JP2024009519A - Vapor deposition mask production method - Google Patents

Vapor deposition mask production method Download PDF

Info

Publication number
JP2024009519A
JP2024009519A JP2022111107A JP2022111107A JP2024009519A JP 2024009519 A JP2024009519 A JP 2024009519A JP 2022111107 A JP2022111107 A JP 2022111107A JP 2022111107 A JP2022111107 A JP 2022111107A JP 2024009519 A JP2024009519 A JP 2024009519A
Authority
JP
Japan
Prior art keywords
debris
ultraviolet light
vapor deposition
cleaning
metal frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022111107A
Other languages
Japanese (ja)
Inventor
智行 羽生
Satoyuki Haniyu
真一 遠藤
Shinichi Endo
和也 塩尻
Kazuya Shiojiri
雄二 齋藤
Yuji Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VET CO LTD
Ushio Inc
Original Assignee
VET CO LTD
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VET CO LTD, Ushio Inc filed Critical VET CO LTD
Priority to JP2022111107A priority Critical patent/JP2024009519A/en
Priority to KR1020230086980A priority patent/KR20240008254A/en
Priority to CN202310842285.2A priority patent/CN117381200A/en
Publication of JP2024009519A publication Critical patent/JP2024009519A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/02Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
    • B08B7/026Using sound waves
    • B08B7/028Using ultrasounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/16Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]

Abstract

PROBLEM TO BE SOLVED: To suppress insufficient deposition and deposition of contaminants in deposition of an organic luminescent material.
SOLUTION: A vapor deposition mask production method in one embodiment includes a hole formation step of irradiating a composite material having a metal layer provided with multiple openings and a resin layer extending in contact with the metal layer with a laser beam from the metal layer side so as to a through-hole in a resin layer part exposed in the openings; and a removal step of removing debris on the metal layer by irradiating the composite material in which the through-hole has been formed with UV light from the metal layer side.
SELECTED DRAWING: Figure 3
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、蒸着マスク製造方法に関する。 The present invention relates to a method for manufacturing a deposition mask.

有機EL素子の製造においては蒸着マスクが用いられる。有機EL素子は、被蒸着基板のあらかじめ決められた位置(即ち画素となる部分)に有機発光材料を蒸着することにより作成される。被蒸着基板の画素の部分のみに有機発光材料を蒸着させるために蒸着マスクが用いられる。 A vapor deposition mask is used in the manufacture of organic EL elements. An organic EL element is created by depositing an organic light-emitting material at a predetermined position (that is, a portion that will become a pixel) on a substrate to be deposited. A deposition mask is used to deposit the organic light emitting material only on the pixel portions of the substrate to be deposited.

蒸着マスクは、従来は金属製であった。しかし、より高精細の有機EL素子を作るためには、蒸着マスクの厚さをより薄くする必要があり、そのため、金属に替えて例えばポリイミドの樹脂薄膜を使用することが提案されている。 Vapor deposition masks have traditionally been made of metal. However, in order to produce higher-definition organic EL elements, it is necessary to reduce the thickness of the vapor deposition mask, and for this reason, it has been proposed to use, for example, a polyimide resin thin film instead of metal.

樹脂薄膜を使用する蒸着マスクは、具体的には、金属枠が格子状に並んだ金属層に樹脂薄膜が積層された構造で提供される(例えば特許文献1参照。)。樹脂薄膜には、金属枠側からレーザ光が照射されることで貫通孔が形成されている。このような蒸着マスクのことを本明細書では金属枠付き薄膜マスクと称する。 Specifically, a vapor deposition mask using a resin thin film is provided with a structure in which a resin thin film is laminated on a metal layer in which metal frames are arranged in a grid pattern (for example, see Patent Document 1). Through holes are formed in the resin thin film by irradiating laser light from the metal frame side. Such a vapor deposition mask is referred to herein as a thin film mask with a metal frame.

被蒸着基板に有機発光材料を蒸着する場合、金属枠付き薄膜マスクは、樹脂薄膜側が被蒸着基板側に向くように設置される。金属層に対して磁力が作用されることにより、金属枠付き薄膜マスクは、被蒸着基板上に固定され、有機発光材料が蒸着される。被蒸着基板には、金属枠付き薄膜マスクの貫通孔が形成された部分のみに有機発光材料が蒸着される。 When depositing an organic light-emitting material onto a substrate to be vapor-deposited, a thin film mask with a metal frame is installed such that the thin resin film side faces the substrate to be vapor-deposited. By applying a magnetic force to the metal layer, the thin film mask with a metal frame is fixed onto the substrate to be deposited, and an organic light emitting material is deposited thereon. The organic light-emitting material is deposited on the deposition substrate only in the portion where the through-hole of the thin film mask with a metal frame is formed.

特開2017-179591号公報Japanese Patent Application Publication No. 2017-179591

しかしながら、実際に作成された金属枠付き薄膜マスクで有機発光材料の蒸着が行われたところ、以下のような現象が見られた。 However, when an organic light emitting material was deposited using a thin film mask with a metal frame that was actually created, the following phenomenon was observed.

(1)ガラス基板において、樹脂薄膜に貫通孔が形成された各箇所に有機発光材料が蒸着されるべきであるのに、十分に蒸着されていない部分が生じる場合があった。
(2)有機発光材料以外の物質(汚染物質)が蒸着されている場合があった。
そこで、本発明は、上記(1)、(2)の現象を抑制することを課題とする。
(1) In the glass substrate, although the organic light-emitting material should be deposited at each location where the through-hole is formed in the resin thin film, there were cases where the organic light-emitting material was not sufficiently deposited.
(2) Substances (contaminants) other than organic light-emitting materials were sometimes deposited.
Therefore, an object of the present invention is to suppress the phenomena (1) and (2) above.

上記課題を解決するために、本発明に係る蒸着マスク製造方法の一態様は、複数の開口が設けられた金属層と、当該金属層に接して広がる樹脂層とを有した複合材に当該金属層側からレーザ光を照射して、当該開口内に露出した当該樹脂層部分に貫通孔を形成する孔形成工程と、上記貫通孔が形成された複合材に対し、上記金属層側から紫外光を照射することで当該金属層上のデブリを除去する除去工程と、を経る。 In order to solve the above problems, one embodiment of the vapor deposition mask manufacturing method according to the present invention includes a composite material having a metal layer provided with a plurality of openings and a resin layer that spreads in contact with the metal layer. A hole forming step in which a through hole is formed in the resin layer portion exposed in the opening by irradiating laser light from the layer side, and ultraviolet light is applied from the metal layer side to the composite material in which the through hole is formed. and a removal step of removing debris on the metal layer by irradiating with.

このような蒸着マスク製造方法によれば、孔形成工程でレーザ光によって生じた樹脂のデブリが金属層上から除去されるので、デブリが貫通孔の一部を塞いでしまうことで生じる上記(1)の現象と、デブリが有機発光材料の蒸着源(例えばるつぼ)内に落下することで生じる上記(2)の現象との双方が抑制される。 According to such a vapor deposition mask manufacturing method, resin debris generated by laser light in the hole forming process is removed from above the metal layer, so that the above-mentioned (1) ) and the phenomenon (2) above, which occurs when debris falls into the vapor deposition source (for example, a crucible) of the organic light-emitting material, are suppressed.

デブリとは、樹脂がレーザを用いた開口工程でアブレーションする際にできる有機物の滓である。この滓は樹脂層がレーザによって加熱気化して飛散したものである。有機物の滓は、主に炭化水素化合物であるが、分子量は樹脂層より小さく幅がある。分子量が小さいものは気体のまま飛散するが、大きいものは、レーザで開けられた開口部付近で固化して堆積する。
有機物の滓は、固化するときに金属枠の表面でタール状に付着したり、気中で固化して金属枠の表面に降り積もったりする。デブリはもともと樹脂層であった時の分子構造を有していないため、紫外線に対する吸収分解特性が樹脂層とは異なる。具体的には、樹脂層は一般に芳香族化合物で共役二重結合構造を持つため、紫外線耐性がある。この耐性により、デブリの除去に際して樹脂層がダメージを受けない選択性が生じる。
なお、上記(1)、(2)の現象の原因が金属層上のデブリであることについては従来知られておらず、本願の発明者らが鋭意検討した結果として今回初めて明らかとなった。
Debris is organic residue that is created when resin is ablated in an opening process using a laser. This slag is caused by the resin layer being heated and vaporized by the laser and scattered. The organic slag is mainly a hydrocarbon compound, but its molecular weight is smaller than that of the resin layer and has a wide range. Those with a small molecular weight fly away as a gas, but those with a large molecular weight solidify and accumulate near the opening made by the laser.
When the organic matter solidifies, it adheres to the surface of the metal frame in the form of tar, or solidifies in the air and accumulates on the surface of the metal frame. Debris does not have the same molecular structure as the original resin layer, so its absorption and decomposition characteristics for ultraviolet light are different from those of the resin layer. Specifically, since the resin layer is generally an aromatic compound and has a conjugated double bond structure, it is resistant to ultraviolet rays. This resistance provides selectivity in removing debris without damaging the resin layer.
It has not been previously known that the causes of the phenomena (1) and (2) above are debris on the metal layer, and this has now become clear for the first time as a result of intensive studies by the inventors of the present application.

