JP2024015850A - Electromagnetic gas fuel injection valve - Google Patents

Electromagnetic gas fuel injection valve Download PDF

Info

Publication number
JP2024015850A
JP2024015850A JP2022118185A JP2022118185A JP2024015850A JP 2024015850 A JP2024015850 A JP 2024015850A JP 2022118185 A JP2022118185 A JP 2022118185A JP 2022118185 A JP2022118185 A JP 2022118185A JP 2024015850 A JP2024015850 A JP 2024015850A
Authority
JP
Japan
Prior art keywords
valve
fixed
valve housing
coil
gas fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022118185A
Other languages
Japanese (ja)
Inventor
稔 藤井
Minoru Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2022118185A priority Critical patent/JP2024015850A/en
Publication of JP2024015850A publication Critical patent/JP2024015850A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic gas fuel injection valve capable of avoiding a malfunction when coating a slide surface between the outer periphery of a valve element and the inner periphery of a valve housing while reducing side force to be generated on the slide surface to effectively suppress the wear of the slide surface.
SOLUTION: The gas fuel injection valve includes a valve element 7 slidably fitted to a slide guide surface Bi provided on the inner periphery of a valve housing 2, a valve part 6 fixed to one end face of the valve element 7, opposed to a nozzle member 5, to open/close a nozzle hole 5n, and a coil 10c arranged encircling the other end of the valve housing 2 and a fixing core 8 and fixed to the fixing core 8. During the magnetization of the coil 10c, the fixing core 8 magnetically attracts the valve element 7 to separate the valve part 6 from a valve seat 5s against a return spring 14. A cylindrical guide cylinder B which is fixed to the inner periphery of the valve housing 2 and whose inner peripheral face becomes the slide guide surface Bi is formed by injection molding of a non-magnetic synthetic resin material having self-lubrication.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、電磁式ガス燃料噴射弁、特に磁性体よりなる筒状の弁ハウジングと、弁座及び弁座の中心部を貫通するノズル孔を有して弁ハウジングの一端部に固設されるノズル部材と、弁ハウジングの内周部に設けた摺動案内面に摺動可能に嵌合される弁体と、弁体の、ノズル部材と対向する一端面に固定され且つ弁座と協働してノズル孔を開閉可能なゴム製弁部と、弁ハウジングに連結されると共に弁体の他端面に対向する固定コアと、弁ハウジングの他端部及び固定コアを囲繞するよう配置されて固定コアに固定されるコイルと、弁体を弁座側に付勢してコイルの非励磁時には弁部を弁座に対する着座位置に保持する戻しばねとを備え、コイルの励磁時には固定コアが弁体を磁気吸引することで弁部を戻しばねに抗して弁座から離間させるようにしたガス燃料噴射弁に関する。 The present invention relates to an electromagnetic gas fuel injection valve, in particular, a cylindrical valve housing made of a magnetic material, a valve seat, and a nozzle hole passing through the center of the valve seat, and fixed to one end of the valve housing. A nozzle member, a valve body that is slidably fitted to a sliding guide surface provided on the inner circumference of the valve housing, and a valve body that is fixed to one end surface of the valve body that faces the nozzle member and cooperates with the valve seat. a rubber valve part that can open and close the nozzle hole, a fixed core connected to the valve housing and facing the other end surface of the valve body, and a fixed core arranged and fixed so as to surround the other end part of the valve housing and the fixed core. It includes a coil that is fixed to the core and a return spring that biases the valve body toward the valve seat and holds the valve body in a seated position relative to the valve seat when the coil is de-energized.When the coil is energized, the fixed core is attached to the valve body. This invention relates to a gas fuel injection valve in which the valve portion is separated from the valve seat against a return spring by magnetically attracting the valve.

上記電磁式ガス燃料噴射弁は、特許文献1に記載されるように従来公知である。 The above electromagnetic gas fuel injection valve is conventionally known as described in Patent Document 1.

特許第5618751号公報Patent No. 5618751

ところで従来の電磁式ガス燃料噴射弁では、ドライガス環境下での弁体の作動耐久性を向上させるために、固体潤滑材を使用した摩耗対策がなされており、より具体的に言えば、例えば、弁ハウジング内周の上記摺動案内面に対しては、DLC(即ちダイヤモンドライクカーボン)、フッ素樹脂等のコーティング処理がなされるが、この場合には、次のような不利点がある。 By the way, in conventional electromagnetic gas fuel injection valves, in order to improve the operating durability of the valve body in a dry gas environment, anti-wear measures are taken using solid lubricants. The sliding guide surface on the inner periphery of the valve housing is coated with DLC (i.e., diamond-like carbon), fluororesin, etc., but this case has the following disadvantages.

即ち、上記コーティング処理は、コーティング膜が微小厚さである関係で、コーティング後の面粗度を確保するためにコーティング前に被コーティング面を荒研磨する工程が特別に必要となり、またコーティングのための塗布サイクルタイムが多くなる等して、製造コストが嵩む問題ある。その上、コーティング膜が微小厚さである関係で弁体外周と弁ハウジング内周との間のエアギャップが小さく(例えば約0.050ミリ程度と)なるが、そのエアギャップは小さくなる程に、弁体外周と弁ハウジング内周との摺動面に発生するサイドフォース(側圧)が大きくなって、摺動面の摩耗促進の要因となる。 In other words, the coating process described above requires a special step of rough polishing the surface to be coated before coating to ensure the surface roughness after coating, as the coating film has a very small thickness. There is a problem in that the manufacturing cost increases because the coating cycle time increases. Furthermore, because the coating film is extremely thin, the air gap between the outer periphery of the valve body and the inner periphery of the valve housing becomes small (for example, about 0.050 mm); , the side force (side pressure) generated on the sliding surface between the outer periphery of the valve body and the inner periphery of the valve housing increases, which becomes a factor that accelerates wear on the sliding surface.

本発明は、上記に鑑み提案されたもので、簡単な構造で従来装置の上記課題を解決可能な電磁式ガス燃料噴射弁を提供することを目的とする。 The present invention has been proposed in view of the above, and an object of the present invention is to provide an electromagnetic gas fuel injection valve that has a simple structure and can solve the above problems of conventional devices.

