JP2024008249A - ground freezing system - Google Patents

ground freezing system Download PDF

Info

Publication number
JP2024008249A
JP2024008249A JP2022109961A JP2022109961A JP2024008249A JP 2024008249 A JP2024008249 A JP 2024008249A JP 2022109961 A JP2022109961 A JP 2022109961A JP 2022109961 A JP2022109961 A JP 2022109961A JP 2024008249 A JP2024008249 A JP 2024008249A
Authority
JP
Japan
Prior art keywords
ground
freezing
refrigerant
freezing system
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022109961A
Other languages
Japanese (ja)
Inventor
毅 有泉
Takeshi Ariizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemical Grouting Co Ltd
Original Assignee
Chemical Grouting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemical Grouting Co Ltd filed Critical Chemical Grouting Co Ltd
Priority to JP2022109961A priority Critical patent/JP2024008249A/en
Publication of JP2024008249A publication Critical patent/JP2024008249A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

To increase cooling capacity of a ground freezing system.SOLUTION: A ground freezing system that freezes the ground includes a freezing pipe 101 buried in the ground, at least one pair of flat-shaped refrigerant pipes 201 for cooling circulation that are placed facing each other within the freezing pipe 101, a heat conduction member 301 which, inside the refrigerant pipes 201, has a refrigerant piping side surface 301a that is in contact with or comes closer to surfaces facing each other, and a freezing pipe side surface 301b that is in contact with or comes closer to the inner surface of the freezing pipe 101, and a heat transfer fluid filled in the freezing pipe 101.SELECTED DRAWING: Figure 2

Description

本発明は、地盤を掘削する際などに地盤を凍結させる技術に関するものである。 The present invention relates to a technique for freezing the ground when excavating the ground.

シールド掘進機の発進部や到達部、トンネル間の連絡横坑、トンネルや立坑における地中接続、トンネルの地中拡幅などの用途には、地盤を凍結させる地盤凍結工法が用いられることがある。このような用途で用いられる地盤凍結工法は、地中構造物の大規模構造化、大深度化により凍結規模も非常に大きく、凍結開始からの凍結期間は数か月から数年に及ぶ長期間凍土を維持する必要がある。 A ground freezing method that freezes the ground is sometimes used for applications such as the starting and reaching parts of shield tunneling machines, connecting shafts between tunnels, underground connections in tunnels and shafts, and underground widening of tunnels. The ground freezing method used for such applications has a very large scale of freezing due to the large scale and deep underground structures, and the freezing period from the start of freezing is a long period ranging from several months to several years. It is necessary to maintain frozen soil.

ここで凍土の強度は、温度依存性が知られており、温度を低下させれば強度は上がる。前記用途の凍結地盤においても止水性能と同様に耐圧性能も期待されるので、設計強度を確保するために、設計上の大きさ(厚み×幅×高さ)で通常-10℃以下となるように長期間維持することが要求される。 It is known that the strength of frozen soil is temperature dependent, and as the temperature decreases, the strength increases. Pressure resistance as well as water-stop performance is expected even in the frozen ground used in the above applications, so in order to ensure the design strength, the design size (thickness x width x height) is usually -10°C or less. Therefore, it is required to maintain it for a long period of time.

地盤凍結工法は、基本的に、地盤中に凍結管を埋設し、凍結管に低温の冷媒を流すことなどにより管の周辺地盤を冷却し地盤を凍結させる。 The ground freezing method basically involves burying a freezing pipe in the ground and flowing a low-temperature refrigerant through the freezing pipe to cool the ground around the pipe and freeze the ground.

凍結管を冷却する方法には、ブライン方式と低温液化ガス方式の二種類の方式が存在する。ここでブライン方式は、一つは塩化カルシウム水溶液などの不凍液(ブライン)を地上の冷凍機で-30℃程度に冷却し、凍結管で循環することにより地盤を冷却する方式である。一方、低温液化ガス方式は、タンクローリー車で運ばれてきた液体窒素を直接、凍結管に流し込みその気化熱で地盤を冷却し、気化した窒素ガスは大気中に放散される方式である。低温液化ガス方式は、通常、凍土量200m以下の小規模で短期間の工事または、土質調査における土壌サンプリングなどに適用される。 There are two methods for cooling the cryotube: a brine method and a low-temperature liquefied gas method. One of the brine methods is to cool the ground by cooling an antifreeze solution (brine) such as an aqueous calcium chloride solution to about -30°C in a ground-based refrigerator and circulating it through a freezing tube. On the other hand, in the low-temperature liquefied gas method, liquid nitrogen transported by tank truck is poured directly into a freezing tube, the heat of vaporization cools the ground, and the vaporized nitrogen gas is released into the atmosphere. The low-temperature liquefied gas method is usually applied to small-scale, short-term construction work with an amount of frozen ground of 200 m3 or less, or soil sampling in soil surveys.

