JP2024014402A - Inverter device installation structure, electric compressor - Google Patents

Inverter device installation structure, electric compressor Download PDF

Info

Publication number
JP2024014402A
JP2024014402A JP2022117197A JP2022117197A JP2024014402A JP 2024014402 A JP2024014402 A JP 2024014402A JP 2022117197 A JP2022117197 A JP 2022117197A JP 2022117197 A JP2022117197 A JP 2022117197A JP 2024014402 A JP2024014402 A JP 2024014402A
Authority
JP
Japan
Prior art keywords
power semiconductor
circuit board
semiconductor element
inverter device
cooling member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022117197A
Other languages
Japanese (ja)
Inventor
誠 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2022117197A priority Critical patent/JP2024014402A/en
Priority to PCT/JP2023/023504 priority patent/WO2024018832A1/en
Publication of JP2024014402A publication Critical patent/JP2024014402A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Abstract

【課題】 予め電力用半導体素子と回路基板とがモジュール化されたインバータ装置を冷却部材に取り付ける場合であっても、電力用半導体素子の端子と回路基板との固着部に生じる応力を緩和し、電気的接続不良を回避又は低減可能な、インバータ装置の取り付け構造、電動圧縮機を提供する。【解決手段】 インバータ装置の取り付け構造10は、インバータ装置9は、電力用半導体素子63と、電力用半導体素子63の第1の面USに対向して配置される回路基板8と、回路基板8と電力用半導体素子63の端子63Cとを電気的に固着する導電性接着剤90と、電力用半導体素子63と回路基板8とを所定距離に維持する移動規制部材100と、を有し、放熱材201を介して電力用半導体素子63の第2の面DSを冷却部材23に対向させ、回路基板8を冷却部材23に取り付ける。【選択図】図3[Problem] Even when an inverter device in which a power semiconductor element and a circuit board are modularized in advance is attached to a cooling member, the stress generated at the bonded portion between the terminal of the power semiconductor element and the circuit board is alleviated, Provided is an inverter device mounting structure and an electric compressor that can avoid or reduce electrical connection failures. SOLUTION: In an inverter device mounting structure 10, an inverter device 9 includes a power semiconductor element 63, a circuit board 8 disposed facing a first surface US of the power semiconductor element 63, and a circuit board 8. and a conductive adhesive 90 that electrically fixes the terminal 63C of the power semiconductor element 63, and a movement restriction member 100 that maintains the power semiconductor element 63 and the circuit board 8 at a predetermined distance. The second surface DS of the power semiconductor element 63 is opposed to the cooling member 23 via the material 201, and the circuit board 8 is attached to the cooling member 23. [Selection diagram] Figure 3

Description

本発明は、インバータ装置の取り付け構造、電動圧縮機に関するものである。 The present invention relates to a mounting structure for an inverter device and an electric compressor.

従来、車両用の空気調和装置に用いられる電動圧縮機として、モータが収容される筐体内に、インバータ装置を取り付けたインバータ一体型の電動圧縮機が用いられている。また、この場合、回路基板と、電力用半導体素子を含むインバータ回路部とがモジュール化されたインバータ装置が用いられることが多い。 BACKGROUND ART Conventionally, as an electric compressor used in an air conditioner for a vehicle, an inverter-integrated electric compressor is used, in which an inverter device is attached to a casing in which a motor is housed. Further, in this case, an inverter device in which a circuit board and an inverter circuit section including a power semiconductor element are modularized is often used.

具体的に、特許文献1に記載の電動圧縮機では、予め、複数の電力用半導体素子(パワーモジュール)を一の設置プレートにねじにより固定し、その設置プレートと回路基板(インバータ制御基板)をサブラインにて一体化してインバータ回路部を形成している。そしてそのインバータ回路部を、筐体の回路収容部にボルトにて着脱可能に取り付けている。筐体はその内部に低温のガス冷媒が流通されていることで冷却部材として機能するため、設置プレートと筐体の密着で熱交換が進行し、パワーモジュールが放熱される構成となっている。 Specifically, in the electric compressor described in Patent Document 1, a plurality of power semiconductor elements (power modules) are fixed in advance to one installation plate with screws, and the installation plate and the circuit board (inverter control board) are connected together. They are integrated at the sub-line to form an inverter circuit section. The inverter circuit section is removably attached to the circuit accommodating section of the housing with bolts. Since the casing functions as a cooling member by circulating a low-temperature gas refrigerant inside it, heat exchange progresses due to the close contact between the installation plate and the casing, and the power module is configured to radiate heat.

また、電力用半導体素子をねじの締結によらず筐体に固定する方法も知られている(例えば、特許文献2参照)。特許文献2記載の電動圧縮機では、ガイド部の内部にIGBTを収容する際、ガイド部とIGBTの間に弾性体として板バネを配置する構成を開示している。ガイド部材は、この板バネを介して、IGBT20を冷却部材である筺体に向けて付勢される。 Furthermore, a method of fixing a power semiconductor element to a housing without fastening screws is also known (see, for example, Patent Document 2). The electric compressor disclosed in Patent Document 2 discloses a configuration in which a leaf spring is arranged as an elastic body between the guide part and the IGBT when the IGBT is housed inside the guide part. The guide member urges the IGBT 20 toward the housing, which is a cooling member, via this leaf spring.

このように、従来では電力用半導体素子の放熱性を高めるために、ねじや板バネなどの外力を付与して、冷却部材である筺体に押し付ける構成が一般的であった。 As described above, conventionally, in order to improve the heat dissipation of a power semiconductor element, it has been common to apply an external force such as a screw or a leaf spring to press the semiconductor element against the casing, which is a cooling member.

特開2019-143603号公報JP 2019-143603 Publication 特許第5644706号公報Patent No. 5644706

しかしながら、特に、特許文献1のように回路基板とインバータ回路部とがモジュール化されたインバータ装置においては、電力用半導体素子を放熱させるべく、当該電力用半導体素子または回路基板を筐体に押し付けて固定すると、電力用半導体素子と回路基板の電気的接続部に負荷が係る問題がある。 However, in particular, in an inverter device in which a circuit board and an inverter circuit section are modularized as in Patent Document 1, the power semiconductor element or the circuit board is pressed against the casing in order to dissipate heat from the power semiconductor element. If it is fixed, there is a problem in that a load is applied to the electrical connection between the power semiconductor element and the circuit board.

具体的に、インバータ装置は予め、サブラインにおいて電力用半導体素子の端子(リード)と回路基板の配線がはんだなどの導電性接着剤によって電気的に固着されている。 Specifically, in the inverter device, the terminals (leads) of the power semiconductor elements and the wiring of the circuit board are electrically fixed in the sub-line in advance using a conductive adhesive such as solder.

この状態で電力用半導体装置、あるいは回路基板をねじで筐体に締結して押し付けると、その締結力に対応して電力用半導体装置および回路基板は筐体からの反力をうける。この反力が、はんだなどの電気的な固着部に作用し、当該固着部に応力が発生する。導電性接着剤が特にはんだの場合は、品質のばらつきや、固着部としての形状ばらつきなども影響し、応力によって固着部(はんだ接続部)にクラックが生じる場合がある。その結果、インバータ装置において接続不良が生じる懸念がある。 In this state, when the power semiconductor device or the circuit board is fastened to the casing with screws and pressed, the power semiconductor device and the circuit board receive a reaction force from the casing corresponding to the fastening force. This reaction force acts on an electrically fixed part such as solder, and stress is generated in the fixed part. Especially when the conductive adhesive is solder, cracks may occur in the bonded portion (solder joint) due to stress due to variations in quality and shape of the bonded portion. As a result, there is a concern that a connection failure may occur in the inverter device.

これは例えば、特許文献2のように、板ばねによって電力用半導体素子を筐体に付勢する場合においても同様の問題が生じる。 For example, a similar problem occurs when a power semiconductor element is biased against a housing by a leaf spring as in Patent Document 2.

本発明は、斯かる実情に鑑み、予め電力用半導体素子と回路基板とがモジュール化されたインバータ装置を冷却部材に取り付ける場合であっても、電力用半導体素子の端子と回路基板との固着部に生じる応力を緩和し、電気的接続不良を回避又は低減可能な、インバータ装置の取り付け構造、電動圧縮機を提供しようとするものである。 In view of such circumstances, the present invention provides that even when an inverter device in which power semiconductor elements and a circuit board are modularized in advance is attached to a cooling member, the fixed portion between the terminal of the power semiconductor element and the circuit board is fixed. The present invention aims to provide an inverter device mounting structure and an electric compressor that can alleviate the stress generated in the inverter and avoid or reduce electrical connection failures.

本発明は、インバータ装置を冷却部材に取り付けるインバータ装置の取り付け構造であって、前記インバータ装置は、電力用半導体素子と、前記電力用半導体素子の第1の面に対向して配置される回路基板と、前記回路基板と前記電力用半導体素子の端子とを電気的に固着する導電性接着剤と、前記電力用半導体素子と前記回路基板とを所定距離に維持する移動規制部材と、を有し、放熱材を介して前記電力用半導体素子の第2の面を前記冷却部材に対向させ、前記回路基板を前記冷却部材に取り付ける、ことを特徴とする、インバータ装置の取り付け構造にかかるものである。 The present invention is an inverter device mounting structure for attaching an inverter device to a cooling member, wherein the inverter device includes a power semiconductor element and a circuit board disposed facing a first surface of the power semiconductor element. a conductive adhesive that electrically fixes the circuit board and the terminal of the power semiconductor element; and a movement restriction member that maintains the power semiconductor element and the circuit board at a predetermined distance. , the second surface of the power semiconductor element is opposed to the cooling member via a heat dissipation material, and the circuit board is attached to the cooling member. .

また、本発明は、上記のインバータ装置の取り付け構造を有し、筐体内にモータが内蔵される電動圧縮機であって、前記冷却部材は前記筐体の一部である、ことを特徴とする電動圧縮機に係るものである。 Further, the present invention provides an electric compressor having the above-mentioned inverter device mounting structure and having a motor built in the housing, wherein the cooling member is a part of the housing. This relates to an electric compressor.

本発明によれば、予め電力用半導体素子と回路基板とがモジュール化されたインバータ装置を冷却部材に取り付ける場合であっても、電力用半導体素子の端子と回路基板との固着部に生じる応力を緩和し、電気的接続不良を回避又は低減可能な、インバータ装置の取り付け構造、電動圧縮機を提供できる、という優れた効果を奏し得る。 According to the present invention, even when an inverter device in which power semiconductor elements and circuit boards are modularized in advance is attached to a cooling member, stress generated at the fixed portion between the terminals of the power semiconductor elements and the circuit board can be reduced. An excellent effect can be achieved in that it is possible to provide an inverter device mounting structure and an electric compressor that can alleviate or reduce electrical connection failures.

本発明の実施形態に係る電動圧縮機の概要を示す縦断面図である。1 is a vertical cross-sectional view showing an outline of an electric compressor according to an embodiment of the present invention. 本発明の実施形態に係る電動圧縮機の回路ブロック図である。FIG. 1 is a circuit block diagram of an electric compressor according to an embodiment of the present invention. 本実施形態のインバータ回路部の概略を示す図であり(A)断面概要図、(B)電力用半導体素子の外観斜視図、(C)電力用半導体素子の断面概略図である。FIG. 1 is a diagram schematically showing an inverter circuit section of the present embodiment, and is (A) a schematic cross-sectional view, (B) an external perspective view of a power semiconductor element, and (C) a schematic cross-sectional view of a power semiconductor element. 本実施形態のインバータ装置の組み立て方法を説明する断面概略図である。FIG. 2 is a schematic cross-sectional view illustrating a method of assembling an inverter device according to the present embodiment. 本実施形態のインバータ装置の取り付け方法を説明する断面概略図である。FIG. 3 is a schematic cross-sectional view illustrating a method of attaching the inverter device according to the present embodiment. 本実施形態の電動圧縮機の組み立て方法を説明する断面概略図である。FIG. 2 is a schematic cross-sectional view illustrating a method of assembling the electric compressor of this embodiment. 本実施形態のインバータ装置の取り付け構造を説明する断面概要図である。FIG. 2 is a schematic cross-sectional view illustrating the mounting structure of the inverter device according to the present embodiment. 本実施形態のインバータ装置の取り付け構造を説明する図であり、(A)取り付け構造を示す断面概要図、(B)、(C)電力用半導体素子の平面図、(D)取り付け構造を示す断面概要図である。FIG. 2 is a diagram illustrating the mounting structure of the inverter device according to the present embodiment, in which (A) a cross-sectional schematic diagram showing the mounting structure, (B), (C) a plan view of a power semiconductor element, and (D) a cross-section showing the mounting structure. It is a schematic diagram. 本実施形態の(A)電力用半導体モジュールの外観斜視図、(B)断面概要図である。They are (A) an external perspective view of a power semiconductor module and (B) a schematic cross-sectional view of the present embodiment. 本実施形態のインバータ装置の組み立て方法を説明する外観斜視図である。FIG. 2 is an external perspective view illustrating a method of assembling the inverter device according to the present embodiment. 本実施形態のインバータ装置の取り付け方法を説明する断面概要図である。FIG. 2 is a cross-sectional schematic diagram illustrating a method of attaching an inverter device according to the present embodiment. 本実施形態のインバータ装置の取り付け方法を説明する断面概要図である。FIG. 2 is a cross-sectional schematic diagram illustrating a method of attaching an inverter device according to the present embodiment.

以下、本発明の実施の形態について図1~12を参照して説明する。図1~図12は本発明を実施する形態の一例であって、図中、同一の符号を付した部分は同一構成を表わす。また、各図において一部の構成を適宜省略して、図面を簡略化する。また、各図において一部の構成について形状や寸法を適宜誇張して表現する。 Embodiments of the present invention will be described below with reference to FIGS. 1 to 12. 1 to 12 are examples of embodiments of the present invention, and in the figures, parts given the same reference numerals represent the same configurations. Further, in each figure, some components are omitted as appropriate to simplify the drawings. Further, in each figure, the shapes and dimensions of some structures are appropriately exaggerated.

<電動圧縮機の全体構成>
図1を参照して、本実施形態の電動圧縮機1の全体構成について説明する。同図は、本実施形態に係るインバータ装置9の取り付け構造を有する電動圧縮機1の概要を示す縦断面図であり、説明の便宜上、主要な構成のみを模式的に示している。
<Overall configuration of electric compressor>
With reference to FIG. 1, the overall configuration of an electric compressor 1 of this embodiment will be described. This figure is a vertical cross-sectional view showing an outline of an electric compressor 1 having a mounting structure for an inverter device 9 according to the present embodiment, and for convenience of explanation, only the main components are schematically shown.

本実施形態の電動圧縮機1は、所謂インバータ一体型の電動圧縮機であり、図示しない車両の車室内を空調する車両用空気調和装置の冷媒回路の一部を構成するものである。電動圧縮機1は、筐体2と、筐体2に内蔵されるモータ3と、このモータ3の回転軸4により駆動される圧縮機構5と、インバータ装置9などを有する。インバータ装置9は、少なくとも、回路基板(プリント基板)8と、モータ3を駆動するインバータ回路部6を有し、この例では、スイッチング電流の高周波成分を吸収するためのフィルタ回路部7と、インバータ制御部16などを含む。 The electric compressor 1 of this embodiment is a so-called inverter-integrated electric compressor, and constitutes a part of a refrigerant circuit of a vehicle air conditioner that air-conditions the interior of a vehicle (not shown). The electric compressor 1 includes a housing 2, a motor 3 built into the housing 2, a compression mechanism 5 driven by a rotating shaft 4 of the motor 3, an inverter device 9, and the like. The inverter device 9 includes at least a circuit board (printed board) 8 and an inverter circuit section 6 for driving the motor 3. In this example, the inverter device 9 includes a filter circuit section 7 for absorbing high frequency components of the switching current, and an inverter circuit section 6 for driving the motor 3. It includes a control unit 16 and the like.