上記目的を達成するために、本発明は、磁性体よりなる筒状の弁ハウジングと、弁座及び該弁座の中心部を貫通するノズル孔を有して前記弁ハウジングの一端部に固設されるノズル部材と、前記弁ハウジングの内周部に設けた摺動案内面に摺動可能に嵌合される弁体と、前記弁体の、前記ノズル部材と対向する一端面に固定され且つ前記弁座と協働して前記ノズル孔を開閉可能なゴム製弁部と、前記弁ハウジングに連結されると共に前記弁体の他端面に対向する固定コアと、前記弁ハウジングの他端部及び前記固定コアを囲繞するよう配置されて該固定コアに固定されるコイルと、前記弁体を前記弁座側に付勢して前記コイルの非励磁時には前記弁部を該弁座に対する着座位置に保持する戻しばねとを備え、前記コイルの励磁時には前記固定コアが前記弁体を磁気吸引することで前記弁部を前記戻しばねに抗して前記弁座から離間させるようにした電磁式ガス燃料噴射弁において、前記弁ハウジングの内周面に、自己潤滑性を有し且つ非磁性の合成樹脂材よりなる円筒状のガイド筒が固定されていて、そのガイド筒の内周面が前記摺動案内面を構成することを第1の特徴とする。 In order to achieve the above object, the present invention includes a cylindrical valve housing made of a magnetic material, a valve seat, and a nozzle hole that penetrates the center of the valve seat, and is fixed to one end of the valve housing. a nozzle member, a valve body slidably fitted to a sliding guide surface provided on the inner circumference of the valve housing, and a valve body fixed to one end surface of the valve body facing the nozzle member; a rubber valve part that can open and close the nozzle hole in cooperation with the valve seat; a fixed core connected to the valve housing and facing the other end surface of the valve body; the other end part of the valve housing; a coil arranged to surround the fixed core and fixed to the fixed core; and a coil that urges the valve body toward the valve seat so that when the coil is not energized, the valve part is in a seated position relative to the valve seat. and a return spring for holding the coil, and when the coil is energized, the fixed core magnetically attracts the valve body to move the valve part away from the valve seat against the return spring. In the injection valve, a cylindrical guide cylinder made of a self-lubricating and non-magnetic synthetic resin material is fixed to the inner peripheral surface of the valve housing, and the inner peripheral surface of the guide cylinder is fixed to the inner peripheral surface of the valve housing. The first feature is that it forms a guide surface.

また本発明は、第1の特徴に加えて、前記ガイド筒は、前記合成樹脂材で型成形されて前記弁ハウジングの内周面に挿着されていることを第2の特徴とする。 In addition to the first feature, the present invention has a second feature that the guide tube is molded from the synthetic resin material and inserted into the inner circumferential surface of the valve housing.

また本発明は、第1又は第2の特徴に加えて、前記コイルと該コイルを被覆するボビンとを有して前記固定コアに固定されるコイル組立体が、前記弁ハウジングの他端部に係合、固定されており、前記ガイド筒の前記弁ハウジングからの離脱が阻止されるように、該ガイド筒の前記固定コア側の端部が前記コイル組立体に係合していることを第3の特徴とする。 Further, in addition to the first or second feature, the present invention provides a coil assembly having the coil and a bobbin covering the coil and fixed to the fixed core, the coil assembly being fixed to the other end of the valve housing. and an end of the guide tube on the fixed core side is engaged with the coil assembly such that the guide tube is engaged and fixed, and the guide tube is prevented from separating from the valve housing. 3 characteristics.

本発明において、「自己潤滑性を有し」とは、ガイド筒の構成材自体の摩擦係数が極めて小さいため、摺動面において潤滑油を補給せずとも必要な潤滑性を確保可能な材質をいう。 In the present invention, the term "self-lubricating" refers to a material that can ensure the necessary lubricity on the sliding surface without replenishing lubricating oil because the friction coefficient of the material itself of the guide tube is extremely small. say.

本発明の第1の特徴によれば、弁ハウジングの内周部に固定されて内周面が弁体に対する摺動案内面となる円筒状のガイド筒が、自己潤滑性を有し且つ非磁性の合成樹脂材の射出成形により形成されるので、弁体及び弁ハウジング相互の摺動面をコーティングする必要はなくなり、従って、コーティングに伴う従来技術の不都合(例えば、コーティング後の面粗度確保のためにコーティング前に行われる荒研磨工程が必要となり、またコーティング塗布サイクルタイムが多く必要となる等)を回避できるから、製造コストの低減に大いに寄与することができる。しかも円筒状ガイド筒は非磁性の合成樹脂材の射出成形で形成されていて、このガイド筒の肉厚(非磁性部)にて、弁体外周と弁ハウジング内周との摺動部のエアギャップを大きく確保できるため、摺動面に発生するサイドフォースを低減できて、摺動面の摩耗を効果的に抑制可能となる。 According to the first feature of the present invention, the cylindrical guide tube that is fixed to the inner circumferential portion of the valve housing and whose inner circumferential surface serves as a sliding guide surface for the valve body has self-lubricating properties and is non-magnetic. Since it is formed by injection molding of a synthetic resin material, there is no need to coat the sliding surfaces between the valve body and the valve housing. Therefore, it is possible to avoid the need for a rough polishing process performed before coating, and the need for a long coating application cycle time, etc., which can greatly contribute to reducing manufacturing costs. Furthermore, the cylindrical guide tube is formed by injection molding of a non-magnetic synthetic resin material, and the thickness of the guide tube (non-magnetic part) allows air to flow through the sliding area between the outer periphery of the valve body and the inner periphery of the valve housing. Since a large gap can be secured, side force generated on the sliding surface can be reduced, and wear on the sliding surface can be effectively suppressed.

また特に第2の特徴によれば、ガイド筒は、前記合成樹脂材で型成形されて弁ハウジングの内周面に挿着されるので、円筒状をなすガイド筒単体を弁ハウジングから独立して効率よく射出成形でき、その射出成形後のガイド筒を弁ハウジングの内周に単に嵌挿するだけで、弁ハウジングに後付けで組み付け可能であり、従って、量産性が頗る良好であって更なるコスト節減に寄与することができる。 In addition, particularly according to the second feature, the guide tube is molded from the synthetic resin material and inserted into the inner circumferential surface of the valve housing, so that the cylindrical guide tube alone can be separated from the valve housing. It can be efficiently injection molded, and can be retrofitted to the valve housing by simply inserting the injection molded guide cylinder into the inner periphery of the valve housing. Therefore, it is highly suitable for mass production and reduces costs. This can contribute to savings.

