. For this reason, in the prior application, since the adsorptive force of low-viscosity methanol adsorbing to graphene is small, it is possible to take out a group of graphene from which graphenes are overlapped with each other in a state where the graphenes are overlapped with each other. Can not. Therefore, in the prior application, a graphene conjugate was produced in which graphenes were bonded to each other by frictional heat in a container in which a collection of graphene was produced. Therefore, since the container in which the graphene aggregate is manufactured has two pairs of parallel plate electrodes, the shape of the graphene junction that can be manufactured in the container is limited.
The second point is that graphenes are superposed on the bottom surface of a new container having the shape of the graphene conjugate as the shape of the bottom surface via a liquid whose viscosity has been increased to more than 20 times the viscosity of methanol. In other words, when vibrations in three directions are repeatedly applied to a new container to which the graphene collection has been transferred, the graphene has almost no mass in the graphene collection that overlaps through the liquid, so the liquid has priority in the container. Moving. On the other hand, since the shape of graphene is different for each graphene, when the liquid moves, the graphene collection spreads with the liquid throughout the container, and the graphene collection rearranges. That is, due to the high viscosity of the liquid, the liquid does not dissociate from the surface of graphene. Therefore, when the liquid moves, the graphene accompanied by the liquid moves in the container, and the graphene collection spreads throughout the container. Finally, when vertical vibration is applied, a collection of graphene in which graphenes are overlapped with each other via a liquid is formed on the bottom surface of the container as a shape of the bottom surface. Therefore, the graphene collection can be transferred from the container in which the graphene collection is manufactured to a new container, and a graphene collection in which graphenes are overlapped with each other via a liquid can be formed on the bottom surface of the new container. On the other hand, since there are no restrictions on the shape of the bottom surface of the new container, there are no restrictions on the shape of the graphene joint to be joined to the base material or parts, and there are no restrictions on the base material or parts to be joined to the graphene joint. The vibration acceleration applied to the container is 0.2-0.4 G depending on the mass of the graphene aggregate in which the graphenes are overlapped with each other through the liquid.
By the way, since the graphite particles in which the basal planes made of graphite crystals are laminated have a unique outer shape, the shape of the basal plane is different for each basal plane. Furthermore, the shape of the graphite particles in the collection of graphite particles is different for each graphite particle. Therefore, the shapes of individual graphenes are different in the group of graphene produced by simultaneously breaking all the interlayer bonds of the basal plane made of graphite crystals. Therefore, when vibrations in three directions are applied to the graphene collections that overlap each other through the liquid, as described above, the liquids move, and the graphene collections with the liquid spread over the entire bottom surface of the container. , A collection of graphene rearranges. Finally, when vertical vibration is applied, a collection of graphene in which graphenes are overlapped with each other via a liquid is formed on the bottom surface of the container as a shape of the bottom surface.
On the other hand, in the prior application, the graphene conjugate is manufactured in the container in which the graphene aggregate is manufactured. Therefore, in the prior application, since the graphene joint is manufactured in the container in which the two parallel plate electrode pairs exist, the shape of the graphene joint that can be manufactured is limited.
The third point is that the graphene conjugate bonded to the surface of the base material or the component is composed only of graphene, and is therefore close to the properties of graphene. That is, a group of graphene in which graphenes are superposed on each other via a liquid having an increased viscosity is directly placed at a position where the graphene conjugate on the surface of the base material or the component is joined, and the base material or the component is brought to the boiling point of the organic compound. As the temperature rises, the surface of the graphene cluster is evenly compressed. As a result, the graphene joint is in direct contact with the surface of the base material or the component. Since this graphene conjugate consists only of graphene, it is close to the properties of graphene.
On the other hand, in the prior application, after manufacturing the graphene joint, the metal fine particles or metal oxide are used as a means for covering the graphene joint with fine metal particles or fine particles of metal oxide and crimping the graphene joint to the base material or parts. Use fine particles of. Therefore, in the prior application, the graphene junction is crimped to the base material or the component through the collection of the fine metal particles or the fine particles of the metal oxide. Therefore, the properties of the crimped graphene conjugate are the metal fine particles or the metal oxide. Due to the presence of a collection of fine particles of graphene, it dissociates from the properties of graphene as compared to the graphene conjugate of the present invention.