筐体2は、例えば、モータ3の収容部であるハウジング21と、回路収容部22と、回路収容部22を覆う蓋部材25を有する。ハウジング21にはモータ3、回転軸4および圧縮機構5が収容され、回路収容部22には、インバータ装置9(インバータ回路部6、フィルタ回路部7、インバータ制御部16および回路基板8など)が収容される。 The housing 2 includes, for example, a housing 21 that is a housing portion for the motor 3, a circuit housing portion 22, and a lid member 25 that covers the circuit housing portion 22. The housing 21 accommodates the motor 3, the rotating shaft 4, and the compression mechanism 5, and the circuit housing section 22 houses the inverter device 9 (inverter circuit section 6, filter circuit section 7, inverter control section 16, circuit board 8, etc.). be accommodated.

回路収容部22は、一例として、第1空間221と第2空間222を有する。第1空間221はモータ3の回転軸4の軸方向における一端側において隔壁23を介してハウジング21と隣接する空間であり、インバータ回路部6が収容される。第2空間222は、ハウジング21よりも、モータ3のステータ径方向外側に突出する空間であり、フィルタ回路部7が収容される。本実施形態では一例として、一つの回路基板8にインバータ回路部6とフィルタ回路部7が構成され、インバータ回路部6とフィルタ回路部7を筐体2の内部(回路収容部22)に収めるように、回路基板8が筐体2に着脱可能に組み付けられている。回路収容部22は隔壁23の対向面が開口24となり、蓋部材25により開閉可能に閉塞される。尚、本実施形態における各図では回路収容部22を上にした状態で電動圧縮機1を示しているが、車両用空気調和装置として実際には回路収容部22が一側となるように横方向で配置される。本実施形態では説明の便宜上、電動圧縮機1における方向の定義として、回路収容部22側を上方、モータ3側を下方とし、各構成におけるモータ3の回転軸4の方向(モータ軸方向)を「高さ方向」とする。 The circuit housing section 22 includes, for example, a first space 221 and a second space 222. The first space 221 is a space adjacent to the housing 21 via the partition wall 23 at one end in the axial direction of the rotating shaft 4 of the motor 3, and accommodates the inverter circuit section 6. The second space 222 is a space that protrudes outward in the stator radial direction of the motor 3 from the housing 21, and accommodates the filter circuit section 7. In this embodiment, as an example, an inverter circuit section 6 and a filter circuit section 7 are configured on one circuit board 8, and the inverter circuit section 6 and filter circuit section 7 are housed inside the housing 2 (circuit housing section 22). A circuit board 8 is removably attached to the housing 2. The circuit accommodating portion 22 has an opening 24 on the opposite surface of the partition wall 23, and is closed by a lid member 25 so as to be openable and closable. Note that although the electric compressor 1 is shown in each figure in this embodiment with the circuit housing part 22 facing upward, in reality, as a vehicle air conditioner, it is placed horizontally so that the circuit housing part 22 is on one side. placed in the direction. In this embodiment, for convenience of explanation, the directions in the electric compressor 1 are defined as the circuit housing part 22 side is upward and the motor 3 side is downward, and the direction of the rotating shaft 4 of the motor 3 in each configuration (motor axial direction) is defined as "Height direction".

インバータ装置9は、インバータ回路部6およびフィルタ回路部7を構成する各電子部品が回路基板(プリント基板)8に実装され、または電気的に接続されて構成される。本実施形態では、一つの回路基板8にインバータ回路部6とフィルタ回路部7が一体的に設けられて(モジュール化されて)、インバータ装置9が構成されている場合を例示する。具体的に、回路基板8の第1の面Sf1にインバータ制御部16を構成する電子部品が直接装着(実装)されて電気的に接続される。そして回路基板8の第2の面Sf2の所定の領域にインバータ回路部6が設けられ、同じ第2の面Sf2の別の所定の領域にフィルタ回路部7が設けられる。 The inverter device 9 is configured such that each electronic component constituting the inverter circuit section 6 and the filter circuit section 7 is mounted on a circuit board (printed board) 8 or electrically connected. In this embodiment, a case is illustrated in which an inverter circuit section 6 and a filter circuit section 7 are integrally provided (modularized) on one circuit board 8 to form an inverter device 9. Specifically, electronic components constituting the inverter control unit 16 are directly mounted (mounted) on the first surface Sf1 of the circuit board 8 and electrically connected. The inverter circuit section 6 is provided in a predetermined region on the second surface Sf2 of the circuit board 8, and the filter circuit section 7 is provided in another predetermined region on the same second surface Sf2.

インバータ回路部6は、これを構成する複数の電力用半導体素子63の端子63Cが回路基板8と電気的に接続・固着する。フィルタ回路部7では、これを構成するノイズフィルタ72および平滑コンデンサ71などのフィルタ回路部品70が例えば絶縁樹脂部73により一体化され、回路基板8に直接装着(実装)されて回路基板8と電気的に接続する。 In the inverter circuit section 6, terminals 63C of the plurality of power semiconductor elements 63 constituting the inverter circuit section 6 are electrically connected and fixed to the circuit board 8. In the filter circuit section 7, filter circuit components 70 such as a noise filter 72 and a smoothing capacitor 71 constituting the filter circuit section 7 are integrated by, for example, an insulating resin section 73, and are directly mounted (mounted) on the circuit board 8 and electrically connected to the circuit board 8. Connect to

なお、この例に限らず、回路基板8はインバータ回路部6用の回路基板と、フィルタ回路部7用の回路基板とに分離されているものであってもよい。この場合、本実施形態のインバータ装置9とは、少なくともインバータ回路部6と、これに電気的に接続する(インバータ回路部6用の)回路基板とを含み、両者が一体化されている構成をいう。 Note that the circuit board 8 is not limited to this example, and the circuit board 8 may be separated into a circuit board for the inverter circuit section 6 and a circuit board for the filter circuit section 7. In this case, the inverter device 9 of this embodiment includes at least the inverter circuit section 6 and a circuit board (for the inverter circuit section 6) that is electrically connected to the inverter circuit section 6, and has a configuration in which both are integrated. say.

モータ3は、三相同期モータ(ブラシレスDCモータ)から構成されており、圧縮機構5は例えばスクロール式の圧縮機構である。圧縮機構5はモータ3の回転軸4により駆動され、冷媒を圧縮して冷媒回路内に吐出する。そして、ハウジング21には、これも冷媒回路の一部を構成するエバポレータ(吸熱器とも称される)から吸入された低温のガス冷媒が流通される。そのため、ハウジング21内は冷却され、それに伴い回路収容部22の下部(底部22B)の一部を構成する隔壁23も低温のガス冷媒により冷却される。 The motor 3 is composed of a three-phase synchronous motor (brushless DC motor), and the compression mechanism 5 is, for example, a scroll type compression mechanism. The compression mechanism 5 is driven by the rotating shaft 4 of the motor 3, compresses the refrigerant, and discharges it into the refrigerant circuit. A low-temperature gas refrigerant drawn from an evaporator (also referred to as a heat absorber), which also constitutes a part of the refrigerant circuit, flows through the housing 21 . Therefore, the inside of the housing 21 is cooled, and accordingly, the partition wall 23 forming a part of the lower part (bottom part 22B) of the circuit housing part 22 is also cooled by the low-temperature gas refrigerant.

隔壁23(第1空間221側の回路収容部22の底部22B)の上面23Uには、放熱材201を介在させてインバータ回路部6の電力用半導体素子(パワー半導体素子)63が密着する。放熱材201は例えば、ペースト状のシリコンなどや、常温、高温、湿度などを条件に1液または2液で硬化するもの、またはシリコーングリスなど流動性の低いものである。第2空間222側の回路収容部22の底部22Bの上面には、放熱材(例えば、絶縁シート)302を介在させてフィルタ回路部7の絶縁樹脂部73が密着する。回路基板8は、ボルト85により筐体2(回路収容部22の底部22B)に固定される。 A power semiconductor element (power semiconductor element) 63 of the inverter circuit part 6 is tightly attached to the upper surface 23U of the partition wall 23 (bottom part 22B of the circuit housing part 22 on the first space 221 side) with a heat dissipation material 201 interposed therebetween. The heat dissipating material 201 is, for example, paste-like silicon, a material that hardens with one or two liquids under conditions such as room temperature, high temperature, and humidity, or a material with low fluidity such as silicone grease. The insulating resin part 73 of the filter circuit part 7 is in close contact with the upper surface of the bottom part 22B of the circuit accommodating part 22 on the second space 222 side with a heat dissipating material (for example, an insulating sheet) 302 interposed therebetween. The circuit board 8 is fixed to the housing 2 (bottom portion 22B of the circuit housing portion 22) with bolts 85.

図2は、電動圧縮機1のモータ駆動制御用の電気回路の概略を示す回路図である。インバータ回路部6は、スイッチング素子(例えば、IGBT)61と還流ダイオード62からなる電力用半導体素子63を複数(ここでは一例として3組合計6個)含む。また、フィルタ回路部7は、フィルタ回路部品70を有する。フィルタ回路部品70はこの例では、インバータ回路部6への供給電力を平滑化する平滑コンデンサ71とノイズフィルタ72を構成するコイルおよびコンデンサを含む。 FIG. 2 is a circuit diagram schematically showing an electric circuit for controlling the motor drive of the electric compressor 1. As shown in FIG. The inverter circuit unit 6 includes a plurality of power semiconductor elements 63 (here, as an example, three sets of six in total) each including a switching element (for example, an IGBT) 61 and a free wheel diode 62. Further, the filter circuit section 7 includes a filter circuit component 70. In this example, the filter circuit component 70 includes a smoothing capacitor 71 that smoothes the power supplied to the inverter circuit section 6, and a coil and a capacitor that constitute a noise filter 72.

インバータ装置9には、電源12からの電力が、高電力用コネクタ13を介して給電され、ノイズフィルタ72、平滑コンデンサ71を介してインバータ回路部6に供給される。 Electric power from a power source 12 is supplied to the inverter device 9 via a high-power connector 13 , and is supplied to the inverter circuit section 6 via a noise filter 72 and a smoothing capacitor 71 .

また、車両の空調制御装置18から、低電圧の電力が制御信号用コネクタ19を介してインバータ制御部16へ供給される。インバータ制御部16は、回路基板8に実装されるマイクロコンピュータ(プロセッサ)により構成され、不図示のモータ制御部、PWM制御部、電力用半導体素子63のゲートドライバなどを含み、外部からの指令に基づいてインバータ回路部6の各電力用半導体素子63をスイッチング制御する。またインバータ制御部16は、モータ3の駆動状態を外部に送信する機能を有している。 Further, low voltage power is supplied from the air conditioning control device 18 of the vehicle to the inverter control unit 16 via the control signal connector 19. The inverter control unit 16 is composed of a microcomputer (processor) mounted on the circuit board 8, and includes a motor control unit (not shown), a PWM control unit, a gate driver for the power semiconductor element 63, etc., and responds to commands from the outside. Based on this, switching control of each power semiconductor element 63 of the inverter circuit section 6 is performed. The inverter control unit 16 also has a function of transmitting the driving state of the motor 3 to the outside.

インバータ回路部6では電源12からの直流が疑似三相交流に変換されてインバータ装置9から出力される。この出力がモータ側接続端子11を介してモータ3の各巻線3aに給電されることによりモータ3が回転駆動され、圧縮機構5による圧縮が行われる。 In the inverter circuit section 6, the direct current from the power source 12 is converted into pseudo three-phase alternating current, and the converted alternating current is output from the inverter device 9. This output is supplied to each winding 3a of the motor 3 via the motor-side connection terminal 11, whereby the motor 3 is rotationally driven and compression by the compression mechanism 5 is performed.

<インバータ装置の取り付け構造/第1実施形態>
図3を参照してインバータ装置9の取り付け構造10について説明する。図3(A)がインバータ装置9と冷却部材23との取り付け構造10を示す断面概要図であり、同図(B)がインバータ回路部6を構成する電力用半導体素子63の外観斜視図、同図(C)が電力用半導体素子63の断面概要図である。なお、図3以降(図6を除く)においてはインバータ装置9におけるインバータ回路部6部分を抜き出して示し、他の構成(フィルタ回路部7等)の図示は省略している。
<Mounting structure of inverter device/first embodiment>
The mounting structure 10 for the inverter device 9 will be explained with reference to FIG. FIG. 3(A) is a schematic cross-sectional view showing the mounting structure 10 between the inverter device 9 and the cooling member 23, and FIG. Figure (C) is a schematic cross-sectional view of the power semiconductor element 63. Note that in FIG. 3 and subsequent figures (excluding FIG. 6), the inverter circuit section 6 portion of the inverter device 9 is extracted and illustration of other components (filter circuit section 7, etc.) is omitted.

図3(A)に示すように、本実施形態のインバータ装置9は、電力用半導体素子63と、回路基板8と、回路基板8と電力用半導体素子63の端子63Cとを電気的に固着する導電性接着剤90と、移動規制部材100と、を有する。 As shown in FIG. 3A, the inverter device 9 of this embodiment electrically fixes the power semiconductor element 63, the circuit board 8, and the circuit board 8 and the terminals 63C of the power semiconductor element 63. It has a conductive adhesive 90 and a movement regulating member 100.

インバータ装置9を構成するインバータ回路部6は、図3(B)に示すような三相インバータ回路の各相のアームを構成する複数(ここでは6個)の電力用半導体素子63を、同図(A)に示すように回路基板8に電気的に接続してなる。 The inverter circuit section 6 constituting the inverter device 9 includes a plurality of (six in this case) power semiconductor elements 63 constituting arms of each phase of a three-phase inverter circuit as shown in FIG. 3(B). As shown in (A), it is electrically connected to the circuit board 8.

同図(A)、同図(C)に示すように、各電力用半導体素子63は、それぞれ、スイッチング素子(例えば、IGBT)61と還流ダイオード62(図2参照)を接続した半導体チップ63Sを、放熱板64の一方の面(上面)側に載置して一つの樹脂パッケージ63Pに収容したモールド型素子である。樹脂パッケージ63Pはその外形が略直方体形状であり、以下の説明では、冷却部材23に載置した場合にこれに平行(水平)となる2面を電力用半導体素子63の上面US、下面DSと称し、残りの4つの面を側面SSと称する。 As shown in Figures (A) and (C), each power semiconductor element 63 includes a semiconductor chip 63S in which a switching element (for example, IGBT) 61 and a free wheel diode 62 (see Figure 2) are connected. , is a molded element placed on one surface (upper surface) of the heat sink 64 and housed in one resin package 63P. The resin package 63P has a substantially rectangular parallelepiped outer shape, and in the following explanation, the two surfaces that are parallel (horizontal) to the cooling member 23 when placed on it are referred to as the upper surface US and the lower surface DS of the power semiconductor element 63. The remaining four surfaces are called side surfaces SS.

