JP2024006951A - Discharge head and discharge device - Google Patents

Discharge head and discharge device Download PDF

Info

Publication number
JP2024006951A
JP2024006951A JP2023057974A JP2023057974A JP2024006951A JP 2024006951 A JP2024006951 A JP 2024006951A JP 2023057974 A JP2023057974 A JP 2023057974A JP 2023057974 A JP2023057974 A JP 2023057974A JP 2024006951 A JP2024006951 A JP 2024006951A
Authority
JP
Japan
Prior art keywords
flow path
opening
closing means
recovery
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023057974A
Other languages
Japanese (ja)
Inventor
健太郎 山中
Kentaro Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to EP23177969.5A priority Critical patent/EP4303017A1/en
Publication of JP2024006951A publication Critical patent/JP2024006951A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

To provide a discharge head in which an air bubble exhaust property at the time of initial filling and/or maintenance is improved and discharge stability at the time of discharging is improved.SOLUTION: A discharge head includes: a plurality of nozzles that discharge a discharged matter; a plurality of pressure chambers communicating with a plurality of nozzles; a plurality of supply flow path branches communicating with two or more of the pressure chambers; a recovery flow path branches communicating with two or more of the pressure chambers; a supply flow path mainstream 156 communicating with the plurality of supply flow path branches; a recovery flow path mainstream 157 communicating with the plurality of recovery flow path branches; a first bypass flow path 253 that causes the supply flow path mainstream and the recovery flow path mainstream to communicate with each other; and first opening and closing means 257 that opens and closes the first bypass flow path. A flow rate of the discharged matter flowing in the first bypass flow path decreases as a pressure difference between an upstream side and a downstream side of the first opening and closing means is increased.SELECTED DRAWING: Figure 7

Description

本発明は、吐出ヘッド及び吐出装置に関する。 The present invention relates to an ejection head and an ejection device.

例えば液体を吐出するヘッドとして、複数のノズルを二次元マトリクス状に配置し、供給流路本流から供給流路支流を通じて圧力室に液体を供給し、圧力室から回収流路支流を通じて回収流路本流に液体を回収するものがある。 For example, as a head for discharging liquid, a plurality of nozzles are arranged in a two-dimensional matrix, and liquid is supplied from the main stream of the supply channel to the pressure chamber through the tributary of the supply channel, and from the pressure chamber to the tributary of the recovery channel to the main stream of the recovery channel. There is a device that collects liquid.

従来、圧力室(個別液室)を経由しないで共通液室と循環共通液室とをつなぐバイパス流路と、バイパス流路を流れる液体の流量を制御する流量制御手段とを備えるものが知られている(特許文献1)。特許文献1では、気泡排出性の向上と循環による粘度変化の抑制効果を確保できるようにすることを目的にしている。 Conventionally, there have been known devices that include a bypass flow path that connects a common liquid chamber and a circulating common liquid chamber without going through a pressure chamber (individual liquid chamber), and a flow rate control means that controls the flow rate of the liquid flowing through the bypass flow path. (Patent Document 1). Patent Document 1 aims to improve bubble discharge performance and ensure the effect of suppressing viscosity change due to circulation.

また、液体が共通供給流路から圧力室を経て共通回収流路に流れ、共通回収流路の一部が共通供給流路の上方に配置され、共通供給流路から共通回収流路に通じる連通路が設けられるものが知られている(特許文献2)。特許文献2では、共通供給流路内の気泡の排出性を向上することを目的としている。 In addition, the liquid flows from the common supply channel through the pressure chamber to the common recovery channel, a part of the common recovery channel is disposed above the common supply channel, and a connection is made from the common supply channel to the common recovery channel. One in which a passage is provided is known (Patent Document 2). Patent Document 2 aims to improve the ability to discharge bubbles within the common supply channel.

このように、従来技術ではヘッド内の気泡排出性を向上させることを目的として、バイパス流路を有する構成が提案されている。しかしながら、従来技術のように、供給側の共通液室と回収側の共通液室との間に、被吐出物の流量を調整できる手段を有するバイパス流路を設けるだけでは気泡を十分に排出することが難しかった。例えば、初期充填やメンテナンスの時に、個別液室に気泡が残ってしまうという問題がある。また、印刷動作時に、共通液室やタンクからの気泡が個別液室に流れて吐出が不安定になる場合があった。 As described above, in the prior art, a configuration having a bypass flow path has been proposed for the purpose of improving the bubble discharging property within the head. However, as in the prior art, simply providing a bypass passage having means for adjusting the flow rate of the discharged material between the common liquid chamber on the supply side and the common liquid chamber on the recovery side does not sufficiently discharge air bubbles. That was difficult. For example, there is a problem that air bubbles remain in the individual liquid chambers during initial filling or maintenance. Furthermore, during printing operations, air bubbles from the common liquid chamber or tank may flow into the individual liquid chambers, making ejection unstable.

そこで本発明は、初期充填時及び/又はメンテナンス時における気泡排出性を向上させ、印刷動作時における吐出安定性を向上させた吐出ヘッドを提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an ejection head that improves bubble evacuation performance during initial filling and/or maintenance, and improves ejection stability during printing operations.

上記課題を解決するために、本発明の吐出ヘッドは、
被吐出物を吐出する複数のノズルと、
前記複数のノズルに各々連通する複数の圧力室と、
2以上の前記圧力室に通じる複数の供給流路支流と、
2以上の前記圧力室に通じる複数の回収流路支流と、
前記複数の供給流路支流に通じる供給流路本流と、
前記複数の回収流路支流に通じる回収流路本流と、
前記供給流路本流と前記回収流路本流とを通じる第1バイパス流路と、
前記第1バイパス流路を開閉する第1開閉手段と、を備え、
前記供給流路支流は、前記被吐出物を前記2以上の圧力室に供給する流路であり、
前記回収流路支流は、前記2以上の圧力室から前記被吐出物を回収する流路であり、
前記供給流路本流は、前記被吐出物を前記複数の供給流路支流に供給する流路であり、
前記回収流路本流は、前記複数の回収流路支流から前記被吐出物を回収する流路であり、
前記第1バイパス流路を流れる前記被吐出物の流量は、前記第1開閉手段の上流側と下流側の圧力差が大きくなるに伴って小さくなる
ことを特徴とする。
In order to solve the above problems, the ejection head of the present invention includes:
a plurality of nozzles for discharging a material to be discharged;
a plurality of pressure chambers each communicating with the plurality of nozzles;
a plurality of supply channel tributaries that communicate with the two or more pressure chambers;
a plurality of recovery channel tributaries that communicate with the two or more pressure chambers;
a main supply flow path leading to the plurality of supply flow path tributaries;
a main recovery channel that communicates with the plurality of recovery channel tributaries;
a first bypass channel that connects the main stream of the supply channel and the main stream of the recovery channel;
A first opening/closing means for opening and closing the first bypass flow path,
The supply flow path tributary is a flow path that supplies the material to be discharged to the two or more pressure chambers,
The recovery channel tributary is a channel that recovers the discharged material from the two or more pressure chambers,
The main supply flow path is a flow path that supplies the material to be discharged to the plurality of supply flow path tributaries,
The main recovery flow path is a flow path that recovers the discharged material from the plurality of recovery flow path tributaries,
The flow rate of the discharged material flowing through the first bypass channel is characterized in that it decreases as the pressure difference between the upstream side and the downstream side of the first opening/closing means increases.