本発明は次の7つの処理からなる。
第一の処理は、メタノール中で黒鉛粒子の集まりからグラフェンの集まりを製造する。すなわち、2枚の平行平板電極対の間隙に引き詰められた鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりを、絶縁体であるメタノール中に浸漬させ、2枚の平行平板電極対に直流の電位差を印加させる。これによって、電位差を2枚の平行平板電極対の間隙の大きさで割った値に相当する電界が、鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりが存在する電極間隙に発生する。この電界は、前記した黒鉛粒子の全てに対し、黒鉛結晶からなる基底面の層間結合を破壊させるのに十分なクーロン力を、基底面の層間結合の担い手である全てのπ電子に同時に与える。これによって、π電子はπ軌道上の拘束から解放され、全てのπ電子がπ軌道から離れて自由電子となる。つまり、π電子に作用するクーロン力が、π軌道の相互作用より大きな力としてπ電子に与えられると、π電子はπ軌道の拘束から解放されて自由電子になる。この結果、基底面の層間結合の担い手である全てのπ電子が、π軌道上に存在しなくなり、黒鉛粒子の全てについて、黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合の全てが同時に破壊される。この結果、2枚の平行平板電極対の間隙に、黒鉛結晶からなる基底面の集まり、すなわち、グラフェンの集まりが瞬時に製造される。なお、2枚の平行平板電極対がメタノール中に浸漬しているため、2枚の平行平板電極対の間隙に析出したグラフェンの集まりは飛散しない。これによって、8段落に記載した第1の課題が解決された。
なお、メタノールは20℃での粘度が0.59mPa・sであり、粘度が低い有機化合物である。このため、グラフェンに吸着したメタノールの吸着力は小さい。また、メタノールは密度が0.793g/cmであり、密度が低い有機化合物である。このため、メタノール中に析出したグラフェンは、容易にメタノール中を移動する。さらに、メタノールは体積抵抗率が3MΩ・cm以上で、誘電率が33の絶縁体であるため、メタノール中に浸漬した2枚の平行平板電極間に、電位差を印加させると、2枚の平行平板電極の間隙に電界が発生する。
第二の処理は、グラフェンの集まりを、2枚の平行平板電極の間隙からメタノール中に移動させる。このため、2枚の平行平板電極の間隙を、メタノール中で拡大させ、さらに、メタノール中で傾斜させ、この後、メタノールが充填された容器に3方向の振動を加える。これによって、グラフェンの集まりが、2枚の平行平板電極の間隙からメタノール中に移動する。この後、2枚の平行平板電極を容器から取り出す。
第三の処理は、グラフェンの集まりを、メタノール中で1枚1枚のグラフェンンに分離する。つまり、2枚の平行平板電極対の狭い間隙にグラフェンが析出した際に、一部のグラフェンがグラフェン同士で重なり合うため、メタノール中で、1個1個のグラフェンに分離する。このため、ホモジナイザー装置をメタノール中で稼働させ、メタノールを介してグラフェンの集まりに衝撃を繰り返し加える。いっぽう、グラフェン同士の接合は、単純にグラフェン同士が重なり合っているだけで、グラフェン同士の接合力は極めて小さい。また、メタノールに加えられた衝撃の一部が、メタノールの分子振動に消費されるが、メタノールが低粘度で低密度であるため、メタノールの分子振動に消費される割合は少なく、殆どの衝撃エネルギーがグラフェンの集まりに加わる。この衝撃が、グラフェン同士が重なり合った部位に加わり、重なり合ったグラフェンが容易に分離し、分離したグラフェンの間隙にメタノールが入り込む。この結果、グラフェンの集まりに衝撃を繰り返し加えると、メタノール中で1枚1枚のグラフェンに分離され、分離されたグラフェンはメタノールと接触する。これによって、8段落に記載した第2の課題が解決された。なお、1枚1枚のグラフェンに分離できたか否かは、メタノール中から複数の試料を取り出し、電子顕微鏡で試料を観察し、1枚1枚のグラフェンに分離できたか否かを判断する。この結果から、ホモジナイザー装置の稼働条件と稼働時間とを予め求める。
なお、超音波方式のホモジナイザー装置を用いると、グラフェンよりさらに1桁以上小さい極微細で莫大な数からなる気泡の発生と該気泡の消滅とが、超音波の振動周波数の振動周期に応じて、メタノール中で連続的に繰り返され(この現象をキャビテーションという)、莫大な数からなる気泡がはじける際の衝撃波が、メタノールを介してグラフェンの集まりの全体に連続的に繰り返し加わる。グラフェン同士が重なり合った部位に衝撃波が加わると、重なり合ったグラフェンが分離し、分離したグラフェンの間隙にメタノールが入り込み、短時間で1枚1枚のグラフェンに分離される。
第四の処理は、粘度を高めた液体を介してグラフェン同士を重ね合わせたグラフェンの集まりを、グラフェンの集まりを分散させた容器の底面に、底面の形状として形成する。このため、メタノールに溶解する有機化合物を、メタノールの粘度の20倍を超える粘度になる量として、容器内のメタノールに混合する。この後、容器に左右、前後、上下の3方向の振動を繰り返し加え、最後に上下方向の振動を加える。これによって、粘度を高めた液体を介してグラフェン同士が重なり合った該グラフェンの集まりが、容器の底面に底面の形状として形成される。これによって、8段落に記載した第3の課題が解決された。
つまり、粘度を高めた液体中で1枚1枚のグラフェンに分離されたグラフェンの集まりが存在する容器に、3方向の振動を繰り返し加えると、グラフェンが質量を殆ど持たないため、液体が容器内で優先して3方向に移動する。この際、グラフェンの大きさが個々のグラフェンで異なるため、容器の全体にグラフェンの集まりが液体を伴って広がるとともに、液体中でグラフェンの集まりが再配列する。つまり、液体の粘度が高いため、グラフェンの表面から液体は解離しない。このため、液体が容器内を3方向に移動すると、液体を伴ったグラフェンが、容器内に広がって移動する。最後に、上下方向の振動を加えると、液体を介してグラフェン同士が重なり合ったグラフェンの集まりが、容器の底面に底面の形状として形成される。
第五の処理は、基材ないしは部品に接合させるグラフェン接合体の形状からなるグラフェンの集まりを、新たな容器の底面に底面の形状として形成する。つまり、基材ないしは部品の表面に接合させるグラフェン接合体は、様々な形状からなる。従って、第四の処理において、液体を介してグラフェン同士が重なり合ったグラフェンの集まりを、様々な形状に加工できない。このため、第四の処理を終えたグラフェンの集まりの一部を、グラフェン接合体の形状を、底面の形状として有する新たな容器に充填し、容器に左右、前後、上下の3方向の振動を繰り返し加え、最後に上下方向の振動を加える。これによって、第四の処理の結果と同様に、粘度を高めた液体を介してグラフェン同士が重なり合ったグラフェンの集まりが、新たな容器の底面に底面の形状として形成される。
第六の処理は、基材ないしは部品の表面にグラフェン接合体を接合させる。このため、第五の処理を終えたグラフェンの集まりを、基材ないしは部品の表面のグラフェン接合体を接合する位置に配置させ、さらに、グラフェンの集まりの形状を持つ圧縮部材を、グラフェンの集まりに重ね合わせる。この後、基材ないしは部品を前記有機化合物の沸点に昇温するとともに、圧縮部材によってグラフェンの集まりを圧縮する。圧縮部材は、例えば、簡易な圧縮部材として、融点が高く軟化しにくい性質と、抗折強度が高く破壊しにくい性質と、絶縁抵抗が高く電子が束縛されている性質を兼備するセラミックスからなる板を用いる。このセラミック板をグラフェンの集まりの上に載せ、さらに、セラミックス板の上に重りを載せる。あるいは、圧縮部材の表面を圧縮機で均等に圧縮してもよい。この際、グラフェンの集まりから、メタノールと有機化合物とが順番に気化する。また、基材ないしは部品と、グラフェンの集まりに存在する水分や有機物などからなる不純物も気化し、基材ないしは部品の表面と、グラフェンの集まりとの双方が清浄化される。さらに、グラフェンの集まりに圧縮応力が作用し、重なり合ったグラフェンの接触面同士が摩擦と凝着とによって直接接合し、また、基材ないしは部品の表面と接触するグラフェンが、基材ないしは部品の表面と摩擦によって直接接合し、グラフェン同士が接合したグラフェンの集まりからなるグラフェン接合体が、基材ないしは部品の表面に接合される。これによって、8段落に記載した第4の課題が解決された。
なお、グラフェンの集まりを圧縮するセラミックス板は、融点が高く、絶縁性が高いため、グラフェンと接合しない。また、メタノールと有機化合物と不純物が気化する際は、グラフェンの集まりと基材ないしは部品の表面とが、外界に比べて陽圧になるため、グラフェンの集まりと基材ないしは部品の表面とに、不純物になる気体が外界から侵入することはできない。従って、基材ないしは部品の表面と、グラフェンの集まりとの双方が、清浄化された状態を保つ。また、グラフェンは、破断強度が42N/mで、鋼の100倍を超える強度を持つ強靭な素材であり、グラフェン同士を接合する際に、鉄板を破断させるような大きな圧縮荷重を加えても、グラフェンは破壊しない。このため、グラフェンの集まりを圧縮する際に、基材ないしは部品が破壊しなければ、グラフェン接合体を接合させる基材ないしは部品の形状と材質との制約はない。また、気化したメタノールと有機化合物とは回収機で回収し、双方の沸点が異なるため、メタノールと有機化合物とを沸点の違いで分離し、分離したメタノールと有機化合物とは再利用する。
第七の処理は、圧縮部材の上に載せた重りを取り除き、圧縮部材の厚みをなす側面に衝撃を加え、圧縮部材を基材ないしは部品の表面に接合されグラフェン接合体から引き離す。重りを用いない場合は、直接、圧縮部材の側面に衝撃を加える。この結果、グラフェン接合体が表面に接合された基材ないしは部品が得られる。
上記した7つの処理は、いずれも極めて簡単な処理である。また、メタノールと有機化合物とは、汎用的な工業用薬品である。また、黒鉛粒子も安価な工業用素材である。従って、本方法は、安価な黒鉛粒子とメタノールと有機化合物を用い、極めて簡単な7つの処理を連続して実施すると、グラフェン同士が重なり合ったグラフェン接合体が、基材ないしは部品の表面に形成される。これによって、8段落に記載した第5の課題が解決され、全ての課題が解決された。
The present invention comprises the following seven processes.
The first treatment produces graphene aggregates from graphite particle aggregates in methanol. That is, a collection of scaly graphite particles or a collection of massive graphite particles narrowed in the gap between the two parallel plate electrode pairs is immersed in methanol, which is an insulator, and a direct current is applied to the two parallel plate electrode pairs. Apply a potential difference. As a result, an electric field corresponding to the value obtained by dividing the potential difference by the size of the gap between the two parallel plate electrode pairs is generated in the electrode gap in which a collection of scaly graphite particles or a collection of massive graphite particles is present. This electric field simultaneously applies a Coulomb force sufficient for breaking the interlayer bond of the basal plane made of graphite crystals to all the above-mentioned graphite particles to all the π electrons that are responsible for the interlayer bond of the basal plane. As a result, the π electron is released from the constraint on the π orbit, and all the π electrons are separated from the π orbit and become free electrons. That is, when the Coulomb force acting on the π electron is given to the π electron as a force larger than the interaction of the π orbit, the π electron is released from the constraint of the π orbit and becomes a free electron. As a result, all the π electrons that are responsible for the interlayer bonding of the basal plane do not exist in the π orbital, and for all the graphite particles, all the interlayer bonding of the basal plane made of graphite crystals forming the graphite particles is performed at the same time. It will be destroyed. As a result, a collection of basal planes made of graphite crystals, that is, a collection of graphene, is instantly produced in the gap between the pair of two parallel plate electrodes. Since the two parallel plate electrode pairs are immersed in methanol, the graphene deposited in the gap between the two parallel plate electrode pairs does not scatter. This solved the first problem described in paragraph 8.
Methanol has a viscosity of 0.59 mPa · s at 20 ° C. and is an organic compound having a low viscosity. Therefore, the adsorption force of methanol adsorbed on graphene is small. Methanol has a density of 0.793 g / cm 3 , and is an organic compound having a low density. Therefore, graphene precipitated in methanol easily moves in methanol. Further, since methanol is an insulator having a volume resistivity of 3 MΩ · cm or more and a dielectric constant of 33, when a potential difference is applied between two parallel plate electrodes immersed in methanol, two parallel plates are applied. An electric field is generated in the gap between the electrodes.
The second treatment moves a collection of graphene into methanol through the gap between the two parallel plate electrodes. Therefore, the gap between the two parallel plate electrodes is expanded in methanol and further tilted in methanol, after which vibration in three directions is applied to the container filled with methanol. This causes a collection of graphene to move into the methanol through the gap between the two parallel plate electrodes. After that, the two parallel plate electrodes are taken out from the container.
The third treatment separates the graphene aggregates into individual graphenes in methanol. That is, when graphene is deposited in the narrow gap between the pair of two parallel plate electrodes, some graphenes overlap with each other, so that each graphene is separated into individual graphenes in methanol. Therefore, the homogenizer device is operated in methanol, and the impact is repeatedly applied to the graphene aggregate via methanol. On the other hand, the bonding between graphenes is simply that the graphenes overlap each other, and the bonding force between the graphenes is extremely small. In addition, a part of the impact applied to methanol is consumed by the molecular vibration of methanol, but since methanol has low viscosity and low density, the ratio consumed by the molecular vibration of methanol is small, and most of the impact energy. Joins the graphene gathering. This impact is applied to the overlapping portion of graphene, the overlapping graphene is easily separated, and methanol enters the gap between the separated graphenes. As a result, when an impact is repeatedly applied to the graphene aggregate, it is separated into individual graphenes in methanol, and the separated graphenes come into contact with methanol. This solved the second problem described in paragraph 8. Whether or not the samples could be separated into individual graphenes is determined by taking out a plurality of samples from methanol and observing the samples with an electron microscope to determine whether or not the samples could be separated into individual graphenes. From this result, the operating conditions and operating time of the homogenizer device are obtained in advance.