電力用半導体素子63の3本の端子(リード)63Cは樹脂パッケージ63Pの側面SSから放熱板64と水平方向に外部に導出され、断面視において略L字状に上方に曲折される。樹脂パッケージ63Pの下面DSには放熱板64の他方の面(下面)が露出する。なお、本実施形態では従来既知の電力用半導体素子63を採用しており、樹脂パッケージ63Pには、その上面USから下面DSまで貫通する固定用孔部63Hが設けられている。固定用孔部63Hは、従来、電力用半導体素子63を回路基板その他の基板にねじ止めする場合に、ねじの挿通孔として利用されていた孔部であり、放熱板64も固定用孔部63Hに対応して円形に繰り抜かれている。しかしながら本実施形態では電力用半導体素子63と他の部材とのねじによる締結は行わない。 Three terminals (leads) 63C of the power semiconductor element 63 are led out from the side surface SS of the resin package 63P in a direction horizontal to the heat sink 64, and are bent upward into a substantially L-shape in cross-sectional view. The other surface (lower surface) of the heat sink 64 is exposed on the lower surface DS of the resin package 63P. Note that this embodiment employs a conventionally known power semiconductor element 63, and the resin package 63P is provided with a fixing hole 63H that penetrates from the upper surface US to the lower surface DS. The fixing hole 63H is a hole that has conventionally been used as a screw insertion hole when screwing the power semiconductor element 63 to a circuit board or other board. It is hollowed out in a circular shape corresponding to the . However, in this embodiment, the power semiconductor element 63 and other members are not fastened with screws.

図3(A)を参照して、回路基板8は、その第2の面Sf2が電力用半導体素子63の第1の面(上面US)に対向するように配置される。ここで電力用半導体素子63の第1の面USと回路基板8の第2の面Sf2間には、両者を所定の距離t1に維持する移動規制部材100が配置される。移動規制部材100は、この例では、大経の略円柱形状の台座部104の上に小径の略円柱形状の基板係合部103を両者の円筒の軸方向が同方向になるように積層した形状を有している。台座部104の下面(底面)は電力用半導体素子63の上面US(樹脂パッケージ63Pの上面と同意、以下同様)と当接するパッケージ当接部101となり、台座部104から突出する基板係合部103の段差部(肩部)は回路基板8と当接する基板当接部102となる。基板係合部103は、回路基板8に設けられた係合孔88に挿通され、回路基板8と係合する部位である。係合孔88の直径は基板係合部103の径より大きく台座部104の径より小さい。これにより、係合孔88には基板係合部103が挿通可能となり、基板係合部103を挿通した状態で基板当接部102に回路基板8の第2の面Sf2が当接する。 Referring to FIG. 3(A), circuit board 8 is arranged such that its second surface Sf2 faces the first surface (upper surface US) of power semiconductor element 63. Here, a movement restriction member 100 is arranged between the first surface US of the power semiconductor element 63 and the second surface Sf2 of the circuit board 8 to maintain a predetermined distance t1 between the two. In this example, the movement regulating member 100 has a small-diameter, substantially cylindrical substrate engaging portion 103 stacked on a large, substantially cylindrical pedestal portion 104 such that the axial directions of both cylinders are in the same direction. It has a shape. The lower surface (bottom surface) of the pedestal section 104 becomes a package contacting section 101 that comes into contact with the upper surface US of the power semiconductor element 63 (same as the upper surface of the resin package 63P, hereinafter the same), and the substrate engaging section 103 that protrudes from the pedestal section 104 The stepped portion (shoulder portion) becomes a board abutting portion 102 that comes into contact with the circuit board 8. The board engaging portion 103 is a portion that is inserted into an engaging hole 88 provided in the circuit board 8 and engages with the circuit board 8 . The diameter of the engagement hole 88 is larger than the diameter of the substrate engagement part 103 and smaller than the diameter of the pedestal part 104. As a result, the board engaging part 103 can be inserted into the engaging hole 88, and the second surface Sf2 of the circuit board 8 comes into contact with the board abutting part 102 with the board engaging part 103 inserted.

移動規制部材100は、電動圧縮機1の通常の(一般的な)使用(運転)では変形しにくい硬質な樹脂材料(例えば、PPS(ポリフェニレンスルファイド)、PBT(ポリブチレンテレフタレート、その他のスーパーエンジニアリングプラスチック、エンジニアリングプラスチックなど)や金属材料などにより構成される。この移動規制部材100のパッケージ当接部101を電力用半導体素子63の上面USに載置し、肩部である基板当接部102の上に回路基板8を載置することで、電力用半導体素子63と回路基板8とは、高さ(図示上下)方向(モータ軸方向)において距離t1に維持される。 The movement regulating member 100 is made of a hard resin material that is difficult to deform during normal (general) use (operation) of the electric compressor 1 (for example, PPS (polyphenylene sulfide), PBT (polybutylene terephthalate), or other super engineering materials). The package contacting portion 101 of the movement regulating member 100 is placed on the upper surface US of the power semiconductor element 63, and the substrate contacting portion 102, which is a shoulder portion, is By placing the circuit board 8 thereon, the power semiconductor element 63 and the circuit board 8 are maintained at a distance t1 in the height (vertical) direction (motor axis direction).

図3(B)に示すように、この例では6個の電力用半導体素子63は、それぞれ独立して回路基板8に接続(固定)される。この場合、6個の電力用半導体素子63のそれぞれの上面USに移動規制部材100が配置されることが望ましい。しかしながら移動規制部材100が配置されない電力用半導体素子63が含まれていてもよい。また一つのインバータ装置9において、複数の移動規制部材100の形状は同一であってもよいし異なるものがあってもよいが、少なくとも台座部104のモータ軸方向における高さt1は同一とする。 As shown in FIG. 3B, in this example, the six power semiconductor elements 63 are each independently connected (fixed) to the circuit board 8. In this case, it is desirable that the movement regulating member 100 be disposed on the upper surface US of each of the six power semiconductor elements 63. However, the power semiconductor element 63 without the movement regulating member 100 may be included. Further, in one inverter device 9, the shapes of the plurality of movement regulating members 100 may be the same or different, but at least the height t1 of the pedestal portion 104 in the motor axis direction is the same.

移動規制部材100は、電力用半導体素子63と回路基板8の間のスペーサとして機能し、両者を距離t1に維持するとともに、両者が距離t1よりも近づく方向に移動することを規制する。また、基板係合部103を係合孔88に挿通することにより、移動規制部材100と回路基板8のモータ軸方向に直交する水平方向(図示左右方向)の相対移動も規制される。 The movement restriction member 100 functions as a spacer between the power semiconductor element 63 and the circuit board 8, maintains the distance t1 between the two, and restricts them from moving in a direction closer to each other than the distance t1. Furthermore, by inserting the board engaging portion 103 into the engaging hole 88, the relative movement of the movement regulating member 100 and the circuit board 8 in the horizontal direction (horizontal direction in the drawing) perpendicular to the motor axis direction is also restricted.

ここで、移動規制部材100は、回路基板8と係合はするが、固定・固着はされておらず離脱が許容される。また、この例の移動規制部材100は、台座部104が電力用半導体素子63の上面USに載置されているが、固定・固着はされていない。移動規制部材100は、ねじによる締結や板ばねによる押圧のように電力用半導体素子63に外力として下方向(冷却部材23方向)への押さえつけをするものではないが、電力用半導体素子63が回路基板8方向に移動することを規制する。 Here, the movement regulating member 100 engages with the circuit board 8, but is not fixed or fixed and is allowed to separate. Further, in the movement regulating member 100 of this example, the pedestal portion 104 is placed on the upper surface US of the power semiconductor element 63, but is not fixed or fixed. The movement regulating member 100 does not apply external force to the power semiconductor element 63 to press it downward (towards the cooling member 23), such as by fastening with screws or pressing with a leaf spring, but when the power semiconductor element 63 is in the circuit. Movement of the substrate in the 8 direction is restricted.

なお、移動規制部材100は、電力用半導体素子63と回路基板8とをモータ軸方向において距離t1に維持し、両者が距離t1より近づく方向に移動することを規制する構成であれば図示の形状に限らず、例えば台座部104のみ(基板係合部103を有さない)形状であってもよい。 Note that the movement regulating member 100 may have the shape shown in the drawings as long as it maintains the distance t1 between the power semiconductor element 63 and the circuit board 8 in the motor axis direction and prevents them from moving in a direction closer to each other than the distance t1. However, the present invention is not limited to this, and, for example, only the pedestal portion 104 (without the substrate engaging portion 103) may have a shape.

回路基板8には、電力用半導体素子63の端子(リード)63Cの先端が挿通可能な端子挿通孔83が、端子63Cの数(例えば18)と同数設けられている。端子63Cの先端は、回路基板8の第2の面Sf2から端子挿通孔83に挿通され、第1の面Sf1に導出される。そして、端子挿通孔83付近において、端子63Cと回路基板8の配線が電気的に接続するよう、導電性接着剤90により両者が固着・固定される。導電性接着剤90が塗布され、端子63Cと回路基板8(の配線)が固定される領域を固着部91という。導電性接着剤90はこの例では、はんだであるがこれに限らず、導電性ペーストであってもよい。回路基板8と電力用半導体素子63とは、導電性接着剤90による端子63Cと回路基板8の固着部91のみで接続されている。 The circuit board 8 is provided with the same number of terminal insertion holes 83 (for example, 18) as the terminals 63C, into which the tips of the terminals (leads) 63C of the power semiconductor element 63 can be inserted. The tip of the terminal 63C is inserted into the terminal insertion hole 83 from the second surface Sf2 of the circuit board 8, and led out to the first surface Sf1. Then, in the vicinity of the terminal insertion hole 83, the terminal 63C and the wiring of the circuit board 8 are fixed and fixed using a conductive adhesive 90 so that the wiring is electrically connected to the terminal 63C. An area where the conductive adhesive 90 is applied and where the terminal 63C and (the wiring of) the circuit board 8 are fixed is referred to as a fixing portion 91. The conductive adhesive 90 is solder in this example, but is not limited to this, and may be a conductive paste. The circuit board 8 and the power semiconductor element 63 are connected only by the terminal 63C formed by the conductive adhesive 90 and the fixed portion 91 of the circuit board 8.

このように、本実施形態のインバータ装置9は、予め(サブラインにより)、電力用半導体素子63と回路基板8とが、固着部91(のみ)によって一体化(モジュール化)されており、その状態で筐体2の回路収容部22に収容される。詳細には、インバータ回路部6は回路収容部22の第1空間221に収容され、電力用半導体素子63の下面DS(放熱板64)と隔壁23とが放熱材201を介して対向配置される。そしてインバータ装置9の自重により電力用半導体素子63の下面DSが放熱材201と密着し、放熱材201を介して隔壁23と面接触する。 As described above, in the inverter device 9 of this embodiment, the power semiconductor element 63 and the circuit board 8 are integrated (modularized) in advance (by sub-line) by the fixing portion 91 (only), and in this state It is accommodated in the circuit accommodating portion 22 of the housing 2. Specifically, the inverter circuit section 6 is housed in the first space 221 of the circuit housing section 22, and the lower surface DS (heat sink 64) of the power semiconductor element 63 and the partition wall 23 are arranged to face each other with the heat sink 201 interposed therebetween. . Then, due to the weight of the inverter device 9, the lower surface DS of the power semiconductor element 63 comes into close contact with the heat dissipating material 201, and comes into surface contact with the partition wall 23 via the heat dissipating material 201.

放熱材201は、放熱板64に生じる熱を効率的に冷却部材23に伝達する手段であることに加え、放熱板64を含む電力用半導体素子63の下面DSと冷却部材23の上面23Uの表面形状ばらつき(意図しない凹凸など)、及び組立公差を吸収する手段としても機能する。 The heat dissipation material 201 is a means for efficiently transmitting heat generated in the heat dissipation plate 64 to the cooling member 23, and also serves as a surface of the lower surface DS of the power semiconductor element 63 including the heat dissipation plate 64 and the upper surface 23U of the cooling member 23. It also functions as a means to absorb shape variations (such as unintended irregularities) and assembly tolerances.

一方で放熱材201は、電力用半導体素子63が載置された場合に、当該電力用半導体素子63に対して生じる反力(反発力)が可能な限り小さくなる材料であることが望ましい。 On the other hand, it is desirable that the heat dissipation material 201 is made of a material that makes the reaction force (repulsive force) generated against the power semiconductor element 63 as small as possible when the power semiconductor element 63 is placed thereon.

これらのことより、放熱材201は、或る程度の流動性および/又は柔軟性(粘性)を有する一方、自身の弾性力は低い材料が選択される。放熱材201は具体的には、上述のとおり、例えば、ペースト状のシリコンなどや、常温、高温、湿度などを条件に1液または2液で硬化するもの、またはシリコーングリスなど流動性の低いものなどである。 For these reasons, a material is selected for the heat dissipating material 201 that has a certain degree of fluidity and/or flexibility (viscosity) but has low elasticity. Specifically, as described above, the heat dissipating material 201 is, for example, paste-like silicon, a material that hardens in one or two parts under conditions such as room temperature, high temperature, and humidity, or a material with low fluidity such as silicone grease. etc.

本実施形態では、従来のねじや板ばねなど、外力によって電力用半導体素子63を隔壁23に押し付ける手段を有さない。つまり電力用半導体素子63は、隔壁23から受ける反力が従来と比較して小さくできる。これにより)電力用半導体素子63の端子63Cと回路基板8との固着部91に生じる応力を緩和でき、導電性接着剤90のクラックなどによる接続不良を回避できる。 In this embodiment, there is no means for pressing the power semiconductor element 63 against the partition wall 23 by an external force, such as conventional screws or leaf springs. In other words, the power semiconductor element 63 can receive a smaller reaction force from the partition wall 23 than in the prior art. As a result, the stress generated in the fixed portion 91 between the terminal 63C of the power semiconductor element 63 and the circuit board 8 can be alleviated, and connection failures such as cracks in the conductive adhesive 90 can be avoided.

また、回路基板8と電力用半導体素子63の間に、両者を距離t1に維持する移動規制部材100が設けられている。回路基板8に特にフィルタ回路部7などが一体化されている場合、回路基板8の重量が増すため、インバータ装置9を回路収容部22に収容、取り付ける際に(意図せず)電力用半導体素子63の端子63Cと固着部91に過剰な負荷が係る恐れがある。またこれに限らず回路基板8や電力用半導体素子63に外力(特に上向きあるいは下向きの力)が加わる可能性もある。本実施形態では移動規制部材100によってモータ軸方向において電力用半導体素子63と回路基板8とが近づく方向に移動することを規制できるので、端子63Cや固着部91に過剰な負荷が集中することを回避できる。 Further, a movement regulating member 100 is provided between the circuit board 8 and the power semiconductor element 63 to maintain the distance t1 between the two. If the circuit board 8 is particularly integrated with the filter circuit section 7, the weight of the circuit board 8 increases, so when the inverter device 9 is housed and installed in the circuit housing section 22, power semiconductor elements (unintentionally) may be removed. There is a possibility that an excessive load will be applied to the terminal 63C of the terminal 63 and the fixed portion 91. Furthermore, the present invention is not limited to this, and there is a possibility that an external force (particularly an upward or downward force) is applied to the circuit board 8 or the power semiconductor element 63. In this embodiment, the movement regulating member 100 can prevent the power semiconductor element 63 and the circuit board 8 from moving toward each other in the axial direction of the motor, thereby preventing excessive loads from concentrating on the terminals 63C and the fixed portions 91. It can be avoided.

筐体2はモータ3を収容するハウジング21の内部に低温のガス冷媒が流通しており、ハウジング21との境界となる隔壁23は冷却部材として機能する。このため、放熱板64が放熱材201を介して冷却部材である隔壁23と密着して熱交換が進行し、電力用半導体素子63が効率良く放熱される。 In the case 2, a low-temperature gas refrigerant flows inside a housing 21 that accommodates the motor 3, and a partition wall 23 that forms a boundary with the housing 21 functions as a cooling member. Therefore, the heat radiating plate 64 comes into close contact with the partition wall 23, which is a cooling member, through the heat radiating material 201, heat exchange progresses, and the power semiconductor element 63 efficiently radiates heat.