本発明によれば、初期充填時及び/又はメンテナンス時における気泡排出性を向上させ、印刷動作時における吐出安定性を向上させた吐出ヘッドを提供することができる。 According to the present invention, it is possible to provide an ejection head that improves bubble evacuation performance during initial filling and/or maintenance, and improves ejection stability during printing operations.

本発明に係る吐出ヘッドの一例を示す断面説明図である。FIG. 1 is a cross-sectional explanatory diagram showing an example of an ejection head according to the present invention. 同吐出ヘッドの流路配置構成を説明する平面説明図である。FIG. 3 is an explanatory plan view illustrating the flow path arrangement configuration of the ejection head. 図2のA-A線に沿う断面説明図である。3 is a cross-sectional explanatory diagram taken along line AA in FIG. 2. FIG. 図2のD-D線に沿う断面説明図である。3 is an explanatory cross-sectional view taken along line DD in FIG. 2. FIG. 比較例1を示す断面説明図(a)及び(b)である。(a)は圧力差が小さい場合であり、(b)は圧力差が大きい場合である。FIGS. 3A and 3B are explanatory cross-sectional views showing Comparative Example 1. FIGS. (a) is a case where the pressure difference is small, and (b) is a case where the pressure difference is large. 比較例1の開閉手段を示す説明図(a)及び(b)である。(a)は圧力差が小さい場合であり、(b)は圧力差が大きい場合である。5A and 5B are explanatory diagrams illustrating the opening and closing means of Comparative Example 1. FIG. (a) is a case where the pressure difference is small, and (b) is a case where the pressure difference is large. 実施例1を示す断面説明図(a)及び(b)である。(a)は圧力差が小さい場合であり、(b)は圧力差が大きい場合である。2A and 2B are cross-sectional explanatory views (a) and (b) showing Example 1. FIG. (a) is a case where the pressure difference is small, and (b) is a case where the pressure difference is large. 第1開閉手段の一例を示す説明図(a)~(c)である。(a)は圧力差が小さい場合であり、(b)は圧力差が中程度の場合であり、(c)は圧力差が大きい場合である。FIGS. 7A to 7C are explanatory diagrams showing an example of the first opening/closing means. (a) is a case where the pressure difference is small, (b) is a case where the pressure difference is medium, and (c) is a case where the pressure difference is large. 本発明の他の例に係る吐出ヘッドの断面説明図である。FIG. 7 is an explanatory cross-sectional view of an ejection head according to another example of the present invention. 本発明の他の例に係る吐出ヘッドの断面説明図である。FIG. 7 is an explanatory cross-sectional view of an ejection head according to another example of the present invention. 本発明の他の例に係る吐出ヘッドの流路構成を説明する平面説明図である。FIG. 7 is an explanatory plan view illustrating a flow path configuration of an ejection head according to another example of the present invention. 本発明に係る吐出装置としての印刷装置の一例の概略説明図である。1 is a schematic explanatory diagram of an example of a printing device as a discharge device according to the present invention. 同印刷装置の吐出ユニットの平面説明図である。FIG. 2 is an explanatory plan view of a discharge unit of the printing apparatus. 循環式インク供給システムの一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of a circulating ink supply system.

以下、本発明に係る吐出ヘッド及び吐出装置について図面を参照しながら説明する。なお、本発明は以下に示す実施形態に限定されるものではなく、他の実施形態、追加、修正、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。 Hereinafter, a discharge head and a discharge device according to the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments shown below, and may be modified within the scope of those skilled in the art, such as other embodiments, additions, modifications, deletions, etc. These are also included within the scope of the present invention as long as they exhibit the functions and effects of the present invention.

本発明の吐出ヘッドは、
被吐出物を吐出する複数のノズルと、
前記複数のノズルに各々連通する複数の圧力室と、
2以上の前記圧力室に通じる複数の供給流路支流と、
2以上の前記圧力室に通じる複数の回収流路支流と、
前記複数の供給流路支流に通じる供給流路本流と、
前記複数の回収流路支流に通じる回収流路本流と、
前記供給流路本流と前記回収流路本流とを通じる第1バイパス流路と、
前記第1バイパス流路を開閉する第1開閉手段と、を備え、
前記供給流路支流は、前記被吐出物を前記2以上の圧力室に供給する流路であり、
前記回収流路支流は、前記2以上の圧力室から前記被吐出物を回収する流路であり、
前記供給流路本流は、前記被吐出物を前記複数の供給流路支流に供給する流路であり、
前記回収流路本流は、前記複数の回収流路支流から前記被吐出物を回収する流路であり、
前記第1バイパス流路を流れる前記被吐出物の流量は、前記第1開閉手段の上流側と下流側の圧力差が大きくなるに伴って小さくなる
ことを特徴とする。
The ejection head of the present invention includes:
a plurality of nozzles for discharging a material to be discharged;
a plurality of pressure chambers each communicating with the plurality of nozzles;
a plurality of supply channel tributaries that communicate with the two or more pressure chambers;
a plurality of recovery channel tributaries that communicate with the two or more pressure chambers;
a main supply flow path leading to the plurality of supply flow path tributaries;
a main recovery channel that communicates with the plurality of recovery channel tributaries;
a first bypass channel that connects the main stream of the supply channel and the main stream of the recovery channel;
A first opening/closing means for opening and closing the first bypass flow path,
The supply flow path tributary is a flow path that supplies the material to be discharged to the two or more pressure chambers,
The recovery channel tributary is a channel that recovers the discharged material from the two or more pressure chambers,
The main supply flow path is a flow path that supplies the material to be discharged to the plurality of supply flow path tributaries,
The main recovery flow path is a flow path that recovers the discharged material from the plurality of recovery flow path tributaries,
The flow rate of the discharged material flowing through the first bypass channel is characterized in that it decreases as the pressure difference between the upstream side and the downstream side of the first opening/closing means increases.