When an ultrasonic homogenizer device is used, the generation of ultrafine and enormous numbers of bubbles, which are one order of magnitude smaller than graphene, and the disappearance of the bubbles are determined according to the vibration cycle of the ultrasonic vibration frequency. It is continuously repeated in methanol (this phenomenon is called cavitation), and a shock wave when a huge number of bubbles burst is continuously and repeatedly added to the entire group of graphenes via methanol. When a shock wave is applied to a portion where graphenes overlap each other, the overlapping graphenes are separated, methanol enters the gaps between the separated graphenes, and the graphenes are separated into individual graphenes in a short time.
In the fourth treatment, a group of graphene in which graphenes are superposed with each other via a liquid having an increased viscosity is formed on the bottom surface of a container in which the graphene collections are dispersed as a shape of the bottom surface. Therefore, the organic compound dissolved in methanol is mixed with the methanol in the container in an amount having a viscosity exceeding 20 times the viscosity of the methanol. After that, vibrations in three directions of left-right, front-back, and up-down are repeatedly applied to the container, and finally vibrations in the up-down direction are applied. As a result, a collection of graphene in which graphenes are overlapped with each other via a liquid having an increased viscosity is formed on the bottom surface of the container as a shape of the bottom surface. This solved the third problem described in paragraph 8.
In other words, when repeated vibrations in three directions are applied to a container in which a collection of graphene separated into individual graphene exists in a liquid with increased viscosity, the graphene has almost no mass, so that the liquid is inside the container. Priority is given to moving in three directions. At this time, since the size of graphene is different for each graphene, the graphene aggregate spreads with the liquid throughout the container, and the graphene aggregate is rearranged in the liquid. That is, due to the high viscosity of the liquid, the liquid does not dissociate from the surface of graphene. Therefore, when the liquid moves in the container in three directions, the graphene accompanied by the liquid spreads and moves in the container. Finally, when vertical vibration is applied, a collection of graphene in which graphenes are overlapped with each other via a liquid is formed on the bottom surface of the container as a shape of the bottom surface.
In the fifth treatment, a group of graphene having the shape of a graphene joint to be bonded to a base material or a component is formed on the bottom surface of a new container as a bottom surface shape. That is, the graphene bonded body to be bonded to the surface of the base material or the component has various shapes. Therefore, in the fourth treatment, a collection of graphene in which graphenes are overlapped with each other via a liquid cannot be processed into various shapes. For this reason, a part of the graphene aggregate that has been subjected to the fourth treatment is filled in a new container having the shape of the graphene joint as the shape of the bottom surface, and the container is vibrated in three directions of left and right, front and back, and up and down. Add repeatedly, and finally add vertical vibration. As a result, similar to the result of the fourth treatment, a collection of graphene in which graphenes are overlapped with each other via the increased viscosity liquid is formed on the bottom surface of the new container as a bottom surface shape.
In the sixth treatment, the graphene joint is bonded to the surface of the base material or the component. For this reason, the group of graphene that has been subjected to the fifth treatment is placed at the position where the graphene joints on the surface of the base material or parts are joined, and the compression member having the shape of the group of graphene is used as the group of graphene. Overlay. After that, the base material or the component is heated to the boiling point of the organic compound, and the graphene aggregate is compressed by the compression member. The compression member is, for example, a plate made of ceramics, which has a high melting point and is hard to soften, has high bending strength and is hard to break, and has high insulation resistance and electrons are bound, as a simple compression member. Is used. This ceramic plate is placed on a collection of graphene, and a weight is placed on the ceramic plate. Alternatively, the surface of the compression member may be evenly compressed by the compressor. At this time, methanol and organic compounds are vaporized in order from the aggregate of graphene. In addition, impurities consisting of the base material or parts and water or organic substances existing in the graphene aggregate are also vaporized, and both the surface of the base material or parts and the graphene aggregate are cleaned. Furthermore, compressive stress acts on the graphene aggregate, and the contact surfaces of the overlapping graphene are directly bonded by friction and adhesion, and the graphene that comes into contact with the surface of the base material or part is the surface of the base material or part. A graphene joint consisting of a collection of graphene to which graphene is bonded to each other is bonded to the surface of a base material or a component. This solved the fourth problem described in paragraph 8.
The ceramic plate that compresses a collection of graphene has a high melting point and high insulating properties, so it does not join with graphene. In addition, when methanol, organic compounds, and impurities are vaporized, the graphene aggregate and the surface of the base material or parts have a positive pressure compared to the outside world. Gases that become impurities cannot enter from the outside world. Therefore, both the surface of the substrate or component and the graphene cluster remain clean. Graphene is a tough material with a breaking strength of 42 N / m, which is more than 100 times stronger than steel, and even if a large compressive load that breaks the iron plate is applied when joining graphene to each other, Graphene does not destroy. Therefore, there are no restrictions on the shape and material of the base material or part to which the graphene joint is bonded, as long as the base material or part is not destroyed when the graphene aggregate is compressed. Further, the vaporized methanol and the organic compound are recovered by a recovery machine, and since the boiling points of both are different, the methanol and the organic compound are separated by the difference in boiling point, and the separated methanol and the organic compound are reused.
In the seventh treatment, the weight placed on the compression member is removed, an impact is applied to the side surface forming the thickness of the compression member, and the compression member is bonded to the base material or the surface of the component and separated from the graphene joint. When no weight is used, the impact is directly applied to the side surface of the compression member. As a result, a base material or a component in which the graphene joint is bonded to the surface is obtained.
All of the above seven processes are extremely simple processes. Methanol and organic compounds are general-purpose industrial chemicals. Graphite particles are also an inexpensive industrial material. Therefore, in this method, when seven extremely simple treatments are carried out in succession using inexpensive graphite particles, methanol and an organic compound, a graphene conjugate in which graphenes are overlapped is formed on the surface of a base material or a component. NS. As a result, the fifth problem described in paragraph 8 was solved, and all the problems were solved.

