JP2024014977A - Motor valve - Google Patents

Motor valve Download PDF

Info

Publication number
JP2024014977A
JP2024014977A JP2023196517A JP2023196517A JP2024014977A JP 2024014977 A JP2024014977 A JP 2024014977A JP 2023196517 A JP2023196517 A JP 2023196517A JP 2023196517 A JP2023196517 A JP 2023196517A JP 2024014977 A JP2024014977 A JP 2024014977A
Authority
JP
Japan
Prior art keywords
valve
port
sub
valve chamber
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023196517A
Other languages
Japanese (ja)
Inventor
亮司 小池
Ryoji Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2023196517A priority Critical patent/JP2024014977A/en
Publication of JP2024014977A publication Critical patent/JP2024014977A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/44Details of seats or valve members of double-seat valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Details Of Valves (AREA)

Abstract

To suppress generation of noise and vibration of a motor valve by stabilizing the state of a coolant in an auxiliary valve chamber and reducing the acoustic pressure of the coolant passing sound at a port throttle portion between an auxiliary valve port formed on a main valve body and an auxiliary valve body, for a motor valve which controls the flow rate in a small flow-rate control range of the coolant with the port throttle portion.SOLUTION: A guide boss portion 41 inserted into an auxiliary valve chamber 3R is provided for an auxiliary valve body 4. A throttle passage S1 is formed by a clearance between an inner circumference of the auxiliary valve chamber 3R and an outer circumference of the guide boss portion 41. A coolant flowing into a main valve chamber 1R flows to the auxiliary valve chamber 3R through the throttle passage S1 from a communication passage 3b. The coolant in the main valve chamber 1R is stabilized by passing through the throttle passage S1 even when the coolant is a mixture of a gas phase coolant and a liquid phase coolant. The coolant passes through a port throttle portion P from the auxiliary valve chamber 3R.SELECTED DRAWING: Figure 2

Description

本発明は、冷凍サイクルシステムなどに使用する電動弁に関する。 The present invention relates to an electric valve used in a refrigeration cycle system or the like.

従来、空気調和機の冷凍サイクルに設けられる電動弁として、小流量制御域と大流量域とで流量制御する電動弁がある。このような電動弁は、例えば特開2020-106086号公報(特許文献1)に開示されている。 BACKGROUND ART Conventionally, as an electric valve provided in a refrigeration cycle of an air conditioner, there is an electric valve that controls the flow rate in a small flow rate control area and a large flow rate area. Such an electric valve is disclosed in, for example, Japanese Patent Application Publication No. 2020-106086 (Patent Document 1).

図9はこの従来の電動弁の要部拡大断面図である。この従来の電動弁では、主弁体aと副弁体bとを備え、副弁体bの連通路b3から主弁体aの副弁室a1へ冷媒を流入させ、副弁体bのニードル弁b2と副弁ポートa2との隙間であるポート絞り部Pで冷媒を絞って小流量制御を行うものである。 FIG. 9 is an enlarged sectional view of the main parts of this conventional electric valve. This conventional motor-operated valve includes a main valve body a and a sub-valve body b, and allows refrigerant to flow into the sub-valve chamber a1 of the main valve body a from the communication passage b3 of the sub-valve body b, and the needle of the sub-valve body b The refrigerant is throttled in a port throttle section P, which is a gap between the valve b2 and the sub-valve port a2, to perform small flow control.

特開2020-106086号公報JP2020-106086A

特許文献1の電動弁では、連通路b3に流入する冷媒が気相に液相が混入した場合等、冷媒の状態が不安定である場合、冷媒が安定しないままポート絞り部Pに流入する。このため、ポート絞り部Pの冷媒通過音が増大するという問題がある。 In the motor-operated valve of Patent Document 1, when the state of the refrigerant is unstable, such as when the liquid phase is mixed into the gas phase of the refrigerant flowing into the communication path b3, the refrigerant flows into the port throttle part P without being stabilized. For this reason, there is a problem in that the sound of refrigerant passing through the port constriction portion P increases.

本発明は、主弁体で主弁ポートを全閉状態とし、この主弁体に形成された副弁ポートと副弁体との間のポート絞り部により冷媒の小流量制御域での流量制御を行う電動弁において、副弁室内での冷媒の状態を安定化し、ポート絞り部の冷媒通過音の音圧を低減して、電動弁の騒音や振動の発生を抑制することを課題とする。 The present invention completely closes the main valve port with the main valve element, and controls the flow rate in a small flow rate control range of refrigerant using the port constriction section between the auxiliary valve port formed on the main valve element and the auxiliary valve element. The purpose of this invention is to stabilize the state of refrigerant in the auxiliary valve chamber, reduce the sound pressure of the sound of refrigerant passing through the port restrictor, and suppress the generation of noise and vibration in the motor-operated valve.

本発明の電動弁は、弁本体の主弁室内に設けられて該主弁室に開口する主弁ポートを開閉する主弁体と、前記主弁体に形成された副弁室内で該主弁体に形成された副弁ポートの軸線方向に移動して該副弁ポートの開度を制御する副弁体と、を備え、前記主弁室から前記副弁室に連通する連通路が形成され、前記主弁体で前記主弁ポートを閉として、前記連通路を介して前記副弁室に流入する流体を、前記副弁体のニードル弁と前記副弁ポートとの隙間のポート絞り部で絞る小流量制御域を有する電動弁において、前記連通路から前記ポート絞り部までの間に、前記副弁室内での流体の状態を安定化する安定化構造を備えたことを特徴とする。 The motor-operated valve of the present invention includes a main valve body that is provided in a main valve chamber of a valve body and opens and closes a main valve port that opens into the main valve chamber, and a main valve body that is disposed in a sub-valve chamber that is formed in the main valve body. a sub-valve body that moves in the axial direction of a sub-valve port formed in the body to control the opening degree of the sub-valve port, and a communication passage communicating from the main valve chamber to the sub-valve chamber is formed. , the main valve port is closed by the main valve body, and the fluid flowing into the auxiliary valve chamber via the communication passage is directed to a port constriction portion in the gap between the needle valve of the auxiliary valve body and the auxiliary valve port. The motor-operated valve having a small flow rate control region to be throttled is characterized in that a stabilizing structure is provided between the communication passage and the port throttle portion to stabilize the state of the fluid in the sub-valve chamber.

この際、前記副弁室の内周と、該副弁室に内挿される前記副弁体の外周とのクリアランスからなる絞り通路により前記安定化構造を構成していることを特徴とする電動弁が好ましい。 In this case, the electric valve is characterized in that the stabilizing structure is constituted by a throttle passage formed by a clearance between the inner periphery of the auxiliary valve chamber and the outer periphery of the auxiliary valve body inserted into the auxiliary valve chamber. is preferred.

また、前記副弁体は前記副弁室内に挿通されるガイド用ボス部を備え、前記副弁室の内周と前記ガイド用ボスの外周とのクリアランスにより前記絞り通路を構成していることを特徴とする電動弁が好ましい。 Further, the sub-valve body includes a guide boss portion inserted into the sub-valve chamber, and the throttle passage is formed by a clearance between the inner periphery of the sub-valve chamber and the outer periphery of the guide boss. Electrically operated valves with the following characteristics are preferred.

また、前記副弁体は前記副弁室内に挿通されるフランジ部と、前記連通路に開口する拡
大空間と、を備え、前記副弁室の内周と前記フランジ部の外周とのクリアランスからなる絞り通路と、前記拡大空間とにより、前記安定化構造を構成していることを特徴とする電動弁が好ましい。
Further, the sub-valve body includes a flange portion inserted into the sub-valve chamber, and an enlarged space opening to the communication passage, and includes a clearance between an inner periphery of the sub-valve chamber and an outer periphery of the flange portion. Preferably, the motor-operated valve is characterized in that the stabilizing structure is constituted by a throttle passage and the enlarged space.