トンネル工事などで行われる地盤凍結工法ではブラインを用いる方式が主流であり、地盤に埋設させた凍結管内を循環する際に、周辺地盤を凍結させて昇温した二次冷媒(ブライン)は、凍結機の蒸発器で冷却される。 The mainstream of ground freezing methods used in tunnel construction and other projects is to use brine, and as it circulates through freezing pipes buried in the ground, the secondary refrigerant (brine), whose temperature has been raised by freezing the surrounding ground, freezes. It is cooled by the machine's evaporator.

このようなシステムでは、凍結機の一次冷媒(冷媒R404aなど)が、二次冷媒と熱交換して気化し、気化した一次冷媒は、凝縮器で水と熱交換して液化される。そして、凝縮器で一次冷媒から水に供給された熱量は、冷却塔で放熱される。 In such a system, a primary refrigerant (such as refrigerant R404a) in a freezer is vaporized by exchanging heat with a secondary refrigerant, and the vaporized primary refrigerant is liquefied by exchanging heat with water in a condenser. The amount of heat supplied from the primary refrigerant to the water in the condenser is radiated in the cooling tower.

上記従来のブライン方式では、地上の冷凍機(凍結器)でブラインを-30℃程度に低温冷却する。シールド掘進機の発進部や到達部、トンネル間の連絡横坑、トンネルや立坑における地中接続などの用途で地盤凍結工法を施工する際に、凍結規模が非常に大きいと、大量のブラインを低温冷却するための大きなエネルギーが必要であるという問題を有している。 In the conventional brine method described above, the brine is cooled to a low temperature of about -30°C using an above-ground refrigerator. When using the ground freezing method for applications such as the starting and reaching parts of shield tunneling machines, connecting shafts between tunnels, and underground connections in tunnels and shafts, if the freezing scale is extremely large, a large amount of brine may be frozen at a low temperature. The problem is that a large amount of energy is required for cooling.

また、ブラインは水の粘性係数の10倍程度の高い粘性を有する流体であるので、ブラインにより効率良く地中の熱を吸収するためには、凍結管径を大きくして、凍結管内のブラインを大流量で循環させなければならない。そのため、口径の大きな管材が必要であるため、ボーリング費用、管材材料費が高騰化する。それと共に高出力のブライン循環ポンプが必要であり、ブライン循環ポンプ損料やポンプ駆動エネルギーが大きくなり過ぎるため、経済性で問題となる。 In addition, brine is a fluid with a high viscosity that is about 10 times higher than the viscosity coefficient of water, so in order to efficiently absorb underground heat with brine, the diameter of the frozen pipe should be increased and the brine inside the frozen pipe should be It must be circulated at a high flow rate. Therefore, since a pipe material with a large diameter is required, boring costs and pipe material costs rise. At the same time, a high-output brine circulation pump is required, and the loss of the brine circulation pump and the pump drive energy become too large, which poses an economical problem.

ここで、従来のブライン方式で使用される凍結管は、冷凍機からの送り側ブラインが流れる外管と地中の熱を吸収して戻る内管の二重管構造になっていることが多い。その様な凍結管の管材は地中に数mから100m程度まで埋設する必要があり、例えばガス管などの鋼管が用いられる。その様な鋼管の製造工場から地盤凍結工法の施工現場までは、鋼管は定尺の5.5m長でトラック輸送され、現場でボーリング孔の直上で溶接接合しながら、地中に埋設される。 Here, the freezing tubes used in conventional brine systems often have a double-tube structure, consisting of an outer tube through which the sending brine from the refrigerator flows, and an inner tube that absorbs heat from the ground and returns. . The pipe material for such frozen pipes needs to be buried underground from several meters to about 100 meters, and for example, steel pipes such as gas pipes are used. From the steel pipe manufacturing plant to the construction site using the ground freezing method, the steel pipes are transported by truck in a fixed length of 5.5 m, and are welded and bonded directly above the borehole at the site, where they are buried underground.

凍結管径が大きいと、トラック輸送費、管材吊りクレーン損料が高騰化し、溶接接合の労力が多大になるので、経済性で問題となる。また、凍結管が大きいと、ボーリング工ならびに凍結管埋設工の工程が長期化して、施工コストが高騰する。 If the diameter of the frozen pipe is large, truck transportation costs and pipe material lifting crane costs will rise, and the labor involved in welding and joining will be large, which poses economic problems. Furthermore, if the frozen pipe is large, the process of boring and burying the frozen pipe will take a long time, which will increase the construction cost.

さらに、凍結管の溶接接合に不良な箇所があり、ブラインが地中に漏出すると、当該漏出部分における地盤が凍結しなくなり、当該漏出部分における漏水や凍土の強度不足が発生し、工事遂行が困難になる恐れが存在する。 Furthermore, if there is a defect in the welded joint of the frozen pipe and brine leaks into the ground, the ground in the leaked area will no longer freeze, causing water leakage and insufficient strength of the frozen soil in the leaked area, making it difficult to carry out construction work. There is a risk of becoming

一方、従来の低温液化ガス方式では、液化炭酸ガスを地中に噴射し、その気化熱によってパイプ材周辺土を凍結させようとした場合、シールド掘進機の発進部や到達部、トンネル間の連絡横坑、トンネルや立坑における地中接続などの用途では、長期間凍土を維持するには大量の液化炭酸ガスが必要となる。 On the other hand, with the conventional low-temperature liquefied gas method, if liquefied carbon dioxide is injected into the ground and the soil around the pipe material is frozen by the heat of vaporization, the connection between the starting part of the shield excavator, the reaching part, and the tunnel Applications such as underground connections in shafts, tunnels and shafts require large amounts of liquefied carbon dioxide to maintain frozen soil for long periods of time.