以上に説明した製造方法で製造したグラフェン接合体は、次の作用効果をもたらす。
第一に、基材や部品にグラフェンに近い性質が付与できる。つまり、グラフェンは、厚みが炭素原子の大きさに相当する0.332nmで、極めて軽量で、ほとんど質量を持たない。また、厚みが極めて薄いため、グラフェンの存在は、目視では確認できない。さらに、黒鉛粒子から製造したグラフェンの面積は小さい。このため、グラフェンを基材や部品に直接接合することは困難である。本発明によって、基材ないしは部品の表面に、グラフェン接合体が接合できる。このグラフェン接合体は、グラフェンのみから構成され、グラフェンの性質に近い。この結果、基材や部品にグラフェンに近い性質が付与できる。
第二に、グラフェン接合体を接合させる基材ないしは部品の制約は少ない。つまり、前記した第六の処理において、基材ないしは部品の表面に配置したグラフェンの集まりを均等に圧縮する際に、基材ないしは部品が破壊しなければ、グラフェン接合体を接合させる基材ないしは部品の材質と形状との制約はない。
第三に、グラフェン接合体の面積と厚みと形状との制約がない。つまり、前記した第五の処理において、容器の底面に底面の形状からなるグラフェン接合体に相当するグラフェンの集まりを形成する際に、用いる容器の底面の形状に制約がないため、グラフェン接合体の面積と形状の制約がない。また、前記した第一の処理において、メタノール中に分散させるグラフェンの量の制約がないため、グラフェン接合体の面積と厚みの制約はない。
第四に、グラフェン同士が強固に接合し、また、グラフェン接合体が基材ないしは部品に強固に接合する。つまり、前記した第六の処理において、グラフェンは不純物がない清浄状態となり、重なり合ったグラフェンの接触面同士が摩擦と凝着とによって接合するため、グラフェンの接触面同士が強固に接合する。また、基材ないしは部品の表面も不純物がない清浄状態になり、清浄状態のグラフェンが、清浄状態の基材ないしは部品の表面と摩擦によって接合するため、グラフェン接合体が強固に基材ないしは部品に接合する。つまり、グラフェンは黒鉛結晶の基底面からなり、凹凸のない完全な平面である。従って、様々な気体の気化が完了すると、重なり合ったグラフェンの接触面同士の間隙は、グラフェンの厚みよりさらに薄くなる。こうしたグラフェンの集まりが圧縮されると、重なり合ったグラフェンの接触面が極僅か動き、重なり合ったグラフェンンの接触面に摩擦熱が発生する。また、重なり合ったグラフェンの接触面に圧縮応力が作用し、接触面同士が凝着する。この結果、グラフェンの接触面同士が摩擦と凝着とによって強固に接合する。いっぽう、基材ないしは部品の表面は、表面粗さに基づき、サブミクロンからなる凹凸を持つ。従って、圧縮されたグラフェンは、基材ないしは部品の表面の凸部と接触し、この凸部に過大な摩擦熱が発生し、この摩擦熱によって基材ないしは部品の表面とグラフェンとが強固に接合する。従って、基材ないしは部品とグラフェン接合体の間隙は、サブミクロンになり、この間隙に全ての液体は侵入できない。
第五に、基材ないしは部品に接合したグラフェン接合体は、どのような環境で使用されても経時変化しない。つまり、グラフェン接合体は、融点が3000℃を超えるグラフェンのみで構成され、優れた耐熱性を持つ。また、グラフェンは、酸やアルカリにも侵食されない極めて安定した物質である。
第六に、グラフェン接合体の表面は、撥水性と撥油性と防汚性とを持つ。つまり、グラフェン接合体の表面の凹凸は、グラフェンの厚みの0.332nmに過ぎず、完全な平面に近い。このため、グラフェン接合体の表面は、接触角が180度に近い超撥水性を示し、表面に撥水性と撥油性と防汚性とがもたらされる。
なお、グラフェンは、銀の熱伝導率の4.5倍に相当する熱伝導性と、銅の比抵抗の23倍に過ぎない電気導電性とを兼備する。このため、グラフェン接合体として、面積が小さい電極や接点、細長い配線パターン、面積が広い熱伝導シートなどがある。また、グラフェン接合体は、帯電防止機能と電磁波遮蔽機能と放熱機能とを兼備するため、基材や部品に、これらの機能が付与できる。また、面積が広い電磁波遮蔽シートや放熱シートとして用いられる。さらに、グラフェン接合体が耐食性と耐熱性とに優れるため、基材ないしは部品を、耐食性と耐熱性とに優れた被膜で覆うことができる。また、グラフェンは、せん断弾性率が440GPaで、最も強靭な物質であるため、基材ないしは部品に、耐摩耗性や非破壊性が付与できる。いっぽう、グラフェンが比較的新しい素材であるため、本発明で製造したグラフェン接合体の性質を利用する製品は、上記の製品に限られず、全く新たな分野の製品の実用化が期待される。
The graphene conjugate produced by the production method described above brings about the following effects.
First, it is possible to impart properties similar to graphene to the base material and parts. That is, graphene has a thickness of 0.332 nm, which corresponds to the size of a carbon atom, is extremely lightweight, and has almost no mass. Moreover, since the thickness is extremely thin, the presence of graphene cannot be visually confirmed. Moreover, the area of graphene produced from graphite particles is small. For this reason, it is difficult to directly bond graphene to a base material or a component. According to the present invention, a graphene joint can be bonded to the surface of a base material or a component. This graphene conjugate is composed only of graphene and is close to the properties of graphene. As a result, it is possible to impart properties similar to graphene to the base material and parts.
Secondly, there are few restrictions on the base material or parts to which the graphene joint is bonded. That is, in the sixth treatment described above, when the group of graphene arranged on the surface of the base material or part is uniformly compressed, if the base material or part is not destroyed, the base material or part to which the graphene joint is bonded is joined. There are no restrictions on the material and shape of.
Third, there are no restrictions on the area, thickness and shape of the graphene joint. That is, in the fifth process described above, there is no restriction on the shape of the bottom surface of the container used when forming a group of graphene corresponding to the graphene junction having the shape of the bottom surface on the bottom surface of the container. There are no restrictions on area and shape. Further, in the first treatment described above, since there is no restriction on the amount of graphene dispersed in methanol, there is no restriction on the area and thickness of the graphene conjugate.
Fourth, the graphenes are firmly bonded to each other, and the graphene bonded body is firmly bonded to the base material or the component. That is, in the sixth treatment described above, the graphene is in a clean state without impurities, and the contact surfaces of the overlapping graphene are bonded by friction and adhesion, so that the contact surfaces of the graphene are firmly bonded to each other. In addition, the surface of the base material or parts is also in a clean state without impurities, and the graphene in the clean state is bonded to the surface of the base material or parts in a clean state by friction, so that the graphene joint is firmly attached to the base material or parts. Join. That is, graphene consists of the basal plane of graphite crystals and is a perfect flat surface with no irregularities. Therefore, when the vaporization of various gases is completed, the gap between the contact surfaces of the overlapping graphenes becomes even thinner than the thickness of the graphenes. When such a collection of graphene is compressed, the contact surfaces of the overlapping graphenes move very slightly, and frictional heat is generated on the contact surfaces of the overlapping graphenes. In addition, compressive stress acts on the overlapping graphene contact surfaces, causing the contact surfaces to adhere to each other. As a result, the contact surfaces of graphene are firmly bonded to each other by friction and adhesion. On the other hand, the surface of the base material or component has irregularities made of submicrons based on the surface roughness. Therefore, the compressed graphene comes into contact with the convex portion of the surface of the base material or the component, and excessive frictional heat is generated in the convex portion, and the frictional heat firmly joins the surface of the base material or the component and the graphene. do. Therefore, the gap between the base material or component and the graphene joint becomes submicron, and all liquids cannot enter this gap.
Fifth, the graphene conjugate bonded to the substrate or component does not change over time no matter what environment it is used in. That is, the graphene conjugate is composed only of graphene having a melting point of more than 3000 ° C. and has excellent heat resistance. Graphene is an extremely stable substance that is not eroded by acids or alkalis.
Sixth, the surface of the graphene joint has water repellency, oil repellency and antifouling property. That is, the unevenness of the surface of the graphene joint is only 0.332 nm of the thickness of graphene, which is close to a perfect flat surface. Therefore, the surface of the graphene bonded body exhibits superhydrophobicity with a contact angle close to 180 degrees, and the surface is provided with water repellency, oil repellency, and antifouling property.
Graphene has both thermal conductivity equivalent to 4.5 times the thermal conductivity of silver and electrical conductivity equivalent to only 23 times the specific resistance of copper. For this reason, graphene joints include electrodes and contacts having a small area, elongated wiring patterns, and heat conductive sheets having a large area. Further, since the graphene joint has an antistatic function, an electromagnetic wave shielding function, and a heat radiating function, these functions can be imparted to the base material and parts. It is also used as an electromagnetic wave shielding sheet or a heat radiating sheet having a large area. Further, since the graphene joint has excellent corrosion resistance and heat resistance, the base material or component can be covered with a coating film having excellent corrosion resistance and heat resistance. Further, since graphene has a shear modulus of 440 GPa and is the toughest substance, wear resistance and non-destructive property can be imparted to the base material or parts. On the other hand, since graphene is a relatively new material, the products that utilize the properties of the graphene conjugate produced in the present invention are not limited to the above-mentioned products, and it is expected that products in a completely new field will be put into practical use.