また特に第3の特徴によれば、固定コアに固定されるコイル組立体が、弁ハウジングの他端部に係合、固定され、ガイド筒の弁ハウジングからの離脱が阻止されるように、ガイド筒の固定コア側の端部がコイル組立体に係合するので、弁ハウジングの内周部に固定されるガイド筒に対する抜け止め手段としてコイル組立体を兼用可能となり、更なるコスト節減に寄与することができる。 Particularly, according to the third feature, the coil assembly fixed to the stationary core is engaged with and fixed to the other end of the valve housing, and the guide tube is arranged such that the guide tube is prevented from detaching from the valve housing. Since the end of the tube on the fixed core side engages with the coil assembly, the coil assembly can also be used as a means to prevent the guide tube fixed to the inner periphery of the valve housing from coming off, contributing to further cost savings. be able to.

本発明に係るガス燃料噴射弁の実施形態(閉弁状態)を示す全体縦断面図Overall vertical sectional view showing an embodiment (closed state) of a gas fuel injection valve according to the present invention 前記ガス燃料噴射弁の実施形態(開弁状態)を示す要部縦断面図A vertical cross-sectional view of main parts showing an embodiment (open state) of the gas fuel injection valve. 弁体及び弁ハウジング間の摺動部に働くサイドフォースと、ブッシュの肉厚との関係の一例を示すグラフA graph showing an example of the relationship between the side force acting on the sliding part between the valve body and valve housing and the wall thickness of the bushing. 開弁時に弁体に働く軸方向推力と、ブッシュの肉厚との関係の一例を示すグラフA graph showing an example of the relationship between the axial thrust that acts on the valve body when the valve opens and the wall thickness of the bushing.

本発明の一実施形態を、添付図面により以下に具体的に説明する。 One embodiment of the present invention will be specifically described below with reference to the accompanying drawings.

図1において、本発明に係る電磁式ガス燃料噴射弁Iは、これの前端部が、ガス燃料を燃焼させて動力を発生するエンジンの吸気管Eに設けた取付孔Eaに装着され、エンジンの吸気行程で開弁してガス燃料(例えば水素ガス、ブタンガス、メタンガス等)を吸気管E内に噴射する。尚、実施形態では、ガス燃料噴射弁Iが複数の吸気管E毎に設けられ、それらガス燃料噴射弁Iの後述する燃料導入筒12に燃料分配管Dが接続される。 In FIG. 1, an electromagnetic gas fuel injection valve I according to the present invention has its front end installed in a mounting hole Ea provided in an intake pipe E of an engine that generates power by burning gas fuel. The valve opens during the intake stroke to inject gaseous fuel (eg, hydrogen gas, butane gas, methane gas, etc.) into the intake pipe E. In the embodiment, a gas fuel injection valve I is provided for each of the plurality of intake pipes E, and a fuel distribution pipe D is connected to a fuel introduction pipe 12 of each of the gas fuel injection valves I, which will be described later.

各々のガス燃料噴射弁Iの弁ボディ1は、磁性体より段付き円筒状に形成される弁ハウジング2と、弁ハウジング2の後端部に連設、固定されるボディ基部3と、弁ハウジング2の前端開口部を閉じるノズル部材5とを備える。尚、本明細書において、ガス燃料噴射弁Iは、これの縦軸線Lに沿う方向で吸気管E内に向かう側(即ち燃料噴射側)を前側、その反対側を後側という。 The valve body 1 of each gas fuel injection valve I includes a valve housing 2 formed of a magnetic material into a stepped cylindrical shape, a body base 3 connected to and fixed to the rear end of the valve housing 2, and a valve housing 2. and a nozzle member 5 that closes the front end opening of No. 2. In this specification, the side of the gas fuel injection valve I that faces into the intake pipe E in the direction along the longitudinal axis L (that is, the fuel injection side) is referred to as the front side, and the opposite side thereof is referred to as the rear side.

ノズル部材5は、円盤状に形成されていて、弁ハウジング2の小径前部2fの前端寄り内周面にシールリング13を挟んで気密に嵌合、固定(例えば圧入、溶接等)される。このノズル部材5は、前記縦軸線Lと直交する平面よりなる後向きの弁座5sと、弁座5sの中心部に開口し且つノズル部材5を前後に貫通するノズル孔5nとを有する。 The nozzle member 5 is formed into a disk shape, and is airtightly fitted and fixed (for example, press-fitted, welded, etc.) to the inner circumferential surface of the small-diameter front portion 2f of the valve housing 2 near the front end with the seal ring 13 interposed therebetween. This nozzle member 5 has a rearward-facing valve seat 5s formed of a plane orthogonal to the longitudinal axis L, and a nozzle hole 5n that opens at the center of the valve seat 5s and penetrates the nozzle member 5 back and forth.

また弁ハウジング2の小径前部2fの外周面には、相互間に環状シール溝30を画成する前後一対の合成樹脂製リング部材31,32が嵌着(例えば圧入)される。このシール溝30に装着したシールリング33は、弁ハウジング2の小径前部2fを吸気管Eの前記取付孔Eaに嵌装した時にその取付孔Eaの内周面に密接して弁ハウジング2と取付孔Eaとの間を気密にシールする。 Further, a pair of front and rear synthetic resin ring members 31 and 32 defining an annular seal groove 30 between them are fitted (for example, press-fitted) onto the outer circumferential surface of the small-diameter front portion 2f of the valve housing 2. When the small-diameter front portion 2f of the valve housing 2 is fitted into the mounting hole Ea of the intake pipe E, the seal ring 33 installed in the seal groove 30 is in close contact with the inner circumferential surface of the mounting hole Ea, and is attached to the valve housing 2. Airtightly seal between the mounting hole Ea and the mounting hole Ea.

また弁ハウジング2内には、弁ハウジング2の内周部に挿着したブッシュBを介して前後摺動可能に嵌合されるプランジャ状の弁体7がノズル部材5の後方側に収容される。この弁体7の、ノズル部材5と対向する前端面には、弁座5sと協働してノズル孔5nを開閉可能な弁部6が接合、固定(例えば焼付け、接着等)される。その弁部6は、耐熱性及び耐圧性を有するゴム材で構成される。 Further, within the valve housing 2, a plunger-shaped valve body 7 is accommodated on the rear side of the nozzle member 5, and is fitted so as to be slidable back and forth via a bush B inserted into the inner circumference of the valve housing 2. . A valve portion 6 that can open and close the nozzle hole 5n in cooperation with the valve seat 5s is joined and fixed (for example, by baking or bonding) to the front end surface of the valve body 7 facing the nozzle member 5. The valve portion 6 is made of a rubber material having heat resistance and pressure resistance.