上記蒸着マスク製造方法において、上記除去工程では、上記紫外光としてキセノンエキシマランプからの紫外光が用いられることが望ましい。キセノンエキシマランプからは高強度の紫外光が発せられるため、短時間の照射でデブリが十分に除去される。 In the vapor deposition mask manufacturing method, it is desirable that in the removal step, ultraviolet light from a xenon excimer lamp is used as the ultraviolet light. Since the xenon excimer lamp emits high-intensity ultraviolet light, debris can be sufficiently removed with short irradiation.

上記蒸着マスク製造方法において、上記除去工程では、上記紫外光として低圧水銀ランプからの紫外光が用いられることも好ましい。低圧水銀ランプからの紫外光はキセノンエキシマランプからの紫外光に較べて空気中で遠くまで到達することができる。このため、除去工程におけるランプと上記複合材との配置が容易である。 In the vapor deposition mask manufacturing method, it is also preferable that ultraviolet light from a low-pressure mercury lamp is used as the ultraviolet light in the removal step. Ultraviolet light from a low-pressure mercury lamp can reach farther in the air than ultraviolet light from a xenon excimer lamp. Therefore, the arrangement of the lamp and the composite material in the removal process is easy.

また、上記蒸着マスク製造方法において、上記除去工程は、上記貫通孔が形成された後、上記紫外光が照射される前の上記複合材に対して超音波洗浄を行う前洗浄を含むことが望ましい。前洗浄を含むことで、紫外光照射によるデブリ除去との相乗効果による紫外光照射時間の短縮化やデブリ除去の徹底化が図られる。 Further, in the vapor deposition mask manufacturing method, it is preferable that the removing step includes pre-cleaning of performing ultrasonic cleaning on the composite material after the through-hole is formed and before the ultraviolet light is irradiated. . By including pre-cleaning, the synergistic effect with debris removal by ultraviolet light irradiation can shorten the ultraviolet light irradiation time and ensure thorough debris removal.

また、上記蒸着マスク製造方法において、上記除去工程は、上記紫外光が照射された後の上記複合材に対して超音波洗浄を行う後洗浄を含むことも望ましい。後洗浄を含むことでも、紫外光照射によるデブリ除去との相乗効果による紫外光照射時間の短縮化やデブリ除去の徹底化が図られる。また、前洗浄と後洗浄とではデブリに対する作用が異なると考えられるため、前洗浄と後洗浄との双方を経ることで更なる相乗効果が期待される。 Further, in the vapor deposition mask manufacturing method, the removing step preferably includes post-cleaning of ultrasonic cleaning the composite material after being irradiated with the ultraviolet light. By including post-cleaning, the ultraviolet light irradiation time can be shortened and debris removal can be thoroughly removed due to the synergistic effect with debris removal by ultraviolet light irradiation. Furthermore, since the pre-cleaning and the post-cleaning are thought to have different effects on debris, further synergistic effects are expected by performing both the pre-cleaning and the post-cleaning.

本発明によれば、上記(1)、(2)の現象を抑制することができる。 According to the present invention, the phenomena (1) and (2) above can be suppressed.

本発明の蒸着マスク製造方法で製造する蒸着マスク(金属枠付き薄膜マスク)の模式的構造図である。FIG. 1 is a schematic structural diagram of a vapor deposition mask (thin film mask with a metal frame) manufactured by the vapor deposition mask manufacturing method of the present invention. 蒸着マスク(金属枠付き薄膜マスク)を用いた蒸着処理を示す図である。It is a figure which shows the vapor deposition process using a vapor deposition mask (thin film mask with a metal frame). 本発明の蒸着マスク製造方法の第1実施形態を示す図であるFIG. 1 is a diagram showing a first embodiment of the vapor deposition mask manufacturing method of the present invention. デブリの状態を示す図である。It is a figure showing the state of debris. 蒸着時におけるデブリの影響を示す図である。FIG. 3 is a diagram showing the influence of debris during vapor deposition. デブリ除去工程に用いられる紫外光照射装置を示す図である。It is a figure showing an ultraviolet light irradiation device used for a debris removal process. デブリ除去工程(10J/cmのドーズ量)におけるデブリ除去結果を示す図である。It is a figure which shows the debris removal result in a debris removal process (dose amount of 10J/cm <2> ). デブリ除去工程(20J/cmのドーズ量)におけるデブリ除去結果を示す図である。It is a figure which shows the debris removal result in a debris removal process (dose amount of 20J/cm <2> ). デブリ除去工程(40J/cmのドーズ量)におけるデブリ除去結果を示す図である。It is a figure which shows the debris removal result in a debris removal process (dose amount of 40J/cm <2> ). VUV照射によるデブリ除去結果を示す図である。It is a figure showing the result of debris removal by VUV irradiation. 本発明の蒸着マスク製造方法における第2実施形態を示す図である。It is a figure which shows 2nd Embodiment in the vapor deposition mask manufacturing method of this invention. 本発明の蒸着マスク製造方法における第3実施形態を示す図である。It is a figure which shows 3rd Embodiment in the vapor deposition mask manufacturing method of this invention. 紫外光照射と超音波洗浄とを組み合わせた場合のデブリ除去結果を示す表である。It is a table showing the debris removal results when ultraviolet light irradiation and ultrasonic cleaning are combined. 試験用の基板を模式的に示す図である。FIG. 3 is a diagram schematically showing a test board.

以下、本発明の実施の形態を図面に基づいて説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。また、先に説明した図に記載の要素については、後の図の説明において適宜に参照する場合がある。 Embodiments of the present invention will be described below based on the drawings. However, in order to avoid the following explanation from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or redundant explanations of substantially the same configurations may be omitted. Further, elements shown in the previously described figures may be appropriately referred to in the explanation of later figures.

図1は、本発明の蒸着マスク製造方法で製造する蒸着マスク(金属枠付き薄膜マスク)の模式的構造図である。
図1には、金属枠付き薄膜マスク100の断面図(A)と平面図(B)が示されている。
金属枠付き薄膜マスク100は、多数の開口102aが設けられた格子状の金属枠102を有する。金属枠102は例えばニッケルからなり、本発明にいう金属層の一例に相当する。金属枠102の厚さ(断面図(A)における上下方向のサイズ)は例えば30μm程度である。
FIG. 1 is a schematic structural diagram of a vapor deposition mask (thin film mask with a metal frame) manufactured by the vapor deposition mask manufacturing method of the present invention.
FIG. 1 shows a cross-sectional view (A) and a plan view (B) of a thin film mask 100 with a metal frame.
The thin film mask 100 with a metal frame has a grid-shaped metal frame 102 in which a large number of openings 102a are provided. The metal frame 102 is made of nickel, for example, and corresponds to an example of the metal layer according to the present invention. The thickness of the metal frame 102 (size in the vertical direction in the cross-sectional view (A)) is, for example, about 30 μm.

金属枠付き薄膜マスク100は、金属枠102に重ね合わされた樹脂の薄膜101を有し、薄膜101には、金属枠102の開口102aに繋がった貫通孔103が設けられている。薄膜101は例えば、ポリイミド(PI)あるいはポリエチレンテレフタレート(PET)からなる。以下では、一例として薄膜101がポリイミドからなるものとして説明する。貫通孔103のサイズは例えば20μm程度であり、薄膜101の厚さは例えば10μm程度である。 The thin film mask 100 with a metal frame has a resin thin film 101 overlaid on a metal frame 102, and the thin film 101 is provided with a through hole 103 connected to an opening 102a of the metal frame 102. The thin film 101 is made of polyimide (PI) or polyethylene terephthalate (PET), for example. The following description will be made assuming that the thin film 101 is made of polyimide as an example. The size of the through hole 103 is, for example, about 20 μm, and the thickness of the thin film 101 is, for example, about 10 μm.