また、前記フランジ部に、前記拡大空間から前記ポート絞り部側まで前記軸線方向に貫通する透孔が形成されていることを特徴とする電動弁が好ましい。 Preferably, the electric valve is characterized in that the flange portion is formed with a through hole penetrating in the axial direction from the enlarged space to the port constriction portion side.

また、前記連通路の開口面積[A]と、前記絞り通路の開口面積[B]と、前記ポート絞り部の開口面積[C]と、の関係が、
A>B>C
となっていることを特徴とする電動弁が好ましい。
Further, the relationship between the opening area [A] of the communication passage, the opening area [B] of the throttle passage, and the opening area [C] of the port throttle part is as follows:
A>B>C
An electrically operated valve characterized by the following is preferable.

また、前記連通路の開口面積[A]と、前記絞り通路の開口面積[B]と、前記ポート絞り部の開口面積[C]と、前記透孔の開口面積[D]と、の関係が、
A>B+D>C
となっていることを特徴とする電動弁が好ましい。
Further, the relationship among the opening area [A] of the communication passage, the opening area [B] of the throttle passage, the opening area [C] of the port throttle part, and the opening area [D] of the through hole is ,
A>B+D>C
An electrically operated valve characterized by the following is preferable.

また、前記主弁体に前記連通路が形成され、前記ポート絞り部から前記連通路までの高さが、前記副弁室の半径よりも大きいことを特徴とする電動弁が好ましい。 Preferably, the motor-operated valve is characterized in that the communication passage is formed in the main valve body, and a height from the port constriction portion to the communication passage is larger than a radius of the sub-valve chamber.

本発明の電動弁によれば、気相の冷媒に液相の冷媒が混入した状態の冷媒であっても、副弁室内での冷媒の状態が安定化し、副弁室からポート絞り部(副弁ポート)を通過する前の冷媒の状態が安定化する。したがって、ニードル弁と副弁ポートとの隙間であるポート絞り部の冷媒通過音の音圧が低減し、電動弁の騒音や振動の発生を抑制することができる。 According to the motor-operated valve of the present invention, even if the refrigerant is a mixture of gas-phase refrigerant and liquid-phase refrigerant, the state of the refrigerant in the sub-valve chamber is stabilized, and the refrigerant is transferred from the sub-valve chamber to the port throttle section (sub-valve chamber). The condition of the refrigerant before passing through the valve port is stabilized. Therefore, the sound pressure of the refrigerant passing through the port constriction section, which is the gap between the needle valve and the auxiliary valve port, is reduced, and the generation of noise and vibration of the electric valve can be suppressed.

本発明の第1実施形態の電動弁の小流量制御域状態の縦断面図である。FIG. 2 is a longitudinal cross-sectional view of the electric valve according to the first embodiment of the present invention in a small flow rate control region state. 第1実施形態の電動弁の小流量制御域状態の要部拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a main part of the electric valve of the first embodiment in a small flow rate control region state. 第1実施形態の電動弁の大流量域状態の要部拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the main part of the electric valve of the first embodiment in a large flow range state. 本発明の第2実施形態の電動弁の小流量制御域状態の要部拡大断面図である。FIG. 7 is an enlarged cross-sectional view of a main part of an electric valve according to a second embodiment of the present invention in a small flow rate control region state. 第2実施形態の電動弁の大流量域状態の要部拡大断面図である。FIG. 7 is an enlarged cross-sectional view of the main part of the motor-operated valve according to the second embodiment in a large flow range state. 本発明の第3実施形態の電動弁の小流量制御域状態の要部拡大断面図である。FIG. 7 is an enlarged sectional view of a main part of an electric valve according to a third embodiment of the present invention in a small flow rate control region state. 本発明の第4実施形態の電動弁の小流量制御域状態の要部拡大断面図である。FIG. 7 is an enlarged sectional view of a main part of an electric valve according to a fourth embodiment of the present invention in a small flow rate control region state. 本発明の第5実施形態の電動弁の小流量制御域状態の要部拡大断面図である。FIG. 7 is an enlarged cross-sectional view of a main part of an electric valve according to a fifth embodiment of the present invention in a small flow rate control region state. 従来の電動弁の要部拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a main part of a conventional electric valve.

次に、本発明の電動弁の実施形態について図面を参照して説明する。図1は第1実施形態の電動弁の小流量制御域状態の縦断面図、図2は同電動弁の小流量制御域状態(副弁下端位置)の要部拡大断面図、図3は同電動弁の大流量域状態(副弁上端位置)の要部拡大断面図である。なお、以下の説明における「上下」の概念は図1の図面における上下に対応する。この電動弁100は、弁ハウジング1と、ガイド部材2と、主弁体3と、副弁体4と、駆動部5と、を備えている。 Next, embodiments of the electric valve of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal cross-sectional view of the electric valve of the first embodiment in the small flow control region state, FIG. 2 is an enlarged cross-sectional view of the main part of the electric valve in the small flow control region state (sub-valve lower end position), and FIG. 3 is the same FIG. 2 is an enlarged cross-sectional view of the main part of the motor-operated valve in a large flow range state (sub-valve upper end position). Note that the concept of "up and down" in the following description corresponds to the up and down in the drawing of FIG. This electric valve 100 includes a valve housing 1 , a guide member 2 , a main valve body 3 , a sub-valve body 4 , and a drive section 5 .

弁ハウジング1は例えば、黄銅、ステンレス等で略円筒形状に形成されており、その内側に主弁室1Rを有している。弁ハウジング1の外周片側には主弁室1Rに導通される第1継手管11が接続されるとともに、下端から下方に延びる筒状部に第2継手管12が接続されている。また、弁ハウジング1の第2継手管12の主弁室1R側には主弁座13が形成され、この主弁座13の内側は主弁ポート13aとなっている。主弁ポート13aは軸線Lを中心とする円柱形状の孔であり、第2継手管12は主弁ポート13aを介して主弁室1Rに導通される。なお、本実施形態では、主弁座13は、弁ハウジング1に一体的に形成されているが、主弁ポートを有する弁座部材を弁ハウジングとは別体に設け、弁座部材を弁ハウジングに組み付ける形態としてもよい。 The valve housing 1 is made of, for example, brass or stainless steel and has a substantially cylindrical shape, and has a main valve chamber 1R inside thereof. A first joint pipe 11 that communicates with the main valve chamber 1R is connected to one side of the outer periphery of the valve housing 1, and a second joint pipe 12 is connected to a cylindrical portion extending downward from the lower end. Further, a main valve seat 13 is formed on the main valve chamber 1R side of the second joint pipe 12 of the valve housing 1, and the inside of this main valve seat 13 is a main valve port 13a. The main valve port 13a is a cylindrical hole centered on the axis L, and the second joint pipe 12 is communicated with the main valve chamber 1R via the main valve port 13a. In this embodiment, the main valve seat 13 is integrally formed with the valve housing 1, but a valve seat member having a main valve port is provided separately from the valve housing, and the valve seat member is attached to the valve housing. It may also be assembled into a form.