ここで、第一の処理において、2枚の平行平板電極対の間隙に印加した電界によって、2枚の平行平板電極対の間隙に引き詰められた黒鉛粒子において、黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合の全てが、同時に破壊される現象を説明する。
黒鉛粒子における黒鉛結晶からなる基底面を形成する炭素原子は4つの価電子を持つ。このうちの3つの価電子は、黒鉛結晶からなる基底面、すなわち、グラフェンを形成するσ電子である。このσ電子は、基底面上で隣り合う3つの炭素原子が持つσ電子と互いに120度の角度をなして共有結合し、六角形の強固な網目構造を2次元的に形成する。残り一つの価電子はπ電子であり、基底面に垂直な方向に伸びるπ軌道上に存在する。このπ電子は、基底面に垂直な上下方向で隣り合う炭素原子が持つπ電子と弱い結合力で結合し、この弱い結合力に基づいて基底面同士が層状に積層される。つまり、基底面、すなわち、グラフェンは、弱い結合力であるπ軌道の相互作用によって互いに層状に結合されている。このため、黒鉛粒子は、黒鉛結晶からなる基底面で剥がれ易い性質、すなわち、機械的な異方性を持つ。この機械的な異方性は、黒鉛粒子の潤滑性として知られている。
こうした黒鉛粒子に電界を印加させると、全てのπ電子に電界によるクーロン力が作用する。π電子に作用するクーロン力が、π電子に作用しているπ軌道の相互作用より大きな力としてπ電子に作用すると、π電子はπ軌道上の拘束から解放される。この結果、全てのπ電子がπ軌道から離れて自由電子となる。これによって、黒鉛結晶からなる基底面の層間結合の担い手である全てのπ電子がπ軌道上にいなくなるため、全ての基底面の層間結合は同時に破壊される。すなわち、π電子がクーロン力Fによって黒鉛結晶の層間距離bの距離を動く際に、π電子は仕事W(W=b・F)を行う。この仕事Wが、π電子に作用する1原子当たりのπ軌道の相互作用の大きさである35ミリエレクトロンボルト (エレクトロンボルトは電子が持つエネルギーの大きさを表す単位で、1エレクトロンボルトは1.62×10−19ジュールに相当する)を超えると、π電子はπ軌道の相互作用の拘束から解放されて自由電子になる。例えば、2枚の平行平板電極対の間隙を100μmで離間させ、この電極間に10.6キロボルト以上の直流の電位差を印加させると、黒鉛結晶からなる全ての基底面の層間結合が瞬時に破壊される。このように、安価な黒鉛粒子の集まりに電界を印加するという極めて簡単な手段によって、大量のグラフェンが安価に製造できる。また、全ての基底面の層間結合が同時に破壊するため、得られる微細な物質は、確実に黒鉛結晶からなる基底面、すなわち、グラフェンである。
なお、ここで言う黒鉛粒子の集まりとは、1gから100g程度の比較的少量の黒鉛粒子の集まりを言う。つまり、鱗片状黒鉛粒子ないしは塊状黒鉛粒子は、嵩密度が0.2−0.5g/cmで、粒子の大きさが1−300ミクロンの分布を持つ微細な粒子である。従って、黒鉛粒子の集まりを2枚の平行平板電極対の間隙に引き詰めることは容易で、2枚の平行平板電極対に電位差を印加することも容易である。2枚の平行平板電極対の間隙に電位差を印加すると、黒鉛粒子が引きつめられた全ての領域に電界が発生する。この電界が、π軌道の相互作用より大きなクーロン力としてπ電子に作用し、π電子はπ軌道上の拘束から解放され、自由電子になる。この結果、黒鉛粒子における黒鉛結晶からなる基底面の層間結合の全てが同時に破壊され、2枚の平行平板電極対の間隙に、黒鉛結晶からなる基底面、すなわち、グラフェンの集まりが製造される。
ここで、グラフェンの数を算術で求める。ここでは、全ての黒鉛粒子が、直径が25ミクロンの球から構成されると仮定し、黒鉛の真密度が2.25×10kg/mであるから、黒鉛粒子の1個の重さは僅かに1.84×10−8gになる。また、黒鉛粒子の厚みの平均値が10ミクロンと仮定すると、層間距離が3.354オングストロームであるので、10ミクロンの厚みを持つ鱗片状黒鉛粒子には297,265個の基底面、すなわち、グラフェンが積層されている。従って、黒鉛結晶からなる基底面の層間結合を全て破壊することで、僅か1個の球状の黒鉛粒子から297,265個のグラフェンの集まりが得られる。このため、球状の黒鉛粒子の僅か1gの集まりについて、基底面の層間結合の全てを破壊した際に、1.62×1013個からなるグラフェンの集まりが得られる。従って、本製造方法によって、僅かな量の黒鉛粒子の集まりから、莫大な数からなるグラフェンの集まりが得られる。
Here, in the first treatment, from the graphite crystals forming the graphite particles in the graphite particles narrowed to the gap between the two parallel plate electrode pairs by the electric field applied to the gap between the two parallel plate electrode pairs. The phenomenon that all the interlayer bonds of the base surface are simultaneously destroyed will be described.
The carbon atom forming the basal plane made of graphite crystals in graphite particles has four valence electrons. Three of these valence electrons are basal planes made of graphite crystals, that is, σ electrons forming graphene. These σ electrons covalently bond with the σ electrons of three adjacent carbon atoms on the basal plane at an angle of 120 degrees to form a strong hexagonal network structure two-dimensionally. The remaining one valence electron is a π electron, which exists in a π orbit extending in a direction perpendicular to the basal plane. These π electrons are bonded to the π electrons of adjacent carbon atoms in the vertical direction perpendicular to the basal plane with a weak bonding force, and the basal planes are laminated in layers based on this weak bonding force. That is, the basal plane, that is, graphene, is layered to each other by the interaction of π orbitals, which is a weak bonding force. Therefore, the graphite particles have a property of being easily peeled off at the basal plane made of graphite crystals, that is, mechanical anisotropy. This mechanical anisotropy is known as the lubricity of graphite particles.
When an electric field is applied to these graphite particles, a Coulomb force due to the electric field acts on all π electrons. When the Coulomb force acting on the π electron acts on the π electron as a force larger than the interaction of the π orbit acting on the π electron, the π electron is released from the constraint on the π orbit. As a result, all π electrons move away from the π orbit and become free electrons. As a result, all the π electrons, which are the bearers of the interlayer bond of the basal plane made of graphite crystals, are not on the π orbital, so that the interlayer bonds of the basal plane are destroyed at the same time. That is, when the π electron moves a distance of the interlayer distance b of the graphite crystal by the Coulomb force F, the π electron performs work W (W = b · F). This work W is 35 millielectronvolts, which is the magnitude of the interaction of π orbitals per atom acting on π electrons (electronbolts are units that express the magnitude of energy possessed by electrons, and 1 electronvolt is 1. Beyond (corresponding to 62 × 10-19 joules), the π electron is released from the constraint of the interaction of the π orbit and becomes a free electron. For example, when the gap between two parallel plate electrode pairs is separated by 100 μm and a DC potential difference of 10.6 kilovolt or more is applied between the electrodes, the interlayer bond of all the basal planes made of graphite crystals is instantly broken. Will be done. As described above, a large amount of graphene can be inexpensively produced by an extremely simple means of applying an electric field to a collection of inexpensive graphite particles. In addition, since the interlayer bonds of all the basal planes are broken at the same time, the obtained fine substance is surely the basal plane made of graphite crystals, that is, graphene.
The group of graphite particles referred to here means a group of relatively small amounts of graphite particles of about 1 g to 100 g. That is, the scaly graphite particles or the massive graphite particles are fine particles having a bulk density of 0.2-0.5 g / cm 3 and a particle size of 1-300 microns. Therefore, it is easy to pull the aggregate of graphite particles into the gap between the two parallel plate electrode pairs, and it is also easy to apply a potential difference to the two parallel plate electrode pairs. When a potential difference is applied to the gap between the pair of two parallel plate electrodes, an electric field is generated in all the regions where the graphite particles are attracted. This electric field acts on the π electron as a Coulomb force larger than the interaction of the π orbit, and the π electron is released from the constraint on the π orbit and becomes a free electron. As a result, all the interlayer bonds of the basal plane made of graphite crystals in the graphite particles are simultaneously broken, and the basal plane made of graphite crystals, that is, a collection of graphene is produced in the gap between the pair of two parallel plate electrodes.
Here, the number of graphene is calculated by arithmetic. Here, it is assumed that all graphite particles are composed of spheres having a diameter of 25 microns, and since the true density of graphite is 2.25 × 10 3 kg / m 3 , the weight of one graphite particle is high. Is only 1.84 x 10-8 g. Assuming that the average thickness of the graphite particles is 10 microns, the interlayer distance is 3.354 angstroms. Therefore, the scaly graphite particles having a thickness of 10 microns have 297,265 basal planes, that is, graphene. Are laminated. Therefore, by breaking all the interlayer bonds on the basal plane made of graphite crystals, 297,265 graphene aggregates can be obtained from only one spherical graphite particle. Therefore, for an aggregate of only 1 g of spherical graphite particles, an aggregate of 1.62 × 10 13 graphenes can be obtained when all the interlayer bonds on the basal plane are broken. Therefore, according to this production method, an enormous number of graphene aggregates can be obtained from a small amount of graphite particles.