またブッシュBは、自己潤滑性を有し且つ非磁性の合成樹脂材(例えばポリアミド系合成樹脂、例えば6ナイロン)で全体が型成形(より具体的には射出成形)される。尚、ナイロンの中でも、特に摺動性に優れ高品質のMCナイロン(登録商標)が望ましい。 Further, the bush B is entirely molded (more specifically, injection molded) from a self-lubricating and non-magnetic synthetic resin material (for example, polyamide-based synthetic resin, for example, 6-nylon). Note that among nylons, MC nylon (registered trademark), which has excellent sliding properties and high quality, is particularly desirable.

また実施形態の弁ハウジング2の内周面には、これのノズル部材5との嵌合面よりも径方向外方側に一段凹んだ環状凹面2iが形成されており、この環状凹面2iの径方向深さは、ブッシュBの肉厚に略相当する。而して、ブッシュBが環状凹面2iに該凹面2i前端の段差に突き当たるまで嵌挿(実施形態では軽圧入)され、その嵌挿状態ではブッシュBの内周面が弁ハウジング2の上記嵌合面と略面一に連続する。 Further, the inner peripheral surface of the valve housing 2 of the embodiment is formed with an annular concave surface 2i that is recessed one step further in the radial direction than the fitting surface with the nozzle member 5, and the diameter of this annular concave surface 2i is The directional depth approximately corresponds to the wall thickness of the bush B. Thus, the bush B is fitted into the annular concave surface 2i (light press fit in the embodiment) until it hits the step at the front end of the concave surface 2i. Continuous almost flush with the surface.

而して、ブッシュBは、本発明の円筒状のガイド筒の一例であり、またブッシュBの内周面が、弁体7の外周を摺動可能に嵌合、支持する摺動案内面Biを構成している。 The bush B is an example of the cylindrical guide tube of the present invention, and the inner peripheral surface of the bush B is a sliding guide surface Bi that slidably fits and supports the outer periphery of the valve body 7. It consists of

上記弁体7は、前端部が閉塞した有底円筒状に形成され、その弁体7内には、弁体7の中心部を縦通する縦孔7aと、その縦孔7aの前端部より放射方向に延びて弁体7の小径前端部70の外周面に開口する複数の横孔7bとを有する。縦孔7aの後端開口は、後述する固定コア8の中心部を縦通する燃料供給路8aの下流端に近接、対向する。 The valve body 7 is formed into a bottomed cylindrical shape with a closed front end, and inside the valve body 7 is a vertical hole 7a passing vertically through the center of the valve body 7, and from the front end of the vertical hole 7a. It has a plurality of horizontal holes 7b extending in the radial direction and opening in the outer peripheral surface of the small diameter front end portion 70 of the valve body 7. The rear end opening of the vertical hole 7a is close to and opposite to the downstream end of a fuel supply passage 8a that runs vertically through the center of the fixed core 8, which will be described later.

ところで弁体7の、上記小径前端部70より後側の外周面には、軸方向幅が比較的狭い前側の第1大径部71と、第1大径部71の後端に環状溝部73を介して隣接し且つ軸方向幅が広い後側の第2大径部72とが設けられ、それら第1,第2大径部71,72の外周面がブッシュBの内周面(即ち前記摺動案内面Bi)に摺接する。 By the way, on the outer circumferential surface of the valve body 7 on the rear side of the small diameter front end 70, there is a first large diameter part 71 on the front side having a relatively narrow axial width, and an annular groove part 73 at the rear end of the first large diameter part 71. A second large-diameter portion 72 on the rear side that is adjacent to the rear side and has a wide axial width is provided, and the outer circumferential surfaces of the first and second large-diameter portions 71 and 72 are adjacent to each other via the inner circumferential surface of the bush B (i.e., the It slides into sliding contact with the sliding guide surface Bi).

次に前記したボディ基部3の具体例を説明する。ボディ基部3は、弁体7の後端部に作動間隙s(弁体7の開閉ストロークに相当)を挟んで前端面が対向配置される円筒状の固定コア8と、固定コア8の外周部及び弁体7の後端部外周を囲繞するコイル組立体10と、コイル組立体10の外周部及び後端部を被覆するようにして固定コア8の外周に一体に連設される有底円筒状のコイルカバー筒9と、固定コア8の後端部に一体に連設されて後方に同軸状に延びる燃料導入筒12とを備えており、コイル組立体10を除くボディ基部3の全体が磁性体で構成される。 Next, a specific example of the body base 3 described above will be explained. The body base 3 includes a cylindrical fixed core 8 whose front end faces are arranged opposite to the rear end of the valve body 7 with an operating gap s (corresponding to the opening/closing stroke of the valve body 7) in between, and an outer peripheral part of the fixed core 8. and a coil assembly 10 surrounding the outer periphery of the rear end of the valve body 7, and a bottomed cylinder integrally connected to the outer periphery of the fixed core 8 so as to cover the outer periphery and rear end of the coil assembly 10. It includes a shaped coil cover cylinder 9 and a fuel introduction cylinder 12 that is integrally connected to the rear end of the fixed core 8 and extends coaxially rearward, and the entire body base 3 except the coil assembly 10 is Composed of magnetic material.

コイル組立体10は、コイル10cとコイル10cを巻装させ且つ被覆する絶縁性合成樹脂製のボビン10bとを有して全体として円筒状に形成される。コイル組立体10(より具体的にはボビン10b)の前端面は、弁ハウジング2の後端フランジ部2rの後端面にシールリング15を挟んで当接しており、その当接状態は、コイルカバー筒9の前端部が弁ハウジング2の後端フランジ部2r外周を一体的に結合(例えばカシメ加工9k)されることで、強固に保持される。 The coil assembly 10 has a cylindrical shape as a whole and includes a coil 10c and a bobbin 10b made of an insulating synthetic resin around which the coil 10c is wound and covered. The front end surface of the coil assembly 10 (more specifically, the bobbin 10b) is in contact with the rear end surface of the rear end flange portion 2r of the valve housing 2 with the seal ring 15 interposed therebetween, and the state of contact is such that the coil cover The front end of the cylinder 9 is firmly held by integrally joining the outer periphery of the rear end flange 2r of the valve housing 2 (for example, by caulking 9k).

しかもコイル組立体10(より具体的にはボビン10b)の前端面の内周端寄り部分は、ブッシュBの後端に係合しており、その係合により、ブッシュBの弁ハウジング2内周部からの離脱が阻止される。 Moreover, a portion of the front end surface of the coil assembly 10 (more specifically, the bobbin 10b) near the inner peripheral end is engaged with the rear end of the bush B, and due to this engagement, the inner periphery of the valve housing 2 of the bush B is Separation from the department is prevented.