ここで、液化炭酸ガスを噴射した領域の周辺地盤が凍結し始めると、当該凍結した地盤から離隔した領域には液化炭酸ガスが到達し難くなり、-10℃以下の凍土を形成できなくなる、という問題が存在する。 When the ground surrounding the area where liquefied carbon dioxide gas is injected begins to freeze, it becomes difficult for the liquefied carbon dioxide gas to reach areas far away from the frozen ground, making it impossible to form frozen ground below -10°C. A problem exists.

また、液体窒素の非常に低い沸点を利用し、二重管構造で地盤を凍結する方法では、窒素ガスを大気放出させるため、液体窒素は所謂「使い捨て」となっており、凍結規模が大きな場合には大量の液体窒素が(使い捨てとして)消費されるので、経済性の点で問題がある。それに加えて、大量の窒素が地中または空中に放散されると、施工現場における酸素濃度が低下してしまう恐れがある。 In addition, in the method of freezing the ground using a double-pipe structure that utilizes the extremely low boiling point of liquid nitrogen, the nitrogen gas is released into the atmosphere, making liquid nitrogen so-called ``disposable,'' and if the scale of freezing is large. Since a large amount of liquid nitrogen is consumed (disposable), there is an economical problem. In addition, if large amounts of nitrogen are released into the ground or into the air, the oxygen concentration at the construction site may drop.

そこで、冷媒の熱効率が良好であり、気相冷媒が地中や空中に放出されることなく地盤を凍結させて掘削等するための地盤凍結システムとしては、例えば、地盤に埋設された凍結管内に扁平形状の冷媒循環用の冷媒配管を配置し、上記凍結管と冷媒配管との間の空間に水道水などの熱伝導流体を充填するとともに、冷媒配管内の微小流路に液化二酸化炭素などの冷媒を循環させるものが知られている(例えば、特許文献1参照。)。 Therefore, as a ground freezing system that has good thermal efficiency of the refrigerant and allows the ground to be frozen and excavated without releasing the gas phase refrigerant underground or into the air, for example, A flat-shaped refrigerant pipe for refrigerant circulation is arranged, and the space between the freezing pipe and the refrigerant pipe is filled with a heat transfer fluid such as tap water. A device that circulates a refrigerant is known (for example, see Patent Document 1).

上記の扁平形状の冷媒循環用の冷媒配管内の微小流路に液化二酸化炭素などの冷媒を循環させる技術は、それまでの塩化カルシウム水溶液(ブライン)を冷媒として循環させる顕熱を用いた地盤凍結技術に比べ、気化潜熱を利用するため循環流量を小さくすることができ、なおかつ冷媒温度もブラインの-30℃程度に対し-45℃程度と低温化できるという特性を持っている。 The technology for circulating a refrigerant such as liquefied carbon dioxide through the microchannels in the flat-shaped refrigerant piping described above is based on the conventional method of ground freezing using sensible heat that circulates an aqueous solution of calcium chloride (brine) as a refrigerant. Compared to other technologies, it uses latent heat of vaporization, so the circulation flow rate can be reduced, and the refrigerant temperature can also be lowered to around -45°C, compared to around -30°C for brine.

微小流路を内在する扁平形状の冷媒循環用の冷媒配管は、液化二酸化炭素などの冷媒を循環させるため高圧となる内圧に耐え、数十mにも及ぶ凍結管長に対し均一な断面を有するため、アルミニウムなどの押出し成形技術で製作されている。 The flat-shaped refrigerant piping for refrigerant circulation, which contains microchannels, can withstand high internal pressure due to the circulation of refrigerants such as liquefied carbon dioxide, and has a uniform cross-section for frozen pipe lengths of several tens of meters. , manufactured using extrusion technology such as aluminum.

この冷媒配管は、管軸方向の曲げ剛性などが極小さいので、直接地盤にボアホールを形成し挿入することが難しいため、ボアホールに鋼管凍結管を挿入し、その内部に冷媒配管を複数挿入する構造となっている。 This refrigerant piping has extremely low bending rigidity in the pipe axis direction, so it is difficult to form a borehole directly in the ground and insert it. Therefore, a steel freezing pipe is inserted into the borehole, and multiple refrigerant pipes are inserted inside it. It becomes.

特開2016-118024号公報Japanese Patent Application Publication No. 2016-118024

上記のような地盤凍結システムにおいて冷却能力を高めるためには、例えば凍結管内に配置する冷媒配管の数を増やすことが考えられるが、限られた凍結管の内径で冷媒配管を大幅に増やすことは容易ではない上、冷媒配管の数を増やしても冷却能力を大幅に高めることは必ずしも容易ではなかった。 In order to increase the cooling capacity in the above-mentioned ground freezing system, for example, it is possible to increase the number of refrigerant pipes placed inside the freezing pipe, but it is not possible to significantly increase the number of refrigerant pipes with the limited inner diameter of the freezing pipe. This is not easy, and it has not always been easy to significantly increase cooling capacity even by increasing the number of refrigerant pipes.