弁ハウジング1の上端の開口部には、ガイド部材2が取り付けられている。ガイド部材2は、弁ハウジング1の内周面内に嵌合される嵌合部21と、嵌合部21の上方に位置する略円柱状のガイド部22と、ガイド部22の上部に延設されたホルダ部23と、嵌合部21に設けられ、嵌合部21の外周に突出する金属板からなるリング状の固定金具24とを有している。嵌合部21、上部ガイド部22及びホルダ部23は樹脂製の一体品として構成されており、固定金具24はインサート成形により樹脂製の嵌合部21と共に一体に設けられている。なお、ガイド部材2の嵌合部21を弁ハウジング1に対して圧入してもよい。 A guide member 2 is attached to an opening at the upper end of the valve housing 1 . The guide member 2 includes a fitting part 21 that fits into the inner circumferential surface of the valve housing 1, a substantially cylindrical guide part 22 located above the fitting part 21, and a guide part 22 extending above the guide part 22. A ring-shaped fixture 24 made of a metal plate is provided on the fitting part 21 and protrudes from the outer periphery of the fitting part 21. The fitting part 21, the upper guide part 22, and the holder part 23 are constructed as an integral part made of resin, and the fixing fitting 24 is integrally provided with the fitting part 21 made of resin by insert molding. Note that the fitting portion 21 of the guide member 2 may be press-fitted into the valve housing 1.

ガイド部材2は、嵌合部21により弁ハウジング1に組み付けられ、固定金具24を介して弁ハウジング1の上端部に溶接により固定されている。また、ガイド部材2において、嵌合部21とガイド部22の内側には軸線Lと同軸の円筒形状のガイド孔2Aが形成されるとともに、ホルダ部23の中心には、ガイド孔2Aと同軸の雌ねじ部23aとそのねじ孔が形成されている。そして、ガイド孔2A内には主弁体3が配設されている。 The guide member 2 is assembled to the valve housing 1 through a fitting portion 21 and is fixed to the upper end of the valve housing 1 via a fixing fitting 24 by welding. Further, in the guide member 2, a cylindrical guide hole 2A coaxial with the axis L is formed inside the fitting part 21 and the guide part 22, and a cylindrical guide hole 2A coaxial with the guide hole 2A is formed in the center of the holder part 23. A female threaded portion 23a and its screw hole are formed. A main valve body 3 is disposed within the guide hole 2A.

主弁体3は、主弁座13に対して着座及び離座する主弁部31と、主弁体3の側壁であって副弁体4を保持する保持部32とで構成されている。主弁部31の内側には円柱状の開口3Aが形成されるとともに、保持部32の内側には円柱状の副弁室3Rが形成され、この副弁室3Rの内周面は副弁ガイド孔3Bとなっている。そして、主弁部31と保持部32との間には、軸線Lを中心として副弁室3Rから開口3A側に開口する円柱状の副弁ポート3aが形成されている。 The main valve body 3 includes a main valve part 31 that seats and leaves the main valve seat 13, and a holding part 32 that is a side wall of the main valve body 3 and holds the sub valve body 4. A cylindrical opening 3A is formed inside the main valve part 31, and a cylindrical sub-valve chamber 3R is formed inside the holding part 32, and the inner peripheral surface of the sub-valve chamber 3R is used as a sub-valve guide This is hole 3B. A cylindrical sub-valve port 3a is formed between the main valve part 31 and the holding part 32 and opens from the sub-valve chamber 3R toward the opening 3A with the axis L as the center.

主弁体3の保持部32の側面には、軸線Lと交差する方向で主弁室1Rから副弁室3Rに連通する連通路3bが形成されている。この実施形態では、連通路3bは、軸線L周りに回転対象な位置に放射状に複数本(例えば4本)形成されている。また、主弁体3は、保持部32の上端部にリテーナ34を有するとともに、リテーナ34とガイド部材2のガイド孔2Aの上端部との間に主弁ばね35を有しており、この主弁ばね35により主弁体3は主弁座13の方向(閉方向)に付勢されている。なお、主弁部31の開口3Aの内側に消音部材36が配設されている。なお、連通路3bは、回転対象な位置に放射状に複数本形成される形態に限らず、連通路3bの数を一個としたり、不等間隔に複数本形成してもよい。 A communication passage 3b communicating from the main valve chamber 1R to the sub-valve chamber 3R in a direction intersecting the axis L is formed on the side surface of the holding portion 32 of the main valve body 3. In this embodiment, a plurality of communicating passages 3b (for example, four) are formed radially at positions that are rotationally symmetrical about the axis L. Further, the main valve body 3 has a retainer 34 at the upper end of the holding part 32, and a main valve spring 35 between the retainer 34 and the upper end of the guide hole 2A of the guide member 2. The main valve body 3 is biased toward the main valve seat 13 (in the closing direction) by the valve spring 35 . Note that a muffling member 36 is disposed inside the opening 3A of the main valve portion 31. Note that the communication passages 3b are not limited to a form in which a plurality of communication passages 3b are formed radially at rotationally symmetrical positions, and the number of communication passages 3b may be one, or a plurality of communication passages 3b may be formed at irregular intervals.

副弁体4は、ロータ軸51の下端部に設けられている。また、副弁体4は、ロータ軸に一体に形成されている。この副弁体4はガイド用ボス部41とニードル弁42とで構成されている。また、副弁体4のニードル弁42は、その先端が副弁ポート3a対して軸線L方向に挿通されるものであり、ニードル弁42と副弁ポート3aとの隙間であるポート絞り部Pを小流量の冷媒が流れることにより小流量制御が行われる。ガイド用ボス部41の上端には、潤滑性樹脂からなる円環状のワッシャ43が配設され、ガイド用ボス部41は、副弁ガイド孔3B内に挿通されている。そして、このガイド用ボス部41の外周面と副弁ガイド孔3Bの内周面とのクリアランスが「安定化構造」としての絞り通路S1を構成している。なお、副弁体4と、ロータ軸51とを別体にそれぞれ形成し、これらを組み付けてもよい。 The sub-valve body 4 is provided at the lower end of the rotor shaft 51. Further, the sub-valve body 4 is integrally formed with the rotor shaft. This sub-valve body 4 is composed of a guide boss portion 41 and a needle valve 42. Further, the needle valve 42 of the sub-valve body 4 has its tip inserted into the sub-valve port 3a in the direction of the axis L, and a port constriction portion P, which is a gap between the needle valve 42 and the sub-valve port 3a, is inserted into the sub-valve port 3a in the direction of the axis L. Small flow rate control is performed by flowing a small flow rate of refrigerant. An annular washer 43 made of lubricating resin is disposed at the upper end of the guide boss 41, and the guide boss 41 is inserted into the sub-valve guide hole 3B. The clearance between the outer circumferential surface of the guide boss portion 41 and the inner circumferential surface of the sub-valve guide hole 3B constitutes a throttle passage S1 as a "stabilizing structure." Note that the sub-valve body 4 and the rotor shaft 51 may be formed separately and assembled together.

弁ハウジング1の上端にはケース14が溶接等によって気密に固定され、このケース14の内外に駆動部5が構成されている。駆動部5は、ステッピングモータ5Aと、ステッピングモータ5Aの回転により副弁体4を進退させるねじ送り機構5Bと、ステッピングモータ5Aの回転を規制するストッパ機構5Cと、を備えている。 A case 14 is airtightly fixed to the upper end of the valve housing 1 by welding or the like, and a drive section 5 is configured inside and outside the case 14. The drive unit 5 includes a stepping motor 5A, a screw feeding mechanism 5B that advances and retreats the sub-valve body 4 by rotation of the stepping motor 5A, and a stopper mechanism 5C that restricts the rotation of the stepping motor 5A.