また弁ボディ1のボディ基部3の後部には、コイルカバー筒9の後端部及び燃料導入筒12の前部外周を連続的に被覆する樹脂モールド層20が結合一体化される。この樹脂モールド層20には、コイル10sに連なる通電用端子21を保持するカプラ部22が、樹脂モールド層20の一側方に張り出すようにして一体成形される。このカプラ部22内で通電用端子21が不図示の外部配線を介して電子制御装置に接続され、この電子制御装置によりエンジンの運転状態に応じてコイル10cへの通電制御がなされ、これにより弁体7が開閉制御される。 Furthermore, a resin mold layer 20 that continuously covers the rear end portion of the coil cover tube 9 and the front outer periphery of the fuel introduction tube 12 is integrally connected to the rear portion of the body base portion 3 of the valve body 1 . A coupler portion 22 that holds a current-carrying terminal 21 connected to the coil 10s is integrally molded into this resin mold layer 20 so as to protrude to one side of the resin mold layer 20. Inside the coupler section 22, the energizing terminal 21 is connected to an electronic control device via external wiring (not shown), and the electronic control device controls the energization of the coil 10c according to the operating state of the engine, thereby controlling the energization of the coil 10c. The opening and closing of the body 7 is controlled.

ところで固定コア8の中空部内周面、即ち燃料供給路8aの周面には、中空円筒状のリテーナ16が固定(例えば圧入)され、このリテーナ16と弁体7との間には、弁体7を前方即ち弁座5s側に弾発付勢する戻しばね14が縮設される。そして、この戻しばね14の付勢力は、コイル10sが非通電即ち非励磁状態(図1参照)にある場合に弁部6を弁座5sに対する着座位置に保持し、これにより、ガス燃料噴射弁Iは閉弁状態を維持される。 By the way, a hollow cylindrical retainer 16 is fixed (for example, press-fitted) to the inner circumferential surface of the hollow part of the fixed core 8, that is, the circumferential surface of the fuel supply path 8a. A return spring 14 is contracted to bias the valve 7 forward, that is, toward the valve seat 5s. The biasing force of the return spring 14 holds the valve portion 6 in the seated position relative to the valve seat 5s when the coil 10s is in a non-energized state (see FIG. 1), thereby holding the valve portion 6 in the seated position relative to the valve seat 5s. I is kept closed.

一方、コイル10sが通電により励磁状態(図2参照)にある場合には、可動コアとして機能する弁体7を固定コア8が磁気吸引することで、弁部6を戻しばね14の付勢力に抗して弁座5sから離間させる。これにより、ガス燃料噴射弁Iは開弁状態となる。 On the other hand, when the coil 10s is in an excited state (see FIG. 2) by being energized, the fixed core 8 magnetically attracts the valve body 7, which functions as a movable core, to return the valve part 6 to the biasing force of the spring 14. resist and separate it from the valve seat 5s. As a result, the gas fuel injection valve I is brought into an open state.

また前記した燃料導入筒12の中空部12iは、固定コア8を縦通する燃料供給路8a(従ってリテーナ16内部)に連通しており、また燃料導入筒12の後端開口、即ち入口に燃料フィルタ17が装着される。更に燃料導入筒12の後端部外周には環状シール溝12gが凹設され、このシール溝12gに装着した後部シールリング18は、燃料導入筒12の外周に燃料分配管Dを嵌装した時にその燃料分配管Dの内周面に密接して燃料導入筒12及び燃料分配管D間を気密にシールする。 Further, the hollow portion 12i of the fuel introduction tube 12 is in communication with the fuel supply path 8a (therefore, inside the retainer 16) that runs vertically through the fixed core 8, and the rear end opening of the fuel introduction tube 12, that is, the inlet is connected to the fuel supply path 8a (therefore, inside the retainer 16). Filter 17 is attached. Furthermore, an annular seal groove 12g is recessed in the outer periphery of the rear end of the fuel introduction tube 12, and the rear seal ring 18 attached to the seal groove 12g is inserted into the outer periphery of the fuel introduction tube 12 when the fuel distribution pipe D is fitted. The fuel introduction cylinder 12 and the fuel distribution pipe D are airtightly sealed in close contact with the inner circumferential surface of the fuel distribution pipe D.

尚、燃料分配管Dの上流側は、図示はしないがガス燃料タンク内に減圧装置(例えば減圧弁等)を介して接続され、その減圧装置で圧力調整された高圧ガス燃料が燃料分配管Dから複数のガス燃料噴射弁Iに分配供給されるようになっている。 Although not shown, the upstream side of the fuel distribution pipe D is connected to the gas fuel tank via a pressure reducing device (for example, a pressure reducing valve, etc.), and the high pressure gas fuel whose pressure is regulated by the pressure reducing device is transferred to the fuel distribution pipe D. The gas is distributed and supplied to a plurality of gas fuel injection valves I from there.

次に前記実施形態の作用を説明する。図1に示すコイル10cの非励磁状態では、弁体7が戻しばね14により前方に付勢されて弁部6を弁座5sに着座させ、これにより、ガス燃料噴射弁Iを閉弁状態に保つ。この状態では、図示しないガス燃料タンクから燃料分配管Dに送られたガス燃料は、燃料導入筒12内に流入した後、中空のリテーナ16、固定コア8内の燃料供給路8a、弁体7の縦孔7a,横孔7bを経由して弁ハウジング2の内部(具体的にはノズル部材5手前側の空間)で待機するが、このとき弁体7には、戻しばね14の付勢力とガス燃料の圧力とが閉弁力として作用して、弁部6を弁座5sとの着座位置に押圧、保持する。 Next, the operation of the above embodiment will be explained. In the non-energized state of the coil 10c shown in FIG. 1, the valve body 7 is urged forward by the return spring 14 to seat the valve portion 6 on the valve seat 5s, thereby bringing the gas fuel injection valve I into the closed state. keep. In this state, the gas fuel sent from the gas fuel tank (not shown) to the fuel distribution pipe D flows into the fuel introduction pipe 12, and then passes through the hollow retainer 16, the fuel supply path 8a in the fixed core 8, and the valve body 7. The valve body 7 waits inside the valve housing 2 (specifically, the space in front of the nozzle member 5) through the vertical hole 7a and the horizontal hole 7b, but at this time, the valve body 7 is not affected by the biasing force of the return spring 14. The pressure of the gas fuel acts as a valve closing force to press and hold the valve portion 6 in the seated position with the valve seat 5s.