本発明は、上記の点に鑑みてなされたものであり、地盤凍結システムの冷却能力を容易に高められるようにすることを目的としている。 The present invention has been made in view of the above points, and an object of the present invention is to easily increase the cooling capacity of a ground freezing system.

上記の目的を達成するために、
本発明は、
地盤を凍結させる地盤凍結システムであって、
地盤に埋設される凍結管と、
上記凍結管内に対向配置された少なくとも1対の扁平形状の冷却循環用の冷媒配管と、 上記冷媒配管における、互いに対向する面に接触または近接する冷媒配管側面、および上記凍結管の内面に接触または近接する凍結管側面を有する熱伝導部材と、
上記凍結管内に充填される熱伝導流体と、
を備えたことを特徴とする。
In order to achieve the above objectives,
The present invention
A ground freezing system that freezes the ground,
Frozen pipes buried in the ground,
at least one pair of flat-shaped refrigerant pipes for cooling circulation disposed oppositely within the freezing tube; and side surfaces of the refrigerant piping that are in contact with or close to mutually opposing surfaces of the refrigerant piping, and contacting or close to the inner surface of the freezing tube. a thermally conductive member having adjacent cryotube sides;
a heat transfer fluid filled in the freezing tube;
It is characterized by having the following.

これにより、冷媒配管の内側面と、凍結管の内面における冷媒配管が位置していない領域とが、間に例えば銅やアルミニウムなどの高い熱伝導性を持つ素材で製作された熱伝導部材が介在するように設けられて接続されることにより、冷媒配管の内側面による冷却効果への寄与を大きくして、冷却能力を高めることが容易にできる。 As a result, the inner surface of the refrigerant pipe and the area on the inner surface of the freezing tube where the refrigerant pipe is not located are separated by a heat conductive member made of a material with high thermal conductivity such as copper or aluminum. By providing and connecting the refrigerant pipes in such a manner, the contribution of the inner surface of the refrigerant pipe to the cooling effect can be increased, and the cooling capacity can be easily increased.

本発明では、地盤凍結システムの冷却能力を容易に高めることができる。 According to the present invention, the cooling capacity of the ground freezing system can be easily increased.

地盤凍結システムの概略構成を示すブロック図である。It is a block diagram showing a schematic structure of a ground freezing system. 凍結管内に冷媒配管が設けられた状態を示す横断面図である。FIG. 3 is a cross-sectional view showing a state in which refrigerant piping is provided within the freezing tube. 冷媒配管の詳細な構成を示す斜視図である。FIG. 3 is a perspective view showing a detailed configuration of refrigerant piping. 冷媒配管を凍結管内に挿入する工程を示す説明図である。It is an explanatory view showing a process of inserting a refrigerant pipe into a freezing pipe. 地盤凍結システムの冷却能力の例を示すグラフである。It is a graph showing an example of cooling capacity of a ground freezing system. 熱伝導部材の変形例を示す横断面図である。FIG. 7 is a cross-sectional view showing a modification of the heat conductive member. 地盤凍結システムの利用例を示す説明図である。It is an explanatory diagram showing an example of use of a ground freezing system.

以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

(地盤凍結システムの概略構成)
地盤凍結システムでは、図1に示すように、地盤Gを凍結させるために凍結管101(ケーシング)が埋設されている。上記凍結管101には、冷媒循環用の扁平形状の冷媒配管201が配置されている。冷媒配管201内を循環する二次冷媒は液化二酸化炭素であり、地上から供給された液化二酸化炭素が地盤Gと熱交換を行ない、液化二酸化炭素の気化潜熱及び顕熱により地盤Gを凍結させるようになっている。
(Schematic configuration of ground freezing system)
In the ground freezing system, as shown in FIG. 1, a freezing pipe 101 (casing) is buried in order to freeze the ground G. A flat refrigerant pipe 201 for refrigerant circulation is arranged in the freezing tube 101 . The secondary refrigerant circulating in the refrigerant pipe 201 is liquefied carbon dioxide, and the liquefied carbon dioxide supplied from the ground exchanges heat with the ground G, so that the ground G is frozen by the latent heat of vaporization and sensible heat of the liquefied carbon dioxide. It has become.