図1は、本実施形態に係る吐出ヘッドの断面説明図であり、(a)は図2のB-B線に相当する断面説明図、(b)は図2のC-C線に相当する断面説明図である。図2は、同吐出ヘッドの流路配置構成を説明する平面説明図、図3は図2のA-A線に沿う断面説明図である。 FIG. 1 is an explanatory cross-sectional view of the ejection head according to the present embodiment, in which (a) is a cross-sectional explanatory view corresponding to the line BB in FIG. 2, and (b) is an explanatory cross-sectional view corresponding to the line CC in FIG. It is a cross-sectional explanatory view. FIG. 2 is an explanatory plan view illustrating the flow path arrangement of the ejection head, and FIG. 3 is an explanatory cross-sectional view taken along line AA in FIG. 2.

この吐出ヘッド100は、ノズル板110と、アクチュエータ部材101と、フレーム部材を兼ねる共通流路部材170とを備えている。アクチュエータ部材101は、個別流路部材(流路板)120と、振動板部材130と、圧電素子140と、共通流路部材150とを含む。 This ejection head 100 includes a nozzle plate 110, an actuator member 101, and a common flow path member 170 that also serves as a frame member. The actuator member 101 includes an individual channel member (channel plate) 120, a diaphragm member 130, a piezoelectric element 140, and a common channel member 150.

ノズル板110には、被吐出物である液体を吐出する複数のノズル111を有している。複数のノズル111は、二次元マトリクス状に配置されている。 The nozzle plate 110 has a plurality of nozzles 111 that eject liquid as an object to be ejected. The plurality of nozzles 111 are arranged in a two-dimensional matrix.

個別流路部材120は、複数のノズル111に各々連通する複数の圧力室(個別液室)121と、複数の圧力室121に各々通じる複数の個別供給流路122と、複数の圧力室121に各々通じる複数の個別回収流路123とを形成している。個別供給流路122には供給側流体抵抗部126を、個別回収流路123には回収側流体抵抗部127を含む。 The individual flow path member 120 includes a plurality of pressure chambers (individual liquid chambers) 121 each communicating with the plurality of nozzles 111, a plurality of individual supply flow paths 122 each communicating with the plurality of pressure chambers 121, and a plurality of pressure chambers 121. A plurality of individual recovery channels 123 are formed. The individual supply channel 122 includes a supply side fluid resistance section 126, and the individual recovery channel 123 includes a recovery side fluid resistance section 127.

振動板部材130は、圧力室121の変形可能な壁面である振動板131を形成し、振動板131には圧電素子140が一体に設けられている。また、振動板部材130には、個別供給流路122に通じる供給側開口132と、個別回収流路123に通じる回収側開口133とが形成されている。圧電素子140は、振動板131を変形させて圧力室121内の液体を加圧する圧力発生手段である。 The diaphragm member 130 forms a diaphragm 131 that is a deformable wall surface of the pressure chamber 121, and a piezoelectric element 140 is integrally provided on the diaphragm 131. Further, the diaphragm member 130 is formed with a supply side opening 132 communicating with the individual supply channel 122 and a recovery side opening 133 communicating with the individual recovery channel 123. The piezoelectric element 140 is a pressure generating means that deforms the diaphragm 131 and pressurizes the liquid in the pressure chamber 121.

共通流路部材150は、共通流路支流部材であり、2以上の個別供給流路122に通じる複数の共通の供給流路支流152と、2以上の個別回収流路123に通じる複数の共通の回収流路支流153とを交互に隣接して形成している。供給流路支流152は、被吐出物であるの液体を2以上の圧力室121に供給する流路であり、回収流路支流153は、2以上の圧力室121から被吐出物である液体を回収する流路である。 The common channel member 150 is a common channel tributary member, and includes a plurality of common supply channel tributaries 152 communicating with two or more individual supply channels 122 and a plurality of common supply channel tributaries 152 communicating with two or more individual recovery channels 123. Recovery channel tributaries 153 are formed adjacent to each other alternately. The supply flow path tributary 152 is a flow path that supplies the liquid to be discharged to two or more pressure chambers 121, and the recovery flow path tributary 153 supplies the liquid to be discharged from the two or more pressure chambers 121. This is a channel for recovery.

共通流路部材150には、個別供給流路122の供給側開口132と供給流路支流152を通じる供給口154と、個別回収流路123の回収側開口133と回収流路支流153を通じる回収口155が形成されている。 The common flow path member 150 includes a supply port 154 that communicates with the supply side opening 132 of the individual supply flow path 122 and the supply flow path tributary 152, and a recovery port that communicates with the recovery side opening 133 of the individual recovery flow path 123 and the recovery flow path tributary 153. A mouth 155 is formed.

また、共通流路部材150は、共通流路部材170とともに形成する、複数の供給流路支流152に通じる1又は複数の共通の供給流路本流156の一部156aと、複数の回収流路支流153に通じる1又は複数の共通の回収流路本流157の一部157aを形成している。 The common flow path member 150 also includes a portion 156a of one or more common main supply flow paths 156 that communicate with the plurality of supply flow path tributaries 152 and a plurality of recovery flow path tributaries, which are formed together with the common flow path member 170. 153, forming a part 157a of one or more common main recovery channels 157.

共通流路部材170は、共通流路本流部材であり、共通流路部材150とともに形成する、複数の供給流路支流152に通じる供給流路本流156の一部156bと、複数の回収流路支流153に通じる回収流路本流157の一部157bを形成している。供給流路本流156の一部156bは供給口171に通じ、回収流路本流157の一部157bは回収口172に通じている。 The common channel member 170 is a common channel main stream member, and is formed together with the common channel member 150 and includes a part 156b of the main supply channel 156 that communicates with the plurality of supply channel tributaries 152 and a plurality of recovery channel tributaries. 153 forms a part 157b of the main recovery channel 157. A portion 156b of the main flow path 156 communicates with the supply port 171, and a portion 157b of the main flow path 157 communicates with the recovery port 172.