回路基板8は、ボルト85によって隔壁23(筐体2)に着脱可能に取り付けられる。ここで、図3(A)に示すように、本実施形態では上述した移動規制部材(以下、第1移動規制部材)100に加えて、他の移動規制部材(以下、第2移動規制部材)110を有している。第2移動規制部材110は、冷却部材(隔壁)23と、回路基板8を所定の距離t2に維持する部材であり、冷却部材当接部111と基板当接部112を有する。移動規制部材110はこの例では、その内部が中空でボルト85を挿通可能なスリーブ部品である。スリーブ部品の下側の開口端は冷却部材23と当接する冷却部材当接部111となり、スリーブ部品の上側の開口端は回路基板8と当接する基板当接部112となる。 The circuit board 8 is removably attached to the partition wall 23 (casing 2) with bolts 85. Here, as shown in FIG. 3A, in this embodiment, in addition to the above-mentioned movement regulating member (hereinafter referred to as a first movement regulating member) 100, another movement regulating member (hereinafter referred to as a second movement regulating member) is used. It has 110. The second movement regulating member 110 is a member that maintains the cooling member (partition) 23 and the circuit board 8 at a predetermined distance t2, and has a cooling member contact portion 111 and a board contact portion 112. In this example, the movement regulating member 110 is a sleeve component that is hollow inside and into which the bolt 85 can be inserted. The lower open end of the sleeve component becomes a cooling member abutting section 111 that comes into contact with the cooling member 23, and the upper open end of the sleeve component becomes a board abutting section 112 that comes into contact with the circuit board 8.

第2移動規制部材110も、電動圧縮機1の通常の(一般的な)使用(運転)では略変形しない(変形が困難な)硬質な樹脂材料(例えば、ポリカーボネイト、エンジニアリングプラスチック、スーパーエンジニアリングプラスチックなど)や金属材料などにより構成される。 The second movement regulating member 110 is also made of a hard resin material (for example, polycarbonate, engineering plastic, super engineering plastic, etc.) that does not substantially deform (is difficult to deform) during normal (common) use (operation) of the electric compressor 1. ) and metal materials.

第2移動規制部材110の高さ(モータ軸方向の長さ)t2は、電力用半導体素子63の高さt3と第1移動規制部材100の台座部104の高さt1の合計より大きい。つまり、インバータ装置9を冷却部材23に取り付ける際(回路収容部22に収容する際)、回路基板8は、ボルト85によって冷却部材23に締結固定されるが、第2移動規制部材110の存在により、回路基板8および電力用半導体素子63が冷却部材23方向に押し込まれることはなく、冷却部材23からの反力も最小限に留めることができる。 The height (length in the motor axis direction) t2 of the second movement restriction member 110 is greater than the sum of the height t3 of the power semiconductor element 63 and the height t1 of the pedestal portion 104 of the first movement restriction member 100. That is, when the inverter device 9 is attached to the cooling member 23 (when housed in the circuit accommodating part 22), the circuit board 8 is fastened and fixed to the cooling member 23 by the bolts 85, but due to the presence of the second movement restriction member 110. The circuit board 8 and the power semiconductor element 63 are not pushed toward the cooling member 23, and the reaction force from the cooling member 23 can be kept to a minimum.

このように第2移動規制部材110は、冷却部材23と回路基板8の間のスペーサとして機能し、両者を距離t2に維持するとともに、両者が距離t2より近づく方向に移動することを規制する。 In this way, the second movement restricting member 110 functions as a spacer between the cooling member 23 and the circuit board 8, maintains the distance t2 between the two, and restricts them from moving in a direction closer to each other than the distance t2.

第2移動規制部材110は、回路基板8と冷却部材23の間に配置されるが、いずれとも固定・固着はされない。なお、基板当接部112に係合突起などを設け、回路基板8の対応する位置に係合孔部を設けるなどして第2移動規制部材110と回路基板8を係合可能としてもよい。これに加えて、あるいはこれに代えて、冷却部材当接部111に係合突起などを設け、冷却部材23の対応する位置に係合孔部を設けるなどして第2移動規制部材110と冷却部材23を係合可能としてもよい。 The second movement regulating member 110 is arranged between the circuit board 8 and the cooling member 23, but is not fixed or fixed to either of them. Note that the second movement regulating member 110 and the circuit board 8 may be able to be engaged by providing an engagement protrusion or the like on the board abutting portion 112 and providing an engagement hole at a corresponding position on the circuit board 8. In addition to this, or in place of this, an engaging protrusion or the like is provided on the cooling member abutting portion 111 and an engaging hole is provided at a corresponding position on the cooling member 23 to cool the second movement regulating member 110. The member 23 may be engageable.

また、第2移動規制部材110は、冷却部材23と回路基板8とをモータ軸方向において所定の距離t2に維持し、両者が近づく方向に移動することを規制する構成であれば図示の形状に限らない。例えば、第2移動規制部材110は、その内部にボルト85を挿通しないスリーブ部品であってもよいし、内部が中空でない(中実の)柱状部材であってもよい。この場合、第2移動規制部材110は、ボルト85に隣接させるなど、ボルト85とは異なる位置に配置する。 Further, the second movement restriction member 110 may have the shape shown in the figure if it is configured to maintain the cooling member 23 and the circuit board 8 at a predetermined distance t2 in the motor axis direction and restrict movement of the two toward each other. Not exclusively. For example, the second movement regulating member 110 may be a sleeve component into which the bolt 85 is not inserted, or may be a columnar member whose interior is not hollow (solid). In this case, the second movement regulating member 110 is arranged at a different position from the bolt 85, such as adjacent to the bolt 85.

また一つのインバータ装置9において第2移動規制部材110は複数配置される。複数の第2移動規制部材110の形状は同一であってもよいし異なるものがあってもよいが、少なくともモータ軸方向における高さt2が同一のものが複数(少なくとも2つ)配置される。複数の第2移動規制部材100は、例えば6個の電力用半導体素子63を囲むように、可能な限り等し間隔で離間して配置すると望ましい。 Further, in one inverter device 9, a plurality of second movement regulating members 110 are arranged. The shapes of the plurality of second movement restriction members 110 may be the same or different, but a plurality (at least two) of the second movement restriction members 110 having at least the same height t2 in the motor axial direction are arranged. It is desirable that the plurality of second movement regulating members 100 be arranged at equal intervals as much as possible so as to surround, for example, six power semiconductor elements 63.

第2移動規制部材110は、電力用半導体素子63が電気的に固着されている回路基板8を支持するものであり、その高さt2は、回路基板8を支持した場合に、電力用半導体素子63の下面DSと冷却部材23の上面23Uが直接的には非接触であり、且つ、電力用半導体素子63の下面DSが放熱材201のみに直接的に接触する状態を維持するように設定されている。 The second movement regulating member 110 supports the circuit board 8 to which the power semiconductor element 63 is electrically fixed, and its height t2 is such that when the circuit board 8 is supported, the power semiconductor element 63 is The lower surface DS of the power semiconductor element 63 and the upper surface 23U of the cooling member 23 are not in direct contact with each other, and the lower surface DS of the power semiconductor element 63 is set to maintain a state in which it directly contacts only the heat dissipation material 201. ing.

これにより、図3(A)に示すようにインバータ装置9を回路収容部22に収容した場合、電力用半導体素子63の下面DS(放熱板64)と冷却部材23との間は第2移動規制部材110によって極僅かな隙間が生じる。本実施形態では放熱板64と冷却部材23との間に放熱材201を配置して、両者間の隙間を埋め、これを介して放熱板64と冷却部材23とを間接的に、十分に面接触させる。隙間(放熱材201の塗布厚)は、一例として、0.5mm~10mm、望ましくは、0.5mm~5mm、好適には0.5mm~3mm、より好適には、0.5mm~2mmである。あるいは、隙間(放熱材201の塗布厚)は、一例として、0.5mm~1.5mm、1.0mm~1.5mm、1.0mm~1.5mm、1.0mm~2.0mmなどであってもよい。 As a result, when the inverter device 9 is housed in the circuit accommodating portion 22 as shown in FIG. A very small gap is created by the member 110. In this embodiment, a heat dissipating material 201 is arranged between the heat dissipating plate 64 and the cooling member 23 to fill the gap between the two, and through this, the heat dissipating plate 64 and the cooling member 23 are indirectly connected to each other so as to have a sufficient surface area. bring into contact. The gap (coating thickness of the heat dissipating material 201) is, for example, 0.5 mm to 10 mm, preferably 0.5 mm to 5 mm, preferably 0.5 mm to 3 mm, and more preferably 0.5 mm to 2 mm. . Alternatively, the gap (coating thickness of the heat dissipating material 201) may be, for example, 0.5 mm to 1.5 mm, 1.0 mm to 1.5 mm, 1.0 mm to 1.5 mm, 1.0 mm to 2.0 mm, etc. It's okay.

つまり、放熱材201は、放熱板64に生じる熱を効率的に冷却部材23に伝達する手段であることに加え、第2移動規制部材110によって電力用半導体素子63の放熱板64と冷却部材23との間に生じる極僅かな隙間を埋めるとともに、放熱板64を含む電力用半導体素子63の下面DSと冷却部材23の上面23Uの表面形状ばらつき(意図しない凹凸など)、及び組立公差を吸収する手段としても機能する。 In other words, the heat dissipation material 201 is a means for efficiently transmitting the heat generated in the heat dissipation plate 64 to the cooling member 23 , and in addition, the heat dissipation material 201 is a means for efficiently transmitting heat generated in the heat dissipation plate 64 to the cooling member 23 . In addition to filling the extremely small gap that occurs between the heat dissipating plate 64 and the upper surface 23U of the cooling member 23 and the lower surface DS of the power semiconductor element 63 and the upper surface 23U of the cooling member 23, it also absorbs variations in surface shape (such as unintended irregularities) and assembly tolerances. It also functions as a means.

第2移動規制部材110によって、電力用半導体素子63および回路基板8はそれらの自重を超えて冷却部材23方向に押し込まれることはない構成ではあるが、組立公差のばらつきや、電力用半導体素子63および回路基板8の対向面の表面形状のばらつきにより、多少の押し込みが生じる可能性もある。この場合に放熱材201として弾性力の大きい材料を採用すると、冷却部材23からの反力は増加することとなり、固着部91に応力が生じる可能性がある。 Although the second movement restricting member 110 prevents the power semiconductor element 63 and the circuit board 8 from being pushed in the direction of the cooling member 23 by exceeding their own weight, variations in assembly tolerances and the power semiconductor element 63 Also, due to variations in the surface shape of the opposing surface of the circuit board 8, some pushing may occur. In this case, if a material with a large elastic force is used as the heat dissipating material 201, the reaction force from the cooling member 23 will increase, and stress may be generated in the fixed portion 91.

これらのことより、上述したように放熱材201は、或る程度の流動性および/又は柔軟性(粘性)を有する一方、自身の弾性力は低い材料が選択される。 For these reasons, as described above, the heat dissipating material 201 is selected from a material that has a certain degree of fluidity and/or flexibility (viscosity) but has a low elastic force.

放熱材201は、第2移動規制部材110によって電力用半導体素子63の放熱板64と冷却部材23との間に生じる極僅かな隙間を埋めるとともに、放熱板64を含む電力用半導体素子63の下面DSと冷却部材23の表面形状ばらつき(意図しない凹凸など)や組立公差を吸収可能であること、および部品形状など考慮してその材料および厚み(塗布厚)が適宜選択される。放熱材201は、更に絶縁性を有する材料が望ましいが、絶縁性を有さなくてもよい。 The heat dissipation material 201 fills a very small gap created between the heat dissipation plate 64 of the power semiconductor element 63 and the cooling member 23 by the second movement regulating member 110, and also covers the lower surface of the power semiconductor element 63 including the heat dissipation plate 64. The material and thickness (coating thickness) are appropriately selected in consideration of the ability to absorb surface shape variations (such as unintentional unevenness) and assembly tolerances of the DS and the cooling member 23, and the shape of the parts. The heat dissipating material 201 is desirably a material that further has insulating properties, but does not need to have any insulating properties.

また、放熱材201は、インバータ装置9を冷却部材23に組み付ける際に流動性を有している材料であればよく、組み付け後に硬化可能な材料であってもよい。 Further, the heat dissipating material 201 may be any material that has fluidity when the inverter device 9 is assembled to the cooling member 23, and may be a material that can be hardened after assembly.

このようにして、インバータ装置9を冷却部材23に取り付けるインバータ装置9の取り付け構造10が実現できる。また冷却部材23は、既に述べているように、電動圧縮機1のモータが内蔵される筐体2の一部(隔壁)である。従って上記インバータ装置9の取り付け構造10により、インバータ装置9を一体的に収容する電動圧縮機1を実現できる(図1参照)。 In this way, the mounting structure 10 for the inverter device 9 that attaches the inverter device 9 to the cooling member 23 can be realized. Further, as already stated, the cooling member 23 is a part (partition wall) of the housing 2 in which the motor of the electric compressor 1 is housed. Therefore, the mounting structure 10 for the inverter device 9 can realize an electric compressor 1 that integrally accommodates the inverter device 9 (see FIG. 1).

なお、第2移動規制部材110は、隔壁23と一体の(隔壁23から立接する)柱(円筒)部材とし、その上端にねじ溝26を設け、これと螺合するボルト25にて固定してもよい。 The second movement regulating member 110 is a columnar (cylindrical) member that is integral with the partition wall 23 (stands upright from the partition wall 23), has a threaded groove 26 at its upper end, and is fixed with a bolt 25 that is screwed into the threaded groove 26. Good too.

<インバータ装置の取り付け方法/第1実施形態>
図4および図5を参照して、本実施形態のインバータ装置9の組み立て方法、およびインバータ装置9の冷却部材23への取り付け方法について説明する。図4はインバータ装置9の組み立て方法を、図5は、インバータ装置9を冷却部材23に取り付けるインバータ装置9の取り付け方法を時系列で示す断面概要図である。図4および図5においてはインバータ装置9におけるインバータ回路部6部分を抜き出して示し、他の構成(フィルタ回路部7等)の図示は省略している。
<How to install an inverter device/First embodiment>
A method of assembling the inverter device 9 of this embodiment and a method of attaching the inverter device 9 to the cooling member 23 will be described with reference to FIGS. 4 and 5. FIG. 4 is a schematic cross-sectional view showing a method of assembling the inverter device 9, and FIG. 5 is a schematic cross-sectional view showing, in chronological order, a method of attaching the inverter device 9 to the cooling member 23. 4 and 5, the inverter circuit section 6 portion of the inverter device 9 is extracted and illustrated, and illustration of other components (filter circuit section 7, etc.) is omitted.

まず、図4(A)に示すように所定の治具(不図示)によりインバータ回路部6を構成する電力用半導体素子63を保持(支持)する。図4および図5においては1つの電力用半導体素子63を示しているが、インバータ回路部6は複数(この例では6個)の電力用半導体素子63を有する。すなわち6個の電力用半導体素子63は治具によって3個を1組とし、各組の端子63Cは互いに導出方向を揃えるとともに2組の端子63Cは向かい合わせとなるように保持される(図3(B)参照)。 First, as shown in FIG. 4A, the power semiconductor element 63 constituting the inverter circuit section 6 is held (supported) by a predetermined jig (not shown). Although one power semiconductor element 63 is shown in FIGS. 4 and 5, the inverter circuit section 6 has a plurality of (six in this example) power semiconductor elements 63. That is, the six power semiconductor elements 63 are arranged into a set of three using a jig, and the terminals 63C of each set are held in the same direction with respect to each other, and the two sets of terminals 63C are held facing each other (FIG. 3). (See (B)).