上記地盤凍結システムは、液化二酸化炭素を冷却して凍結管101に供給する冷却装置110、および冷媒循環ポンプ114を有している。上記冷却装置110は、液化器111、凝縮器112、および冷却塔113を備えている。冷媒配管201内を循環する際に地盤Gと熱交換を行なった一部ガス化した液化二酸化炭素は、液化器111で一次冷媒と熱交換を行ない、低温の液化二酸化炭素になり、再び冷媒配管201内に供給されて、循環する。冷却装置110の一次冷媒は、例えば冷媒R717(アンモニア)などであり、二次冷媒である液化二酸化炭素が地盤Gから供給された熱により蒸発、気化し、凝縮器112で水と熱交換して降温し、液化する。そして凝縮器112で、一次冷媒(冷媒R717など)の気化熱が投入されて昇温した水は、冷却塔113で冷却される。 The ground freezing system includes a cooling device 110 that cools liquefied carbon dioxide and supplies it to the freezing pipe 101, and a refrigerant circulation pump 114. The cooling device 110 includes a liquefier 111, a condenser 112, and a cooling tower 113. The partially gasified liquefied carbon dioxide that exchanged heat with the ground G while circulating in the refrigerant pipe 201 exchanges heat with the primary refrigerant in the liquefier 111, becomes low-temperature liquefied carbon dioxide, and returns to the refrigerant pipe. 201 and circulated. The primary refrigerant of the cooling device 110 is, for example, refrigerant R717 (ammonia), and the secondary refrigerant, liquefied carbon dioxide, is evaporated and vaporized by the heat supplied from the ground G, and exchanges heat with water in the condenser 112. It cools down and liquefies. The water, which has been heated by the heat of vaporization of the primary refrigerant (such as refrigerant R717) in the condenser 112, is cooled in the cooling tower 113.

(凍結管101内の構成)
凍結管101内には、図2に示すように、1対の冷媒配管201が横断面において互いに平行に対向配置されて設けられている。上記冷媒配管201は、例えばアルミニウムから成り、図3に示すように複数の微小冷媒流路202が設けられたマイクロチャネル構造を有し、冷媒が流通するようになっている。上記1対の冷媒配管201の間には、熱伝導部材301が設けられている。より詳しくは、熱伝導部材301は、冷媒配管201の内側面201aに接触または近接する冷媒配管側面301aと、凍結管101の内面に接触または近接する凍結管側面301bとで囲まれた矩形の外形を有する断面形状を有している。上記熱伝導部材301は、例えばアルミニウムから成るが、これに限らず、銅、ジュラルミン、タングステン、鋼、金、銀など熱伝導に優れた材料が用いられてもよい。凍結管101の内部空間には、例えば水などの熱伝導流体が充填されている。この充填水は、冷媒配管201に冷媒が循環することにより、すなわち凍結が開始されると、液体の水から熱を伝導し易い固体の氷に変化し、冷媒配管201の冷熱を伝える。
(Configuration inside freezing tube 101)
As shown in FIG. 2, a pair of refrigerant pipes 201 are provided in the freezing tube 101 so as to be parallel to each other and facing each other in a cross section. The refrigerant pipe 201 is made of aluminum, for example, and has a microchannel structure in which a plurality of minute refrigerant channels 202 are provided, as shown in FIG. 3, through which the refrigerant flows. A heat conductive member 301 is provided between the pair of refrigerant pipes 201 . More specifically, the heat conduction member 301 has a rectangular outer shape surrounded by a refrigerant pipe side surface 301a that contacts or is close to the inner surface 201a of the refrigerant pipe 201, and a freezing tube side surface 301b that contacts or is close to the inner surface of the freezing tube 101. It has a cross-sectional shape. The thermally conductive member 301 is made of aluminum, for example, but is not limited to this, and may also be made of a material with excellent thermal conductivity such as copper, duralumin, tungsten, steel, gold, or silver. The internal space of the freezing tube 101 is filled with a heat transfer fluid such as water. When the refrigerant circulates through the refrigerant pipe 201, that is, when freezing starts, the filled water changes from liquid water to solid ice that easily conducts heat, thereby transmitting the cold heat of the refrigerant pipe 201.

ちなみに、銅、アルミに対する氷の比熱はそれぞれ4.8倍程度(対銅)、2.3倍程度(対アルミ)となり、氷の熱伝導率はそれぞれ1/170程度(対銅)、1/100程度(対アルミ)となり、凍結管101内で氷の熱特性が熱伝導部材301の高い熱伝導性の熱特性に置き換わることになる。 By the way, the specific heat of ice relative to copper and aluminum is about 4.8 times (vs. copper) and 2.3 times (vs. aluminum), respectively, and the thermal conductivity of ice is approximately 1/170 (vs. copper) and 1/1, respectively. 100 (relative to aluminum), and the thermal properties of ice in the freezing tube 101 are replaced by the thermal properties of the high thermal conductivity of the heat conducting member 301.

(冷媒配管201および熱伝導部材301の建て込み)
凍結管101内への冷媒配管201および熱伝導部材301の建て込みは、例えば次のようにして行うことができる。
(Installation of refrigerant piping 201 and heat conduction member 301)
The refrigerant piping 201 and the heat conduction member 301 can be installed in the freezing pipe 101, for example, as follows.