供給流路本流156は、被吐出物である液体を複数の供給流路支流152に供給する流路であり、回収流路本流157は、複数の回収流路支流153から被吐出物である液体を回収する流路である。 The main supply channel 156 is a channel for supplying liquid, which is a discharged material, to the plurality of supply channel tributaries 152, and the recovery channel main stream 157 supplies liquid, which is a discharged material, from a plurality of recovery channel tributaries 153. This is a flow path for collecting.

共通流路部材170の外部には、供給流路本流156に供給口171を介して液体を供給する供給側タンク部181と、回収流路本流157から回収口172を介して液体が排出される回収側タンク部182とが配置されている。供給側タンク部181には外部から液体が供給される供給ポート183が設けられている。回収側タンク部182には外部に液体を排出する回収ポート184が設けられている。 Externally, the common flow path member 170 includes a supply side tank section 181 that supplies liquid to the main flow path 156 through a supply port 171, and a liquid is discharged from the main flow path 157 through a recovery port 172. A recovery side tank section 182 is arranged. The supply side tank section 181 is provided with a supply port 183 through which liquid is supplied from the outside. The recovery side tank section 182 is provided with a recovery port 184 for discharging liquid to the outside.

本実施形態では、供給流路本流156と回収流路本流157とを通じる第1バイパス流路253を設けている。ここで、第1バイパス流路253は、供給流路本流156の下流端部と回収流路本流157の上流端部とをつなぐ流路とすることが好ましい。図2において、供給流路本流156の左側(つまり供給流路本流156の上流側)に供給ポートが配置されており、回収流路本流157の左側(つまり回収流路本流157の下流側)に回収ポートが配置されている。 In this embodiment, a first bypass flow path 253 is provided that communicates the main flow path 156 of the supply flow path and the main flow path of the recovery flow path 157. Here, the first bypass channel 253 is preferably a channel that connects the downstream end of the main supply channel 156 and the upstream end of the main recovery channel 157. In FIG. 2, the supply port is arranged on the left side of the main stream 156 of the supply channel (that is, the upstream side of the main stream 156 of the supply channel), and on the left side of the main stream 157 of the recovery channel (that is, on the downstream side of the main stream 157 of the recovery channel). A collection port is located.

気泡は、圧力が弱まり、流量も少ない供給流路本流156の下流端部(最下流側)と回収流路本流157の上流端部(最上流側)とに溜まりやすい。そこで、第1バイパス流路253により供給流路本流156の下流端部と回収流路本流157の上流端部とをつなぐことで、気泡排出性を向上できる。 Bubbles tend to accumulate at the downstream end (most downstream) of the main supply channel 156 and the upstream end (most upstream) of the main recovery channel 157, where the pressure is weak and the flow rate is low. Therefore, by connecting the downstream end of the main supply channel 156 and the upstream end of the main recovery channel 157 by the first bypass channel 253, the bubble discharge performance can be improved.

また、供給流路支流152と回収流路本流157とを通じる第2バイパス流路251を設けている。第2バイパス流路251は、供給流路支流152の端部(最下流側)と回収流路本流157とを通じている。これにより、充填時に供給流路支流152の端部に気泡が残留することが防止される。 Further, a second bypass flow path 251 is provided that communicates the supply flow path tributary 152 and the recovery flow path main flow 157. The second bypass channel 251 passes through the end (most downstream side) of the supply channel tributary 152 and the main recovery channel 157 . This prevents air bubbles from remaining at the end of the supply channel tributary 152 during filling.

また、回収流路支流153と供給流路本流156とを通じる第3バイパス流路252を設けている。第3バイパス流路252は、回収流路支流153の端部(最上流側)と供給流路本流156とを通じている。これにより、充填時に回収流路支流153の端部に気泡が残留することが防止される。 Further, a third bypass flow path 252 is provided which communicates the recovery flow path tributary 153 and the supply flow path main flow 156. The third bypass channel 252 passes through the end (most upstream side) of the recovery channel tributary 153 and the main supply channel 156 . This prevents air bubbles from remaining at the end of the recovery channel tributary 153 during filling.

第1バイパス流路253には、第1バイパス流路253を開閉する第1開閉手段257を設けている。
第2バイパス流路251には、第2バイパス流路251を開閉する第2開閉手段255を設けている。
第3バイパス流路252には、第3バイパス流路252を開閉する第3開閉手段256を設けている。
The first bypass flow path 253 is provided with a first opening/closing means 257 that opens and closes the first bypass flow path 253 .
The second bypass flow path 251 is provided with a second opening/closing means 255 that opens and closes the second bypass flow path 251 .
The third bypass flow path 252 is provided with a third opening/closing means 256 that opens and closes the third bypass flow path 252 .

第1開閉手段257、第2開閉手段255及び第3開閉手段256は、いずれも、圧力差(差圧)によって流路を開閉するとともに、圧力差に応じて(差圧の大きさによって)開放量が変化する構成としている。このように圧力差に応じて開放量が変化する構成にするには、例えば後述の弁体を用いる方法が挙げられる。圧力差に応じて開放量が変化することにより、バイパス流路を流れる被吐出物の流量が圧力差に応じて変化する。 The first opening/closing means 257, the second opening/closing means 255, and the third opening/closing means 256 all open and close the flow passages depending on the pressure difference (differential pressure), and open according to the pressure difference (depending on the size of the differential pressure). The structure is such that the amount changes. In order to achieve a structure in which the amount of opening changes in accordance with the pressure difference, for example, there is a method using a valve body, which will be described later. By changing the opening amount according to the pressure difference, the flow rate of the discharged material flowing through the bypass channel changes according to the pressure difference.