9段落に記載したグラフェン同士を直接接合したグラフェン接合体を、基材ないしは部品の表面に直接接合する方法において、9段落に記載した有機化合物がグリコール類に属する有機化合物であり、該グリコール類に属する有機化合物を、9段落に記載した有機化合物として用い、9段落に記載した基材ないしは部品の表面にグラフェン接合体を接合する方法に従って、基材ないしは部品の表面にグラフェン接合体を接合する、グラフェン同士を直接接合したグラフェン接合体を、基材ないしは部品の表面に直接接合する方法である。 In the method of directly bonding the graphene conjugate in which the graphenes described in paragraph 9 are directly bonded to the surface of the base material or the component, the organic compound described in paragraph 9 is an organic compound belonging to glycols, and the glycols The organic compound to which it belongs is used as the organic compound described in paragraph 9, and the graphene junction is bonded to the surface of the substrate or component according to the method of bonding the graphene conjugate to the surface of the substrate or component described in paragraph 9. This is a method in which a graphene bonded body in which graphenes are directly bonded to each other is directly bonded to the surface of a base material or a component.

つまり、グリコール類に属する有機化合物は、メタノールに溶解し、メタノールの粘度の30倍を超える粘度を持つ有機化合物であり、9段落に記載した有機化合物として用いることができる。
グリコール類には、エチレングリコール類とプロピレングリコール類とがある。
さらに、エチレングリコール類には、粘度が21mPa・s(21℃)で、沸点が197℃のエチレングリコールと、粘度が36mPa・s(20℃)で、沸点が244℃のジエチレングリコールと、粘度が48mPa・s(20℃)で、沸点が287℃のトリエチレングリコールと、粘度が55mPa・s(20℃)で、沸点が314℃のテトラエチレングリコールとがある。いずれも、メタノールに溶解し、メタノールの粘度の30倍を超える粘度を持つ。このため、エチレングリコール類は、9段落に記載した有機化合物として用いることができる。
いっぽう、プロピレングリコール類には、粘度が56mPa・s(20℃)で、沸点が188℃のプロピレングリコールと、粘度が116mPa・s(25℃)で、沸点が227℃のジプロピレングリコールとがある。いずれも、メタノールに溶解し、メタノールの粘度の30倍を超える粘度を持つ。このため、プロピレングリコール類は、9段落に記載した有機化合物として用いることができる。
That is, the organic compound belonging to glycols is an organic compound that dissolves in methanol and has a viscosity exceeding 30 times the viscosity of methanol, and can be used as the organic compound described in paragraph 9.
Glycols include ethylene glycols and propylene glycols.
Further, the ethylene glycols include ethylene glycol having a viscosity of 21 mPa · s (21 ° C.) and a boiling point of 197 ° C., diethylene glycol having a viscosity of 36 mPa · s (20 ° C.) and a boiling point of 244 ° C., and a viscosity of 48 mPa. There are triethylene glycol having a viscosity of s (20 ° C.) and a boiling point of 287 ° C., and tetraethylene glycol having a viscosity of 55 mPa · s (20 ° C.) and a boiling point of 314 ° C. Both are soluble in methanol and have a viscosity of more than 30 times the viscosity of methanol. Therefore, ethylene glycols can be used as the organic compound described in paragraph 9.
On the other hand, propylene glycol includes propylene glycol having a viscosity of 56 mPa · s (20 ° C.) and a boiling point of 188 ° C. and dipropylene glycol having a viscosity of 116 mPa · s (25 ° C.) and a boiling point of 227 ° C. .. Both are soluble in methanol and have a viscosity of more than 30 times the viscosity of methanol. Therefore, propylene glycol can be used as the organic compound described in paragraph 9.

グラフェン同士が直接接合されたグラフェン接合体がアルミニウム板に直接接合された側面の一部を拡大し、模式的に表した説明図である。It is explanatory drawing which enlarged and represented a part of the side surface which the graphene joint body which graphene was directly bonded to each other was directly bonded to an aluminum plate.

実施例1
本実施例は、9段落に記載した方法に従って、グラフェン同士を接合したグラフェン接合体を、1m×1mのシートとして、アルミニウム板に形成する。
最初に、2リットルのメタノールを、1.2m×1.2mの平らな底面を持つ容器に充填した。
次に、電界が発生する電極の有効面積が1m×1mである平行平板電極に対し、電界が発生する有効面の全体に、鱗片状黒鉛粒子(例えば、伊藤黒鉛工業株式会社のZ−100)の10gを均一に引き詰めた。この平行平板電極を、メタノールが充填された容器に浸漬し、さらに、もう一方の平行平板電極を前記の平行平板電極の上に重ね合わせ、2枚の平行平板電極を、鱗片状黒鉛粒子の集まりを介して、100μmの間隙で組み合わせ、12キロボルトの直流電圧を電極間に加えた。次に、2枚の平行平板電極の間隙を拡大し、さらに、2枚の平行平板電極をメタノール中で傾斜させ、0.2Gからなる3方向の振動加速度を容器に繰り返し加え、この後、容器から2枚の平行平板電極を取り出した。さらに、容器内のメタノールに対し、超音波ホモジナイザー装置(ヤマト科学株式会社の製品LUH300)のホーンによって、20kHzの超音波振動を2分間加えた。この後、ホーンを容器から取り出した。次に、容器に、500ccのプロピレングリコール(例えば、昭和化学株式会社の製品)を混合した。なお、混合液の粘度は、20℃においてメタノールの粘度の25倍に増える。さらに、容器に、0.3Gからなる3方向の振動加速度を繰り返し加え、最後に、0.3Gからなる上下方向の振動加速度を加えた。
この後、1m×1mの平らな底面を持ち、四方の側面が開放できる容器に、上記で作成した試料の略半分を充填した。この後、容器に、0.3Gからなる3方向の振動加速度を繰り返し加え、最後に、0.3Gからなる上下方向の振動加速度を加えた。さらに、四方の側面を開放して、容器内の1m×1mの面積を持ち、厚みが薄い試料を取り出した。この試料を、1m×1mの面積を持ち、厚みが5mmのアルミニウムの板の上に重ね、さらに、1m×1mの面積を持ち、厚みが1cmのアルミナの板を試料の上に載せ、アルミナ板の上に100kgの重り5個を、バツ印を形成するように離間させて載せ、190℃まで昇温した。この後、重りを取り除き、アルミナ板の側面の3か所に衝撃を同時に加え、試料からアルミナ板を取り除いた。
次に、作成した試料の平面と側面とを、電子顕微鏡を用いて観察と分析を行なった。電子顕微鏡は、JFEテクノリサーチ株式会社の極低加速電圧SEMを用いた。この装置は、100ボルトからの極低加速電圧による表面観察が可能で、試料に導電性の被膜を形成せずに直接試料の表面が観察できる特徴を持つ。最初に、試料の平面からの反射電子線の900−1000ボルトの間にある2次電子線を取り出して画像処理を行った。試料の平面に、極めて厚みが薄い段差が確認できた。次に、試料の側面からの反射電子線の900−1000ボルトの間にある2次電子線を取り出して画像処理を行った。厚みが極めて薄い物質が、10層を形成して重なり合っていた。さらに、特性エックス線のエネルギーとその強度を画像処理した結果、炭素原子のみが存在し、試料は、グラフェン同士が重なり合ったグラフェン接合体であることが確認できた。
図1に、グラフェン同士が重なり合ったグラフェン接合体の側面の一部を拡大し、模式的に表した。1はグラフェンで、2はアルミニウム板である。
なお、作成した試料を、2mの高さから落下させても、グラフェン接合体はアルミニウム板から剥離せず、グラフェン接合体に損傷が見られなかったため、一定の接合力でグラフェン同士が接合されているとともに、グラフェン接合体は一定の接合力でアルミニウム板に接合されている。
Example 1
In this embodiment, a graphene joint obtained by joining graphene to each other is formed on an aluminum plate as a 1 m × 1 m sheet according to the method described in paragraph 9.
First, 2 liters of methanol was filled into a container with a flat bottom of 1.2 m x 1.2 m.
Next, with respect to the parallel plate electrode in which the effective area of the electrode in which the electric field is generated is 1 m × 1 m, scaly graphite particles (for example, Z-100 of Ito Graphite Industry Co., Ltd.) cover the entire effective surface in which the electric field is generated. 10 g of the above was uniformly squeezed. This parallel plate electrode is immersed in a container filled with methanol, the other parallel plate electrode is superposed on the parallel plate electrode, and the two parallel plate electrodes are a collection of scaly graphite particles. A 12 kilovolt DC voltage was applied between the electrodes, combined with a gap of 100 μm. Next, the gap between the two parallel plate electrodes is expanded, the two parallel plate electrodes are tilted in methanol, and vibration acceleration in three directions consisting of 0.2 G is repeatedly applied to the container, and then the container is used. Two parallel plate electrodes were taken out from. Further, ultrasonic vibration of 20 kHz was applied to the methanol in the container for 2 minutes by the horn of an ultrasonic homogenizer device (product LUH300 of Yamato Scientific Co., Ltd.). After this, the horn was taken out of the container. Next, 500 cc of propylene glycol (for example, a product of Showa Chemical Co., Ltd.) was mixed in the container. The viscosity of the mixed solution increases 25 times the viscosity of methanol at 20 ° C. Further, the vibration acceleration in three directions consisting of 0.3 G was repeatedly applied to the container, and finally, the vibration acceleration in the vertical direction consisting of 0.3 G was applied.
After that, a container having a flat bottom surface of 1 m × 1 m and having open sides on all sides was filled with approximately half of the sample prepared above. After that, the vibration acceleration in three directions consisting of 0.3 G was repeatedly applied to the container, and finally, the vibration acceleration in the vertical direction consisting of 0.3 G was applied. Further, the four side surfaces were opened, and a sample having an area of 1 m × 1 m in the container and having a thin thickness was taken out. This sample is placed on an aluminum plate having an area of 1 m × 1 m and a thickness of 5 mm, and an alumina plate having an area of 1 m × 1 m and a thickness of 1 cm is placed on the sample. Five 100 kg weights were placed on the surface at intervals so as to form a cross mark, and the temperature was raised to 190 ° C. After that, the weight was removed, and impacts were simultaneously applied to three places on the side surface of the alumina plate to remove the alumina plate from the sample.
Next, the plane and side surfaces of the prepared sample were observed and analyzed using an electron microscope. As the electron microscope, an extremely low acceleration voltage SEM manufactured by JFE Techno Research Co., Ltd. was used. This device can observe the surface with an extremely low acceleration voltage from 100 volts, and has the feature that the surface of the sample can be directly observed without forming a conductive film on the sample. First, the secondary electron beam between 900 and 1000 volts of the backscattered electron beam from the plane of the sample was taken out and image processed. An extremely thin step was confirmed on the flat surface of the sample. Next, the secondary electron beam between 900 and 1000 volts of the backscattered electron beam from the side surface of the sample was taken out and image processing was performed. The extremely thin substances formed 10 layers and overlapped with each other. Furthermore, as a result of image processing of the energy of the characteristic X-ray and its intensity, it was confirmed that only carbon atoms were present and the sample was a graphene conjugate in which graphenes overlapped with each other.
In FIG. 1, a part of the side surface of the graphene junction in which graphenes overlap each other is enlarged and schematically shown. 1 is graphene and 2 is an aluminum plate.
Even if the prepared sample was dropped from a height of 2 m, the graphene joint did not peel off from the aluminum plate and the graphene joint was not damaged. Therefore, the graphenes were bonded to each other with a constant bonding force. At the same time, the graphene joint is bonded to the aluminum plate with a constant bonding force.