斯かる状態より、コイル10cが通電により励磁状態となると、磁束がコイル10c周囲のコイルカバー筒9、弁ハウジング2、弁体7及び固定コア8を順次走り、これにより、弁体7が戻しばね14及び待機ガス燃料の圧力に抗して固定コア8に磁気吸引され、即ち、弁体7には後述する開弁方向推力が作用する。 In this state, when the coil 10c is energized by electricity, the magnetic flux sequentially travels through the coil cover tube 9, the valve housing 2, the valve body 7, and the fixed core 8 around the coil 10c, causing the valve body 7 to return to its original position. 14 and the pressure of the standby gas fuel, it is magnetically attracted to the fixed core 8, that is, a thrust force in the valve opening direction, which will be described later, acts on the valve body 7.

かくして、弁体7と一体の弁部6が弁座5cから離れることでガス燃料噴射弁Iが開弁し、これに伴い、弁ハウジング2内で待機状態にあったガス燃料がノズル孔5nから吸気管E内に噴射される。 In this way, the gas fuel injection valve I opens when the valve part 6 integrated with the valve body 7 separates from the valve seat 5c, and accordingly, the gas fuel that has been waiting in the valve housing 2 is released from the nozzle hole 5n. It is injected into the intake pipe E.

以上説明した実施形態において、弁ハウジング2の内周部に固定されて内周面が弁体7に対する摺動案内面Biとなるガイド筒としてのブッシュBは、自己潤滑性を有する合成樹脂材(ナイロン)の射出成形により形成されている。これにより、弁体7及び弁ハウジング2相互の摺動面を従来技術の如く固体潤滑剤(DLC、フッ素樹脂等)でコーティングする必要はなくなり、従って、コーティングに伴う従来技術の不都合(例えば、コーティング後の面粗度確保のためにコーティング前に行われる荒研磨工程が必要となり、またコーティング塗布サイクルタイムが多く必要となる等)を回避できるから、製造コストの大幅低減が達成可能となる。 In the embodiment described above, the bush B as a guide cylinder which is fixed to the inner circumferential part of the valve housing 2 and whose inner circumferential surface becomes the sliding guide surface Bi for the valve body 7 is made of a self-lubricating synthetic resin material ( It is formed by injection molding of nylon. This eliminates the need to coat the sliding surfaces between the valve body 7 and the valve housing 2 with a solid lubricant (DLC, fluororesin, etc.) as in the prior art. This makes it possible to avoid the need for a rough polishing step before coating to ensure subsequent surface roughness, and the need for a long coating application cycle time, making it possible to significantly reduce manufacturing costs.

しかもブッシュBは、非磁性の上記合成樹脂材の射出成形で形成されていて、このブッシュBの肉厚(非磁性部)にて、弁体7外周と弁ハウジング2内周との摺動部のエアギャップを大きく確保できるため、摺動面に発生するサイドフォースを低減できて、摺動面の摩耗を効果的に抑制可能となる。より具体的に説明すると、ブッシュBの摺動面(即ち摺動案内面Bi)の摩耗量は、弁体7の開閉作動回数と、摺動面の面圧と、弁体7の摺動速度との積に比例すると考えられ、特に摺動面の面圧は上記サイドフォースに依存する相関関係がある。このことから、サイドフォースが大きくなるにつれて摩耗量が大きくなるこ
とは明らかである。
Moreover, the bush B is formed by injection molding of the above-mentioned non-magnetic synthetic resin material, and the thickness of the bush B (non-magnetic part) is the sliding area between the outer periphery of the valve body 7 and the inner periphery of the valve housing 2. Since a large air gap can be secured, the side force generated on the sliding surface can be reduced, and wear on the sliding surface can be effectively suppressed. To explain more specifically, the amount of wear on the sliding surface of the bush B (i.e., the sliding guide surface Bi) is determined by the number of opening and closing operations of the valve body 7, the surface pressure on the sliding surface, and the sliding speed of the valve body 7. It is considered that the surface pressure on the sliding surface is proportional to the product of the side force, and in particular, there is a correlation that the surface pressure on the sliding surface depends on the side force. From this, it is clear that the amount of wear increases as the side force increases.

ところで図3のグラフは、弁体7及び弁ハウジング2間の摺動部に働くサイドフォースと、ガイド筒としてのブッシュBの肉厚との関係の一例を示すグラフであり、また図4は、ガス燃料噴射弁Iの開弁時に弁体7に働く軸方向推力と、ブッシュBの肉厚との関係の一例を示すグラフである。 By the way, the graph in FIG. 3 is a graph showing an example of the relationship between the side force acting on the sliding part between the valve body 7 and the valve housing 2 and the wall thickness of the bush B as a guide cylinder, and FIG. 7 is a graph showing an example of the relationship between the axial thrust acting on the valve body 7 and the wall thickness of the bush B when the gas fuel injection valve I is opened.

その図3で明らかなように、弁体7外周と弁ハウジング2内周との摺動面に発生するサイドフォースは、ブッシュBの肉厚が大きくなるにつれて減少しており、例えば肉厚が0.5mmの実施例のサイドフォースは、コーティング膜が約0.050mmの樹脂コーティングを施した従来例のサイドフォースと比べ大幅に低減されることが判る。そして、このサイドフォースの低減により摺動面の摩耗量を低減可能となることは、前記したサイドフォースと摩耗量との相関関係も明らかである。 As is clear from FIG. 3, the side force generated on the sliding surface between the outer periphery of the valve body 7 and the inner periphery of the valve housing 2 decreases as the wall thickness of the bush B increases. It can be seen that the side force of the example with a thickness of 0.5 mm is significantly reduced compared to the side force of the conventional example with a resin coating of about 0.050 mm. It is also clear from the correlation between the side force and the amount of wear that the amount of wear on the sliding surface can be reduced by reducing the side force.

一方、図4でも明らかなように、前記エアギャップが大きくなるにつれて、弁体7の開弁方向推力(磁気吸引力)が減少する傾向があるが、例えば、ブッシュBの肉厚が0.5mmの実施例の開弁方向推力でも、弁体7の迅速且つ的確な開弁動作に必要な開弁方向推力の許容下限値を十分に上回っていて、十分な開弁方向推力を確保し得ることは明らかである。 On the other hand, as is clear from FIG. 4, as the air gap becomes larger, the thrust force (magnetic attraction force) in the valve opening direction of the valve body 7 tends to decrease. Even the thrust in the valve opening direction of the embodiment shown in FIG. is clear.