金属枠付き薄膜マスク100の広さは、有機EL素子の画面の広さ以上であり、金属枠付き薄膜マスク100は、強度向上のために外枠104を有してもよい。外枠104は例えば20mm程度の太さ(断面図(A)における上下方向のサイズ)を有した金属製のものである。
図2は、蒸着マスク(金属枠付き薄膜マスク)を用いた蒸着処理を示す図である。
蒸着ガマ200の中には、ステージ202と、蒸着源203と、熱源205が備えられている。
ステージ202は磁気チャックを内蔵している。蒸着源203は例えばるつぼであり、有機発光材料204が載せられて熱源205によって加熱される。
The width of the thin film mask 100 with a metal frame is larger than the width of the screen of the organic EL element, and the thin film mask 100 with a metal frame may have an outer frame 104 to improve strength. The outer frame 104 is made of metal and has a thickness of, for example, about 20 mm (size in the vertical direction in the cross-sectional view (A)).
FIG. 2 is a diagram showing a vapor deposition process using a vapor deposition mask (a thin film mask with a metal frame).
A stage 202, a deposition source 203, and a heat source 205 are provided in the deposition chamber 200.
The stage 202 has a built-in magnetic chuck. The vapor deposition source 203 is, for example, a crucible, on which an organic light emitting material 204 is placed and heated by a heat source 205 .

ステージ202の下方にはガラス基板(被蒸着基板)201と金属枠付き薄膜マスク100が、ステージ202と金属枠付き薄膜マスク100とでガラス基板201を挟んだ状態で添えられる。金属枠付き薄膜マスク100は、ポリイミドの薄膜101がガラス基板201側を向いた状態(金属枠102が蒸着源203側を向いた状態)でガラス基板201に添えられる。 A glass substrate (substrate to be evaporated) 201 and a thin film mask 100 with a metal frame are placed below the stage 202 with the glass substrate 201 sandwiched between the stage 202 and the thin film mask 100 with a metal frame. The thin film mask 100 with a metal frame is attached to the glass substrate 201 with the polyimide thin film 101 facing the glass substrate 201 side (with the metal frame 102 facing the evaporation source 203 side).

ステージ202の磁気チャックによる磁力が作用することで金属枠付き薄膜マスク100の金属枠102がステージ202側に引きつけられ、金属枠付き薄膜マスク100が、間にガラス基板201を挟んでステージ202に保持固定される。ガラス基板201も、金属枠付き薄膜マスク100によりステージ202に押し付けられて、ステージ202に保持固定される。なお、図示は省略されているが、ガラス基板201と金属枠付き薄膜マスク100との間には微小なスペーサが設けられており、ガラス基板201と薄膜101との密着が回避されている。 The metal frame 102 of the thin film mask 100 with a metal frame is attracted toward the stage 202 by the magnetic force of the magnetic chuck of the stage 202, and the thin film mask 100 with a metal frame is held on the stage 202 with the glass substrate 201 in between. Fixed. The glass substrate 201 is also pressed against the stage 202 by the thin film mask 100 with a metal frame, and is held and fixed on the stage 202. Although not shown, a minute spacer is provided between the glass substrate 201 and the thin film mask 100 with a metal frame to prevent the glass substrate 201 and the thin film 101 from coming into close contact with each other.

ステージ202にガラス基板201と金属枠付き薄膜マスク100が保持固定された状態で蒸着源203の有機発光材料204が加熱され、気化した有機発光材料204がガラス基板201へと向かって上昇する。そして、有機発光材料204は、ガラス基板201の表面のうち、金属枠付き薄膜マスク100の薄膜101で覆われていない部分(貫通孔103の部分)に蒸着される。 The organic light emitting material 204 of the evaporation source 203 is heated while the glass substrate 201 and the thin film mask 100 with a metal frame are held and fixed on the stage 202, and the vaporized organic light emitting material 204 rises toward the glass substrate 201. Then, the organic light-emitting material 204 is deposited on the surface of the glass substrate 201 on a portion of the surface of the glass substrate 201 that is not covered with the thin film 101 of the thin film mask 100 with a metal frame (the portion of the through hole 103).

図3は、本発明の蒸着マスク製造方法の第1実施形態を示す図である。
図3には、基材形成工程(A)と、孔形成工程(B)と、デブリ除去工程(C)とが示されており、更に、孔形成工程(B)後の中間状態(B‘)と、デブリ除去工程(C)後の終了状態(C‘)も示されている。
FIG. 3 is a diagram showing a first embodiment of the vapor deposition mask manufacturing method of the present invention.
FIG. 3 shows a base material forming step (A), a hole forming step (B), and a debris removing step (C), and further shows an intermediate state (B') after the hole forming step (B). ) and the final state (C') after the debris removal step (C) are also shown.

基材形成工程(A)では、金属枠102上に樹脂の薄膜111が形成されて貫通孔の無い基材110が形成される。基材110は本発明にいう複合材の一例に相当する。 In the base material forming step (A), a thin resin film 111 is formed on the metal frame 102 to form a base material 110 without through holes. The base material 110 corresponds to an example of a composite material according to the present invention.

孔形成工程(B)では、金属枠102の開口102a部分に露出している薄膜111に対し、金属枠102側からレーザ光L1が照射され、レーザ光L1によって貫通孔103が形成される。孔形成工程(B)は、本発明にいう孔形成工程の一例に相当する。 In the hole forming step (B), the thin film 111 exposed at the opening 102a of the metal frame 102 is irradiated with the laser beam L1 from the metal frame 102 side, and the through hole 103 is formed by the laser beam L1. The pore forming step (B) corresponds to an example of the pore forming step according to the present invention.

中間状態(B‘)における基材110には、薄膜101に貫通孔103が形成されていると共に、金属枠102の表面(上面および側面の少なくとも一方)にデブリ300が付着している。このデブリ300は、レーザによる貫通孔103の形成時に、分解蒸発に至らなかったポリイミドの残渣が金属枠102の表面に付着したものである。
ここで、金属枠102の表面のデブリ300について説明する。
In the base material 110 in the intermediate state (B'), a through hole 103 is formed in the thin film 101, and debris 300 is attached to the surface (at least one of the top surface and the side surface) of the metal frame 102. This debris 300 is polyimide residue that did not decompose and evaporate when forming the through hole 103 using a laser and adhered to the surface of the metal frame 102.
Here, the debris 300 on the surface of the metal frame 102 will be explained.

図4は、デブリ300の状態を示す図である。
図4には、図3の中間状態(B‘)の基材110に相当する試料がSEM(Scanning Electron Microscope:走査型電子顕微鏡)で観察されて確認された状態が模式的に示されている。
FIG. 4 is a diagram showing the state of the debris 300.
FIG. 4 schematically shows a state in which a sample corresponding to the base material 110 in the intermediate state (B') in FIG. 3 is observed and confirmed using a SEM (Scanning Electron Microscope). .

図4には、金属枠102の一部が拡大されて示され、図中で縦方向に延びた金属枠102の表面にデブリ300が付着している様子が示されている。デブリ300は、金属枠102の表面を全面的に覆うと共に、デブリ300の表面が毛羽立った状態となっている。
図5は、蒸着時におけるデブリ300の影響を示す図である。
FIG. 4 shows a part of the metal frame 102 in an enlarged manner, and shows that debris 300 is attached to the surface of the metal frame 102 extending in the vertical direction in the figure. The debris 300 completely covers the surface of the metal frame 102, and the surface of the debris 300 is fluffy.
FIG. 5 is a diagram showing the influence of debris 300 during vapor deposition.

金属枠102の表面のデブリ300は、蒸着ガマ200の中で熱されることなどで一部(特に毛羽立った部分)が剥がれ、舞い上がったデブリ300が薄膜101に付着して貫通孔103の一部を塞いだり、落下したデブリ300が蒸着源203の有機発光材料204中に混ざったりする。 Part of the debris 300 on the surface of the metal frame 102 (especially the fluffy part) peels off when it is heated in the vapor deposition pot 200 , and the lifted debris 300 attaches to the thin film 101 and partially covers the through hole 103 . The debris 300 that is blocked or fallen is mixed into the organic light emitting material 204 of the evaporation source 203 .