ここでいう圧力差は、開閉手段の上流側と下流側の圧力差である。開閉手段の上流側とは、例えば開閉手段の上流側であり開閉手段の近傍が挙げられる。同様に、開閉手段の下流側とは、例えば開閉手段の下流側であり開閉手段の近傍が挙げられる。また、開閉手段の上流側としては、開閉手段の入口が挙げられ、開閉手段の下流側としては、開閉手段の出口が挙げられる。この場合、圧力差は、第1開閉手段257、第2開閉手段255、第3開閉手段256における入口と出口との差圧である。 The pressure difference here is the pressure difference between the upstream side and the downstream side of the opening/closing means. The upstream side of the opening/closing means is, for example, the upstream side of the opening/closing means, and includes the vicinity of the opening/closing means. Similarly, the downstream side of the opening/closing means is, for example, the downstream side of the opening/closing means, and includes the vicinity of the opening/closing means. Further, the upstream side of the opening/closing means includes an inlet of the opening/closing means, and the downstream side of the opening/closing means includes an outlet of the opening/closing means. In this case, the pressure difference is the pressure difference between the inlet and outlet of the first opening/closing means 257, the second opening/closing means 255, and the third opening/closing means 256.

本実施形態では、第1開閉手段257が開く状態になるときの圧力差を第1所定値とも称する。また、第2開閉手段255が開く状態になるときの圧力差を第2所定値とも称し、第3開閉手段256が開く状態になるときの圧力差を第3所定値とも称する。 In this embodiment, the pressure difference when the first opening/closing means 257 is in the open state is also referred to as a first predetermined value. Further, the pressure difference when the second opening/closing means 255 is in the open state is also referred to as a second predetermined value, and the pressure difference when the third opening/closing means 256 is in the open state is also referred to as a third predetermined value.

図4は、図2のD-D線に相当する断面説明図である。図4には、供給流路本流156と回収流路本流157とを通じる第1バイパス流路253が図示されている。また、第1バイパス流路253には、第1バイパス流路253を開閉する第1開閉手段257が設けられている。なお、図4では、ノズル板110の図示を省略している。また、圧力室(個別液室)121等は、模式的に図示するものであり、図示される形状に限られるものではない。 FIG. 4 is an explanatory cross-sectional view corresponding to the line DD in FIG. FIG. 4 shows a first bypass flow path 253 that communicates with the main supply flow path 156 and the main flow recovery flow path 157. Further, the first bypass flow path 253 is provided with a first opening/closing means 257 that opens and closes the first bypass flow path 253 . Note that in FIG. 4, illustration of the nozzle plate 110 is omitted. Further, the pressure chambers (individual liquid chambers) 121 and the like are schematically illustrated, and are not limited to the illustrated shapes.

図5は、本発明に含まれない比較例1の構成を説明するための図であり、図2のD-D線を説明するための断面説明図である。図5(a)は、圧力差が小さい場合であり、図5(b)は、大きい場合である。図中、矢印は被吐出物の流れを模式的に示している。
図6は、比較例1における流量調整機構を示す図である。図6(a)は、圧力差が小さい場合であり、図5(a)の場合に相当する。図6(b)は、圧力差が大きい場合であり、図5(b)の場合に相当する。
FIG. 5 is a diagram for explaining the configuration of Comparative Example 1, which is not included in the present invention, and is a cross-sectional explanatory diagram for explaining the line DD in FIG. FIG. 5(a) shows the case where the pressure difference is small, and FIG. 5(b) shows the case when the pressure difference is large. In the figure, arrows schematically indicate the flow of the material to be discharged.
FIG. 6 is a diagram showing a flow rate adjustment mechanism in Comparative Example 1. FIG. 6(a) shows a case where the pressure difference is small, and corresponds to the case of FIG. 5(a). FIG. 6(b) shows a case where the pressure difference is large, and corresponds to the case of FIG. 5(b).

図6には、弁体273と規制部材271が図示されており、弁体273が規制部材271に接触する場合、閉じた状態になる。弁体273が規制部材271に接触していない場合、開いた状態になる。規制部材271は、別途部材を設けてもよいし、流路の一部であってもよい。 FIG. 6 shows the valve body 273 and the regulating member 271, and when the valve body 273 contacts the regulating member 271, it is in a closed state. When the valve body 273 is not in contact with the regulating member 271, it is in an open state. The regulating member 271 may be a separate member or may be a part of the flow path.

図5(a)と図6(a)に示すように、圧力差が小さい場合、弁体273は規制部材271に接触し、第1開閉手段257は閉じた状態となる。そのため、圧力差が小さい場合、被吐出物は第1バイパス流路253を流れない。一方、図5(b)と図6(b)に示すように、圧力差が大きい場合、弁体273が変形して規制部材271から離間し、第1開閉手段257は開いた状態となる。そのため、被吐出物は第1バイパス流路253を流れる。比較例1では、圧力差を大きくすることで第1バイパス流路253の流量を大きくする調整機構になっている。 As shown in FIGS. 5(a) and 6(a), when the pressure difference is small, the valve body 273 contacts the regulating member 271, and the first opening/closing means 257 is in a closed state. Therefore, when the pressure difference is small, the object to be discharged does not flow through the first bypass channel 253. On the other hand, as shown in FIGS. 5(b) and 6(b), when the pressure difference is large, the valve body 273 is deformed and separated from the regulating member 271, and the first opening/closing means 257 is in an open state. Therefore, the material to be discharged flows through the first bypass channel 253. Comparative Example 1 uses an adjustment mechanism that increases the flow rate of the first bypass channel 253 by increasing the pressure difference.

比較例1における初期充填時やメンテナンス時の気泡排出例について説明する。
まず、供給流路本流156と、その下流側(すなわち供給流路支流152と圧力室121)に被吐出物を充填させる。その後、第1開閉手段の圧力差が大きくなるように被吐出物を供給する。これにより、第1開閉手段が開いた状態になり、第1バイパス流路の流量が大きくなる。流量が大きくなることで、例えば供給流路本流156や供給流路支流152に生じた、あるいは混入した気泡が、回収流路本流157に移動し、回収流路本流157から外部の循環経路に排出される。
An example of air bubble discharge during initial filling and maintenance in Comparative Example 1 will be described.
First, the main supply channel 156 and its downstream side (that is, the branch supply channel 152 and the pressure chamber 121) are filled with the material to be discharged. Thereafter, the material to be discharged is supplied so that the pressure difference between the first opening and closing means becomes large. As a result, the first opening/closing means becomes open, and the flow rate of the first bypass channel increases. As the flow rate increases, for example, air bubbles generated or mixed in the main stream 156 of the supply channel or the branch 152 of the supply channel move to the main stream 157 of the recovery channel, and are discharged from the main stream 157 of the recovery channel to the external circulation path. be done.