実施例2
本実施例は、実施例1で作成した、プロピレングリコールのメタノール溶解液を介して、グラフェン同士が重なり合った試料の残りの一部を、1cm×50cmの平らな底面を持ち、四方の側面が開放できる容器に充填した。この後、容器に、0.3Gからなる3方向の振動加速度を繰り返し加え、最後に、0.3Gからなる上下方向の振動加速度を加えた。さらに、四方の側面を開放して、容器内の1cm×50cmの面積を持ち、厚みが薄い試料を取り出した。この試料を、1cm×50cmの面積を持ち、厚みが5mmのアルミニウムの板の上に重ね、さらに、1cm×50cmの面積を持ち、厚みが1cmのアルミナの板を試料の上に載せ、アルミナ板の上に10kgの重りの3個を離間させて載せ、190℃まで昇温した。この後、重りを取り除いた後に、アルミナの板の側面の3か所に衝撃を同時に加え、試料からアルミナの板を取り除いた。
次に、作成した試料の平面と側面とを、実施例1と同様に、電子顕微鏡を用いて観察と分析を行なった。この結果、試料は、グラフェンの100層前後が重なり合って、グラフェン接具体を形成した。
グラフェン接合体をアルミニウムの板に接合した2つの実施例を説明したが、基材ないしは部品に、グラフェン同士が重なり合ったグラフェンン集まりを圧縮する際に、圧縮応力が均等に加えられ、圧縮応力に耐えられれば、基材ないしは部品の制約はない。
Example 2
In this example, the remaining part of the sample in which graphenes are overlapped with each other via the methanol solution of propylene glycol prepared in Example 1 has a flat bottom surface of 1 cm × 50 cm, and all four sides are open. Filled in a container that can. After that, the vibration acceleration in three directions consisting of 0.3 G was repeatedly applied to the container, and finally, the vibration acceleration in the vertical direction consisting of 0.3 G was applied. Further, the four side surfaces were opened, and a sample having an area of 1 cm × 50 cm in the container and having a thin thickness was taken out. This sample is placed on an aluminum plate having an area of 1 cm × 50 cm and a thickness of 5 mm, and an alumina plate having an area of 1 cm × 50 cm and a thickness of 1 cm is placed on the sample. Three 10 kg weights were placed on top of the weight at intervals and the temperature was raised to 190 ° C. Then, after removing the weight, an impact was simultaneously applied to three places on the side surface of the alumina plate to remove the alumina plate from the sample.
Next, the plane and the side surface of the prepared sample were observed and analyzed using an electron microscope in the same manner as in Example 1. As a result, in the sample, about 100 layers of graphene overlapped to form a graphene contact concrete.
Two examples of joining a graphene joint to an aluminum plate have been described. When compressing a graphene cluster in which graphenes overlap each other on a base material or a component, compressive stress is evenly applied to the compressive stress. If it can withstand, there are no restrictions on the base material or parts.

1 グラフェン 2 アルミニウム板
1 graphene 2 aluminum plate

Claims (2)