図4(B)に示すように、6個の電力用半導体素子63の第1の面(上面US)に第1位置規制部材100を配置する。この例では6個の電力用半導体素子63はそれぞれ独立して治具に保持されており、第1位置規制部材100は6個の電力用半導体素子63のそれぞれの上面USに、パッケージ当接部101が当接するように載置される。 As shown in FIG. 4(B), the first position regulating member 100 is arranged on the first surface (upper surface US) of the six power semiconductor elements 63. In this example, the six power semiconductor elements 63 are each held independently by a jig, and the first position regulating member 100 is attached to the package contact portion on the upper surface US of each of the six power semiconductor elements 63. 101 are placed so that they are in contact with each other.

同図(C)に示すように、第1移動規制部材100によって所定の距離t1が確保された状態で、電力用半導体素子の第1の面(上面US)と回路基板8の第2の面Sf2とが対向するように回路基板8を配置する。回路基板8の所定の領域には、6個の第1位置規制部材100の基板係合部103に対応する位置に係合孔88が設けられている。 As shown in FIG. 8C, with a predetermined distance t1 secured by the first movement regulating member 100, the first surface (upper surface US) of the power semiconductor element and the second surface of the circuit board 8 The circuit board 8 is arranged so that Sf2 faces the circuit board 8. Engagement holes 88 are provided in a predetermined area of the circuit board 8 at positions corresponding to the board engagement portions 103 of the six first position regulating members 100 .

同図(D)に示すように、係合孔88に基板係合部103を挿通して回路基板8の第2の面Sf2を第1位置規制部材100の基板当接部102に当接させる。回路基板8は第1移動規制部材100の肩部となる基板当接部102に載置され、電力用半導体素子63の上面USから距離t1の位置に支持される。第1移動規制部材100回路基板8および電力用半導体素子63のいずれとも固着(接着)はさせないが、第1移動規制部材100の基板係合部103を回路基板8と係合させる。 As shown in FIG. 2D, the board engaging portion 103 is inserted into the engaging hole 88 to bring the second surface Sf2 of the circuit board 8 into contact with the board abutting portion 102 of the first position regulating member 100. . The circuit board 8 is placed on the board abutting portion 102, which is a shoulder portion of the first movement regulating member 100, and is supported at a distance t1 from the upper surface US of the power semiconductor element 63. Although the first movement regulating member 100 is not fixed (adhered) to either the circuit board 8 or the power semiconductor element 63, the board engaging portion 103 of the first movement regulating member 100 is engaged with the circuit board 8.

回路基板8には、端子挿通孔83が設けられており、この状態で電力用半導体素子63の端子63Cの先端は、回路基板8の第2の面Sf2側から端子挿通孔83を介して第1の面Sf1側に導出される。 The circuit board 8 is provided with a terminal insertion hole 83, and in this state, the tip of the terminal 63C of the power semiconductor element 63 is inserted through the terminal insertion hole 83 from the second surface Sf2 side of the circuit board 8. 1 to the side Sf1.

この状態で、回路基板8の第1の面Sf1に設けられた配線(不図示)と電力用半導体素子63の端子63Cとを導電性接着剤90により電気的に固着(接続)し、固着部91を形成する。電力用半導体素子63は固着部91のみによって回路基板8に固定されている。このようにしてインバータ回路部6が組み立てられる。 In this state, the wiring (not shown) provided on the first surface Sf1 of the circuit board 8 and the terminal 63C of the power semiconductor element 63 are electrically fixed (connected) with the conductive adhesive 90, and the fixed portion Form 91. The power semiconductor element 63 is fixed to the circuit board 8 only by the fixing part 91. In this way, the inverter circuit section 6 is assembled.

また、ここでの図示は省略しているが、回路基板8の別の領域においてもフィルタ回路部7を構成するフィルタ回路部品70を絶縁樹脂部73などによって回路基板8と一体化する。そしてフィルタ回路部品70の端子(リード)を、回路基板8の第2の面Sf2から端子挿通孔を介して第1の面Sf1側に導出し、導電性接着剤90によって回路基板8の第1の面Sf1に設けられた配線(不図示)と電気的に固着(接続)し、フィルタ回路部7を形成する。このようにして、一枚の回路基板8にインバータ回路部6とフィルタ回路部7が一体化(モジュール化)されたインバータ装置9が組み立てられる。 Further, although not shown here, in another region of the circuit board 8, the filter circuit components 70 constituting the filter circuit section 7 are integrated with the circuit board 8 by an insulating resin section 73 or the like. Then, the terminals (leads) of the filter circuit component 70 are led out from the second surface Sf2 of the circuit board 8 to the first surface Sf1 side through the terminal insertion holes, and It is electrically fixed (connected) to wiring (not shown) provided on the surface Sf1 to form the filter circuit section 7. In this way, the inverter device 9 in which the inverter circuit section 6 and the filter circuit section 7 are integrated (modularized) on one circuit board 8 is assembled.

その後、インバータ装置9を冷却部材23に取り付ける。すなわち、図5(A)に示すように、冷却部材23の上面に放熱材201を塗布などにより設ける。放熱材201は、冷却部材23の上面の、少なくとも電力用半導体素子63の放熱板64と接触する位置に塗布する。 Thereafter, the inverter device 9 is attached to the cooling member 23. That is, as shown in FIG. 5A, a heat dissipating material 201 is provided on the upper surface of the cooling member 23 by coating or the like. The heat dissipation material 201 is applied to the upper surface of the cooling member 23 at least at a position where it contacts the heat dissipation plate 64 of the power semiconductor element 63.

その後図5(B)に示すように、冷却部材23の所定の位置にインバータ装置9を載置する。この時、まず複数の第2移動規制部材110を所定位置に配置する。この例では、第2移動規制部材110は中空のスリーブ部品であり、その下方側の開口端(冷却部材当接部111)が冷却部材23のねじ孔26の周囲と当接するように冷却部材23上に載置する。 Thereafter, as shown in FIG. 5(B), the inverter device 9 is placed at a predetermined position on the cooling member 23. At this time, first, the plurality of second movement regulating members 110 are arranged at predetermined positions. In this example, the second movement regulating member 110 is a hollow sleeve component, and the cooling member 23 is moved so that its lower open end (cooling member contact portion 111) contacts the periphery of the screw hole 26 of the cooling member 23. Place it on top.

そして図5(C)に示すように、第2移動規制部材110の上方側の開口端(基板当接部112)の上にインバータ装置9を、詳細には、回路基板8の第2の面Sf2を載置する。回路基板8は、第2移動規制部材110によって支持され、電力用半導体素子63の第2の面(下面DS)は冷却部材23に対向する。 As shown in FIG. 5(C), the inverter device 9 is placed on the upper open end (board abutting portion 112) of the second movement regulating member 110, specifically, on the second surface of the circuit board 8. Place Sf2. The circuit board 8 is supported by the second movement regulating member 110, and the second surface (lower surface DS) of the power semiconductor element 63 faces the cooling member 23.

第2移動規制部材110により電力用半導体素子63の下面DSと冷却部材23の間には隙間が生じるが、放熱材201により当該隙間が埋められる。またモータ軸方向の組立公差、および電力用半導体素子63(樹脂パッケージ63Pや放熱板64)と冷却部材23の上面23Uの表面形状のばらつき(凹凸など)が吸収される。これにより、電力用半導体素子63の第2の面(下面DS、放熱板64)は、放熱材201を介して、冷却部材23の上面と面接触する。 Although a gap is created between the lower surface DS of the power semiconductor element 63 and the cooling member 23 due to the second movement regulating member 110, the gap is filled by the heat dissipation material 201. Furthermore, assembly tolerances in the motor axial direction and variations in the surface shapes (irregularities, etc.) of the power semiconductor element 63 (resin package 63P and heat sink 64) and the upper surface 23U of the cooling member 23 are absorbed. Thereby, the second surface (lower surface DS, heat radiating plate 64) of the power semiconductor element 63 comes into surface contact with the upper surface of the cooling member 23 via the heat radiating material 201.

そして図5(C)に示すように、回路基板8に設けたボルト挿通孔86にボルト85を挿通し、冷却部材23のねじ孔26と締結固定する。この例では第2移動規制部材110はボルト挿通孔86と冷却部材23のねじ孔26の両方に連通するように配置される。つまりボルト85は第2移動規制部材110の内部に挿通されてねじ孔26に締結され、回路基板8は着脱自在に冷却部材23に固定される。 Then, as shown in FIG. 5C, bolts 85 are inserted into bolt insertion holes 86 provided in the circuit board 8 and fastened and fixed to the screw holes 26 of the cooling member 23. In this example, the second movement restricting member 110 is arranged so as to communicate with both the bolt insertion hole 86 and the screw hole 26 of the cooling member 23. That is, the bolt 85 is inserted into the second movement regulating member 110 and fastened to the screw hole 26, and the circuit board 8 is detachably fixed to the cooling member 23.

この時、第2移動規制部材110の存在により、ボルト85で締結した場合でも回路基板8および電力用半導体素子63のいずれも、ボルト85の強い締結力で冷却部材23に押し付けられることが回避される。また、放熱材201も弾性力が小さい材料である。従って、冷却部材23からの反力(モータ軸方向の上向きの力)を小さくでき、固着部91に係る応力を緩和できる。 At this time, the presence of the second movement regulating member 110 prevents both the circuit board 8 and the power semiconductor element 63 from being pressed against the cooling member 23 by the strong fastening force of the bolts 85 even when fastened with the bolts 85. Ru. Furthermore, the heat dissipating material 201 is also made of a material with low elasticity. Therefore, the reaction force (upward force in the motor axial direction) from the cooling member 23 can be reduced, and the stress on the fixed portion 91 can be alleviated.

このようにして、インバータ装置9を冷却部材23へ取り付けることができる。ここで、上記の冷却部材23は、図6に示すように電動圧縮機1のモータが内蔵される筐体2の一部である。従って上記方法を用いて、電動圧縮機1を組み立てることができる。すなわち、予めサブラインなどで回路基板8とインバータ回路部6およびフィルタ回路部7を一体化したインバータ装置9を製造する。そしてインバータ装置9を筐体2内に区画される回路収容部22に収容し、上述した方法によって回路基板8をボルト85により筐体2に固定し、電動圧縮機1が組み立てられる。 In this way, the inverter device 9 can be attached to the cooling member 23. Here, the cooling member 23 described above is a part of the casing 2 in which the motor of the electric compressor 1 is housed, as shown in FIG. Therefore, the electric compressor 1 can be assembled using the above method. That is, the inverter device 9 is manufactured by integrating the circuit board 8, the inverter circuit section 6, and the filter circuit section 7 in advance through a sub-line or the like. Then, the inverter device 9 is housed in the circuit housing section 22 defined within the housing 2, and the circuit board 8 is fixed to the housing 2 with bolts 85 using the method described above, and the electric compressor 1 is assembled.

インバータ一体型の電動圧縮機1において、回路収容部22に収容される電力用半導体素子63の放熱性を高めるには、冷却部材である回路収容部22の底部22Bと、放熱板64とを(放熱材201を介して)均一かつ十分に面接触(密着)させることが望ましい。 In the inverter-integrated electric compressor 1, in order to improve the heat dissipation of the power semiconductor element 63 housed in the circuit housing part 22, the bottom part 22B of the circuit housing part 22, which is a cooling member, and the heat sink plate 64 ( It is desirable to achieve uniform and sufficient surface contact (through the heat dissipating material 201).

従来では、ねじや板ばねなどによって、電力用半導体素子を冷却部材である筺体に押し付ける(付勢する)、あるいは、電力用半導体素子が固着された回路基板を冷却部材である筺体に押し付ける(付勢する)などして、放熱板と冷却部材を面接触させていた。 Conventionally, a power semiconductor element is pressed (biased) against a housing that is a cooling member using screws or a leaf spring, or a circuit board to which a power semiconductor element is fixed is pressed (biased) against a housing that is a cooling member. The heat dissipation plate and the cooling member were brought into surface contact, for example by

しかしながら本実施形態のように、予め回路基板8とインバータ回路部6を一体化(モジュール化)したインバータ装置9を回路収容部22(冷却部材23)に取り付ける際には上記の従来方法では問題が生じる。 However, when attaching the inverter device 9 in which the circuit board 8 and the inverter circuit section 6 are integrated (modularized) in advance to the circuit housing section 22 (cooling member 23) as in this embodiment, there are problems with the above conventional method. arise.

具体的に本実施形態では、インバータ装置9を回路収容部22へ収容する際、すなわち電力用半導体素子63と回路収容部22の底部22Bとを面接触させる際、それに先立ち回路基板8と電力用半導体素子63の端子63Cとは、導電性接着剤90によって固着されている。 Specifically, in this embodiment, when the inverter device 9 is housed in the circuit accommodating part 22, that is, when the power semiconductor elements 63 and the bottom part 22B of the circuit accommodating part 22 are brought into surface contact, the circuit board 8 and the power The terminal 63C of the semiconductor element 63 is fixed with a conductive adhesive 90.

従って、電力用半導体素子63と回路収容部22の底部22Bとの密着性を高めるべく、従来のようにねじや板ばねなどの固定手段によって回路基板8、或いは電力用半導体素子63を回路収容部22に押し付けて固定すると、その反力により端子63Cと回路基板8の固着部91に応力が生じる問題がある。特に、導電性接着剤90がはんだなどの場合は、その品質や固着部91としての形状にばらつきが生じる場合もあり、応力によって固着部91にクラックが生じ、接合不良となる恐れがある。 Therefore, in order to improve the adhesion between the power semiconductor element 63 and the bottom part 22B of the circuit accommodating part 22, the circuit board 8 or the power semiconductor element 63 is fixed to the circuit accommodating part by fixing means such as screws or leaf springs as in the conventional method. 22, there is a problem in that stress is generated in the fixed portion 91 of the terminal 63C and the circuit board 8 due to the reaction force. In particular, when the conductive adhesive 90 is solder or the like, there may be variations in its quality and shape as the fixed part 91, and stress may cause cracks in the fixed part 91, resulting in poor bonding.

本実施形態では第1移動規制部材100によって電力用半導体素子63と回路基板8をモータ軸方向において所定の距離t1に維持した状態で、導電性接着剤90により端子63Cと回路基板8の電気的接続を行う。つまり、導電性接着剤90による固着後に、仮に回路基板8と電力用半導体素子63とがモータ軸方向において近づくような外力がかかった場合であっても、第1移動規制部材100によって両者が距離t1以上に近づく方向に移動することはなく、固着部91に係る応力を緩和できる。 In this embodiment, while the power semiconductor element 63 and the circuit board 8 are maintained at a predetermined distance t1 in the motor axis direction by the first movement regulating member 100, the terminals 63C and the circuit board 8 are electrically connected by the conductive adhesive 90. Make the connection. In other words, even if an external force is applied that causes the circuit board 8 and the power semiconductor element 63 to approach each other in the motor axial direction after they are fixed with the conductive adhesive 90, the first movement regulating member 100 will keep the circuit board 8 and the power semiconductor element 63 close to each other. The stress on the fixed portion 91 can be alleviated without moving in a direction approaching t1 or more.

またボルト85で回路基板8を冷却部材23に締結する際には、第2移動規制部材110によって回路基板8と冷却部材23は距離t2より近づくことが規制された状態で、締結固定される。第2移動規制部材110を配置しない場合、ボルト85の締結力により回路基板8が冷却部材23に強力に押し付けられることになり、その反力が応力として固着部91に作用し、クラックの発生原因となる。本実施形態では回路基板8が冷却部材23側に押し付けられることが規制され、これによっても固着部91に係る応力を緩和できる。 Further, when fastening the circuit board 8 to the cooling member 23 with the bolts 85, the circuit board 8 and the cooling member 23 are fastened and fixed in a state where the second movement restriction member 110 restricts the circuit board 8 and the cooling member 23 from coming closer than the distance t2. If the second movement regulating member 110 is not disposed, the circuit board 8 will be strongly pressed against the cooling member 23 by the fastening force of the bolt 85, and the reaction force will act on the fixed part 91 as stress, causing cracks to occur. becomes. In this embodiment, the circuit board 8 is prevented from being pressed against the cooling member 23 side, and this also makes it possible to relieve the stress on the fixed portion 91.