一般的に、初期充填時やメンテナンス時には、ヘッド全体の流量を大きくするために、被吐出物の供給量が調整されて、供給ポート183と回収ポート184との圧力差が大きくなる。このため、比較例において、初期充填時やメンテナンス時には、図5(b)と図6(b)に示すように、第1バイパス流路253の流量が大きくなる。この場合、圧力室121に被吐出物が十分に供給されず、圧力室121内の気泡を十分に排出することができない。圧力室121内に気泡が残っていると、画像の乱れが生じてしまう。 Generally, during initial filling or maintenance, the supply amount of the discharged material is adjusted to increase the flow rate of the entire head, and the pressure difference between the supply port 183 and the recovery port 184 increases. Therefore, in the comparative example, the flow rate of the first bypass channel 253 becomes large during initial filling or maintenance, as shown in FIGS. 5(b) and 6(b). In this case, the material to be discharged is not sufficiently supplied to the pressure chamber 121, and the air bubbles in the pressure chamber 121 cannot be sufficiently discharged. If air bubbles remain in the pressure chamber 121, image distortion will occur.

一方、吐出時には、メニスカスの圧力差を小さくすることが求められる。そのため、被吐出物の供給量が調整されて、供給ポート183と回収ポート184との圧力差が小さくなる。このため、比較例1においては、吐出時には、図5(a)と図6(a)に示すように、第1バイパス流路253の流量が小さくなる。この場合、ヘッド全体の流量が小さくなり、供給側タンクや供給流路本流の気泡が圧力室121に流れることとなり、圧力室121に流れた気泡によって安定な吐出に影響が生じてしまう。 On the other hand, during discharge, it is required to reduce the pressure difference across the meniscus. Therefore, the supply amount of the material to be discharged is adjusted, and the pressure difference between the supply port 183 and the recovery port 184 is reduced. Therefore, in Comparative Example 1, the flow rate of the first bypass channel 253 becomes small during discharge, as shown in FIGS. 5(a) and 6(a). In this case, the flow rate of the entire head becomes small, and air bubbles in the supply side tank and the main stream of the supply channel flow into the pressure chamber 121, and the air bubbles flowing into the pressure chamber 121 affect stable discharge.

このように比較例1では、供給側の共通液室と回収側の共通液室との間に、被吐出物の流量を調整できる手段を有するバイパス流路を設けているが、気泡を十分に排出することが難しい。例えば、初期充填やメンテナンスの時に、個別液室内の気泡を移動させにくく、個別液室内に気泡が残ってしまうという問題がある。また、吐出時に、共通液室やタンクからの気泡が個別液室に流れて吐出が不安定になる場合がある。 As described above, in Comparative Example 1, a bypass flow path having means for adjusting the flow rate of the discharged material is provided between the common liquid chamber on the supply side and the common liquid chamber on the recovery side. Difficult to expel. For example, there is a problem in that during initial filling or maintenance, it is difficult to move the air bubbles in the individual liquid chambers, and the air bubbles remain in the individual liquid chambers. Furthermore, during discharge, air bubbles from the common liquid chamber or the tank may flow into the individual liquid chambers, making the discharge unstable.

これに対して本実施形態では、第1開閉手段257の流量調整機構を工夫している。本実施形態において、第1バイパス流路253を流れる被吐出物の流量は、第1開閉手段257の上流側と下流側の圧力差が大きくなるに伴って小さくなる。換言すると、圧力差に応じて第1バイパス流路の流量が変化するものであり、圧力差が大きくなると流量が小さくなり、圧力差が小さくなると流量が大きくなる。本実施形態によれば、初期充填時やメンテナンス時における気泡排出性を向上させることができ、吐出時における吐出安定性を向上させることができる。 In contrast, in this embodiment, the flow rate adjustment mechanism of the first opening/closing means 257 is devised. In this embodiment, the flow rate of the discharged material flowing through the first bypass channel 253 decreases as the pressure difference between the upstream side and the downstream side of the first opening/closing means 257 increases. In other words, the flow rate in the first bypass flow path changes depending on the pressure difference; when the pressure difference increases, the flow rate decreases, and when the pressure difference decreases, the flow rate increases. According to the present embodiment, it is possible to improve bubble evacuation performance during initial filling and maintenance, and it is possible to improve discharge stability during discharge.

図7は、本実施形態の一例(実施例1)を説明するための図であり、図2のD-D線に相当する断面説明図である。図7(a)は、圧力差が小さい場合であり、図7(b)は、大きい場合である。図中、矢印は被吐出物の流れを模式的に示している。
図8は、実施例1における流量調整機構を示す図である。図8(a)は、圧力差が小さい場合であり、図7(a)の場合に相当する。図8(b)は、圧力差が中程度の場合である。図8(c)は、圧力差が大きい場合であり、図7(b)の場合に相当する。
FIG. 7 is a diagram for explaining an example of the present embodiment (Example 1), and is a cross-sectional explanatory diagram corresponding to the line DD in FIG. FIG. 7(a) shows a case where the pressure difference is small, and FIG. 7(b) shows a case where the pressure difference is large. In the figure, arrows schematically indicate the flow of the material to be discharged.
FIG. 8 is a diagram showing a flow rate adjustment mechanism in Example 1. FIG. 8(a) shows a case where the pressure difference is small, and corresponds to the case of FIG. 7(a). FIG. 8(b) shows a case where the pressure difference is moderate. FIG. 8(c) shows a case where the pressure difference is large, and corresponds to the case of FIG. 7(b).

図8には、弁体273と規制部材271が図示されており、弁体273が規制部材271に接触する場合、閉じた状態になる。第1の開閉手段257は、圧力差に応じて流量が調整されるようになっている。弁体273が規制部材271に接触していない場合、開いた状態になる。規制部材271は、別途部材を設けてもよいし、流路の一部であってもよい。 FIG. 8 shows the valve body 273 and the regulating member 271, and when the valve body 273 contacts the regulating member 271, it is in a closed state. The flow rate of the first opening/closing means 257 is adjusted according to the pressure difference. When the valve body 273 is not in contact with the regulating member 271, it is in an open state. The regulating member 271 may be a separate member or may be a part of the flow path.