而して、本発明においては、開弁方向推力を十分に確保し得る範囲(即ち図4の推力OK領域)で、ブッシュBの肉厚を、従来例よりも摺動面のサイドフォースが十分低減される肉厚範囲で適宜に設定可能である。即ち、その設定値は、実施例の0.5mmだけに限定されることはない。 Therefore, in the present invention, the wall thickness of the bush B is set such that the side force on the sliding surface is sufficient compared to the conventional example within the range where the thrust in the valve opening direction can be sufficiently secured (that is, the thrust OK region in FIG. 4). It can be set appropriately within the wall thickness range to be reduced. That is, the set value is not limited to 0.5 mm as in the embodiment.

また特に実施形態のブッシュBは、前記合成樹脂材で型成形(より具体的には射出成形)されていて後付けで弁ハウジング2の内周面に挿着されるので、ブッシュB単体を弁ハウジング2から独立して効率よく射出成形でき、その射出成形後のブッシュBを弁ハウジング2の内周に単に嵌挿するだけで、弁ハウジング2に後付けで組み付け可能である。従って、量産性が頗る良好であって更なるコスト節減が達成される。 In particular, the bush B of the embodiment is molded (more specifically, injection molded) from the synthetic resin material and is inserted into the inner circumferential surface of the valve housing 2 afterward. The bush B can be efficiently injection molded independently from the valve housing 2, and can be retrofitted to the valve housing 2 by simply inserting the injection molded bush B into the inner periphery of the valve housing 2. Therefore, mass production is extremely easy and further cost savings are achieved.

さらに実施形態では、固定コア8に固定されるコイル組立体10が、弁ハウジング2の他端部に係合、固定され、ブッシュBの弁ハウジング2からの離脱が阻止されるように、ブッシュBの固定コア8側の後端部がコイル組立体10に係合するので、弁ハウジング2の内周部に固定されるブッシュBに対する抜け止め手段としてコイル組立体10を兼用可能となり、更なるコスト節減が達成される。 Further, in the embodiment, the coil assembly 10 fixed to the fixed core 8 is engaged with and fixed to the other end of the valve housing 2, and the bush B is configured such that the bush B is prevented from separating from the valve housing 2. Since the rear end of the fixed core 8 side engages with the coil assembly 10, the coil assembly 10 can also be used as a means for preventing the bush B fixed to the inner peripheral part of the valve housing 2 from coming off, which reduces further costs. Savings are achieved.

以上、本発明の実施形態について説明したが、本発明はその実施形態に限定されることなく、本発明の範囲内で種々の実施形態を実施可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments, and various embodiments can be implemented within the scope of the present invention.

例えば、前記実施形態では、ガイド筒としてのブッシュの構成材としてポリアミド系合成樹脂(ナイロン)を用いたものが示されるが、ガイド筒の構成材は実施形態に限定されず、少なくとも自己潤滑性を有し且つ非磁性の合成樹脂であればよく、例えば結晶性の高いポリアセタール樹脂を用いてもよい。 For example, in the above embodiment, polyamide-based synthetic resin (nylon) is used as the material of the bush as the guide tube, but the material of the guide tube is not limited to the embodiment, and has at least self-lubricating properties. Any synthetic resin may be used as long as it has the same properties and is non-magnetic. For example, a highly crystalline polyacetal resin may be used.

また前記実施形態では、ガイド筒としてのブッシュB単体を弁ハウジング2から独立して射出成形し、その射出成形後のブッシュBを弁ハウジング2の内周に後付けで挿着するものを示したが、本発明の第1の特徴においては、予め製作した弁ハウジング2をインサート部品としてブッシュBをインサート成形することで、ブッシュBを弁ハウジング2内周に結合一体化するようにしてもよい。 Furthermore, in the above embodiment, the bush B as a guide cylinder is injection molded independently from the valve housing 2, and the injection molded bush B is inserted into the inner circumference of the valve housing 2 as a post-installation. According to the first feature of the present invention, the bush B may be integrally connected to the inner periphery of the valve housing 2 by insert-molding the bush B using the valve housing 2 manufactured in advance as an insert component.

また前記実施形態では、電磁式ガス燃料噴射弁Iを、ガス燃料を燃焼させて動力を発生する内燃式エンジンの吸気管Eに設けた取付孔Eaに装着して、その吸気管E内にガス燃料を噴射可能としたものを例示したが、本発明の電磁式ガス燃料噴射弁の設置対象は実施形態に限定されず、例えば水素ガスと空気(酸素ガス)とを化学反応させて生じる電気で走行用モータを駆動する燃料電池車に搭載の燃料電池に本発明のガス燃料噴射弁を設置してもよい。この場合、ガス燃料噴射弁は、例えば燃料電池本体に設けられて水素ガス導入口となる取付孔に装着されて、水素ガス源(例えば水素ガスタンク)から燃料電池へ向かう水素ガスの供給制御に使用される。 Further, in the above embodiment, the electromagnetic gas fuel injection valve I is installed in the mounting hole Ea provided in the intake pipe E of an internal combustion engine that generates power by burning gas fuel, and the gas is injected into the intake pipe E. Although the electromagnetic gas fuel injection valve of the present invention is exemplified as an example that can inject fuel, the installation target of the electromagnetic gas fuel injection valve of the present invention is not limited to the embodiment. The gas fuel injection valve of the present invention may be installed in a fuel cell mounted on a fuel cell vehicle that drives a driving motor. In this case, the gas fuel injection valve is installed, for example, in a mounting hole that is provided in the fuel cell body and serves as a hydrogen gas inlet, and is used to control the supply of hydrogen gas from a hydrogen gas source (for example, a hydrogen gas tank) to the fuel cell. be done.