ステッピングモータ5Aは、ロータ軸51と、ケース14の内部に回転可能に配設されたマグネットロータ52と、ケース14の外周においてマグネットロータ52に対して対向配置されたステータコイル53と、その他、図示しないヨークや外装部材等により構成されている。ロータ軸51はブッシュを介してマグネットロータ52の中心に取り付けられ、このロータ軸51のガイド部材2側の外周には雄ねじ部51aが形成されている。この雄ねじ部51aはガイド部材2の雌ねじ部23aに螺合されており、これにより、ガイド部材2はロータ軸51を軸線L上に支持している。そして、ガイド部材2の雌ねじ部23aとロータ軸51の雄ねじ部51aはねじ送り機構5Bを構成している。なお、ケース14の内側天井部には回転ストッパ機構5Cを保持する円筒部14aが設けられ、この円筒部14a内には、ロータ軸51の上端をガイドするガイド部材54が配設されている。 The stepping motor 5A includes a rotor shaft 51, a magnet rotor 52 rotatably disposed inside a case 14, a stator coil 53 disposed opposite to the magnet rotor 52 on the outer periphery of the case 14, and other components shown in the figure. It is made up of a yoke, exterior members, etc. The rotor shaft 51 is attached to the center of the magnet rotor 52 via a bush, and a male threaded portion 51a is formed on the outer periphery of the rotor shaft 51 on the guide member 2 side. The male threaded portion 51a is screwed into the female threaded portion 23a of the guide member 2, so that the guide member 2 supports the rotor shaft 51 on the axis L. The female threaded portion 23a of the guide member 2 and the male threaded portion 51a of the rotor shaft 51 constitute a screw feeding mechanism 5B. A cylindrical portion 14a that holds the rotation stopper mechanism 5C is provided on the inner ceiling of the case 14, and a guide member 54 that guides the upper end of the rotor shaft 51 is disposed within the cylindrical portion 14a.

以上の構成により、ステッピングモータ5Aが駆動されるとマグネットロータ52及びロータ軸51が回転し、雄ねじ部51aと雌ねじ部23aとのねじ送り機構5Bにより、マグネットロータ52と共にロータ軸51が軸線L方向に移動する。そして、副弁体4が軸線L方向に進退移動して副弁体4のニードル弁42が副弁ポート3aに対して近接又は離間する。また、副弁体4が上昇するとき、ワッシャ43が主弁体3のリテーナ34に係合し(副弁上端位置)、主弁体3は副弁体4と共に移動して、主弁体3の主弁部31が主弁座13から離座する。これにより、主弁ポート13aが全開となって大流量域状態となる(なお、主弁体3が主弁座13から離座した直後も、主弁ポート13aが全開となる大流量域状態である後述の図3と同じ状態となる)。なお、マグネットロータ52には突起部52aが形成されており、マグネットロータ52の回転に伴って突起部52aが回転ストッパ機構5Cを作動させ、ロータ軸51(及びマグネットロータ52)の最下端位置及び最上端位置が規制される。 With the above configuration, when the stepping motor 5A is driven, the magnet rotor 52 and the rotor shaft 51 rotate, and the rotor shaft 51 is moved along with the magnet rotor 52 in the direction of the axis L by the screw feeding mechanism 5B of the male threaded portion 51a and the female threaded portion 23a. Move to. Then, the sub-valve body 4 moves forward and backward in the direction of the axis L, and the needle valve 42 of the sub-valve body 4 approaches or separates from the sub-valve port 3a. Further, when the sub-valve body 4 rises, the washer 43 engages with the retainer 34 of the main valve body 3 (sub-valve upper end position), the main valve body 3 moves together with the sub-valve body 4, and the main valve body 3 The main valve portion 31 is removed from the main valve seat 13. As a result, the main valve port 13a becomes fully open and enters a large flow range state (note that even immediately after the main valve body 3 leaves the main valve seat 13, the main valve port 13a remains fully open and enters a large flow range state. (The state is the same as that shown in FIG. 3, which will be described later). Note that the magnet rotor 52 is formed with a protrusion 52a, and as the magnet rotor 52 rotates, the protrusion 52a operates the rotation stopper mechanism 5C, and the lowermost position of the rotor shaft 51 (and the magnet rotor 52) and The top position is restricted.

図1の小流量制御域状態では、主弁体3は主弁座13に着座した状態で主弁ポート13aが弁閉となり、副弁体4のニードル弁42により副弁ポート3aの開度(ポート絞り部Pの開口面積)が制御され、小流量の制御が行われる。このとき、第1継手管11から主弁室1R内に流入した冷媒は、連通路3bから絞り通路S1を通って副弁室3Rに流れる。このように、冷媒は絞り通路S1を介して副弁室3Rに流入するので、仮に主弁室1R内の冷媒が、気相の冷媒に液相の冷媒が混入した状態の冷媒であっても、この冷媒は絞り通路S1を通ることで安定化し、副弁室3Rからポート絞り部Pを通過する前の冷媒の状態が安定化する。したがって、ポート絞り部Pでの冷媒通過音の音圧が低減され、この電動弁100の騒音や振動の発生を抑制することができる。 In the small flow rate control region state shown in FIG. The opening area of the port constriction portion P is controlled, and a small flow rate is controlled. At this time, the refrigerant that has flowed into the main valve chamber 1R from the first joint pipe 11 flows from the communication passage 3b to the sub-valve chamber 3R through the throttle passage S1. In this way, the refrigerant flows into the sub-valve chamber 3R via the throttle passage S1, so even if the refrigerant in the main valve chamber 1R is a mixture of gas-phase refrigerant and liquid-phase refrigerant, This refrigerant is stabilized by passing through the throttle passage S1, and the state of the refrigerant before passing through the port throttle section P from the sub-valve chamber 3R is stabilized. Therefore, the sound pressure of the refrigerant passing sound at the port constriction portion P is reduced, and the generation of noise and vibration of the electric valve 100 can be suppressed.

ここで、図9に示す従来の電動弁では、副弁ポートa2の上縁位置から連通路b3の底部までの高さ[H1]が小さいため、連通路b3からポート絞り部Pまでの冷媒が流れる距離が短い。これに対して本実施形態では、図2に示すように、副弁ポート3aの上縁位置から連通路3bの底部までの高さ[H3]は、前記従来の電動弁における前記高さ[H1]より十分に高く、すなわち、この高さ[H3]は副弁室3aの内径(ガイド孔3Bの内径)の半径よりも大きくなっている。このように、副弁ポート3aの上縁位置から連通路3bの底部までの高さ[H3]が十分長いので、冷媒の安定化の効果が高くなる。なお、図2は電動弁100の小流量制御域状態での副弁体4の下端位置を示しており、この状態で、副弁ポート3aから絞り通路S1の下端までの高さ[H2]は、副弁ポート3aの上縁位置から連通路3bの底部までの高さ[H3]よりは低くなっている。また、図3に示す大流量域状態で副弁体4の上端位置での副弁ポート3aの上縁位置から絞り通路S1の下端までの高さ[H4]も副弁ポート3aの上縁位置から連通路3bの底部までの高さ[H3]よりは低くなっている。これにより、絞り通路S1を常時確保できる。 Here, in the conventional electric valve shown in FIG. 9, since the height [H1] from the upper edge position of the sub-valve port a2 to the bottom of the communication passage b3 is small, the refrigerant from the communication passage b3 to the port throttle part P is small. The flow distance is short. On the other hand, in this embodiment, as shown in FIG. 2, the height [H3] from the upper edge position of the auxiliary valve port 3a to the bottom of the communication passage 3b is the height [H1] in the conventional electric valve. ], that is, this height [H3] is larger than the radius of the inner diameter of the sub-valve chamber 3a (the inner diameter of the guide hole 3B). In this way, since the height [H3] from the upper edge position of the sub-valve port 3a to the bottom of the communication passage 3b is sufficiently long, the effect of stabilizing the refrigerant is enhanced. Note that FIG. 2 shows the lower end position of the sub-valve body 4 in the small flow rate control region state of the electric valve 100, and in this state, the height [H2] from the sub-valve port 3a to the lower end of the throttle passage S1 is , is lower than the height [H3] from the upper edge position of the sub-valve port 3a to the bottom of the communication passage 3b. In addition, in the large flow range state shown in FIG. 3, the height [H4] from the upper edge position of the auxiliary valve port 3a at the upper end position of the auxiliary valve body 4 to the lower end of the throttle passage S1 is also at the upper edge position of the auxiliary valve port 3a. It is lower than the height [H3] from to the bottom of the communication path 3b. Thereby, the throttle passage S1 can be ensured at all times.