貫通孔103の一部を塞いだデブリ300は有機発光材料204の蒸着を妨げるので、(1)ガラス基板201において、十分に蒸着されていない部分を生じさせる。 The debris 300 that partially blocks the through-hole 103 impedes the deposition of the organic light-emitting material 204, resulting in (1) a portion of the glass substrate 201 that is not sufficiently deposited;

また、蒸着源203中に落下したデブリ300は、有機発光材料204とともにガラス基板201上に蒸着されてしまい、(2)ガラス基板201に有機発光材料以外の物質(汚染物質)が蒸着される。 Further, the debris 300 that has fallen into the deposition source 203 is deposited on the glass substrate 201 together with the organic light emitting material 204, and (2) substances (contaminants) other than the organic light emitting material are deposited on the glass substrate 201.

上記(1)、(2)の現象の原因がデブリ300であることは、本願の発明者らが上記(1)、(2)の現象について鋭意検討した結果、今回初めて明らかとなった事実である。本願の発明者らは、上記(1)、(2)の現象について鋭意検討し、金属枠102の表面に異物(デブリ300)が付着していることを発見した。発明者らは、さらに検討を加え、この異物は、レーザにより貫通孔103を形成した際に、分解蒸発に至らなかったポリイミドの残渣であることを見出した。そして、更に考察の結果、落下したデブリ300や舞い上がったデブリ300による上述した影響で上記(1)、(2)の現象が生じることに思い至った。 The fact that the cause of the phenomena (1) and (2) above is the debris 300 is a fact that was revealed for the first time by the inventors of the present application after intensive study of the phenomena (1) and (2) above. be. The inventors of the present application have diligently studied the phenomena (1) and (2) above, and have discovered that foreign matter (debris 300) is attached to the surface of the metal frame 102. The inventors further investigated and found that this foreign material was a residue of polyimide that did not decompose and evaporate when the through hole 103 was formed using a laser. As a result of further consideration, it was realized that the phenomena (1) and (2) above occur due to the above-mentioned effects of the fallen debris 300 and the flying debris 300.

そこで、図3に示す蒸着マスク製造方法の一実施形態においては、中間状態(B‘)の基材110に対し、デブリ除去工程(C)を施してデブリ300を除去する。即ち、図3のデブリ除去工程(C)では、紫外光L2が金属枠102側から基材110に照射されてデブリ300が除去される。デブリ除去工程(C)は、本発明にいう除去工程の一例に相当する。 Therefore, in an embodiment of the deposition mask manufacturing method shown in FIG. 3, the debris removal step (C) is performed on the base material 110 in the intermediate state (B') to remove the debris 300. That is, in the debris removal step (C) in FIG. 3, the ultraviolet light L2 is irradiated onto the base material 110 from the metal frame 102 side, and the debris 300 is removed. The debris removal step (C) corresponds to an example of the removal step according to the present invention.

デブリ除去工程(C)で用いられる紫外光L2としては、キセノンエキシマランプから発せられる波長172nmにピークを有する真空紫外光(Vacuum Ultra-Violet Light:VUV)や、低圧水銀ランプから発せられる波長185nmと波長254nmにピークを有する紫外光(Ultra-Violet Light:UV)などが好ましい紫外光である。これらの紫外光のうち、特に、波長が200nm以下の紫外光がデブリ除去工程(C)での使用に適している。
上述したキセノンエキシマランプや低圧水銀ランプのような拡散光源が用いられることにより、紫外光L2が金属枠102側から基材110に照射された際に、金属枠102の側面のデブリ300も除去される。
図6は、デブリ除去工程に用いられる紫外光照射装置を示す図である。
紫外光照射装置400は、筐体401と、紫外光照射器402と、リニアシリンダー装置404と、ステージ406を有する。
The ultraviolet light L2 used in the debris removal step (C) includes vacuum ultra-violet light (VUV) that has a peak wavelength of 172 nm emitted from a xenon excimer lamp, and 185 nm wavelength emitted from a low-pressure mercury lamp. Preferred ultraviolet light is ultra-violet light (UV) having a peak at a wavelength of 254 nm. Among these ultraviolet lights, ultraviolet light with a wavelength of 200 nm or less is particularly suitable for use in the debris removal step (C).
By using a diffused light source such as the above-mentioned xenon excimer lamp or low-pressure mercury lamp, when the ultraviolet light L2 is irradiated onto the base material 110 from the metal frame 102 side, the debris 300 on the side surface of the metal frame 102 is also removed. Ru.
FIG. 6 is a diagram showing an ultraviolet light irradiation device used in the debris removal process.
The ultraviolet light irradiation device 400 includes a housing 401 , an ultraviolet light irradiator 402 , a linear cylinder device 404 , and a stage 406 .

紫外光照射器402には光源403が搭載されており、紫外光照射器402は筐体401の上部に設置され、下部が開放されている。紫外光照射器402は、光源403から発せられる紫外光を下方に照射する。 A light source 403 is mounted on the ultraviolet light irradiator 402, and the ultraviolet light irradiator 402 is installed in the upper part of the housing 401, and the lower part is open. The ultraviolet light irradiator 402 irradiates the ultraviolet light emitted from the light source 403 downward.

リニアシリンダー装置404は筐体401内の下方に設置されており、リニアシリンダー装置404は、シリンダー部404aと、駆動部404bと、台座部404cとを有する。
台座部404cはシリンダー部404aの全長に対して一部に設置され、シリンダー部404aに対して図の左右方向へと移動可能となっている。
The linear cylinder device 404 is installed in the lower part of the housing 401, and includes a cylinder portion 404a, a drive portion 404b, and a pedestal portion 404c.
The pedestal part 404c is installed in a part of the entire length of the cylinder part 404a, and is movable in the left-right direction in the figure with respect to the cylinder part 404a.

シリンダー部404aは内部にボールねじ(図示せず)を備え、ボールねじが駆動部404bによって駆動されることによって台座部404cが所定の速度で水平に正確に移動する。 The cylinder portion 404a is provided with a ball screw (not shown) therein, and the ball screw is driven by the driving portion 404b, so that the pedestal portion 404c moves horizontally and accurately at a predetermined speed.

台座部404cには支柱405を介してステージ406が固定されている。ステージ406上には、上述した基材110であるワークWが載置され、台座部404cの移動によってステージ406およびワークWが紫外光照射器402の下方を通過する。図6に示すように台座部404cが紫外光照射器402の下方を完全に通過することで、光源403からの紫外光がワークWの端から端まで均一に照射される。 A stage 406 is fixed to the pedestal portion 404c via a support 405. A workpiece W, which is the base material 110 described above, is placed on the stage 406, and the stage 406 and the workpiece W pass below the ultraviolet light irradiator 402 as the pedestal portion 404c moves. As shown in FIG. 6, the pedestal portion 404c completely passes under the ultraviolet light irradiator 402, so that the ultraviolet light from the light source 403 is uniformly irradiated from one end of the workpiece W to the other.

紫外光照射装置400が用いられた図3に示すデブリ除去工程(C)を経ることにより、デブリ除去工程(C)後の終了状態(C‘)では、金属枠102からデブリ300が除去された金属枠付き薄膜マスク100が得られる。なお、デブリ除去工程(C)におけるデブリ300の除去は、金属枠102からの完全なデブリ300除去に限定されず、上記(1)、(2)の現象が十分に抑制される程度にデブリ300が除去されればよい。
樹脂の薄膜101が、ポリイミド(PI)およびポリエチレンテレフタレート(PET)の少なくとも一方からなる場合、マスク材料として要求される特性、耐熱性、引張強度、曲げ弾性、熱膨張係数が適しているだけでなく、真空紫外線によるデブリ300の分解速度が高く、マスク材料として優れている。
By passing through the debris removal step (C) shown in FIG. 3 in which the ultraviolet light irradiation device 400 was used, the debris 300 was removed from the metal frame 102 in the finished state (C') after the debris removal step (C). A thin film mask 100 with a metal frame is obtained. Note that the removal of the debris 300 in the debris removal step (C) is not limited to complete removal of the debris 300 from the metal frame 102, but removes the debris 300 to the extent that the phenomena (1) and (2) above are sufficiently suppressed. should be removed.
When the resin thin film 101 is made of at least one of polyimide (PI) and polyethylene terephthalate (PET), it not only has suitable properties required for a mask material, such as heat resistance, tensile strength, bending elasticity, and coefficient of thermal expansion. , the decomposition rate of debris 300 by vacuum ultraviolet rays is high, and it is excellent as a mask material.