グラフェン同士を直接接合したグラフェン接合体を、基材ないしは部品の表面に直接接合する方法は、
2枚の平行平板電極からなる電極対を構成する一方の平行平板電極の表面に、鱗片状黒鉛粒子の集まりないしは塊状黒鉛粒子の集まりを平坦に引き詰め、該一方の平行平板電極を、容器に充填したメタノール中に浸漬させ、他方の平行平板電極を、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりを介して、前記一方の平行平板電極の上に重ね合わせ、2枚の平行平板電極からなる電極対を前記メタノール中に浸漬させる、この後、該電極対の間隙に直流の電位差を印加する、これによって、該電位差の大きさを前記電極対の間隙の大きさで割った値に相当する電界が、前記鱗片状黒鉛粒子の集まりないしは前記塊状黒鉛粒子の集まりに印加され、該電界の印加によって、前記鱗片状黒鉛粒子ないしは前記塊状黒鉛粒子を形成する黒鉛結晶からなる基底面の層間結合の全てが同時に破壊され、前記電極対の間隙に前記基底面からなるグラフェンの集まりが形成される、この後、前記電極対の間隙を拡大し、該電極対を前記メタノール中で傾斜させ、さらに、前記容器に左右、前後、上下の3方向の振動を繰り返し加え、前記グラフェンの集まりを、前記電極対の間隙から前記メタノール中に移動させる、この後、前記容器から前記2枚の平行平板電極を取り出す、さらに、該容器内の前記メタノール中でホモジナイザー装置を稼働させ、該メタノールを介して前記グラフェンの集まりに衝撃を繰り返し加え、該グラフェンの集まりを、前記メタノール中で1枚1枚のグラフェンに分離させる、この後、前記容器から前記ホモジナイザー装置を取り出す、さらに、メタノールに溶解する第一の性質と、メタノールの粘度の30倍を超える粘度を有する第二の性質とを兼備する有機化合物を、前記容器内のメタノールの粘度が該粘度の20倍を超える粘度になる量として前記容器内に混合し、前記1枚1枚のグラフェンに分離された該グラフェンの集まりを、前記有機化合物が前記メタノールに溶解した溶解液中に分散させる、この後、前記容器に左右、前後、上下の3方向の振動を繰り返し加え、最後に上下方向の振動を加え、前記溶解液を介してグラフェン同士を重ね合わせ、該重なり合ったグラフェンの集まりを、前記容器の底面に該底面の形状として形成する第一の工程と、
グラフェン同士を接合したグラフェン接合体の形状を、底面の形状として有する新たな容器に、前記溶解液を介してグラフェン同士が重なり合ったグラフェンの集まりの一部を充填し、該容器に左右、前後、上下の3方向の振動を繰り返し加え、最後に上下方向の振動を加え、前記溶解液を介してグラフェン同士が重なり合ったグラフェンの集まりを、前記新たな容器の底面に該底面の形状として形成する第二の工程と、
前記新たな容器から、前記溶解液を介してグラフェン同士が重なり合ったグラフェンの集まりを取り出し、該グラフェンの集まりを、基材ないしは部品の表面に接合する位置に配置させ、さらに、該グラフェンの集まりの形状を持つ圧縮部材を、前記グラフェンの集まりの表面に重ね合わせる、この後、前記基材ないしは前記部品を、前記有機化合物の沸点に昇温するとともに、前記圧縮部材によって、前記グラフェンの集まりを圧縮する、これによって、前記グラフェンの集まりから前記メタノールと前記有機化合物とが順番に気化し、また、該グラフェンの集まりにおける重なり合ったグラフェンの接触面同士が接合するとともに、前記基材ないしは前記部品の表面と接触する前記グラフェンが、該基材ないしは該部品の表面に接合し、前記グラフェン同士が接合したグラフェンの集まりからなるグラフェン接合体が、前記基材ないしは前記部品の表面に接合される第三の工程と、
前記グラフェンの集まりを圧縮した前記圧縮部材について、該圧縮部材の厚みをなす側面に衝撃を加え、該圧縮部材を、前記基材ないしは前記部品の表面に接合され前記グラフェン接合体から引き離す第四の工程とからなり、
これら4つの工程を連続して実施する方法が、グラフェン同士を直接接合したグラフェン接合体を、基材ないしは部品の表面に直接接合する方法。
The method of directly joining the graphene bonded body, which is directly bonded to each other, to the surface of the base material or parts, is
A collection of scaly graphite particles or a collection of massive graphite particles is flatly packed on the surface of one of the parallel plate electrodes forming an electrode pair consisting of two parallel plate electrodes, and the one parallel plate electrode is placed in a container. Immersed in packed methanol, the other parallel plate electrode is superposed on the one parallel plate electrode via the aggregate of scaly graphite particles or the aggregate of the massive graphite particles, and two parallel plates are superposed. An electrode pair composed of electrodes is immersed in the graphite, and then a DC potential difference is applied to the gap between the electrode pairs, whereby the magnitude of the potential difference is divided by the size of the gap between the electrode pairs. An electric field corresponding to is applied to the aggregate of the scaly graphite particles or the aggregate of the lump graphite particles, and the application of the electric field causes the basal plane made of graphite crystals forming the scaly graphite particles or the lump graphite particles. All of the interlayer bonds are simultaneously broken to form an aggregate of graphene composed of the basal plane in the gap between the electrode pairs, after which the gap between the electrode pairs is expanded and the electrode pair is tilted in the methanol. Further, vibrations in three directions of left-right, front-back, and up-down are repeatedly applied to the container to move the graphene aggregate into the methanol through the gap between the electrode pairs, and then the two parallel sheets are moved from the container in parallel. The flat plate electrode is taken out, and further, the homogenizer device is operated in the methanol in the container, and impact is repeatedly applied to the graphene aggregate via the graphite, and the graphene aggregates are collected one by one in the graphite. The homogenizer device is taken out from the container, and the homogenizer device is taken out from the container. The compound is mixed in the container in an amount such that the viscosity of methanol in the container becomes more than 20 times the viscosity, and the aggregate of the graphite separated into each graphite is the organic compound. Is dispersed in the solution dissolved in the methanol. After that, vibrations in three directions of left and right, front and back, and up and down are repeatedly applied to the container, and finally, vibrations in the up and down directions are applied to the graphenes via the solution. In the first step of superimposing the graphite and forming a collection of the overlapping graphene on the bottom surface of the container as the shape of the bottom surface.
A new container having the shape of a graphene junction in which graphenes are joined as the shape of the bottom surface is filled with a part of a collection of graphenes in which graphenes overlap each other via the solution, and the container is filled with left and right, front and back, and so on. The graphenes are repeatedly vibrated in three directions, up and down, and finally vibrated in the up and down direction to form a collection of graphene in which graphenes are overlapped with each other via the solution, as the shape of the bottom surface of the new container. The second step and
From the new container, a group of graphene in which graphenes are overlapped with each other is taken out through the solution, and the group of graphene is placed at a position where it is joined to the surface of a base material or a component, and further, the group of graphene is placed. A compression member having a shape is superposed on the surface of the graphene aggregate, after which the base material or the component is heated to the boiling point of the organic compound and the graphene aggregate is compressed by the compression member. As a result, the methanol and the organic compound are vaporized in order from the graphene aggregate, and the contact surfaces of the overlapping graphenes in the graphene aggregate are bonded to each other, and the surface of the base material or the component is formed. The graphene in contact with the base material or the surface of the component is bonded to the surface of the base material or the component, and the graphene junction composed of a collection of graphene bonded to the graphene is bonded to the surface of the base material or the component. Process and
A fourth method in which an impact is applied to a side surface forming the thickness of the compressed member with respect to the compressed member obtained by compressing a collection of graphene, and the compressed member is bonded to the surface of the base material or the component and separated from the graphene joint. Consists of processes
The method of carrying out these four steps in succession is a method of directly joining a graphene bonded body in which graphenes are directly bonded to the surface of a base material or a component.
請求項1に記載したグラフェン同士を直接接合したグラフェン接合体を、基材ないしは部品の表面に直接接合する方法において、請求項1に記載した有機化合物がグリコール類に属する有機化合物であり、該グリコール類に属する有機化合物を、請求項1に記載した有機化合物として用い、請求項1に記載した基材ないしは部品の表面にグラフェン接合体を接合する方法に従って、基材ないしは部品の表面にグラフェン接合体を接合する、グラフェン同士を直接接合したグラフェン接合体を、基材ないしは部品の表面に直接接合する方法。
In the method of directly bonding the graphene conjugate in which the graphenes according to claim 1 are directly bonded to the surface of the base material or the component, the organic compound according to claim 1 is an organic compound belonging to glycols, and the glycol An organic compound belonging to the same category is used as the organic compound according to claim 1, and a graphene conjugate is attached to the surface of the substrate or component according to the method of bonding a graphene conjugate to the surface of the substrate or component according to claim 1. A method of directly bonding graphene bonded bodies, which are directly bonded graphene to each other, to the surface of a base material or component.
JP2019239995A 2019-12-28 2019-12-28 Method for directly joining graphene-joined body formed by directly joining graphenes, to surface of base material or component Pending JP2021107313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019239995A JP2021107313A (en) 2019-12-28 2019-12-28 Method for directly joining graphene-joined body formed by directly joining graphenes, to surface of base material or component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019239995A JP2021107313A (en) 2019-12-28 2019-12-28 Method for directly joining graphene-joined body formed by directly joining graphenes, to surface of base material or component

Publications (1)

Publication Number Publication Date
JP2021107313A true JP2021107313A (en) 2021-07-29

Family

ID=76967656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019239995A Pending JP2021107313A (en) 2019-12-28 2019-12-28 Method for directly joining graphene-joined body formed by directly joining graphenes, to surface of base material or component

Country Status (1)

Country Link
JP (1) JP2021107313A (en)

Similar Documents

Publication Publication Date Title
CN101287679B (en) Thermally exfoliated graphite oxide
Meng et al. Processable 3-nm thick graphene platelets of high electrical conductivity and their epoxy composites
Wang et al. Low-temperature copper bonding strategy with graphene interlayer
Kubozono et al. Recent progress on carbon-based superconductors
Li et al. Enhanced the thermal conductivity of flexible copper foil by introducing graphene
Ruoff Personal perspectives on graphene: New graphene-related materials on the horizon
Li et al. Reduced graphene oxide dispersed in copper matrix composites: Facile preparation and enhanced mechanical properties
Sudhindra et al. Specifics of thermal transport in graphene composites: effect of lateral dimensions of graphene fillers
Anagnostopoulos et al. Enhancing the adhesion of graphene to polymer substrates by controlled defect formation
JP2021107313A (en) Method for directly joining graphene-joined body formed by directly joining graphenes, to surface of base material or component
JP2021138566A (en) Method for producing graphene aggregate in which graphenes are superposed and joined to each other through collection of nano-level size fine particles composed of metal or metal oxide
JP2023166917A (en) Method for stacking graphene sheets, pressing and joining the stacked graphene group by friction to make graphene joint, and then pressing and welding the graphene joint by friction onto surface of substrate or component
Nagabandi et al. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials
JP7195513B2 (en) A method of producing a graphene sheet consisting of a collection of graphene in which flat planes of graphene are overlapped and joined, and a method of covering the surface of the graphene sheet with a collection of fine particles of metal or insulating metal oxide.
Zhang et al. High current carrying and thermal conductive copper-carbon conductors
JP2020186144A (en) Method for manufacturing graphene joined body in which flat faces of graphene are bonded together by assembly of metal fine particles composed of any metal of silver, copper, gold or aluminum
JP7377480B2 (en) A collection of graphene is produced from a collection of graphite particles, the graphene is covered with a collection of fine crystals of an α-olefin derivative, and each graphene is separated from the collection of graphene covered with the collection of fine crystals of the α-olefin derivative. How to take it out
JP2020200210A5 (en)
JP2024019746A (en) Method for producing joined graphene body having larger area and larger thickness by depositing graphene mass in gap between joined graphene bodies and joining joined graphene bodies by friction-welding the graphene mass
JP7023035B2 (en) A method for producing an insulating film having an insulating film having the shape of the bottom surface on the bottom surface of a container as an insulating film composed of a collection of the flat powders in which the flat surfaces of the insulating flat powder are overlapped with each other.
JP2021095303A5 (en)
JP2021095303A (en) Method for producing aggregate of graphenes from graphite particles and taking out individual graphenes from the aggregate of graphenes
JP2022011208A (en) Method for producing paste comprising collection of graphenes in which graphenes are superimposed with each other
JP6828503B2 (en) Inorganic layered material laminate, heat dissipation member, and power device device
JP2020189767A (en) Method for producing group of graphene from graphite particles in methanol and taking out individual graphenes from group of graphene