また、連通路3bの開口面積[A]と、絞り通路S1の開口面積[B]と、ポート絞り部Pの開口面積[C]と、の関係は、
A>B>C
となっている。これにより、冷媒状態の安定化効果が高まる。なお、連通路3bを複数設けた形態の場合、複数の連通路3bの開口面積の合計とされる。また、本実施の形態では、ポート絞り部Pの開口面積は、副弁ポート3aにニードル弁42が挿通されていない副弁ポート3aの内径での開口面積Cにて、上記の関係を有するように設定されているが、副弁ポート3a内にニードル弁42が挿通された状態で、副弁ポート3aとニードル弁42との間の間隙の開口面積をCとして、上記の関係を有するように設定してもよい。
Furthermore, the relationship between the opening area [A] of the communication passage 3b, the opening area [B] of the throttle passage S1, and the opening area [C] of the port throttle part P is as follows:
A>B>C
It becomes. This increases the effect of stabilizing the refrigerant state. In addition, in the case of a configuration in which a plurality of communicating passages 3b are provided, the opening area is the sum of the opening areas of the plurality of communicating passages 3b. In addition, in this embodiment, the opening area of the port restrictor P has the above relationship with the opening area C at the inner diameter of the auxiliary valve port 3a where the needle valve 42 is not inserted into the auxiliary valve port 3a. However, when the needle valve 42 is inserted into the sub-valve port 3a, and the opening area of the gap between the sub-valve port 3a and the needle valve 42 is set to C, the above relationship is established. May be set.

図4は本発明の第2実施形態の電動弁の小流量制御域状態の要部拡大断面図、図5は第2実施形態の電動弁の大流量域状態の要部拡大断面図である。なお、以下の第2乃至第5実施形態において、図示する要部以外のその他の部分は第1実施形態の図1と同一である。また、以下の各実施形態において第1実施形態と同様な部材、同様な要素には同じ符号を付記して詳細な説明は省略する。この第2実施形態で第1実施形態と異なる点は、副弁体4′の構成である。 FIG. 4 is an enlarged cross-sectional view of a main part of an electric valve according to a second embodiment of the present invention in a small flow control region state, and FIG. 5 is an enlarged cross-sectional view of a main part of an electric valve according to a second embodiment of the present invention in a large flow control region state. In the following second to fifth embodiments, other parts other than the main parts shown are the same as those in FIG. 1 of the first embodiment. Further, in each of the following embodiments, the same members and elements as in the first embodiment are denoted by the same reference numerals, and detailed explanations thereof will be omitted. The second embodiment differs from the first embodiment in the configuration of the sub-valve body 4'.

この第2実施形態における副弁体4′は、副弁室3R内に挿通される第1実施形態と同様なガイド用ボス部41′と、このガイド用ボス部41′から副弁ポート3a側に離間した位置に形成されたフランジ部43′とを備えている。さらに、ガイド用ボス部41′とフランジ部43′との間の空間である拡大空間4a′を備えている。フランジ部43′は円盤状であり、その外周面と副弁ガイド孔3Bの内周面とのクリアランスにより絞り通路S2が形成されている。また、拡大空間4a′は連通路3bに開口している。そして、この絞り通路S2と拡大空間4a′とが「安定化構造」構成している。そして、第1継手管11から主弁室1R内に流入した冷媒は、連通路3bから拡大空間4a′に流出し、さらに絞り通路S2を通って副弁室3Rに流れる。このように、冷媒は拡大空間4a′と絞り通路S2を介して副弁室3Rに流入するので、主弁室1R内の冷媒中の気相と液相の比率の変動により液相の比率が増加した場合であっても、拡大空間内4a′内で冷媒中の気相と液相が均一化されるので、副弁室3Rからポート絞り部S(副弁ポート)を通過する前の冷媒の状態がより安定化する。したがって、ポート絞り部Pでの冷媒通過音の音圧が低減され、この電動弁100の騒音や振動の発生を抑制することができる。また、拡大空間4a′に流出した流体は、流速が減速されるので、壁面に衝突する際に発生する気泡の消滅に起因する騒音や振動の発生も抑制することもできる。なお、図5に示す大流量域状態で副弁体4′の上端位置での副弁ポート3aの上縁位置から絞り通路S2の下端までの高さも副弁ポート3aの上縁位置から連通路3bの底部までの高さよりは低くなっている。これにより、絞り通路S2を常時確保できる。 The sub-valve body 4' in the second embodiment includes a guide boss portion 41' similar to the first embodiment that is inserted into the sub-valve chamber 3R, and a side from the guide boss portion 41' to the sub-valve port 3a. The flange portion 43' is formed at a position spaced apart from the flange portion 43'. Furthermore, an enlarged space 4a' is provided between the guide boss part 41' and the flange part 43'. The flange portion 43' is disc-shaped, and a throttle passage S2 is formed by the clearance between its outer peripheral surface and the inner peripheral surface of the sub-valve guide hole 3B. Further, the enlarged space 4a' opens to the communication path 3b. The throttle passage S2 and the enlarged space 4a' constitute a "stabilizing structure". The refrigerant that has flowed into the main valve chamber 1R from the first joint pipe 11 flows out from the communication passage 3b into the enlarged space 4a', and further flows into the auxiliary valve chamber 3R through the throttle passage S2. In this way, since the refrigerant flows into the sub-valve chamber 3R via the expanded space 4a' and the throttle passage S2, the ratio of the liquid phase changes due to fluctuations in the ratio of the gas phase to the liquid phase in the refrigerant in the main valve chamber 1R. Even if the refrigerant increases, the gas phase and liquid phase in the refrigerant are equalized within the expanded space 4a', so that the refrigerant before passing from the auxiliary valve chamber 3R to the port throttle part S (auxiliary valve port) condition becomes more stable. Therefore, the sound pressure of the refrigerant passing sound at the port constriction portion P is reduced, and the generation of noise and vibration of the electric valve 100 can be suppressed. Further, since the flow velocity of the fluid flowing into the enlarged space 4a' is reduced, it is also possible to suppress the generation of noise and vibration caused by the disappearance of bubbles generated when colliding with the wall surface. In addition, in the large flow range state shown in FIG. 5, the height from the upper edge position of the auxiliary valve port 3a at the upper end position of the auxiliary valve body 4' to the lower end of the throttle passage S2 is also from the upper edge position of the auxiliary valve port 3a to the communicating path. It is lower than the height to the bottom of 3b. Thereby, the throttle passage S2 can be ensured at all times.

また、連通路3bの開口面積[A]と、絞り通路S2の開口面積[B]と、ポート絞り部Pの開口面積[C]と、の関係は、
A>B>C
となっている。これにより、冷媒状態の安定化効果が高まる。なお、開口面積Aと開口面積Cの設定については第1実施形態の場合と同様に設定できる。
Furthermore, the relationship between the opening area [A] of the communication passage 3b, the opening area [B] of the throttle passage S2, and the opening area [C] of the port throttle part P is as follows:
A>B>C
It becomes. This increases the effect of stabilizing the refrigerant state. Note that the opening area A and the opening area C can be set in the same manner as in the first embodiment.