図7(a)と図8(a)に示すように、圧力差が小さい場合、弁体273が変形して規制部材271から離間し、第1開閉手段257は開いた状態となる。そのため、被吐出物は第1バイパス流路253を流れる。実施例1では、圧力差を大きくすることで第1バイパス流路253の流量を大きくする調整機構になっている。
一方、図7(b)と図8(c)に示すように、圧力差が大きい場合、弁体273は規制部材271に接触し、第1開閉手段257は閉じた状態となる。そのため、被吐出物は第1バイパス流路253を流れない。
As shown in FIGS. 7(a) and 8(a), when the pressure difference is small, the valve body 273 is deformed and separated from the regulating member 271, and the first opening/closing means 257 is in an open state. Therefore, the material to be discharged flows through the first bypass flow path 253. In the first embodiment, the adjustment mechanism is such that the flow rate of the first bypass flow path 253 is increased by increasing the pressure difference.
On the other hand, as shown in FIGS. 7(b) and 8(c), when the pressure difference is large, the valve body 273 comes into contact with the regulating member 271, and the first opening/closing means 257 is in a closed state. Therefore, the object to be discharged does not flow through the first bypass channel 253.

なお、ここでいう圧力差が小さい場合とは、圧力差がない場合の他、所定値よりも小さい場合を意味する。第1開閉手段257が開く状態になるときの圧力差を第1所定値としたとき、ここでいう圧力差が小さい場合とは、圧力差が第1所定値よりも小さい場合を意味する。また、上流側から被吐出物が供給されて下流側で被吐出物が回収されるため、圧力差が生じる場合、上流側の圧力が高くなり、下流側の圧力が低くなる。 Note that the case where the pressure difference is small means not only the case where there is no pressure difference but also the case where the pressure difference is smaller than a predetermined value. When the pressure difference when the first opening/closing means 257 is in the open state is defined as the first predetermined value, the case where the pressure difference is small here means the case where the pressure difference is smaller than the first predetermined value. Further, since the material to be discharged is supplied from the upstream side and collected on the downstream side, when a pressure difference occurs, the pressure on the upstream side becomes high and the pressure on the downstream side becomes low.

実施例1における初期充填時やメンテナンス時の気泡排出例について説明する。
まず、供給流路本流156と、その下流側(すなわち供給流路支流152と圧力室121)に被吐出物を充填させる。その後、第1開閉手段257の圧力差が大きくなるように被吐出物を供給する。実施例1では、図7(b)と図8(c)に示すように、第1開閉手段257が閉じた状態になり、第1バイパス流路253を被吐出物が流れない、もしくは流量が小さくなる。第1バイパス流路253を被吐出物が流れない、もしくは流量が小さくなることで、圧力室121への流量が大きくなり、圧力室121に圧力をかけることができる。これにより、圧力室121内の気泡が回収流路本流157に移動し、回収流路本流157から外部の循環経路に排出される。このため、初期充填時やメンテナンス時の気泡排出性を向上させることができる。
An example of air bubble discharge during initial filling and maintenance in Example 1 will be described.
First, the main supply channel 156 and its downstream side (that is, the branch supply channel 152 and the pressure chamber 121) are filled with the material to be discharged. Thereafter, the material to be discharged is supplied so that the pressure difference between the first opening and closing means 257 becomes large. In the first embodiment, as shown in FIGS. 7(b) and 8(c), the first opening/closing means 257 is in a closed state, and the material to be discharged does not flow through the first bypass channel 253, or the flow rate is low. becomes smaller. If the material to be discharged does not flow through the first bypass flow path 253 or the flow rate becomes small, the flow rate to the pressure chamber 121 increases and pressure can be applied to the pressure chamber 121. As a result, the bubbles in the pressure chamber 121 move to the main stream 157 of the recovery channel, and are discharged from the main stream 157 of the recovery channel to the external circulation path. Therefore, it is possible to improve the bubble evacuation performance during initial filling and maintenance.

なお、ここでいう初期充填時やメンテナンス時とは、初期充填時及び/又はメンテナンス時を意味する。すなわち、初期充填時だけでなく、メンテナンス時にも気泡排出性を向上させることができる。 In addition, the time of initial filling and the time of maintenance here mean the time of initial filling and/or the time of maintenance. That is, it is possible to improve the bubble discharge performance not only during initial filling but also during maintenance.

吐出時は、メニスカスの圧力を小さくする必要があるため、供給ポート183と回収ポート184との圧力差が小さくなる。そのため、実施例1では、図7(a)と図8(a)に示すように、第1開閉手段257が開いた状態になり、第1バイパス流路253の被吐出物の流量が大きくなる。これにより、ヘッド全体の流量が大きくすることができ、充填性が向上する。また、印刷動作時には、被吐出物が第1バイパス流路253を流れることができるため、圧力室121に過剰に被吐出物が流れ込むことを避けることができ、必要な量の被吐出物が圧力室121に流れ込む。そのため、供給流路本流156や供給側タンク部181に生じた、あるいは混入した気泡が圧力室121に移動することを抑制できる。これにより、印刷動作時の吐出安定性を向上させることができる。 During discharge, it is necessary to reduce the pressure of the meniscus, so the pressure difference between the supply port 183 and the recovery port 184 becomes smaller. Therefore, in the first embodiment, as shown in FIGS. 7(a) and 8(a), the first opening/closing means 257 is in an open state, and the flow rate of the discharged material in the first bypass channel 253 is increased. . Thereby, the flow rate of the entire head can be increased, and filling performance is improved. Furthermore, during the printing operation, the material to be discharged can flow through the first bypass flow path 253, so that it is possible to avoid excessive flow of the material to the pressure chamber 121, and the necessary amount of the material to be discharged can be It flows into chamber 121. Therefore, air bubbles generated or mixed in the main supply flow path 156 or the supply side tank portion 181 can be suppressed from moving to the pressure chamber 121. Thereby, the ejection stability during printing operation can be improved.

また印刷動作時において、ヘッド全体の流量を大きくすることができるため、循環時の温度制御がしやすくなる。このことも、充填性や吐出安定性の向上につながる。このときの充填性は、圧力室121に限られず、供給流路本流156や供給側タンク部181内の充填性も向上させることができる。 Furthermore, during printing operation, the flow rate of the entire head can be increased, making it easier to control the temperature during circulation. This also leads to improvement in filling performance and discharge stability. The filling performance at this time is not limited to the pressure chamber 121, but can also improve the filling performance within the main stream of the supply channel 156 and the supply side tank section 181.