上記のように形状が扁平で材質がアルミニウムである場合などには、曲げ、伸ばし加工が比較的容易であるため、例えば図4に示すように、凍土を造成する鉛直深度(例えば100mなど)に相当する長さの冷媒配管201を工場などでロール巻きして、現場に搬入し、これを直線状に伸ばしながら熱伝導部材301を挟み込み、必要に応じて結束部材で束ねるなどして、ボーリング孔に埋め込まれた凍結管101内に挿入することができる。 When the shape is flat and the material is aluminum, as shown above, it is relatively easy to bend and stretch. The refrigerant piping 201 of the corresponding length is rolled up at a factory or the like, transported to the site, and stretched into a straight line while sandwiching the heat conductive member 301. If necessary, the refrigerant piping 201 is bundled with a binding member, etc. The cryotube 101 can be inserted into the cryotube 101 embedded in the cryotube.

冷媒配管201は、液体である冷媒が流れるので連続体でなければならないが、熱伝導部材301は、冷媒配管201に密着して挟み込まれていればよいので、連続体である必要がなく、可搬性や凍結管101への挿入しやすい長さで分割されて、冷媒配管201の長さに対し、不連続につながっていればよい。 The refrigerant pipe 201 must be a continuous body because a liquid refrigerant flows therethrough, but the heat conductive member 301 only needs to be tightly sandwiched between the refrigerant pipes 201, so it does not need to be a continuous body and can be It suffices if it is divided into lengths that are easy to transport and insert into the freezing pipe 101, and connected discontinuously to the length of the refrigerant pipe 201.

(地盤凍結システムによる冷却効果)
上記のように1対の冷媒配管201の間に熱伝導部材301が挟み込まれて設けられる場合には、例えば図5に示すように、4本の冷媒配管201を四辺形状に設けた場合と略同程度の冷却効果を得ることができた。すなわち、1対の冷媒配管201の間に熱伝導部材301を設けない場合に比べて、冷却速度が速くなることにより、地盤が凍結して所定の温度まで下がるのに要する日数を短縮できることになる。ここで、図5は、Φ100mmの凍結管を砂質土に800mmピッチに管列配置した場合の凍結管間中央点における温度変化を非定常熱伝導解析により求めたものである。
(Cooling effect of ground freezing system)
When the heat conductive member 301 is provided sandwiched between a pair of refrigerant pipes 201 as described above, for example, as shown in FIG. The same level of cooling effect could be obtained. That is, compared to the case where the heat conduction member 301 is not provided between the pair of refrigerant pipes 201, the cooling rate becomes faster, and the number of days required for the ground to freeze and drop to a predetermined temperature can be shortened. . Here, FIG. 5 shows the temperature change at the center point between the frozen tubes when the frozen tubes with a diameter of 100 mm are arranged in rows at a pitch of 800 mm on sandy soil, as determined by unsteady heat conduction analysis.

上記のように、冷媒配管201の内側面201aと、凍結管101の内面における冷媒配管201(の外面側)が位置していない領域とが、間に熱伝導部材301が介在するように設けられて接続されることにより、冷媒配管201の内側面201aによる冷却効果への寄与を大きくすることが容易にできる。ここで、上記のような冷却効果の増大のためには、冷媒配管201と熱伝導部材301や、これらと凍結管101の内面とは、必ずしも密着していなくても、熱伝導部材301自体の熱伝導効果が大きければ、冷却効果を増大させることは容易にできる。 As described above, the inner surface 201a of the refrigerant pipe 201 and the area on the inner surface of the freezing tube 101 where (the outer surface side of) the refrigerant pipe 201 is not located are provided with the heat conductive member 301 interposed therebetween. By connecting the inner surfaces 201a of the refrigerant pipes 201, the contribution to the cooling effect can be easily increased. Here, in order to increase the cooling effect as described above, even if the refrigerant pipe 201 and the heat conduction member 301 and the inner surface of the freezing tube 101 do not necessarily come into close contact with each other, the heat conduction member 301 itself must If the heat conduction effect is large, the cooling effect can be easily increased.

(変形例)
熱伝導部材301の断面形状は、上記のように中実の矩形状に限らず、例えば図6に示すような種々の断面形状に形成することによって軽量化や材料の削減を図ることができる。すなわち、例えば図6(a)に示すように、熱伝導部材301の冷媒配管側面301aと凍結管側面301bとが、ある程度細い熱伝導部301cを介して接続された断面形状を有するようにしてもよい。また、図6(b)に示すように、空洞部301dを有する四角形状の熱伝導部301cを介して、熱伝導部材301の冷媒配管側面301aと凍結管側面301bとが接続されるようにしてもよい。このような空洞部301dが設けられる場合には、解凍用の熱線を収容する空間を確保することなどが容易にできる。また、図6(c)に示すように、冷媒配管側面301aと凍結管側面301bとが角部で直接接続されて空洞部301dが形成されるような断面形状を有するようにしてもよい。また、これらの断面形状において、図6(d)に示すように、凍結管側面301bの対面が円弧状面301eに形成されるようにしてもよい。また、これらの断面形状において、図6(e)に示すように、冷媒配管側面301aに、冷媒配管201が嵌まり込む凹部301fが形成された断面形状を有するようにしてもよい。この場合には、組み立て作業性を向上させることが容易にできる。
(Modified example)
The cross-sectional shape of the heat conductive member 301 is not limited to the solid rectangular shape as described above, but can be formed into various cross-sectional shapes as shown in FIG. 6, for example, to reduce weight and materials. That is, as shown in FIG. 6A, for example, even if the refrigerant pipe side surface 301a and the freezing tube side surface 301b of the heat conduction member 301 have a cross-sectional shape connected through a somewhat thin heat conduction part 301c. good. Further, as shown in FIG. 6(b), the refrigerant pipe side surface 301a and the freezing tube side surface 301b of the heat conduction member 301 are connected via a square heat conduction part 301c having a cavity 301d. Good too. When such a hollow portion 301d is provided, it is possible to easily secure a space for accommodating a heating wire for defrosting. Further, as shown in FIG. 6(c), the refrigerant pipe side surface 301a and the freezing tube side surface 301b may be directly connected at a corner to form a cross-sectional shape to form a cavity 301d. Moreover, in these cross-sectional shapes, as shown in FIG. 6(d), the opposing side of the cryotube side surface 301b may be formed into an arcuate surface 301e. Moreover, in these cross-sectional shapes, as shown in FIG. 6(e), the refrigerant pipe side surface 301a may have a cross-sectional shape in which a recess 301f into which the refrigerant pipe 201 fits is formed. In this case, assembly workability can be easily improved.