図6は第3実施形態の電動弁の小流量制御域状態の要部拡大断面図である。この第3実
施形態では、連通路3bの副弁室3R側に拡大空間3cを形成したものである。この第3実施形態でも、第2実施形態と同様であり、冷媒は、連通路3bから拡大空間3cに流出し、さらに絞り通路S1を通って副弁室3Rに流れるので、主弁室1R内の冷媒中の気相と液相の比率の変動により液相の比率が増加した場合であっても、拡大空間内3c内で冷媒中の気相と液相が均一化されるので、副弁室3Rからポート絞り部P(副弁ポート)を通過する前の冷媒の状態がより安定化する。したがって、ポート絞り部Pでの冷媒通過音の音圧が低減され、この電動弁100の騒音や振動の発生を抑制することができる。また、拡大空間3cに流出した流体は、流速が減速されるので、壁面に衝突する際に発生する気泡の消滅に起因する騒音や振動の発生も抑制することもできる。
FIG. 6 is an enlarged sectional view of the main part of the electric valve according to the third embodiment in a small flow rate control region state. In this third embodiment, an enlarged space 3c is formed on the side of the auxiliary valve chamber 3R of the communication passage 3b. This third embodiment is also the same as the second embodiment, and the refrigerant flows out from the communication passage 3b into the expanded space 3c and further flows into the sub-valve chamber 3R through the throttle passage S1, so that the refrigerant flows inside the main valve chamber 1R. Even if the ratio of the liquid phase increases due to fluctuations in the ratio of the gas phase and liquid phase in the refrigerant, the gas and liquid phases in the refrigerant are equalized within the expanded space 3c. The state of the refrigerant before passing from the chamber 3R to the port constriction portion P (auxiliary valve port) becomes more stable. Therefore, the sound pressure of the refrigerant passing sound at the port constriction portion P is reduced, and the generation of noise and vibration of the electric valve 100 can be suppressed. Further, since the flow velocity of the fluid flowing out into the expanded space 3c is reduced, it is also possible to suppress the generation of noise and vibration caused by the disappearance of bubbles generated when colliding with the wall surface.

図7は第4実施形態の電動弁の小流量制御域状態の要部拡大断面図である。この第4実施形態では、副弁体4″のガイド用ボス部41″において、連通路3bと向き合う部分に拡大空間44″を設けたものである。この拡大空間44″は、ガイド用ボス部41″の外周面から軸線Lに向けて穿設された孔により形成されている。この孔の内径は連通路3bの内径よりも十分大きな内径とされる。すなわち、この拡大空間44″は全周に設けたものではない。この第4実施形態でも、第2実施形態と同様に、冷媒は、連通路3bから拡大空間44″に流出し、さらに絞り通路S1を通って副弁室3Rに流れるので、主弁室1R内の冷媒中の気相と液相の比率の変動により液相の比率が増加した場合であっても、拡大空間内44″内で冷媒中の気相と液相が均一化されるので、副弁室3Rからポート絞り部P(副弁ポート)を通過する前の冷媒の状態がより安定化する。たがって、ポート絞り部Pでの冷媒通過音の音圧が低減され、この電動弁100の騒音や振動の発生を抑制することができる。また、拡大空間44″に流出した流体は、流速が減速されるので、壁面に衝突する際に発生する気泡の消滅に起因する騒音や振動の発生も抑制することもできる。 FIG. 7 is an enlarged cross-sectional view of the main part of the electric valve according to the fourth embodiment in a small flow rate control region state. In the fourth embodiment, an enlarged space 44'' is provided in the guide boss portion 41'' of the sub-valve body 4'' at a portion facing the communication path 3b. 41'' is formed by a hole bored from the outer peripheral surface toward the axis L. The inner diameter of this hole is made sufficiently larger than the inner diameter of the communication passage 3b. In other words, this enlarged space 44'' is completely It is not something that is set up around the area. In this fourth embodiment, as in the second embodiment, the refrigerant flows out from the communication passage 3b into the enlarged space 44'' and further flows into the sub-valve chamber 3R through the throttle passage S1, so that the refrigerant flows inside the main valve chamber 1R. Even if the ratio of the liquid phase increases due to fluctuations in the ratio of the gas and liquid phases in the refrigerant, the gas and liquid phases in the refrigerant are equalized within the expanded space 44'', so The state of the refrigerant before passing from the valve chamber 3R to the port throttle part P (auxiliary valve port) becomes more stable. Therefore, the sound pressure of the refrigerant passing sound at the port constriction portion P is reduced, and the generation of noise and vibration of the electric valve 100 can be suppressed. Furthermore, since the flow velocity of the fluid flowing out into the enlarged space 44'' is reduced, it is also possible to suppress the generation of noise and vibration caused by the disappearance of bubbles generated when colliding with the wall surface.

図8は第5実施形態の電動弁の小流量制御域状態の要部拡大断面図である。この第5実施形態では、第2実施形態と同様な副弁体4′のフランジ部43′に、拡大空間4aからポート絞り部P側まで軸線L方向に貫通する透孔45′を形成したものである。そして、この第5実施形態では、冷媒は、連通路3bから拡大空間4aに流出する。そして、冷媒は、絞り通路S2と、透孔45′を通って副弁室3Rに流れる。このため、主弁室1R内の冷媒中の気相と液相の比率の変動により液相の比率が増加した場合であっても、拡大空間内4a内で冷媒中の気相と液相が均一化されるので、副弁室3Rからポート絞り部Pを通過する前の冷媒の状態がより安定化する。したがって、ポート絞り部Pでの冷媒通過音の音圧が低減され、この電動弁100の騒音や振動の発生を抑制することができる。また、拡大空間4aに流出した流体は、流速が減速されるので、壁面に衝突する際に発生する気泡の消滅に起因する騒音や振動の発生も抑制することもできる。 FIG. 8 is an enlarged sectional view of a main part of the electric valve of the fifth embodiment in a small flow rate control region state. In this fifth embodiment, a through hole 45' is formed in the flange portion 43' of the sub-valve body 4' similar to the second embodiment, penetrating in the axis L direction from the enlarged space 4a to the port constriction portion P side. It is. In this fifth embodiment, the refrigerant flows out from the communication path 3b into the expanded space 4a. The refrigerant then flows into the sub-valve chamber 3R through the throttle passage S2 and the through hole 45'. Therefore, even if the ratio of the liquid phase increases due to a change in the ratio of the gas phase to the liquid phase in the refrigerant in the main valve chamber 1R, the gas phase and liquid phase in the refrigerant in the expanded space 4a will change. Since the refrigerant is equalized, the state of the refrigerant before passing from the sub-valve chamber 3R to the port throttle part P becomes more stable. Therefore, the sound pressure of the refrigerant passing sound at the port constriction portion P is reduced, and the generation of noise and vibration of the electric valve 100 can be suppressed. Further, since the flow velocity of the fluid flowing into the expanded space 4a is reduced, it is also possible to suppress the generation of noise and vibration caused by the disappearance of bubbles generated when colliding with the wall surface.

また、連通路3bの開口面積[A]と、絞り通路S2の開口面積[B]と、ポート絞り部の開口面積[C]と、透孔45′の開口面積[D]と、の関係が、
A>B+D>C
となっている。これにより、冷媒状態の安定化効果が高まる。なお、開口面積Aと開口面積Cの設定については第1実施形態の場合と同様に設定できる。
Also, the relationship between the opening area [A] of the communication passage 3b, the opening area [B] of the throttle passage S2, the opening area [C] of the port throttle part, and the opening area [D] of the through hole 45' is ,
A>B+D>C
It becomes. This increases the effect of stabilizing the refrigerant state. Note that the opening area A and the opening area C can be set in the same manner as in the first embodiment.