更に、放熱材201を介して電力用半導体素子63の第2の面(下面DS,放熱板64)を冷却部材23に対向させ、回路基板8を冷却部材23に取り付ける。この放熱材201は、或る程度の流動性および/又は柔軟性(粘性)が有る一方、弾性力は小さい材料を採用する。第2移動規制部材110によって冷却部材23と電力用半導体素子63の間には隙間が生じているが、放熱材201によってその隙間を埋め、組立公差や電力用半導体素子63と冷却部材23の表面形状のばらつき(凹凸など)を吸収する。一方で放熱材201は弾力性が小さいものが採用されるため、冷却部材23が電力用半導体素子63を上方に付勢する力を相当程度小さくできる。これによっても固着部91に係る応力を緩和できる。 Further, the second surface (lower surface DS, heat sink 64) of the power semiconductor element 63 is made to face the cooling member 23 via the heat radiation material 201, and the circuit board 8 is attached to the cooling member 23. This heat dissipating material 201 employs a material that has a certain degree of fluidity and/or flexibility (viscosity) but has a small elastic force. Although a gap is created between the cooling member 23 and the power semiconductor element 63 due to the second movement regulating member 110, the gap is filled with the heat dissipation material 201, and the surface of the power semiconductor element 63 and the cooling member 23 is Absorbs variations in shape (such as unevenness). On the other hand, since the heat radiation material 201 is made of a material with low elasticity, the force with which the cooling member 23 urges the power semiconductor element 63 upward can be considerably reduced. This also makes it possible to relieve stress on the fixed portion 91.

図7および図8を参照して、上述したインバータ装置の取り付け構造10の変形例を説明する。 A modification of the above-mentioned inverter device mounting structure 10 will be described with reference to FIGS. 7 and 8.

<変形例>
図7(A)に示すように、冷却部材23の上面23U(回路収容部22の底部22B)に放熱材充填部210を備えてもよい。放熱材充填部210は、放熱材201を充填可能な凹部形状を有する。放熱材201の流動性が高い場合には放熱材充填部210に充填することで所定の領域に放熱材201を滞留させることができる。
<Modified example>
As shown in FIG. 7(A), a heat dissipating material filling section 210 may be provided on the upper surface 23U of the cooling member 23 (bottom section 22B of the circuit housing section 22). The heat dissipating material filling portion 210 has a concave shape into which the heat dissipating material 201 can be filled. When the heat dissipation material 201 has high fluidity, the heat dissipation material 201 can be retained in a predetermined region by filling the heat dissipation material filling portion 210.

また図7(B)に示すように、第1移動規制部材100は、台座部104から回路基板8方向(上方)に突出する基板係合部(第1係合部)103Aだけでなく、台座部104から冷却部材23方向(下方)に突出する他の係合部(第2係合部)103Bを有してもよい。この場合、第2係合部103Bは例えば電力用半導体素子63の固定用孔部63Hなどと係合するようにすると好ましい。 Further, as shown in FIG. 7(B), the first movement regulating member 100 includes not only a board engaging part (first engaging part) 103A that protrudes from the pedestal part 104 in the direction (upward) of the circuit board 8, but also Another engaging portion (second engaging portion) 103B may be provided that protrudes from the portion 104 toward the cooling member 23 (downward). In this case, it is preferable that the second engaging portion 103B engages with, for example, the fixing hole 63H of the power semiconductor element 63.

また、図8(A)に示すように電力用半導体素子63は、インテリジェントパワーモジュール(Intelligent Power Module:IPM)であってもよい。図8(B)、同図(C)はIPM63を放熱板64側から視た平面図である。IPMは、電力を制御するパワーMOSFETや絶縁ゲートバイポーラトランジスタ(IGBT)などのスイッチング素子と、これらの駆動回路や自己保護機能を1つの樹脂パッケージ63P内に組み込んだ電力用半導体素子である。 Moreover, as shown in FIG. 8(A), the power semiconductor element 63 may be an intelligent power module (IPM). FIGS. 8(B) and 8(C) are plan views of the IPM 63 viewed from the heat sink 64 side. The IPM is a power semiconductor element in which a switching element such as a power MOSFET or an insulated gate bipolar transistor (IGBT) for controlling electric power, a driving circuit thereof, and a self-protection function are incorporated into one resin package 63P.

図8(D)は、図7(B)と同様に第1移動規制部材100に、上方に突出する第1係合部103Aと下方に突出する第2係合部103Bを設ける例である。図8(B)、同図(C)に示すように、IPM63は既知の構成であり、例えば、樹脂パッケージ63Pに固定用の固定用孔部63Hや切り欠き63Dが設けられている。本実施形態では、ねじや板ばねなどによりIPM63を冷却部材23に押し付け固定するものではないが、第2基板係合部103Bはこれらの固定用孔部63Hや切り欠き63Dに係合させると好ましい。また図8に示す冷却部材23は図7(A)に示すような放熱材充填部210を備えてもよい。 FIG. 8(D) is an example in which the first movement regulating member 100 is provided with a first engaging portion 103A projecting upward and a second engaging portion 103B projecting downward, similar to FIG. 7(B). As shown in FIGS. 8(B) and 8(C), the IPM 63 has a known configuration, and for example, a fixing hole 63H and a notch 63D for fixing are provided in the resin package 63P. In this embodiment, the IPM 63 is not pressed and fixed against the cooling member 23 using screws, leaf springs, etc., but it is preferable that the second board engaging portion 103B is engaged with these fixing holes 63H and notches 63D. . Further, the cooling member 23 shown in FIG. 8 may include a heat dissipating material filling part 210 as shown in FIG. 7(A).

<インバータ装置の取り付け構造/第2実施形態>
図9から図12を参照して、インバータ装置9の取り付け構造の第2実施形態について説明する。
<Mounting structure of inverter device/Second embodiment>
A second embodiment of the mounting structure for the inverter device 9 will be described with reference to FIGS. 9 to 12.

第2実施形態は、インバータ回路部6を構成する複数(例えば6個)の電力用半導体素子63が一体化されてインバータ回路モジュールを構成し、更にそのインバータ回路モジュールが回路基板8と一体化される例である。 In the second embodiment, a plurality of (for example, six) power semiconductor elements 63 constituting an inverter circuit section 6 are integrated to form an inverter circuit module, and the inverter circuit module is further integrated with a circuit board 8. This is an example.

<インバータ回路部>
図9を参照してインバータ回路部6の構成について説明する。図9はインバータ回路部6(電力用半導体モジュール63´)を説明する図であり、同図(A)が電力用半導体モジュール63´の外観斜視図である。同図(B)はインバータ回路部6(インバータ装置9)の一部を抜き出して示す図であり、同図(A)のA-A線断面に対応する断面概要図である。以下、主に第1実施形態と異なる構成について説明し、第1実施形態と同様の構成については詳細な説明を省略する。
<Inverter circuit section>
The configuration of the inverter circuit section 6 will be explained with reference to FIG. FIG. 9 is a diagram illustrating the inverter circuit section 6 (power semiconductor module 63'), and FIG. 9A is an external perspective view of the power semiconductor module 63'. FIG. 2B is a diagram showing a part of the inverter circuit section 6 (inverter device 9), and is a schematic cross-sectional view corresponding to the section taken along the line AA in FIG. Hereinafter, configurations that are different from the first embodiment will be mainly described, and detailed descriptions of configurations similar to the first embodiment will be omitted.

電力用半導体モジュール63´は6個の電力用半導体素子63と、これらを一体的に載置するベースプレート56と、電力用半導体素子63の少なくとも一部を覆うとともに電力用半導体素子63とベースプレート56とを一体化する絶縁樹脂部67を有する。電力用半導体素子63は第1実施形態と同様である。 The power semiconductor module 63' includes six power semiconductor elements 63, a base plate 56 on which these are integrally placed, and a base plate 56 that covers at least a portion of the power semiconductor elements 63 and the power semiconductor elements 63 and the base plate 56. It has an insulating resin part 67 that integrates the. The power semiconductor element 63 is the same as in the first embodiment.

ベースプレート56は、例えば略矩形状の高放熱性の金属(例えば、アルミニウム)の平板であり、一方の面(載置面)Sf3に6個の電力用半導体素子63が、3個ずつ2列で載置される。各列の電力用半導体素子63の各端子63Cはベースプレート56の概ね中央部で相互に隣接する。そして各列ごとに電力用半導体素子63が絶縁樹脂部67によって一体化(モールド)されるとともに、ベースプレート56とも一体化される。絶縁樹脂部67は例えば射出成形が可能な樹脂材であり、ここでは一例として熱可塑性樹脂材である。本実施形態では、熱可塑性樹脂材の射出成形(ホットメルト)により、3個の電力用半導体素子63を一組としてこれらの少なくとも一部を覆うように一体化してパワー半導体素子群631、632を形成するとともにこれらをベースプレート56に固定する。あるいは、ベースプレート56をパワー半導体素子群631,632(電力用半導体素子63)に固定する。この場合の「固定」(樹脂材による固定)とは、軟化(または液体化)した樹脂が硬化する際に電力用半導体素子63とベースプレート56の双方に当接(介在)して両者を一体化することをいう。つまり、電力用半導体素子63は、少なくとも4つの側面SSがまとめて絶縁樹脂部67を構成する樹脂で取り囲まれ、当該樹脂がベースプレート56まで連続している。本実施形態では、パワー半導体素子群631,632のそれぞれを構成する3個の電力用半導体素子63は、互いに少なくとも4つの側面SSがまとめて絶縁樹脂部67を構成する樹脂で取り囲まれ、当該樹脂がベースプレート56まで連続しているが、複数の電力用半導体素子63は一体化されていなくてもよい。すなわち、少なくとも1個の電力用半導体素子63がベースプレート56と一体化する構成であればよい。 The base plate 56 is, for example, a substantially rectangular flat plate made of a highly heat dissipating metal (for example, aluminum), and has six power semiconductor elements 63 arranged in two rows of three on one surface (mounting surface) Sf3. It will be placed. The terminals 63C of the power semiconductor elements 63 in each column are adjacent to each other approximately in the center of the base plate 56. The power semiconductor elements 63 for each row are integrated (molded) with the insulating resin portion 67 and are also integrated with the base plate 56. The insulating resin portion 67 is, for example, a resin material that can be injection molded, and here, as an example, it is a thermoplastic resin material. In this embodiment, the power semiconductor element groups 631 and 632 are formed by injection molding (hot melt) of a thermoplastic resin material to integrate three power semiconductor elements 63 into a set so as to cover at least a portion of these elements. These are then fixed to the base plate 56. Alternatively, the base plate 56 is fixed to the power semiconductor element groups 631, 632 (power semiconductor elements 63). In this case, "fixing" (fixing with a resin material) means that when the softened (or liquefied) resin hardens, it contacts (interposes) both the power semiconductor element 63 and the base plate 56 to integrate them. It means to do something. That is, at least four side surfaces SS of the power semiconductor element 63 are surrounded by resin that collectively constitutes the insulating resin portion 67, and the resin continues up to the base plate 56. In this embodiment, the three power semiconductor elements 63 constituting each of the power semiconductor element groups 631 and 632 are surrounded by resin that collectively constitutes the insulating resin part 67 at least four side surfaces SS thereof, and the resin is continuous up to the base plate 56, but the plurality of power semiconductor elements 63 do not need to be integrated. That is, any configuration is sufficient as long as at least one power semiconductor element 63 is integrated with the base plate 56.

さらに、図9(B)に示すように、パワー半導体素子群631、632とベースプレート56の間には、絶縁樹脂シート69(例えば、シリコーン樹脂シート)を介在させている。各電力用半導体素子63の樹脂パッケージ63Pの下面DSに露出する放熱板64は絶縁樹脂シート69と当接し、これを介して、平坦性の良好なベースプレート56と密着する。また、各電力用半導体素子63の端子63Cは、樹脂パッケージ63Pからの導出部を含む一部が絶縁樹脂部67に覆われるが、先端部を含む他の部分は絶縁樹脂部67から露出する。 Furthermore, as shown in FIG. 9B, an insulating resin sheet 69 (for example, a silicone resin sheet) is interposed between the power semiconductor element groups 631 and 632 and the base plate 56. The heat sink 64 exposed on the lower surface DS of the resin package 63P of each power semiconductor element 63 comes into contact with the insulating resin sheet 69, and comes into close contact with the base plate 56, which has good flatness, through this. Furthermore, a portion of the terminal 63C of each power semiconductor element 63, including the lead-out portion from the resin package 63P, is covered with the insulating resin portion 67, but the other portion, including the tip portion, is exposed from the insulating resin portion 67.

また、ベースプレート56の周辺部分の複数個所(この例では4か所)には、インバータ回路部6を筐体2に固定するためのボルトを挿通可能なボルト挿通孔86が設けられるとともに、それぞれのボルト挿通孔86に内部空間が連通するスリーブ部品65が立設される。スリーブ部品65もまた、絶縁樹脂部67により電力用半導体素子63およびベースプレート56と一体化される。 Further, bolt insertion holes 86 through which bolts for fixing the inverter circuit section 6 to the housing 2 can be inserted are provided at multiple locations (four locations in this example) around the base plate 56, and each A sleeve component 65 whose internal space communicates with the bolt insertion hole 86 is provided upright. The sleeve component 65 is also integrated with the power semiconductor element 63 and the base plate 56 by an insulating resin portion 67.

更に第2実施形態では、この絶縁樹脂部67によって、第1位置規制部材(第1位置規制部)150を構成する。第1位置規制部材150の形状は第1実施形態と概ね同様であり、台座部151と台座部151からモータ軸方向の上方に突出する基板係合部152を有する。この場合、台座部151は、パワー半導体素子群631,632の樹脂部上面67Uから、モータ軸方向の上方に突出する略円錐台形に設けられ、台座部151の上面から更にモータ軸方向の上方に突出するように略円筒形状の基板係合部152が設けられる。そして台座部151と基板係合部152の段差部(肩部)は回路基板8と当接する基板当接部153となる。この場合台座部151は絶縁樹脂部67の一部として設けられ、台座部151の下面において電力用半導体素子63と直接的に当接するパッケージ当接部は存在しない。 Further, in the second embodiment, the insulating resin portion 67 constitutes a first position regulating member (first position regulating portion) 150. The shape of the first position regulating member 150 is generally the same as that of the first embodiment, and includes a pedestal portion 151 and a board engaging portion 152 that protrudes upward from the pedestal portion 151 in the motor axis direction. In this case, the pedestal part 151 is provided in a substantially truncated conical shape that protrudes upward in the motor axial direction from the upper surface 67U of the resin part of the power semiconductor element group 631, 632, and extends further upward in the motor axial direction from the upper surface of the pedestal part 151. A substantially cylindrical substrate engaging portion 152 is provided so as to protrude. A step portion (shoulder portion) between the pedestal portion 151 and the board engaging portion 152 becomes a board abutting portion 153 that comes into contact with the circuit board 8. In this case, the pedestal part 151 is provided as a part of the insulating resin part 67, and there is no package contacting part that directly contacts the power semiconductor element 63 on the lower surface of the pedestal part 151.