B・・・・・ガイド筒としてのブッシュ
Bi・・・・摺動案内面
I・・・・・ガス燃料噴射弁
2・・・・・弁ハウジング
5・・・・・ノズル部材
5n・・・・ノズル孔
5s・・・・弁座
6・・・・・弁部
7・・・・・弁体
8・・・・・固定コア
10・・・・コイル組立体
10b・・・ボビン
10c・・・コイル
14・・・・戻しばね
B...Bush Bi as a guide tube...Sliding guide surface I...Gas fuel injection valve 2...Valve housing 5...Nozzle member 5n... - Nozzle hole 5s... Valve seat 6... Valve part 7... Valve body 8... Fixed core 10... Coil assembly 10b... Bobbin 10c...・Coil 14...Return spring

Claims (3)

磁性体よりなる筒状の弁ハウジング(2)と、弁座(5s)及び該弁座(5s)の中心部を貫通するノズル孔(5n)を有して前記弁ハウジング(2)の一端部に固設されるノズル部材(5)と、前記弁ハウジング(2)の内周部に設けた摺動案内面(Bi)に摺動可能に嵌合される弁体(7)と、前記弁体(7)の、前記ノズル部材(5)と対向する一端面に固定され且つ前記弁座(5s)と協働して前記ノズル孔(5n)を開閉可能なゴム製弁部(6)と、前記弁ハウジング(2)に連結されると共に前記弁体(7)の他端面に対向する固定コア(8)と、前記弁ハウジング(2)の他端部及び前記固定コア(8)を囲繞するよう配置されて該固定コア(8)に固定されるコイル(10c)と、前記弁体(7)を前記弁座(5s)側に付勢して前記コイル(10c)の非励磁時には前記弁部(8)を該弁座(5s)に対する着座位置に保持する戻しばね(14)とを備え、前記コイル(10c)の励磁時には前記固定コア(8)が前記弁体(7)を磁気吸引することで前記弁部(6)を前記戻しばね(14)に抗して前記弁座(5s)から離間させるようにした電磁式ガス燃料噴射弁において、
前記弁ハウジング(2)の内周部に固定されて内周面が前記摺動案内面(Bi)となる円筒状のガイド筒(B)が、自己潤滑性を有し且つ非磁性の合成樹脂材の射出成形により形成されていることを特徴とする電磁式ガス燃料噴射弁。
One end of the valve housing (2) has a cylindrical valve housing (2) made of a magnetic material, a valve seat (5s), and a nozzle hole (5n) passing through the center of the valve seat (5s). a nozzle member (5) fixed to the valve housing (2), a valve body (7) slidably fitted to a sliding guide surface (Bi) provided on the inner circumference of the valve housing (2); a rubber valve part (6) fixed to one end surface of the body (7) facing the nozzle member (5) and capable of opening and closing the nozzle hole (5n) in cooperation with the valve seat (5s); , a fixed core (8) connected to the valve housing (2) and facing the other end surface of the valve body (7), and surrounding the other end of the valve housing (2) and the fixed core (8). A coil (10c) is arranged and fixed to the fixed core (8), and the valve body (7) is biased toward the valve seat (5s) so that when the coil (10c) is not energized, the coil (10c) is fixed to the fixed core (8). and a return spring (14) that holds the valve portion (8) in a seated position relative to the valve seat (5s), and when the coil (10c) is energized, the fixed core (8) magnetizes the valve body (7). In an electromagnetic gas fuel injection valve, the valve portion (6) is moved away from the valve seat (5s) against the return spring (14) by suction,
The cylindrical guide tube (B), which is fixed to the inner circumferential portion of the valve housing (2) and whose inner circumferential surface becomes the sliding guide surface (Bi), is made of a self-lubricating and non-magnetic synthetic resin. An electromagnetic gas fuel injection valve characterized by being formed by injection molding of material.
前記ガイド筒(B)は、これの全体が前記合成樹脂材で型成形され、且つ前記弁ハウジング(2)の内周面に挿着されていることを特徴とする、請求項1に記載の電磁式ガス燃料噴射弁。 2. The guide tube (B) according to claim 1, wherein the guide tube (B) is entirely molded from the synthetic resin material and is inserted into the inner circumferential surface of the valve housing (2). Electromagnetic gas fuel injection valve. 前記コイル(10c)と該コイル(10c)を巻装させるボビン(10b)とを有して前記固定コア(8)に固定されるコイル組立体(10)が、前記弁ハウジング(2)の他端部に係合、固定されており、
前記ガイド筒(B)の前記弁ハウジング(2)からの離脱が阻止されるように、該ガイド筒(B)の前記固定コア(8)側の端部が前記コイル組立体(10)に係合していることを特徴とする、請求項1又は2に記載の電磁式ガス燃料噴射弁。
A coil assembly (10) fixed to the stationary core (8), which has the coil (10c) and a bobbin (10b) around which the coil (10c) is wound, is attached to the valve housing (2) as well as the coil assembly (10). It is engaged and fixed at the end,
An end of the guide tube (B) on the fixed core (8) side is engaged with the coil assembly (10) so that the guide tube (B) is prevented from coming off the valve housing (2). 3. The electromagnetic gas fuel injection valve according to claim 1 or 2, wherein the electromagnetic gas fuel injection valve is matched with the above.
JP2022118185A 2022-07-25 2022-07-25 Electromagnetic gas fuel injection valve Pending JP2024015850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022118185A JP2024015850A (en) 2022-07-25 2022-07-25 Electromagnetic gas fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022118185A JP2024015850A (en) 2022-07-25 2022-07-25 Electromagnetic gas fuel injection valve

Publications (1)

Publication Number Publication Date
JP2024015850A true JP2024015850A (en) 2024-02-06

Family

ID=89772590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022118185A Pending JP2024015850A (en) 2022-07-25 2022-07-25 Electromagnetic gas fuel injection valve

Country Status (1)

Country Link
JP (1) JP2024015850A (en)

Similar Documents

Publication Publication Date Title
US7735757B2 (en) Gaseous fuel injection valve
US7267113B2 (en) Fluid control valve
US8113177B2 (en) Electromagnetic fuel injector and method for assembling the same
US8800961B2 (en) Fluid control electromagnetic valve
JP5225978B2 (en) Solenoid valve and manufacturing method thereof
KR20070061434A (en) Hydraulic fluid passage with particle gettering magnet
KR101592134B1 (en) Electromagnetic fuel injection valve
US5139227A (en) Proportional flow control valve
US20210278008A1 (en) Solenoid
JP2024015850A (en) Electromagnetic gas fuel injection valve
US9377118B2 (en) Pressure reducing valve
JP3666693B2 (en) Electromagnetic fuel injection device
JP2024014148A (en) Electromagnetic gas fuel injection valve
JP2012067664A (en) Injection valve for gaseous fuel
JP3718035B2 (en) Fuel injection valve
US10896777B2 (en) Solenoid
WO2022254988A1 (en) Electromagnetic fuel injection valve
JP2022146785A (en) Gas fuel injection valve
JP2004068671A (en) Gas fuel injection valve
US6571766B2 (en) Idle speed controller for internal combustion engine
JP2022102752A (en) Electromagnetic fuel injection valve
JP2022102753A (en) Electromagnetic gas fuel injection valve
JP2022102751A (en) Electromagnetic fuel injection valve
JP2022020500A (en) Electromagnetic fuel injection valve
JP2022142303A (en) solenoid valve

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20231030

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20231116