また、熱伝導部材301としては、上記のようにアルミニウムなどのいわゆる型材などを用いるのに限らず、例えばパンチングメタルの製造時に生じる小径の丸チップや、アルミニウム材料の切り屑やそれを固めたリサイクル材などを充填し、その隙間に水などを充填するようにしてもよい。そのような熱伝導部材301は、凍結工事が完了した後に、凍結管101を地盤から撤去する必要がない場合などで、従来の充填剤に水だけを使用する条件にならない場合などに有効である。 In addition, the heat conductive member 301 is not limited to the so-called shaped material such as aluminum as described above, but also small-diameter round chips produced during the manufacturing of punching metal, scraps of aluminum material, and recycled solidified materials. Alternatively, the gap may be filled with water or the like. Such a heat conductive member 301 is effective in cases where it is not necessary to remove the frozen pipe 101 from the ground after the freezing work is completed, and where there is no need to use only water as a conventional filler. .

(地盤凍結システムの利用例)
上記のような地盤凍結システムは、凍結管101を縦穴に埋め込んで地盤を凍結させるのに限らず、例えば図7に示すように、シールド工法によるトンネルの掘削に利用することなどもできる。すなわち、既に掘削された部分からシールド機401の周囲に円錐状に凍結管101を張り出させることによって、掘削先端部を凍結させながら掘削を進めることなどが容易にできる。
(Example of use of ground freezing system)
The ground freezing system as described above is not limited to freezing the ground by embedding the freezing pipe 101 in a vertical hole, but can also be used, for example, for tunnel excavation using the shield construction method, as shown in FIG. That is, by extending the freezing tube 101 in a conical shape around the shield machine 401 from an already excavated part, it is possible to easily proceed with excavation while freezing the excavation tip.

すなわち、鉛直凍結管に限らず、図7の放射凍結管や図示していない水平凍結管など、本地盤凍結システムを持つ凍結管であれば、その設置方向に限定されるものでなく、凍結管も直線だけでなく曲線の場合にも適用できる。 In other words, it is not limited to vertical freezing pipes, but any freezing pipe that has this ground freezing system, such as the radial freezing pipe shown in Figure 7 or the horizontal freezing pipe not shown, is not limited to its installation direction. can be applied not only to straight lines but also to curved lines.

101 凍結管
110 冷却装置
111 液化器
112 凝縮器
113 冷却塔
114 冷媒循環ポンプ
201 冷媒配管
201a 内側面
202 微小冷媒流路
301 熱伝導部材
301a 冷媒配管側面
301b 凍結管側面
301c 熱伝導部
301d 空洞部
301e 円弧状面
301f 凹部
401 シールド機
101 Freezing tube 110 Cooling device 111 Liquefier 112 Condenser 113 Cooling tower 114 Refrigerant circulation pump 201 Refrigerant piping 201a Inner surface 202 Micro refrigerant channel 301 Heat conduction member 301a Refrigerant piping side 301b Freezing tube side 301c Heat conduction part 301d Cavity part 301e Arc-shaped surface 301f recess 401 shield machine

Claims (7)