図7~図9は、デブリ除去工程(C)におけるデブリ除去結果を示す図である。
図7~図9には、一例として、低圧水銀ランプが用いられたUV照射によるデブリ除去結果が示されている。図7~図9には、SEM観察で確認された状態が模式的に示されている。
また、図7には、紫外光が10J/cmのドーズ量で照射された結果が示され、図8には、紫外光が20J/cmのドーズ量で照射された結果が示され、図9には、紫外光が40J/cmのドーズ量で照射された結果が示されている。
7 to 9 are diagrams showing the results of debris removal in the debris removal step (C).
7 to 9 show, as an example, the results of debris removal by UV irradiation using a low-pressure mercury lamp. 7 to 9 schematically show states confirmed by SEM observation.
Further, FIG. 7 shows the results of irradiation with ultraviolet light at a dose of 10 J/cm 2 , and FIG. 8 shows the results of irradiation with ultraviolet light at a dose of 20 J/cm 2 . FIG. 9 shows the results of irradiation with ultraviolet light at a dose of 40 J/cm 2 .

低圧水銀ランプでは、10J/cmのドーズ量に約30分の照射時間を要し、20J/cmのドーズ量では約1時間の照射時間を要し、40J/cmのドーズ量では約2時間の照射時間を要する。 With a low-pressure mercury lamp, a dose of 10 J/cm 2 requires approximately 30 minutes of irradiation time, a dose of 20 J/cm 2 requires approximately 1 hour, and a dose of 40 J/cm 2 requires approximately 30 minutes of irradiation time. It requires 2 hours of irradiation time.

図7に示す状態では、金属枠102の表面にデブリ300が多く残っているものの、毛羽立った状態のデブリ300は殆ど除去されてデブリ300の表面が滑らかになっている。このため、蒸着時におけるデブリ300の剥がれが大幅に抑制され、上記(1)、(2)の現象も抑制される。
図8および図9に示す状態では、デブリ300が大幅に減少し、金属枠102の直線的な形状が見える程度にデブリ300が除去されている。
In the state shown in FIG. 7, although much debris 300 remains on the surface of the metal frame 102, most of the fluffy debris 300 has been removed and the surface of the debris 300 has become smooth. Therefore, peeling off of the debris 300 during vapor deposition is significantly suppressed, and the phenomena (1) and (2) above are also suppressed.
In the state shown in FIGS. 8 and 9, the amount of debris 300 has decreased significantly, and the debris 300 has been removed to the extent that the linear shape of the metal frame 102 is visible.

図10は、エキシマランプからのVUV照射によるデブリ除去結果を示す図である。
図10には、SEM観察で確認された状態が模式的に示されている。
図10には、図7に示すUV照射によるデブリ除去と対比される、VUV照射によるデブリ除去(即ちUV照射におけるドーズ量と対比されるドーズ量でのVUV照射)の結果(A)と、図8に示すUV照射によるデブリ除去と対比されるVUV照射によるデブリ除去結果(B)と、図9に示すUV照射によるデブリ除去と対比されるVUV照射によるデブリ除去結果(C)が示されている。
FIG. 10 is a diagram showing the results of debris removal by VUV irradiation from an excimer lamp.
FIG. 10 schematically shows the state confirmed by SEM observation.
FIG. 10 shows the result (A) of debris removal by VUV irradiation (that is, VUV irradiation at a dose that is contrasted with the dose in UV irradiation), which is compared with the debris removal by UV irradiation shown in FIG. The results of debris removal by VUV irradiation (B), which is compared with the debris removal by UV irradiation shown in Figure 8, and the results of debris removal by VUV irradiation, which is compared with the debris removal by UV irradiation, shown in Figure 9 (C) are shown. .

いずれのドーズ量においても、VUV照射によるデブリ除去結果(A)、(B)、(C)は、図7~図9に示すUV照射と同様のデブリ除去結果となっている。但し、VUV照射ではキセノンエキシマランプが用いられることで高い照度が得られるため、照射時間は数分~数十分程度であり、UV照射よりも短時間で済む。 At any dose amount, the results of debris removal by VUV irradiation (A), (B), and (C) are similar to the results of debris removal by UV irradiation shown in FIGS. 7 to 9. However, since VUV irradiation uses a xenon excimer lamp to obtain high illuminance, the irradiation time is about several minutes to several tens of minutes, which is shorter than UV irradiation.

一方、UV照射の場合は低圧水銀ランプからの紫外光が用いられるため、紫外光の空気中で到達可能な距離がキセノンエキシマランプからの紫外光よりも長い。従って、図6に示す紫外光照射装置400において、ワークW(およびステージ406)と紫外光照射器402との距離に余裕を持つことができて好ましい。特に、図1に示す外枠104を有した金属枠付き薄膜マスク100の製造においては光源を近接させなくても外枠104越しに紫外光を照射することができて好適である。 On the other hand, in the case of UV irradiation, since ultraviolet light from a low-pressure mercury lamp is used, the distance that ultraviolet light can reach in the air is longer than that of ultraviolet light from a xenon excimer lamp. Therefore, in the ultraviolet light irradiation apparatus 400 shown in FIG. 6, it is preferable that the distance between the workpiece W (and stage 406) and the ultraviolet light irradiator 402 can be provided with some margin. Particularly, in manufacturing the thin film mask 100 with a metal frame having the outer frame 104 shown in FIG. 1, it is possible to irradiate ultraviolet light through the outer frame 104 without bringing the light source close to each other, which is suitable.

次に、本発明の蒸着マスク製造方法における他の実施形態について説明する。
図11は、本発明の蒸着マスク製造方法における第2実施形態を示す図である。
第2実施形態では、上述したデブリ除去(C)と同様の工程である紫外光照射工程(C1)が実行され、上述した孔形成工程(B)と紫外光照射工程(C1)との間で前洗浄工程(C2)が実行される。第2実施形態の場合は、紫外光照射工程(C1)と前洗浄工程(C2)とを併せた工程が、本発明にいう除去工程の一例に相当する。
前洗浄工程(C2)では、孔形成工程(B)を経た基材110に対して超音波洗浄が行われる。即ち、洗浄用の溶液501に基材110が浸されて超音波502が加えられる。このとき超音波502の周波数としては、基材110の薄膜101を保護するため80~1000kHzの周波数が設定され、望ましくは80~200kHzの周波数が設定される。上記周波数に設定された超音波502による超音波洗浄は洗浄力が弱く、超音波洗浄のみではデブリ300を十分に除去することができない。しかし、後述するように、短時間の前洗浄工程(C2)を経ることでその後の紫外光照射工程(C1)において紫外光照射時間の短縮化やデブリ除去の徹底化が図られることが確認できた。
この理由としては、デブリ300は、レーザによる貫通孔103の形成時に、分解蒸発に至らなかったポリイミドの残渣が金属枠102の表面に付着したものであり、その付着形態が図4に示されるように毛羽立ったものから、微細顆粒状、タール状まで様々な状態で付着していることにつながっている。前洗浄工程(C2)では、上述のとおり超音波洗浄の洗浄力は弱いが、デブリの毛羽立ち部に作用し除去するのに有効で、毛羽立ち部が除去されると光の陰になる部分が少なくなって、紫外光が微細顆粒状、タール状となって付着したデブリ表面に到達しやすくなるためである。超音波502の周波数が1000kHzを超えると、洗浄作用が低くなり、処理時間が数時間以上必要となり大幅に長くなったためマスクの製造方法として経済的ではない。周波数が200kHzを超えると、洗浄に必要な時間は2分からさらに長くなった。
Next, another embodiment of the vapor deposition mask manufacturing method of the present invention will be described.
FIG. 11 is a diagram showing a second embodiment of the vapor deposition mask manufacturing method of the present invention.
In the second embodiment, an ultraviolet light irradiation step (C1), which is a step similar to the debris removal (C) described above, is performed, and between the hole formation step (B) and the ultraviolet light irradiation step (C1) described above. A pre-cleaning step (C2) is performed. In the case of the second embodiment, the combined process of the ultraviolet light irradiation process (C1) and the pre-cleaning process (C2) corresponds to an example of the removal process according to the present invention.
In the pre-cleaning step (C2), ultrasonic cleaning is performed on the base material 110 that has undergone the hole-forming step (B). That is, the base material 110 is immersed in a cleaning solution 501 and ultrasonic waves 502 are applied. At this time, the frequency of the ultrasonic waves 502 is set to a frequency of 80 to 1000 kHz, preferably 80 to 200 kHz, in order to protect the thin film 101 of the base material 110. Ultrasonic cleaning using the ultrasonic waves 502 set at the above frequency has a weak cleaning power, and the debris 300 cannot be sufficiently removed by ultrasonic cleaning alone. However, as will be described later, it was confirmed that by going through a short pre-cleaning step (C2), the ultraviolet light irradiation time and thorough debris removal in the subsequent ultraviolet light irradiation step (C1) can be shortened. Ta.
The reason for this is that the debris 300 is polyimide residue that did not decompose and evaporate when forming the through hole 103 using a laser and adhered to the surface of the metal frame 102, and the form of this adhesion is as shown in FIG. This has led to various forms of adhesion ranging from fluff to fine granules to tar. In the pre-cleaning step (C2), as mentioned above, the cleaning power of ultrasonic cleaning is weak, but it is effective in acting on and removing the fluffy parts of debris, and when the fluffy parts are removed, there are fewer areas that are shaded by the light. This is because the ultraviolet light becomes more likely to reach the surface of the attached debris in the form of fine granules or tar. If the frequency of the ultrasonic waves 502 exceeds 1000 kHz, the cleaning effect will be low and the processing time will be significantly longer, requiring several hours or more, which is not economical as a mask manufacturing method. When the frequency exceeded 200 kHz, the time required for cleaning increased from 2 minutes to even longer.