なお、第3実施形態、第4実施形態、第5実施形態では、それぞれの大流量域状態の図示は省略したが、大流量域状態においても絞り通路が常時確保できる点は、第1実施形態、第2実施形態と同様である。 Note that in the third, fourth, and fifth embodiments, illustrations of the respective large flow range states are omitted, but the point that the throttle passage can always be ensured even in the large flow range state is that the first embodiment , is similar to the second embodiment.

また、本発明の実施形態では、主弁体に連通路を設けたものとしたが、主弁体に連通路を設けずに、例えばガイド用ボス部にDカットを設け、主弁体の内周面(副弁ガイド孔3B)とDカットとで連通路を形成することもできる。 Further, in the embodiment of the present invention, the main valve body is provided with a communication passage, but instead of providing a communication passage in the main valve body, for example, a D cut is provided in the guide boss portion, and the inside of the main valve body is provided with a D cut. A communication path can also be formed by the peripheral surface (auxiliary valve guide hole 3B) and the D cut.

以上、本発明の実施の形態について図面を参照して詳述し、その他の実施形態についても詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 The embodiments of the present invention have been described above in detail with reference to the drawings, and other embodiments have also been described in detail, but the specific configuration is not limited to these embodiments. Even if there are changes in the design within the scope of the invention, they are included in the present invention.

1 弁ハウジング
1R 主弁室
11 第1継手管
12 第2継手管
13 主弁座
13a 主弁ポート
L 軸線
2 ガイド部材
2A ガイド孔
22 ガイド部
23 ホルダ部
23a 雌ねじ部
3 主弁体
31 主弁部
32 保持部
3a 副弁ポート
3b 連通路
3B 副弁ガイド孔
3R 副弁室
4 副弁体
41 ガイド用ボス部
42 ニードル弁
5 駆動部
5A ステッピングモータ
5B ねじ送り機構
5C ストッパ機構
51 ロータ軸
51a 雄ねじ部
52 マグネットロータ
53 ステータコイル
4′ 副弁体
41′ ガイド用ボス部
43′ フランジ部
4a′ 拡大空間
4″ 副弁体
41″ ガイド用ボス部
44″ 拡大空間
3c 拡大空間
100 電動弁
1 Valve housing 1R Main valve chamber 11 First joint pipe 12 Second joint pipe 13 Main valve seat 13a Main valve port L Axis 2 Guide member 2A Guide hole 22 Guide portion 23 Holder portion 23a Female thread portion 3 Main valve body 31 Main valve portion 32 Holding section 3a Sub-valve port 3b Communication path 3B Sub-valve guide hole 3R Sub-valve chamber 4 Sub-valve body 41 Guide boss section 42 Needle valve 5 Drive section 5A Stepping motor 5B Screw feed mechanism 5C Stopper mechanism 51 Rotor shaft 51a Male thread section 52 Magnet rotor 53 Stator coil 4' Sub-valve body 41' Guide boss section 43' Flange section 4a' Expanded space 4'' Sub-valve body 41'' Guide boss section 44'' Expanded space 3c Expanded space 100 Motor-operated valve

本発明の電動弁は、主弁室および主弁ポートを備える弁本体と、前記主弁ポートを開閉する主弁体と、前記主弁体に形成された副弁ポートの開度を変更する副弁体と、を備え、前記主弁体は、前記副弁体に対して軸線方向に相対的に移動可能に連結され、一方の開口が前記主弁室に開口する連通路を備え、前記連通路の他方の開口から前記副弁ポートまでの流路により副弁室が形成され、前記主弁体で前記主弁ポートを閉として、前記主弁室から前記連通路を経由して前記副弁ポートへ流入する流体を、前記副弁体のニードル弁と前記副弁ポートとの隙間のポート絞り部で絞る小流量制御域を有する電動弁において、前記連通路から前記副弁ポートまでの間に、前記副弁室内での流体の状態を安定化する安定化構造を備え、前記副弁室の前記連通路側に開口する拡大空間と、前記拡大空間と前記副弁ポートを連通し、前記軸線方向から見た断面積が前記拡大空間を前記軸線方向から見た断面積より小さい絞り通路と、が前記安定化構造を構成し、前記副弁体の前記ニードル弁と前記拡大空間の間には、前記軸線方向と交差する方向に延在する円盤状部が設けられ、前記円盤状部には、前記ニードル弁に対して径方向外側の位置で前記軸線方向に貫通する透孔が設けられていることを特徴とする。 The motor-operated valve of the present invention includes a valve body including a main valve chamber and a main valve port, a main valve body that opens and closes the main valve port, and a sub-valve body that changes the opening degree of a sub-valve port formed in the main valve body. a valve body , the main valve body is connected to the auxiliary valve body so as to be movable relative to the axial direction, and includes a communication passage whose one opening opens into the main valve chamber; A sub-valve chamber is formed by a flow path from the other opening of the passage to the sub-valve port, and the main valve port is closed by the main valve body, and the sub-valve is opened from the main valve chamber via the communication passage. In an electric motor-operated valve having a small flow rate control region in which fluid flowing into a port is throttled by a port restricting portion in a gap between the needle valve of the sub-valve body and the sub-valve port, there is provided a space between the communication passage and the sub-valve port . , comprising a stabilizing structure for stabilizing the state of fluid in the sub-valve chamber , an enlarged space opening on the side of the communication passage of the sub-valve chamber, communicating the enlarged space with the sub-valve port; A throttle passage whose cross-sectional area when viewed from the direction is smaller than the cross-sectional area when the expansion space is viewed from the axial direction constitutes the stabilizing structure, and a throttle passage is provided between the needle valve of the sub-valve body and the expansion space. , a disc-shaped part extending in a direction intersecting the axial direction is provided, and the disc-shaped part is provided with a through hole penetrating in the axial direction at a position radially outward with respect to the needle valve. It is characterized by the presence of

この際、前記ニードル弁は、前記副弁ポート内に挿通された状態で、前記副弁ポートの内壁と対向する円柱部を備えることを特徴とする。 In this case , the needle valve is characterized in that it includes a cylindrical portion that faces an inner wall of the auxiliary valve port while being inserted into the auxiliary valve port .

また、前記絞り通路は、前記副弁室の内周と、該副弁室に内挿される前記副弁体の外周とのクリアランスからなることを特徴とする。 Further, the throttle passage is characterized in that it consists of a clearance between an inner periphery of the auxiliary valve chamber and an outer periphery of the auxiliary valve body inserted into the auxiliary valve chamber .

また、前記絞り通路は、前記副弁室の内周と前記円盤状部の外周とのクリアランスからなることを特徴とする電動弁が好ましい。 Preferably, the motor-operated valve is characterized in that the throttle passage is formed by a clearance between the inner periphery of the sub-valve chamber and the outer periphery of the disc-shaped portion .

また、記ポート絞り部から前記連通路までの高さが、前記副弁室の半径よりも大きいことを特徴とする電動弁が好ましい。 Preferably, the motor-operated valve is characterized in that a height from the port constriction portion to the communication passage is larger than a radius of the auxiliary valve chamber.