スリーブ部品65は金属(例えばアルミニウム)製の円筒部材であり、その表面に凹凸加工が施されて絶縁樹脂部67との密着性が高いものが採用されると望ましい。また、インバータ回路部6における複数のスリーブ部品65の高さ(軸方向長さ)は同等であり、ベースプレート56の周辺部分に互いに離間して(この場合は概ね四隅に)配置される。スリーブ部品65はその軸方向がモータ軸方向と平行するように配置され、ベースプレート56の表面からのスリーブ部品65の上端部までの高さt4は、パワー半導体素子群631、632の樹脂部上面67U、または電力用半導体素子63の樹脂パッケージ63Pのうちいずれか大きい高さt5より高い。また、スリーブ部品の高さt4は、ベースプレート56の表面からの台座部104の基板当接部102までの高さt6より低い。 The sleeve component 65 is a cylindrical member made of metal (for example, aluminum), and it is preferable that the sleeve component 65 is a cylindrical member made of metal (for example, aluminum), and its surface is textured so that it has high adhesion to the insulating resin portion 67. Further, the plurality of sleeve components 65 in the inverter circuit section 6 have the same height (axial length), and are arranged at a distance from each other around the base plate 56 (in this case, approximately at the four corners). The sleeve component 65 is arranged so that its axial direction is parallel to the motor axial direction, and the height t4 from the surface of the base plate 56 to the upper end of the sleeve component 65 is equal to the upper surface 67U of the resin part of the power semiconductor element groups 631 and 632. , or the resin package 63P of the power semiconductor element 63, whichever is greater, is higher than the height t5. Further, the height t4 of the sleeve component is lower than the height t6 from the surface of the base plate 56 to the board contacting part 102 of the pedestal part 104.

本実施形態ではこのように、例えば、熱可塑性樹脂の射出成形によって複数の電力用半導体素子63とベースプレート56およびスリーブ部品65を一体的に互いに固定して一纏まりの電子部品である電力用半導体モジュール63´を構成し、また、絶縁樹脂部67によって、第1位置規制部材150を構成する。第1位置規制部材150は少なくとも絶縁樹脂部67部毎に(少なくとも、パワー半導体素子群631,632のそれぞれに1個ずつ)設ければよい。また樹脂の射出成形などにより絶縁樹脂部67の一部として成形できるので、第1実施形態のように電力用半導体素子63のそれぞれに第1位置規制部材100を配置する場合と比較して、組み立ての煩雑さが低減する。 In this embodiment, a plurality of power semiconductor elements 63, a base plate 56, and a sleeve component 65 are integrally fixed to each other by, for example, injection molding of thermoplastic resin to form a power semiconductor module that is a set of electronic components. 63', and the insulating resin portion 67 constitutes the first position regulating member 150. The first position regulating member 150 may be provided at least for each insulating resin portion 67 (at least one for each of the power semiconductor element groups 631 and 632). In addition, since it can be molded as a part of the insulating resin part 67 by resin injection molding or the like, it is easier to assemble than in the case where the first position regulating member 100 is disposed on each of the power semiconductor elements 63 as in the first embodiment. complexity is reduced.

そして図9(B)に示すように、当該電力用半導体モジュール63´と回路基板8は予めサブライン等で一体化されインバータ装置9を構成する。回路基板8は、基板当接部153に当接してこれに支持され、電力用半導体素子63と回路基板8とは、モータ軸方向(図示上下方向)において所定の距離t1に維持される。 As shown in FIG. 9(B), the power semiconductor module 63' and the circuit board 8 are integrated in advance through a subline or the like to form an inverter device 9. The circuit board 8 contacts and is supported by the board contact portion 153, and the power semiconductor element 63 and the circuit board 8 are maintained at a predetermined distance t1 in the motor axis direction (vertical direction in the drawing).

このように第1移動規制部材150は、電力用半導体素子63と回路基板8の間のスペーサとして機能し、両者を距離t1に維持するとともに、両者が距離t1より近づく方向に移動することを規制する。なお、図9(B)において図示は省略しているが、回路基板8にはフィルタ回路部7等、所望の電子部品も適宜設けられている。 In this way, the first movement restricting member 150 functions as a spacer between the power semiconductor element 63 and the circuit board 8, maintains the distance t1 between the two, and restricts them from moving in a direction closer to each other than the distance t1. do. Although not shown in FIG. 9B, the circuit board 8 is also provided with desired electronic components such as the filter circuit section 7 as appropriate.

<インバータ回路部の製造方法>
図10を参照して、第2実施形態におけるインバータ回路部6の製造方法の一例を説明する。図10(A)~同図(D)は、インバータ回路部6の製造方法の一例を示す外観斜視図である。図10の説明において、ベースプレート56側を下方とし、回路基板8側を上方として説明する。
<Manufacturing method of inverter circuit section>
An example of a method for manufacturing the inverter circuit section 6 in the second embodiment will be described with reference to FIG. 10. 10(A) to 10(D) are external perspective views showing an example of a method for manufacturing the inverter circuit section 6. FIG. In the description of FIG. 10, the base plate 56 side will be described as the lower side and the circuit board 8 side will be described as the upper side.

まず図10(A)に示すように、ベースプレート56の載置面Sf3の所定の領域に絶縁樹脂シート69を配置し、その上に複数(ここでは6個)の電力用半導体素子63を3個を一組として二列で載置する(図10(B))。そして例えば熱可塑性樹脂材の射出成形により、3個の電力用半導体素子63とベースプレート56を一体化する絶縁樹脂部67を形成する。(図10(C))。また、絶縁樹脂部67によってスリーブ部品65も電力用半導体素子63およびベースプレート56と一体化され、第1移動規制部材(第1移動規制部)150が成型される。 First, as shown in FIG. 10(A), an insulating resin sheet 69 is placed in a predetermined area of the mounting surface Sf3 of the base plate 56, and a plurality of (six in this case) three power semiconductor elements 63 are placed thereon. are placed in two rows as one set (FIG. 10(B)). Then, for example, by injection molding of a thermoplastic resin material, an insulating resin portion 67 that integrates the three power semiconductor elements 63 and the base plate 56 is formed. (Figure 10(C)). Further, the sleeve component 65 is also integrated with the power semiconductor element 63 and the base plate 56 by the insulating resin portion 67, and the first movement regulating member (first movement regulating portion) 150 is molded.

このようにして製造された電力用半導体モジュール63´を、回路基板8に接続する。すなわち、図10(D)に示すように、ベースプレート56の載置面Sf3と回路基板8の第2の面Sf2とが対向するように回路基板8を配置する。回路基板8の所定の領域には、2か所の第1位置規制部材150の基板係合部152に対応する位置に係合孔88が設けられている(図9(B)参照)。 The power semiconductor module 63' manufactured in this way is connected to the circuit board 8. That is, as shown in FIG. 10(D), the circuit board 8 is arranged so that the mounting surface Sf3 of the base plate 56 and the second surface Sf2 of the circuit board 8 face each other. Engagement holes 88 are provided in a predetermined region of the circuit board 8 at positions corresponding to the two board engagement portions 152 of the first position regulating member 150 (see FIG. 9(B)).

そして、係合孔88に基板係合部152を挿通して回路基板8の第2の面Sf2を第1位置規制部材150の基板当接部153に当接させる。回路基板8は基板当接部153に支持され、電力用半導体素子63の上面US(電力用半導体モジュール63´の樹脂部上面67U)から距離t1に維持される(図9(B)参照)。 Then, the board engaging portion 152 is inserted into the engaging hole 88 to bring the second surface Sf2 of the circuit board 8 into contact with the board abutting portion 153 of the first position regulating member 150. The circuit board 8 is supported by the board contact portion 153 and maintained at a distance t1 from the upper surface US of the power semiconductor element 63 (the upper surface 67U of the resin portion of the power semiconductor module 63') (see FIG. 9B).

また、回路基板8には、端子挿通孔83が設けられており(図9(B)参照)、電力用半導体素子63の端子63Cの先端は、回路基板8の第2の面Sf2側から端子挿通孔83を介して第1の面Sf1側に導出される。 Further, the circuit board 8 is provided with a terminal insertion hole 83 (see FIG. 9(B)), and the tip of the terminal 63C of the power semiconductor element 63 is inserted into the terminal from the second surface Sf2 side of the circuit board 8. It is led out to the first surface Sf1 side through the insertion hole 83.

この状態で、回路基板8の第2の面Sf2に設けられた配線(不図示)と電力用半導体素子63の端子63Cとを導電性接着剤90により電気的に固着(接続)する。これによりインバータ回路部6が形成される。また、ここでの図示は省略しているが、回路基板8の別の領域においてもフィルタ回路部7を構成する電子部品の端子(リード)を、回路基板8の第2の面Sf2から端子挿通孔を介して第1の面Sf1側に導出し、導電性接着剤90によって回路基板8の第2の面Sf2に設けられた配線(不図示)と電気的に固着(接続)し、フィルタ回路部7を形成する。このようにして、一枚の回路基板8にインバータ回路部6とフィルタ回路部7が一体化(モジュール化)されたインバータ装置9を形成する。 In this state, the wiring (not shown) provided on the second surface Sf2 of the circuit board 8 and the terminal 63C of the power semiconductor element 63 are electrically fixed (connected) using the conductive adhesive 90. In this way, the inverter circuit section 6 is formed. Although not shown here, the terminals (leads) of the electronic components constituting the filter circuit section 7 are inserted through the terminals from the second surface Sf2 of the circuit board 8 in another area of the circuit board 8. It is led out to the first surface Sf1 side through the hole, and is electrically fixed (connected) to the wiring (not shown) provided on the second surface Sf2 of the circuit board 8 with the conductive adhesive 90, thereby forming a filter circuit. Section 7 is formed. In this way, an inverter device 9 is formed in which the inverter circuit section 6 and the filter circuit section 7 are integrated (modularized) on a single circuit board 8.

<インバータ装置の取り付け方法/第2実施形態>
図11および図12を参照して、上記(図9、図10)のごとく構成されたインバータ装置9を冷却部材23に取り付ける取り付け方法について説明する。
<How to install an inverter device/Second embodiment>
A method of attaching the inverter device 9 configured as described above (FIGS. 9 and 10) to the cooling member 23 will be described with reference to FIGS. 11 and 12.

図11(A)に示すように、まず、冷却部材23の上面23Uに放熱材201を塗布などにより設ける。放熱材201は、第1実施形態と同様である。放熱材201は、冷却部材23の上面23Uの、少なくとも電力用半導体素子63の放熱板64と対向し、且つベースプレート56と接触可能な位置に塗布する。 As shown in FIG. 11A, first, a heat dissipating material 201 is provided on the upper surface 23U of the cooling member 23 by coating or the like. The heat dissipation material 201 is the same as that in the first embodiment. The heat dissipation material 201 is applied to the upper surface 23U of the cooling member 23 at a position that faces at least the heat dissipation plate 64 of the power semiconductor element 63 and can come into contact with the base plate 56.

また、第2実施形態においても第2移動規制部材160を設ける。第2移動規制部材160は例えば、内部が中空でボルト85を挿通可能なスリーブ部品であり、第2移動規制部材160は冷却部材当接部161および基板当接部162を有する。この例では、第2移動規制部材160は、冷却部材23のねじ孔26の周囲を囲む位置に載置する。 Further, the second movement regulating member 160 is also provided in the second embodiment. The second movement restriction member 160 is, for example, a sleeve component that is hollow inside and allows the bolt 85 to be inserted therethrough, and the second movement restriction member 160 has a cooling member contact portion 161 and a substrate contact portion 162. In this example, the second movement restricting member 160 is placed at a position surrounding the screw hole 26 of the cooling member 23 .

電力用半導体素子モジュール63´のスリーブ部品65は、絶縁樹脂部67によって電力用半導体素子63やベースプレート56と一体化しているが、第2移動規制部材160は、絶縁樹脂部67およびスリーブ部品65とは別体(いずれからも独立した部品)であり、いずれとも固着はされていない。 The sleeve part 65 of the power semiconductor element module 63' is integrated with the power semiconductor element 63 and the base plate 56 by the insulating resin part 67, but the second movement regulating member 160 is integrated with the insulating resin part 67 and the sleeve part 65. is a separate body (a part independent from both) and is not fixed to either.

そして、図11(B)に示すようにインバータ装置9を回路収容部22に収容する。第2移動規制部材160は、電力用半導体素子モジュール63´のスリーブ部品65内に挿入され、電力用半導体素子63の第2の面(下面DS,放熱板64)は、絶縁樹脂シート69、ベースプレート56および放熱材201を介して冷却部材23に対向配置される。なお、インバータ装置9を回路収容部22に収容した後、第2移動規制部材160を電力用半導体素子モジュール63´のスリーブ部品65内に挿入してもよい。 Then, as shown in FIG. 11(B), the inverter device 9 is housed in the circuit housing section 22. The second movement regulating member 160 is inserted into the sleeve component 65 of the power semiconductor element module 63', and the second surface (lower surface DS, heat sink 64) of the power semiconductor element 63 is connected to the insulating resin sheet 69, the base plate 56 and the cooling member 23 via the heat dissipating material 201. Note that after the inverter device 9 is accommodated in the circuit housing portion 22, the second movement restricting member 160 may be inserted into the sleeve component 65 of the power semiconductor element module 63'.

同図(C)に示すように、第2移動規制部材160の高さt6は、スリーブ部品65の高さt4より大きい。これにより、インバータ装置9を冷却部材23に取り付ける際(回路収容部22に収容する際)、回路基板8は、第2移動規制部材110によって支持され、冷却部材23と回路基板8とは、モータ軸方向(図示上下方向)において所定の距離t6(第2移動規制部材160の高さ)に維持される。つまり第2移動規制部材160は、冷却部材23と回路基板8の間のスペーサとして機能し、両者を所定の距離t6に維持するとともに、両者が距離t6より近づく方向に移動することを規制する。 As shown in FIG. 6C, the height t6 of the second movement restricting member 160 is greater than the height t4 of the sleeve component 65. As a result, when the inverter device 9 is attached to the cooling member 23 (when housed in the circuit accommodating portion 22), the circuit board 8 is supported by the second movement regulating member 110, and the cooling member 23 and the circuit board 8 are It is maintained at a predetermined distance t6 (height of the second movement regulating member 160) in the axial direction (vertical direction in the drawing). That is, the second movement restriction member 160 functions as a spacer between the cooling member 23 and the circuit board 8, maintains the predetermined distance t6 between the two, and restricts them from moving in a direction closer to each other than the distance t6.

第2移動規制部材160の高さt6は、回路基板8を支持した場合に、ベースプレート56の下面56DSと上面23Uが直接的には非接触であり、且つ、ベースプレート56の下面56DSは放熱材201のみに直接的に接触する状態を維持するように設定されている。これにより、ベースプレート56と冷却部材23との間は第2移動規制部材160によって極僅かな隙間が生じる。 The height t6 of the second movement regulating member 160 is such that when the circuit board 8 is supported, the lower surface 56DS and the upper surface 23U of the base plate 56 are not in direct contact with each other, and the lower surface 56DS of the base plate 56 is in contact with the heat dissipating material 201. It is set to maintain direct contact only with the As a result, a very small gap is created between the base plate 56 and the cooling member 23 due to the second movement restricting member 160.

放熱材201は、この隙間を埋め、これによりベースプレート56の下面56DSが確実かつ十分に、放熱材201と接触し、これを介して冷却部材23と面接触可能となる。つまり放熱材201は、放熱板64に生じる熱を、絶縁樹脂シート69およびベースプレート56を介して効率的に冷却部材23に伝達する手段であることに加え、第2移動規制部材160によってベースプレート56と冷却部材23との間に生じる極僅かな隙間を埋めるとともに、組立公差や両者の表面形状ばらつき(意図しない凹凸など)を吸収する手段としても機能する。 The heat dissipating material 201 fills this gap, whereby the lower surface 56DS of the base plate 56 reliably and sufficiently contacts the heat dissipating material 201, and can make surface contact with the cooling member 23 via this. In other words, the heat dissipation material 201 is a means for efficiently transmitting the heat generated in the heat dissipation plate 64 to the cooling member 23 via the insulating resin sheet 69 and the base plate 56, and in addition, the heat dissipation material 201 is a means for efficiently transmitting the heat generated in the heat dissipation plate 64 to the cooling member 23 via the insulating resin sheet 69 and the base plate 56. It fills the extremely small gap that occurs between the cooling member 23 and functions as a means for absorbing assembly tolerances and variations in surface shape between the two (such as unintended irregularities).