図12は、本発明の蒸着マスク製造方法における第3実施形態を示す図である。
第3実施形態では、上述した孔形成工程(B)と紫外光照射工程(C1)とを経た後で後洗浄工程(C3)が実行される。第3実施形態の場合は、紫外光照射工程(C1)と後洗浄工程(C3)とを併せた工程が、本発明にいう除去工程の一例に相当する。
後洗浄工程(C3)では、紫外光照射工程(C1)を経た基材110に対して超音波洗浄が行われる。即ち、前洗浄工程(C2)と同様に、洗浄用の溶液501に基材110が浸されて超音波502が加えられる。後洗浄工程(C3)でも、超音波502の周波数としては、基材110の薄膜101を保護するため80~1000kHzの周波数が設定され、望ましくは80~200kHzの周波数が設定されるので洗浄力が弱いが、後述するように、短時間の後洗浄工程(C3)が紫外光照射工程(C1)と組み合わされることで、紫外光照射工程(C1)における紫外光照射時間の短縮化が図られ、後洗浄工程(C3)を経た終了状態におけるデブリ除去の徹底化が図られることが確認できた。この理由としては、紫外光の照射によりデブリに光化学的な作用がおこり、デブリそのものが低分子化して溶解しやすくなるためと、デブリ表面が光改質され洗浄用の溶液との親溶液性があがったことで複雑に堆積するデブリの内部に洗浄用溶液が浸入しやすくなるため気泡がなくなり超音波の伝達性が高くなることによって洗浄効果が上がるためである。このように前洗浄工程と後洗浄工程は本発明に係る紫外光との組み合わせでデブリ除去に及ぼす作用が異なる。超音波502の周波数が1000kHzを超えると、洗浄作用が低くなり、処理時間が数時間以上必要となり大幅に長くなったためマスクの製造方法として経済的ではない。周波数が200kHzを超えると、洗浄に必要な時間は5分からさらに長くなった。
FIG. 12 is a diagram showing a third embodiment of the vapor deposition mask manufacturing method of the present invention.
In the third embodiment, a post-cleaning step (C3) is performed after the above-described hole forming step (B) and ultraviolet light irradiation step (C1). In the case of the third embodiment, the combined process of the ultraviolet light irradiation process (C1) and the post-cleaning process (C3) corresponds to an example of the removal process according to the present invention.
In the post-cleaning step (C3), ultrasonic cleaning is performed on the base material 110 that has undergone the ultraviolet light irradiation step (C1). That is, similarly to the pre-cleaning step (C2), the base material 110 is immersed in a cleaning solution 501 and ultrasonic waves 502 are applied. Also in the post-cleaning step (C3), the frequency of the ultrasonic wave 502 is set at a frequency of 80 to 1000 kHz in order to protect the thin film 101 of the base material 110, and preferably a frequency of 80 to 200 kHz, so that the cleaning power is improved. Although weak, as will be described later, by combining the short post-cleaning step (C3) with the ultraviolet light irradiation step (C1), the ultraviolet light irradiation time in the ultraviolet light irradiation step (C1) can be shortened, It was confirmed that debris was thoroughly removed in the finished state after the post-cleaning step (C3). The reason for this is that irradiation with ultraviolet light causes a photochemical effect on the debris, which reduces the molecular weight of the debris itself and makes it easier to dissolve.The other reason is that the surface of the debris is photo-modified, making it less soluble with the cleaning solution. This is because the cleaning solution can more easily penetrate into the intricately deposited debris, eliminating air bubbles and increasing the transmittance of ultrasonic waves, thereby increasing the cleaning effect. As described above, the pre-cleaning step and the post-cleaning step have different effects on debris removal depending on the combination with the ultraviolet light according to the present invention. When the frequency of the ultrasonic wave 502 exceeds 1000 kHz, the cleaning effect becomes low and the processing time becomes significantly longer, requiring several hours or more, which is not economical as a mask manufacturing method. When the frequency exceeded 200 kHz, the time required for cleaning increased from 5 minutes to even longer.

図13は、紫外光照射と超音波洗浄とを組み合わせた場合のデブリ除去結果を示す表である。
図13には、紫外光照射の一例としてVUV照射の結果が示されている。また、VUV照射のみの場合の欄601(以下、VUV照射のみ欄601と称する。)、超音波洗浄の後でVUV照射が行われた場合の欄602(以下、前超音波洗浄欄602と称する。)、およびVUV照射の後で超音波洗浄が行われた場合の欄(以下、後超音波洗浄欄603と称する。)603に、各デブリ除去手順における除去結果が示されている。図13に示す各デブリ除去手順における除去対象は、上述した実施形態における基材110に相当する試験用の基板である。
FIG. 13 is a table showing the debris removal results when ultraviolet light irradiation and ultrasonic cleaning are combined.
FIG. 13 shows the results of VUV irradiation as an example of ultraviolet light irradiation. Additionally, there is a column 601 for the case of VUV irradiation only (hereinafter referred to as the VUV irradiation only column 601), and a column 602 for the case where VUV irradiation is performed after ultrasonic cleaning (hereinafter referred to as the pre-ultrasonic cleaning column 602). ), and a column 603 for when ultrasonic cleaning is performed after VUV irradiation (hereinafter referred to as post-ultrasonic cleaning column 603), the removal results in each debris removal procedure are shown. The object to be removed in each debris removal procedure shown in FIG. 13 is a test substrate corresponding to the base material 110 in the above-described embodiment.

図14は、試験用の基板を模式的に示す図である。
試験用の基板610は、図3の基材形成工程(A)および孔形成工程(B)と同様の工程を経て多数の貫通孔103(図示せず)が形成された形成領域R1と、貫通孔103が形成されない非形成領域R2とを有する。
FIG. 14 is a diagram schematically showing a test board.
The test substrate 610 has a formation region R1 in which a large number of through holes 103 (not shown) are formed through the same steps as the base material forming step (A) and the hole forming step (B) in FIG. It has a non-formation region R2 where the hole 103 is not formed.

図14には、試験用の基板610について、超音波洗浄およびVUV照射の双方が全く施されていないデブリ除去未処理の状態(A)と、デブリ除去が施された状態(B)と、デブリ除去が更に施された状態(C)と、デブリ除去でデブリ300が完全に除去された完全除去状態(D)が示されている。 FIG. 14 shows a test substrate 610 in an untreated state (A) in which neither ultrasonic cleaning nor VUV irradiation has been performed, a state in which debris has been removed (B), and a state in which debris has not been removed (B). A state (C) in which further removal has been performed and a completely removed state (D) in which the debris 300 is completely removed by debris removal are shown.

基板610の形成領域R1では金属枠102(図示せず)上にデブリ300が付着するため、デブリ除去未処理の状態(A)では形成領域R1と非形成領域R2とでは大きなコントラスト(明暗の差)を生じる。これに対し、デブリ除去が施された状態(B)、(C)では、形成領域R1と非形成領域R2とのコントラストが小さくなり、完全除去状態(D)では形成領域R1と非形成領域R2とのコントラストがゼロとなる。
図13の表には、形成領域R1と非形成領域R2とのコントラストに基づいた除去率が、デブリ除去の結果を表す数値として記載されている。
Since debris 300 adheres to the metal frame 102 (not shown) in the formation region R1 of the substrate 610, there is a large contrast (difference in brightness and darkness) between the formation region R1 and the non-formation region R2 in the state (A) where debris has not been removed. ) occurs. On the other hand, in the states (B) and (C) where debris has been removed, the contrast between the formation region R1 and the non-formation region R2 is small, and in the complete removal state (D), the contrast between the formation region R1 and the non-formation region R2 is The contrast with that is zero.
In the table of FIG. 13, the removal rate based on the contrast between the formation region R1 and the non-formation region R2 is listed as a numerical value representing the result of debris removal.