Claims (8)

弁本体の主弁室内に設けられて該主弁室に開口する主弁ポートを開閉する主弁体と、前記主弁体に形成された副弁室内で該主弁体に形成された副弁ポートの軸線方向に移動して該副弁ポートの開度を制御する副弁体と、を備え、前記主弁室から前記副弁室に連通する連通路が形成され、前記主弁体で前記主弁ポートを閉として、前記連通路を介して前記副弁室に流入する流体を、前記副弁体のニードル弁と前記副弁ポートとの隙間のポート絞り部で絞る小流量制御域を有する電動弁において、
前記連通路から前記ポート絞り部までの間に、前記副弁室内での流体の状態を安定化する安定化構造を備えたことを特徴とする電動弁。
A main valve body that is provided in a main valve chamber of a valve body and opens and closes a main valve port that opens into the main valve chamber, and a sub-valve that is formed in the main valve body in a sub-valve chamber that is formed in the main valve body. a sub-valve body that moves in the axial direction of the port to control the opening degree of the sub-valve port, a communication passage communicating from the main valve chamber to the sub-valve chamber is formed, and the main valve body controls the opening of the sub-valve port. The main valve port is closed, and the fluid flowing into the auxiliary valve chamber via the communication path is throttled by a port throttle portion in the gap between the needle valve of the auxiliary valve body and the auxiliary valve port. In electric valves,
An electrically operated valve comprising a stabilizing structure for stabilizing the state of fluid in the sub-valve chamber between the communication passage and the port constriction section.
前記副弁室の内周と、該弁室に内挿される前記副弁体の外周とのクリアランスからなる絞り通路により前記安定化構造を構成していることを特徴とする請求項1に記載の電動弁。 2. The stabilizing structure according to claim 1, wherein the stabilizing structure is constituted by a throttle passage formed by a clearance between an inner periphery of the auxiliary valve chamber and an outer periphery of the auxiliary valve body inserted into the valve chamber. Electric valve. 前記副弁体は前記副弁室内に挿通されるガイド用ボス部を備え、前記副弁室の内周と前記ガイド用ボスの外周とのクリアランスにより前記絞り通路を構成していることを特徴とする請求項2に記載の電動弁。 The auxiliary valve body is provided with a guide boss portion inserted into the auxiliary valve chamber, and the throttle passage is configured by a clearance between an inner periphery of the auxiliary valve chamber and an outer periphery of the guide boss. The electric valve according to claim 2. 前記副弁体は前記副弁室内に挿通されるフランジ部と、前記連通路に開口する拡大空間と、を備え、前記副弁室の内周と前記フランジ部の外周とのクリアランスからなる絞り通路と、前記拡大空間とにより、前記安定化構造を構成していることを特徴とする請求項1に記載の電動弁。 The sub-valve body includes a flange portion inserted into the sub-valve chamber, and an enlarged space opening to the communication passage, and a throttle passage formed by a clearance between the inner periphery of the sub-valve chamber and the outer periphery of the flange portion. The electric valve according to claim 1, wherein the stabilizing structure is constituted by the and the enlarged space. 前記フランジ部に、前記拡大空間から前記ポート絞り部側まで前記軸線方向に貫通する透孔が形成されていることを特徴とする請求項4に記載の電動弁。 5. The motor-operated valve according to claim 4, wherein the flange portion is formed with a through hole penetrating in the axial direction from the enlarged space to the port throttle portion side. 前記連通路の開口面積[A]と、前記絞り通路の開口面積[B]と、前記ポート絞り部の開口面積[C]と、の関係が、
A>B>C
となっていることを特徴とする請求項2乃至4のいずれか一項に記載の電動弁。
The relationship between the opening area [A] of the communication passage, the opening area [B] of the throttle passage, and the opening area [C] of the port throttle part is:
A>B>C
The motor-operated valve according to any one of claims 2 to 4, characterized in that:
前記連通路の開口面積[A]と、前記絞り通路の開口面積[B]と、前記ポート絞り部の開口面積[C]と、前記透孔の開口面積[D]と、の関係が、
A>B+D>C
となっていることを特徴とする請求項5に記載の電動弁。
The relationship between the opening area [A] of the communication passage, the opening area [B] of the throttle passage, the opening area [C] of the port throttle part, and the opening area [D] of the through hole is:
A>B+D>C
The electric valve according to claim 5, characterized in that:
前記主弁体に前記連通路が形成され、前記ポート絞り部から前記連通路までの高さが、前記副弁室の半径よりも大きいことを特徴とする請求項1乃至7のいずれか一項に記載の電動弁。 8. The communication passage is formed in the main valve body, and the height from the port constriction part to the communication passage is larger than the radius of the auxiliary valve chamber. Electric valve described in.
JP2023196517A 2020-10-23 2023-11-20 Motor valve Pending JP2024014977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023196517A JP2024014977A (en) 2020-10-23 2023-11-20 Motor valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020178334A JP7391003B2 (en) 2020-10-23 2020-10-23 electric valve
JP2023196517A JP2024014977A (en) 2020-10-23 2023-11-20 Motor valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020178334A Division JP7391003B2 (en) 2020-10-23 2020-10-23 electric valve

Publications (1)

Publication Number Publication Date
JP2024014977A true JP2024014977A (en) 2024-02-01

Family

ID=81493018

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020178334A Active JP7391003B2 (en) 2020-10-23 2020-10-23 electric valve
JP2023196517A Pending JP2024014977A (en) 2020-10-23 2023-11-20 Motor valve

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020178334A Active JP7391003B2 (en) 2020-10-23 2020-10-23 electric valve

Country Status (2)

Country Link
JP (2) JP7391003B2 (en)
CN (2) CN114484068B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3997077B2 (en) * 2001-11-14 2007-10-24 株式会社鷺宮製作所 Motorized valve
CN100504253C (en) * 2005-02-28 2009-06-24 大金工业株式会社 Expansion valve and refrigeration device
CN106895153A (en) * 2015-12-19 2017-06-27 浙江三花智能控制股份有限公司 Two-period form electric expansion valve
JP6845817B2 (en) * 2018-02-01 2021-03-24 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP6968768B2 (en) * 2018-08-31 2021-11-17 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP6959900B2 (en) * 2018-10-03 2021-11-05 株式会社鷺宮製作所 Valve gear, motorized valves and refrigeration cycle system

Also Published As

Publication number Publication date
CN114484068B (en) 2024-03-08
CN117967865A (en) 2024-05-03
JP7391003B2 (en) 2023-12-04
JP2022069250A (en) 2022-05-11
CN114484068A (en) 2022-05-13

Similar Documents

Publication Publication Date Title
JP6968768B2 (en) Electric valve and refrigeration cycle system
JP7349538B2 (en) Electric valve and refrigeration cycle system
JP2020041596A (en) Motor-operated valve
JP7224366B2 (en) electronic expansion valve
JP7383774B2 (en) Electric valve and refrigeration cycle system
JP6966416B2 (en) Valve device and refrigeration cycle system
CN113124185A (en) Electronic expansion valve
JP7409982B2 (en) Electric valve and refrigeration cycle system
JP2024038287A (en) Motor valve
JP7391003B2 (en) electric valve
JP2024010029A (en) Motor-operated valve and refrigeration cycle system
JP7386191B2 (en) electric valve
JP7503819B2 (en) Motor-operated valve
CN114635975B (en) Electric valve
JP7455410B2 (en) Motorized valves and how to assemble them
JP7449844B2 (en) electric valve
JP7361628B2 (en) Electric valve and refrigeration cycle system
JP2024039243A (en) Motor-operated valve
JP2022148693A (en) Motor valve
JP7267970B2 (en) Two-stage electric valve and refrigeration cycle system
JP7549564B2 (en) Valve mechanism
JP7220315B2 (en) Electric valve and refrigeration cycle system
JP2023104487A (en) Motor valve
JP2024007886A (en) Motor valve
JP2023028772A (en) Motor valve

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240904