つまり放熱材201はこれらの機能を発揮できること、および部品形状など考慮してその材料および厚み(塗布厚)が適宜選択される。 That is, the material and thickness (coating thickness) of the heat dissipating material 201 are appropriately selected in consideration of the ability of the heat dissipating material 201 to perform these functions and the shape of the component.

そして図12(A)に示すように、回路基板8に設けたボルト挿通孔86にボルト85を挿通し、冷却部材23のねじ孔26と締結固定する。この例では第2移動規制部材160はボルト挿通孔86と冷却部材23のねじ孔26の両方に連通するように配置される。つまりボルト85は第2移動規制部材160の内部に挿通されてねじ孔26に締結される。この時、第2移動規制部材150により、ベースプレート56と冷却部材23が直接接触しない状態で回路基板8が支持され、ベースプレート56と冷却部材23の間に生じた隙間は放熱材201によって埋められ、組立公差や両者の表面形状ばらつきは吸収される。 Then, as shown in FIG. 12A, bolts 85 are inserted into bolt insertion holes 86 provided in the circuit board 8 and fastened and fixed to the screw holes 26 of the cooling member 23. In this example, the second movement restricting member 160 is arranged so as to communicate with both the bolt insertion hole 86 and the screw hole 26 of the cooling member 23. That is, the bolt 85 is inserted into the second movement regulating member 160 and fastened to the screw hole 26 . At this time, the circuit board 8 is supported by the second movement regulating member 150 without direct contact between the base plate 56 and the cooling member 23, and the gap created between the base plate 56 and the cooling member 23 is filled with the heat dissipating material 201. Assembly tolerances and surface shape variations between the two are absorbed.

つまり、回路基板8をボルト85で冷却部材23に締結固定しているが、その締結力により回路基板8および電力用半導体素子63(電力用半導体モジュール63´)が直接的に冷却部材23に押し付けられことはない。放熱材201は弾性力が小さい材料であるため冷却部材23からの反力(モータ軸方向の上向きの反力)は、非常に小さくなる。従って、電力用半導体素子63の端子C63と回路基板8の固着部91に生じる応力を緩和できる。
したがって、回路基板8と電力用半導体素子63の端子63Cとの固着部91に生じる応力を緩和でき、クラックの発生を抑制できる。
That is, although the circuit board 8 is fastened and fixed to the cooling member 23 with bolts 85, the circuit board 8 and the power semiconductor element 63 (power semiconductor module 63') are directly pressed against the cooling member 23 due to the fastening force. It will never happen. Since the heat radiation material 201 is a material with a small elastic force, the reaction force from the cooling member 23 (upward reaction force in the motor axis direction) is extremely small. Therefore, the stress generated between the terminal C63 of the power semiconductor element 63 and the fixed portion 91 of the circuit board 8 can be alleviated.
Therefore, the stress generated in the fixed portion 91 between the circuit board 8 and the terminal 63C of the power semiconductor element 63 can be alleviated, and the occurrence of cracks can be suppressed.

また、電力用半導体素子63の第2の面(下面DS、放熱板64)は、絶縁樹脂シート69、ベースプレート56および放熱材201を介して、冷却部材23の上面と十分な面接触が図れ、放熱性が向上する。 Further, the second surface (lower surface DS, heat sink 64) of the power semiconductor element 63 is in sufficient surface contact with the upper surface of the cooling member 23 via the insulating resin sheet 69, the base plate 56, and the heat sink 201. Improves heat dissipation.

このようにして、インバータ装置9を着脱可能に冷却部材23へ取り付けることができる。ここで、上記の冷却部材23は、図6に示すように電動圧縮機1のモータが内蔵される筐体2の一部である。従って上記方法を用いて、電動圧縮機1を組み立てることができる。すなわち、予めサブラインなどで回路基板8とインバータ回路部6およびフィルタ回路部7を一体化したインバータ装置9を製造する。そしてインバータ装置9を筐体2内に区画される回路収容部22に収容し、上述した方法によって回路基板8をボルト85により筐体2に固定し、電動圧縮機1が組み立てられる。 In this way, the inverter device 9 can be detachably attached to the cooling member 23. Here, the cooling member 23 described above is a part of the casing 2 in which the motor of the electric compressor 1 is housed, as shown in FIG. Therefore, the electric compressor 1 can be assembled using the above method. That is, the inverter device 9 is manufactured by integrating the circuit board 8, the inverter circuit section 6, and the filter circuit section 7 in advance through a sub-line or the like. Then, the inverter device 9 is housed in the circuit housing section 22 defined within the housing 2, and the circuit board 8 is fixed to the housing 2 with bolts 85 using the method described above, and the electric compressor 1 is assembled.

なお、図12に示すように、第1移動規制部材150において基板係合部152を回路基板8と係合させた後、当該基板係合部152を熱かしめして回路基板8に固定するようにしてもよい。また、第2実施形態において、ベースプレート56を設けず、絶縁樹脂部67によって複数の電力用半導体素子63を一体的にモールドしてもよい。 As shown in FIG. 12, after the board engaging part 152 of the first movement regulating member 150 is engaged with the circuit board 8, the board engaging part 152 is fixed to the circuit board 8 by heat caulking. You can also do this. Further, in the second embodiment, the plurality of power semiconductor elements 63 may be integrally molded using the insulating resin portion 67 without providing the base plate 56.

また、第1移動規制部材100の台座部104を例えばプレート状に形成してもよい。プレート状の台座部104は、独立した(一体化されていない)複数(例えば3個、または6個)の電力用半導体素子63を上方から纏めて覆うことが可能(保持可能)な形状とし、その表面から突出する1または複数の係合部103(第1係合部103A,第2係合部103B)を設けてもよい。 Further, the pedestal portion 104 of the first movement regulating member 100 may be formed into a plate shape, for example. The plate-shaped pedestal part 104 has a shape that can collectively cover (hold) a plurality of independent (non-integrated) power semiconductor elements 63 (for example, three or six) from above, One or more engaging portions 103 (first engaging portion 103A, second engaging portion 103B) protruding from the surface may be provided.

また上記の例ではスイッチング素子としてIGBTを例示したが、これに限らず、SiC素子,MOSFETなどであってもよい。 Further, in the above example, an IGBT is used as an example of a switching element, but the switching element is not limited to this, and may be an SiC element, a MOSFET, or the like.

尚、本発明の電動圧縮機1は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the electric compressor 1 of the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

本発明は、電動圧縮機の分野に利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used in the field of electric compressors.

1 電動圧縮機
2 筐体
3 モータ
3a 巻線
4 回転軸
5 圧縮機構
6 インバータ回路部
7 フィルタ回路部
8 回路基板(プリント基板)
9 インバータ装置
21 ハウジング
22 回路収容部
23 隔壁(冷却部材)
56 ベースプレート
63 電力用半導体素子
63C 端子
63´ 電力用半導体素子モジュール
63H 固定用孔部
63P 樹脂パッケージ
64 放熱板
65 スリーブ部品
67 絶縁樹脂部
67U 樹脂部上面
69 絶縁樹脂シート
70 フィルタ回路部品
83 端子挿通孔
85 ボルト
86 ボルト挿通孔
88 係合孔
90 導電性接着剤
91 固着部
100 第1移動規制部材
102 基板当接部
103 基板係合部
104 台座部
110 第2移動規制部材
151 台座部
152 基板係合部
153 基板当接部
161 冷却部材当接部
162 基板当接部
201 放熱材
210 放熱材充填部
1 Electric compressor 2 Housing 3 Motor 3a Winding 4 Rotating shaft 5 Compression mechanism 6 Inverter circuit section 7 Filter circuit section 8 Circuit board (printed board)
9 Inverter device 21 Housing 22 Circuit housing portion 23 Partition wall (cooling member)
56 Base plate 63 Power semiconductor element 63C Terminal 63' Power semiconductor element module 63H Fixing hole 63P Resin package 64 Heat sink 65 Sleeve part 67 Insulating resin part 67U Resin part upper surface 69 Insulating resin sheet 70 Filter circuit part 83 Terminal insertion hole 85 Bolt 86 Bolt insertion hole 88 Engagement hole 90 Conductive adhesive 91 Fixing part 100 First movement regulating member 102 Board abutting part 103 Board engaging part 104 Pedestal part 110 Second movement regulating member 151 Pedestal part 152 Board engagement Part 153 Board contact part 161 Cooling member contact part 162 Board contact part 201 Heat dissipation material 210 Heat dissipation material filling part

Claims (9)

インバータ装置を冷却部材に取り付けるインバータ装置の取り付け構造であって、
前記インバータ装置は、
電力用半導体素子と、
前記電力用半導体素子の第1の面に対向して配置される回路基板と、
前記回路基板と前記電力用半導体素子の端子とを電気的に固着する導電性接着剤と、
前記電力用半導体素子と前記回路基板とを所定距離に維持する移動規制部材と、を有し、
放熱材を介して前記電力用半導体素子の第2の面を前記冷却部材に対向させ、前記回路基板を前記冷却部材に取り付ける、
ことを特徴とする、インバータ装置の取り付け構造。
An inverter device mounting structure for attaching an inverter device to a cooling member,
The inverter device includes:
A power semiconductor element,
a circuit board disposed opposite to the first surface of the power semiconductor element;
a conductive adhesive that electrically fixes the circuit board and the terminal of the power semiconductor element;
a movement regulating member that maintains the power semiconductor element and the circuit board at a predetermined distance;
a second surface of the power semiconductor element facing the cooling member via a heat dissipating material, and attaching the circuit board to the cooling member;
A mounting structure for an inverter device, characterized by the following.
前記回路基板と前記冷却部材とを所定距離に維持可能な他の移動規制部材を有する、
ことを特徴とする請求項1に記載のインバータ装置の取り付け構造。
further comprising another movement regulating member capable of maintaining a predetermined distance between the circuit board and the cooling member;
The inverter device mounting structure according to claim 1, characterized in that:
前記移動規制部材は、少なくとも前記電力用半導体素子とは固着されることなく、該電力用半導体素子および前記回路基板のそれぞれの一部と当接する、
ことを特徴とする請求項1に記載のインバータ装置の取り付け構造。
The movement regulating member is not fixed to at least the power semiconductor element, and comes into contact with a portion of each of the power semiconductor element and the circuit board.
The inverter device mounting structure according to claim 1, characterized in that:
前記移動規制部材は、該電力用半導体素子および前記回路基板のそれぞれの一部と当接可能な台座部と、該台座部から突出し前記回路基板と係合する係合部を有する、
ことを特徴とする請求項1に記載のインバータ装置の取り付け構造。
The movement regulating member has a pedestal portion that can come into contact with a portion of each of the power semiconductor element and the circuit board, and an engaging portion that protrudes from the pedestal portion and engages with the circuit board.
The inverter device mounting structure according to claim 1, characterized in that:
前記移動規制部材は、前記台座部から突出し前記電力用半導体素子と係合する他の係合部を有する、
ことを特徴とする請求項4に記載のインバータ装置の取り付け構造。
The movement regulating member has another engaging part that protrudes from the base part and engages with the power semiconductor element.
5. The inverter device mounting structure according to claim 4.
前記放熱材は流動性および/または柔軟性を有する材料である、
ことを特徴とする請求項1に記載のインバータ装置の取り付け構造。
The heat dissipating material is a fluid and/or flexible material,
The inverter device mounting structure according to claim 1, characterized in that:
請求項1から請求項5のいずれか一項に記載のインバータ装置の取り付け構造を有し、
筐体内にモータが内蔵される電動圧縮機であって、
前記冷却部材は前記筐体の一部である、
ことを特徴とする電動圧縮機。
It has a mounting structure for an inverter device according to any one of claims 1 to 5,
An electric compressor with a built-in motor inside the housing,
the cooling member is a part of the casing;
An electric compressor characterized by:
前記筐体内に区画される回路収容部に前記インバータ装置を収容する、
ことを特徴とする請求項7に記載の電動圧縮機。
accommodating the inverter device in a circuit accommodating section partitioned within the casing;
The electric compressor according to claim 7, characterized in that:
前記冷却部材は前記回路収容部の底面であり、該底面に前記放熱材の充填部を備える、
ことを特徴とする請求項8に記載の電動圧縮機。
The cooling member is a bottom surface of the circuit accommodating portion, and the bottom surface is provided with a filling portion of the heat dissipation material.
The electric compressor according to claim 8, characterized in that:
JP2022117197A 2022-07-22 2022-07-22 Inverter device installation structure, electric compressor Pending JP2024014402A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022117197A JP2024014402A (en) 2022-07-22 2022-07-22 Inverter device installation structure, electric compressor
PCT/JP2023/023504 WO2024018832A1 (en) 2022-07-22 2023-06-26 Mounting structure for inverter device, and electric compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022117197A JP2024014402A (en) 2022-07-22 2022-07-22 Inverter device installation structure, electric compressor

Publications (1)

Publication Number Publication Date
JP2024014402A true JP2024014402A (en) 2024-02-01

Family

ID=89617618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022117197A Pending JP2024014402A (en) 2022-07-22 2022-07-22 Inverter device installation structure, electric compressor

Country Status (2)

Country Link
JP (1) JP2024014402A (en)
WO (1) WO2024018832A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308445A (en) * 2003-04-02 2004-11-04 Denso Corp Electric compressor
JP4200850B2 (en) * 2003-07-17 2008-12-24 株式会社デンソー Electric compressor
JP4665825B2 (en) * 2006-05-09 2011-04-06 株式会社デンソー Motor drive device for vehicle
JP5479139B2 (en) * 2010-02-10 2014-04-23 三菱重工業株式会社 Inverter-integrated electric compressor and assembly method thereof

Also Published As

Publication number Publication date
WO2024018832A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
EP2354549B1 (en) Inverter-integrated electric compressor and assembly method therefor
JP4898931B2 (en) Inverter-integrated electric compressor
JP3786356B2 (en) Inverter-integrated electric compressor for vehicles
JP5644706B2 (en) Electronic component fixing structure for electric compressor
JP2004190547A (en) Inverter integrated motor-driven compressor and its assembling method
US7652902B2 (en) Integrated-inverter electric compressor
US8007255B2 (en) Inverter-integrated electric compressor with inverter storage box arrangement
JP3760887B2 (en) Inverter integrated motor for vehicles
US8097992B2 (en) Electric compressor
JP2003153552A (en) Arrangement structure and arrangement method for inverter, and compressor
WO2014175010A1 (en) Inverter-integrated electric compressor
JP2007295639A (en) Motor drive for vehicle
WO2019163411A1 (en) Electric compressor
WO2019163406A1 (en) Electric compressor
WO2024018832A1 (en) Mounting structure for inverter device, and electric compressor
JP2021093485A (en) Electric power conversion equipment, and manufacturing method for electric power conversion equipment
WO2019163405A1 (en) Electric compressor
WO2019163404A1 (en) Electric compressor
WO2023228650A1 (en) Electronic compressor and method for manufacturing same
WO2023228649A1 (en) Electric compressor and method for manufacturing same
WO2023157583A1 (en) Electric compressor
WO2019163410A1 (en) Electric compressor
WO2023286255A1 (en) Power conversion device
CN219227417U (en) Single-tube IGBT driving assembly and driver
WO2019163407A1 (en) Electric compressor