除去率は、デブリ除去後の基板610表面におけるコントラストを数値化したものの平均値を、デブリ除去前の基板610表面におけるコントラストを数値化したものの平均値で割った比の百分率を100から引いた数値である。つまり、除去率は、0%でデブリ除去未処理状態を表し、100%で完全除去状態を表す。 The removal rate is the value obtained by subtracting from 100 the percentage of the ratio of the average value of the numerical contrast on the surface of the substrate 610 after debris removal divided by the average value of the numerical value of the contrast on the surface of the substrate 610 before debris removal. It is. That is, as for the removal rate, 0% represents a state in which debris has not been removed, and 100% represents a state in which debris has been completely removed.

図13の各行は、表の左端に示された各ドーズ量[J/cm]のVUV照射に対応しており、ドーズ量が0J/cmの行は超音波洗浄のみによるデブリ除去結果を表している。後超音波洗浄欄603を参照すると、80kHzで1分の超音波洗浄では5%の除去率となり、2分の超音波洗浄では7%の除去率となるが、5分以上の超音波洗浄を施しても除去率が7%から増えないことが示されている。80kHzの超音波洗浄のみでは、20時間以上の時間を掛けても除去率が横ばいであることが確認されている。また、このように低い除去率では、図4に示す毛羽立った状態のデブリ300の除去も不十分であり、上記(1)、(2)の現象が抑制されない。 Each row in Figure 13 corresponds to VUV irradiation at each dose [J/cm 2 ] shown on the left end of the table, and the row with a dose of 0 J/cm 2 shows the results of debris removal only by ultrasonic cleaning. represents. Referring to the post-ultrasonic cleaning column 603, ultrasonic cleaning for 1 minute at 80kHz results in a removal rate of 5%, and ultrasonic cleaning for 2 minutes results in a removal rate of 7%, but ultrasonic cleaning for 5 minutes or more It has been shown that the removal rate does not increase from 7% even if the coating is applied. It has been confirmed that with only ultrasonic cleaning at 80 kHz, the removal rate remains unchanged even after 20 hours or more. Moreover, with such a low removal rate, the removal of the fluffy debris 300 shown in FIG. 4 is also insufficient, and the phenomena (1) and (2) described above are not suppressed.

これに対し、VUVのみ欄601を参照すると、ドーズ量が7J/cmでも35%という高い除去率が得られており、少なくとも毛羽立った状態のデブリ300は除去されることが確認されている。 On the other hand, referring to the VUV only column 601, a high removal rate of 35% was obtained even at a dose of 7 J/cm 2 , and it was confirmed that at least the fluffy debris 300 was removed.

ドーズ量が7J/cmの場合について、VUV照射のみ欄601と、前超音波洗浄欄602および後超音波洗浄欄603とを比較すると、VUV照射のみ欄601では35%の除去率であるのに対し、前超音波洗浄欄602では80kHzで1分の短時間な超音波洗浄で57%という大きな除去率が得られ、後超音波洗浄欄603でも1分の短時間な超音波洗浄で67%という更に大きな除去率が得られることが示されている。つまり、紫外光による照射と超音波洗浄とが組み合わされることにより、単独のデブリ除去結果の足し合わせを大きく超えたデブリ除去効果が得られ、短時間のデブリ除去時間でも洗浄の徹底化が図られることが示されている。 When the dose amount is 7 J/ cm2 , comparing the VUV irradiation only column 601 with the pre-ultrasonic cleaning column 602 and post-ultrasonic cleaning column 603, it is found that the VUV irradiation only column 601 has a removal rate of 35%. On the other hand, in the front ultrasonic cleaning column 602, a high removal rate of 57% was obtained with a short time of 1 minute of ultrasonic cleaning at 80 kHz, and in the post ultrasonic cleaning column 603, a removal rate of 67% was obtained with a short time of 1 minute of ultrasonic cleaning at 80 kHz. It has been shown that even greater removal rates of % can be obtained. In other words, by combining ultraviolet light irradiation and ultrasonic cleaning, a debris removal effect that greatly exceeds the sum of the individual debris removal results can be obtained, and thorough cleaning can be achieved even in a short debris removal time. It has been shown that

除去率が60%以上に達するデブリ除去結果を参照すると、VUV照射のみ欄601ではドーズ量が14J/cmの時に65%であるのに対し、前超音波洗浄欄602では2分の超音波洗浄とドーズ量が7J/cmで60%に達し、後超音波洗浄欄603では1分の超音波洗浄とドーズ量が7J/cmで67%に達する。つまり、紫外光照射と超音波洗浄とが組み合わされることにより、単独のデブリ除去と同程度のデブリ除去効果を得るために、紫外光照射と超音波印加の合計時間が単独のデブリ除去時よりも短時間で済むことが示されている。 Referring to the debris removal results in which the removal rate reaches 60% or more, in the VUV irradiation only column 601, it is 65% when the dose is 14 J/cm 2 , whereas in the pre-ultrasonic cleaning column 602, it is 65% when the dose is 14 J/cm2. When the cleaning and dose amount is 7 J/cm 2 , it reaches 60%, and in the post ultrasonic cleaning column 603, the ultrasonic cleaning for 1 minute and the dose amount reaches 67% when it is 7 J/cm 2 . In other words, by combining ultraviolet light irradiation and ultrasonic cleaning, in order to obtain the same debris removal effect as debris removal alone, the total time of ultraviolet light irradiation and ultrasonic application is longer than when debris removal is performed alone. It has been shown that it takes only a short time.

なお、図11に示す前洗浄工程(C2)がデブリの除去に及ぼす作用と、図12に示す後洗浄工程(C3)がデブリの除去に及ぼす作用とは異なると考えられるため、前洗浄工程(C2)と後洗浄工程(C3)との双方を経ることで、更なる時間短縮化や徹底化が図られることが期待される。
次に、PIとPETそれぞれからなる薄膜101を有した基板610について、上述した試験と同等の試験で除去率が100%となるまでのデブリ除去速度を、他の樹脂からなる薄膜101を有した基板610と比較して評価した。PIとPETが用いられた基板610でのデブリ除去速度は、他の樹脂が用いられた基板610でのデブリ除去速度より大きく、PIの場合は5倍、PETの場合は3倍であった。PIとPETでは、以下のような機構が働いていることが発明者らにより明らかになった。
樹脂のデブリ300を真空紫外線で分解すると、デブリ300は周囲のオゾンやラジカルと反応して二酸化炭素や水分子となって揮発する。すなわち、真空紫外線による樹脂の分解時には、周囲に多量の水分子が存在するため、一部は薄膜101を構成する樹脂に吸着される。
PETおよびPIは、真空紫外線照射を受けているときは、真空紫外線の吸収によって樹脂内部の共役結合状態からエネルギーが高い状態にある。そこに水分子が接触することでエネルギー遷移を起こし、表面に吸着された水分子が再び真空紫外線で分解してヒドロキシラジカル(OHラジカル)になり放出される。水分子の吸着・分解作用は薄膜101上で生じ、OHラジカルは反応性が極めて高いが、薄膜101とデブリ300とは樹脂の分子構造が異なるので、薄膜101の材料の分解よりも、金属枠102の表面におけるデブリ300の分解の方が早く進み、デブリ300の除去をアシストする。
このような機構により、PETおよびPIではデブリ300の除去が他の樹脂よりも効率的に進むため、薄膜101の材料としてはPETおよびPIの少なくとも一方が好ましい。
Note that the effect of the pre-cleaning step (C2) shown in FIG. 11 on debris removal is considered to be different from the effect of the post-cleaning step (C3) shown in FIG. 12 on debris removal. It is expected that further time reduction and thoroughness will be achieved by performing both C2) and post-cleaning step (C3).
Next, for the substrate 610 having the thin film 101 made of each of PI and PET, the debris removal rate until the removal rate reached 100% was determined in a test equivalent to the test described above. Evaluation was made by comparing with the substrate 610. The debris removal rate on the substrate 610 using PI and PET was higher than the debris removal rate on the substrate 610 using other resins, 5 times in the case of PI and 3 times in the case of PET. The inventors have revealed that the following mechanism operates in PI and PET.
When the resin debris 300 is decomposed with vacuum ultraviolet rays, the debris 300 reacts with surrounding ozone and radicals, becomes carbon dioxide and water molecules, and evaporates. That is, when the resin is decomposed by vacuum ultraviolet rays, a large amount of water molecules are present in the surrounding area, so some of them are adsorbed to the resin constituting the thin film 101.
When PET and PI are irradiated with vacuum ultraviolet rays, they are in a high energy state due to the conjugated bond state inside the resin due to absorption of the vacuum ultraviolet rays. When water molecules come into contact with it, an energy transition occurs, and the water molecules adsorbed on the surface are decomposed again by vacuum ultraviolet rays, becoming hydroxyl radicals (OH radicals) and being released. Adsorption and decomposition of water molecules occur on the thin film 101, and OH radicals have extremely high reactivity, but since the molecular structures of the resins of the thin film 101 and the debris 300 are different, the decomposition of the material of the thin film 101 is more The decomposition of debris 300 on the surface of 102 proceeds faster, assisting in the removal of debris 300.
Due to such a mechanism, debris 300 is removed more efficiently with PET and PI than with other resins, and therefore at least one of PET and PI is preferable as the material for the thin film 101.