地盤を凍結させる地盤凍結システムであって、
地盤に埋設される凍結管と、
上記凍結管内に対向配置された少なくとも1対の扁平形状の冷却循環用の冷媒配管と、 上記冷媒配管における、互いに対向する面に接触または近接する冷媒配管側面、および上記凍結管の内面に接触または近接する凍結管側面を有する熱伝導部材と、
上記凍結管内に充填される熱伝導流体と、
を備えたことを特徴とする地盤凍結システム。
A ground freezing system that freezes the ground,
Frozen pipes buried in the ground,
at least one pair of flat-shaped refrigerant pipes for cooling circulation disposed oppositely within the freezing tube; and side surfaces of the refrigerant piping that are in contact with or close to mutually opposing surfaces of the refrigerant piping, and contacting or close to the inner surface of the freezing tube. a thermally conductive member having adjacent cryotube sides;
a heat transfer fluid filled in the freezing tube;
A ground freezing system characterized by:
請求項1の地盤凍結システムであって、
上記熱伝導部材は、上記冷媒配管側面と上記凍結管側面とで囲まれた矩形の外形を有する断面形状を有していることを特徴とする地盤凍結システム。
The ground freezing system according to claim 1,
A ground freezing system characterized in that the heat conductive member has a cross-sectional shape having a rectangular outer shape surrounded by a side surface of the refrigerant pipe and a side surface of the freezing tube.
請求項1の地盤凍結システムであって、
上記熱伝導部材は、上記冷媒配管側面と、上記凍結管側面とが、熱伝導部を介して接続された断面形状を有していることを特徴とする地盤凍結システム。
The ground freezing system according to claim 1,
A ground freezing system, wherein the heat conduction member has a cross-sectional shape in which the refrigerant pipe side surface and the freezing tube side surface are connected via a heat conduction part.
請求項3の地盤凍結システムであって、
上記熱伝導部材は、上記熱伝導部の内部に空洞部を有する断面形状を有していることを特徴とする地盤凍結システム。
The ground freezing system according to claim 3,
A ground freezing system characterized in that the heat conductive member has a cross-sectional shape having a cavity inside the heat conductive part.
請求項1の地盤凍結システムであって、
上記熱伝導部材の上記凍結管側面は、上記凍結管の内面に対応する円弧状面を有することを特徴とする地盤凍結システム。
The ground freezing system according to claim 1,
A ground freezing system characterized in that a side surface of the freezing tube of the heat conductive member has an arcuate surface corresponding to an inner surface of the freezing tube.
請求項1の地盤凍結システムであって、
上記熱伝導部材の上記冷媒配管側面には、上記冷媒配管が嵌まり込む凹部が形成された断面形状を有していることを特徴とする地盤凍結システム。
The ground freezing system according to claim 1,
A ground freezing system characterized in that a side surface of the refrigerant pipe of the heat conductive member has a cross-sectional shape in which a recess into which the refrigerant pipe fits is formed.
請求項1の地盤凍結システムであって、
上記冷媒配管は、複数の微小冷媒流路が形成されたマイクロチャネル構造を有し、
上記微小冷媒流路を流通する冷媒は液化二酸化炭素であることを特徴とする地盤凍結システム。
The ground freezing system according to claim 1,
The refrigerant pipe has a microchannel structure in which a plurality of micro refrigerant channels are formed,
A ground freezing system characterized in that the refrigerant flowing through the micro refrigerant flow path is liquefied carbon dioxide.
JP2022109961A 2022-07-07 2022-07-07 ground freezing system Pending JP2024008249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022109961A JP2024008249A (en) 2022-07-07 2022-07-07 ground freezing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022109961A JP2024008249A (en) 2022-07-07 2022-07-07 ground freezing system

Publications (1)

Publication Number Publication Date
JP2024008249A true JP2024008249A (en) 2024-01-19

Family

ID=89544056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022109961A Pending JP2024008249A (en) 2022-07-07 2022-07-07 ground freezing system

Country Status (1)

Country Link
JP (1) JP2024008249A (en)

Similar Documents

Publication Publication Date Title
TWI660096B (en) Site freezing method and site freezing system
EP1974168B1 (en) Pipe and system for utilizing low-energy
JP4535981B2 (en) Tunnel heat exchange panel and tunnel heat utilization heat exchange system
JP2009092350A (en) Pipe for collecting subterranean heat, subterranean heat exchanger, and heat pump utilizing subterranean heat
US7146823B1 (en) Horizontal and vertical direct exchange heating/cooling system sub-surface tubing installation means
CN102016453B (en) Heat exchanger and air conditioning system
JP2010261633A (en) Multiple-tube for heat exchanger and geothermal air conditioning system using the same
JP2007321383A (en) Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat
JP4632905B2 (en) Geothermal air conditioning system
CN109162742B (en) Tunnel engineering anti-freezing structure in permafrost region
JP2010156468A (en) Underground heat exchanger and air conditioning system
JP2015083911A (en) Underground heat exchange pile
JP2017145556A (en) Freezing method
JP2003262430A (en) Heat pump using underground heat
JP2024008249A (en) ground freezing system
JP2007017137A (en) Piping structure for heat exchange well
Mosley et al. Alyeska’s 40-plus years of experience with heat pipes on the Trans-Alaska pipeline system
CN106593512A (en) Combined supporting and cooling device for high-temperature mine roadway
CN113756823A (en) Indirect annular freezing device in shield tunneling machine, mounting method thereof and freezing system
JP2017227023A (en) Freezing method
RU2786186C1 (en) Device for thermostabilization of soil around piles
CN200941022Y (en) High efficiency passive refrigeration heat conductive rods
WO2019000098A1 (en) One phase liquid filled thermosyphon with forced circulation
JP2921934B2 (en) Tunnel drilling method
CN218522663U (en) Refrigerating device