100 …金属枠付き薄膜マスク(蒸着マスク)、102 …金属枠、
102a …開口、101、111 …薄膜、103 …貫通孔、104 …外枠、
110 …基材、200 …蒸着ガマ、201 …ガラス基板、203 …蒸着源、
204 …有機発光材料、300 …デブリ、400 …紫外光照射装置、
403 …光源、501 …溶液、502 …超音波、W …ワーク
100...Thin film mask with metal frame (evaporation mask), 102...Metal frame,
102a...Opening, 101, 111...Thin film, 103...Through hole, 104...Outer frame,
110... Base material, 200... Vapor deposition head, 201... Glass substrate, 203... Vapor deposition source,
204...organic light emitting material, 300...debris, 400...ultraviolet light irradiation device,
403...Light source, 501...Solution, 502...Ultrasonic wave, W...Work

Claims (7)

複数の開口が設けられた金属層と、当該金属層に接して広がる樹脂層とを有した複合材に当該金属層側からレーザ光を照射して、当該開口内に露出した当該樹脂層部分に貫通孔を形成する孔形成工程と、
前記貫通孔が形成された複合材に対し、前記金属層側から紫外光を照射することで当該金属層上のデブリを除去する除去工程と、
を経ることを特徴とする蒸着マスク製造方法。
A composite material having a metal layer provided with a plurality of openings and a resin layer that spreads in contact with the metal layer is irradiated with a laser beam from the metal layer side, and the portion of the resin layer exposed within the openings is exposed. a hole forming step of forming a through hole;
a removal step of removing debris on the metal layer by irradiating the composite material in which the through hole is formed with ultraviolet light from the metal layer side;
A method for producing a vapor deposition mask, which comprises:
前記除去工程では、前記紫外光として波長が200nm以下の紫外光が用いられることを特徴とする請求項1に記載の蒸着マスク製造方法。 2. The vapor deposition mask manufacturing method according to claim 1, wherein in the removing step, ultraviolet light having a wavelength of 200 nm or less is used as the ultraviolet light. 前記除去工程では、波長が200nm以下の前記紫外光としてキセノンエキシマランプからの紫外光が用いられることを特徴とする請求項2に記載の蒸着マスク製造方法。 3. The vapor deposition mask manufacturing method according to claim 2, wherein in the removing step, ultraviolet light from a xenon excimer lamp is used as the ultraviolet light having a wavelength of 200 nm or less. 前記除去工程では、波長が200nm以下の前記紫外光として低圧水銀ランプからの紫外光が用いられることを特徴とする請求項2に記載の蒸着マスク製造方法。 3. The vapor deposition mask manufacturing method according to claim 2, wherein in the removing step, ultraviolet light from a low-pressure mercury lamp is used as the ultraviolet light having a wavelength of 200 nm or less. 前記樹脂層が、ポリイミドおよびポリエチレンテレフタレートの少なくとも一方からなることを特徴とする請求項1に記載の蒸着マスク製造方法。 2. The vapor deposition mask manufacturing method according to claim 1, wherein the resin layer is made of at least one of polyimide and polyethylene terephthalate. 前記除去工程は、前記貫通孔が形成された後、前記紫外光が照射される前の前記複合材に対して超音波洗浄を行う前洗浄を含むことを特徴とする請求項1に記載の蒸着マスク製造方法。 The vapor deposition according to claim 1, wherein the removing step includes pre-cleaning of performing ultrasonic cleaning on the composite material after the through-hole is formed and before the ultraviolet light is irradiated. Mask manufacturing method. 前記除去工程は、前記紫外光が照射された後の前記複合材に対して超音波洗浄を行う後洗浄を含むことを特徴とする請求項1に記載の蒸着マスク製造方法。 2. The vapor deposition mask manufacturing method according to claim 1, wherein the removing step includes post-cleaning of performing ultrasonic cleaning on the composite material after being irradiated with the ultraviolet light.
JP2022111107A 2022-07-11 2022-07-11 Vapor deposition mask production method Pending JP2024009519A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022111107A JP2024009519A (en) 2022-07-11 2022-07-11 Vapor deposition mask production method
KR1020230086980A KR20240008254A (en) 2022-07-11 2023-07-05 Manufacturing method of deposition mask
CN202310842285.2A CN117381200A (en) 2022-07-11 2023-07-11 Vapor deposition mask manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022111107A JP2024009519A (en) 2022-07-11 2022-07-11 Vapor deposition mask production method

Publications (1)

Publication Number Publication Date
JP2024009519A true JP2024009519A (en) 2024-01-23

Family

ID=89470836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022111107A Pending JP2024009519A (en) 2022-07-11 2022-07-11 Vapor deposition mask production method

Country Status (3)

Country Link
JP (1) JP2024009519A (en)
KR (1) KR20240008254A (en)
CN (1) CN117381200A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6341434B2 (en) 2016-03-29 2018-06-13 株式会社ブイ・テクノロジー Deposition mask, manufacturing method thereof, and repair method of deposition mask

Also Published As

Publication number Publication date
KR20240008254A (en) 2024-01-18
CN117381200A (en) 2024-01-12

Similar Documents

Publication Publication Date Title
DE3721940C2 (en)
TWI274958B (en) Pellicle and pellicle frame for photolithography
TWI477377B (en) A cleaning method for a stamping die, a method of manufacturing a cleaning apparatus, and a die for embossing
JP2005150261A (en) Light emitting element provided with multiplex reflection preventing structure and manufacturing method therefor
JP6054034B2 (en) Electron beam induced etching of gallium contaminated layers.
TW201720941A (en) Method of producing resin film having fine pattern, method of producing organic EL display device, substrate film for forming fine pattern and resin film with support member
JP2009520376A5 (en)
KR20220047581A (en) Pellicle Membrane for Lithographic Apparatus
TW201707534A (en) Wiring substrate manufacturing method, wiring substrate, and wiring substrate manufacturing device
JP2024009519A (en) Vapor deposition mask production method
DE102008011354B3 (en) Method for joining two components to a composite structure by &#34;fusion bonding&#34; and composite structure, optical element, holding device, projection lens and projection exposure apparatus produced thereby
JP3989148B2 (en) Light immobilization method for metal fine particles
DE10039644A1 (en) Shadow mask and method for making a shadow mask
JP4900036B2 (en) Resin substrate ozone solution processing method and wiring substrate manufacturing method
DE10340409B4 (en) Carrier wafer and method for processing a semiconductor wafer using a carrier wafer
JP2013204107A (en) Electroless plating method and wiring board
JP2008042017A5 (en)
JP2001015407A (en) Manufacture of semiconductor
JP2009067612A (en) Method of dividing board and laser irradiation apparatus
JP5541128B2 (en) REFLECTIVE MASK, REFLECTIVE MASK MANUFACTURING METHOD, AND REFLECTIVE MASK DEFECT CORRECTION DEVICE
DE10253073A1 (en) Process for repairing a defect of a light-influencing structure on a photolithographic mask in semiconductor component production comprises irradiating gallium ions in the region of a defect for implantation into the mask substrate
DE3232498A1 (en) MASK FOR PATTERN PRODUCTION IN LACQUER LAYERS BY MEANS OF X-RAY RAY LITHOGRAPHY AND METHOD FOR THEIR PRODUCTION
JPH08257780A (en) Mask for laser beam machining and its manufacture
DE102013206484A1 (en) Transfer mask for structured vapor deposition of substrates, comprises transparent intermediate support, on rear face of which stack of layers having absorber layer of radiation-absorbing material, is arranged and continuous cover layer
CN115365662A (en) Method for one-step laser processing of resin substrate and cleaning of resin residues