なお、メンテナンス(初期充填含む)においては、例えば、供給側と回収側の圧力差(例えば供給ポート183と回収ポート184との圧力差)を大きくし、吐出時は、供給側と回収側の圧力差を小さくする。このように圧力差を調整するには、例えば、吐出ヘッドに外付けされる供給側タンク部と回収側タンク部のそれぞれにエアポンプを設け、エアポンプによって圧力を制御することができる。 In addition, during maintenance (including initial filling), for example, increase the pressure difference between the supply side and the recovery side (for example, the pressure difference between the supply port 183 and the recovery port 184), and during discharge, increase the pressure between the supply side and the recovery side. Reduce the difference. In order to adjust the pressure difference in this way, for example, an air pump can be provided in each of the supply side tank section and the recovery side tank section that are externally attached to the discharge head, and the pressure can be controlled by the air pump.

上記エアポンプを説明するための循環式インク供給システムの一例を図14に示す。ただし本発明はこれに限られない。図示するように、供給側タンク部181と回収側タンク部182のそれぞれにエアポンプ281、282が設けられている。図中の矢印は、エアポンプ281、282による正圧、負圧の制御の一例を模式的に示している。エアポンプ281、282、バルブ283、インク供給ポンプ284を調整し、インクタンク285からインクを供給するとともに、インクを循環させることができ、圧力差を調整することができる。 FIG. 14 shows an example of a circulating ink supply system for explaining the air pump. However, the present invention is not limited to this. As shown in the figure, air pumps 281 and 282 are provided in the supply side tank section 181 and the recovery side tank section 182, respectively. Arrows in the figure schematically indicate an example of positive pressure and negative pressure control by the air pumps 281 and 282. By adjusting the air pumps 281 and 282, the valve 283, and the ink supply pump 284, ink can be supplied from the ink tank 285, the ink can be circulated, and the pressure difference can be adjusted.

本実施形態において、第2開閉手段255と第3開閉手段256は、第1開閉手段257と同様に、圧力差が大きくなると被吐出物の流量が小さくなり、圧力差が小さくなると被吐出物の流量が大きくなる構成にしている。このように、第2開閉手段255と第3開閉手段256についても、圧力差が大きくなると被吐出物の流量が小さくなるようにする目的は、個別流路への圧力をかけることができ、個別流路の気泡を効率よく排出できるようになるためである。 In this embodiment, the second opening/closing means 255 and the third opening/closing means 256, like the first opening/closing means 257, reduce the flow rate of the discharged material when the pressure difference becomes large, and when the pressure difference becomes small, the flow rate of the discharged material decreases. The configuration is such that the flow rate is large. In this way, the purpose of the second opening/closing means 255 and the third opening/closing means 256 is to reduce the flow rate of the discharged material when the pressure difference increases, so that pressure can be applied to the individual channels, This is because bubbles in the flow path can be efficiently discharged.

本実施形態において、第2開閉手段255と第3開閉手段256は、第1開閉手段257よりも大きい圧力差で開く状態になることが好ましい。
すなわち、第1開閉手段257が開く状態になるときの圧力差を第1所定値とし、第2開閉手段255が開く状態になるときの圧力差を第2所定値とし、第3開閉手段256が開く状態になるときの圧力差を第3所定値としたとき、
第2所定値>第1所定値、かつ、第3所定値>第1所定値
であることが好ましい。
このような関係を満たすことにより、充填後、印刷動作を行うときには、第2開閉手段255及び第3開閉手段256が第1開閉手段257よりも開きにくくなり、ノズル部以外へ被吐出物が流れることを抑制できる。このため、印刷動作時に、圧力室121に被吐出物を供給しやすくなる。
In this embodiment, it is preferable that the second opening/closing means 255 and the third opening/closing means 256 open with a larger pressure difference than the first opening/closing means 257.
That is, the pressure difference when the first opening/closing means 257 is in the open state is the first predetermined value, the pressure difference when the second opening/closing means 255 is in the open state is the second predetermined value, and the third opening/closing means 256 is the first predetermined value. When the pressure difference when the open state is set as the third predetermined value,
It is preferable that the second predetermined value>the first predetermined value and the third predetermined value>the first predetermined value.
By satisfying such a relationship, when performing a printing operation after filling, the second opening/closing means 255 and the third opening/closing means 256 will be more difficult to open than the first opening/closing means 257, and the discharged material will flow to areas other than the nozzle section. can be suppressed. Therefore, it becomes easier to supply the material to be discharged to the pressure chamber 121 during the printing operation.

本実施形態における第1開閉手段は、上述したように、圧力差に応じて被吐出物の流量が変化する構成であり、圧力差が大きくなると流量が小さくなる。本実施形態における第1開閉手段は、図8に示すように、片持ち梁構造であり、一端側を固定端273aとし他端側を自由端273bとした弁体273を有し、弁体273の自由端273bと規制部材271とが接触している場合、閉じた状態になる。この状態が図8(c)である。 As described above, the first opening/closing means in this embodiment has a configuration in which the flow rate of the discharged material changes depending on the pressure difference, and as the pressure difference increases, the flow rate decreases. The first opening/closing means in this embodiment has a cantilever structure as shown in FIG. When the free end 273b and the regulating member 271 are in contact with each other, the regulating member 271 is in a closed state. This state is shown in FIG. 8(c).

規制部材271は、第1バイパス流路253に設けられており、規制部材271は、弁体273の自由端273bを所定の位置で規制する。 The regulating member 271 is provided in the first bypass flow path 253, and the regulating member 271 regulates the free end 273b of the valve body 273 at a predetermined position.

弁体273の自由端273bは、第1開閉手段の上流側と下流側の圧力差が閾値よりも小さい場合、規制部材271と接触する位置よりも被吐出物が流れる方向の上流側に位置する。この状態が図8(a)、(b)である。 When the pressure difference between the upstream side and the downstream side of the first opening/closing means is smaller than a threshold value, the free end 273b of the valve body 273 is located upstream of the position where it contacts the regulating member 271 in the direction in which the discharged material flows. . This state is shown in FIGS. 8(a) and 8(b).

弁体273としては、例えば、弾性変形可能な部材を用いることができる。 As the valve body 273, for example, an elastically deformable member can be used.

本実施形態における第1開閉手段257では、圧力差がない、もしくは所定の圧力差よりも小さい場合、図8(a)のように開いた状態になる。また、図8(a)は、弁体273が大きく開いており、流量が大きくなる。 In the first opening/closing means 257 in this embodiment, when there is no pressure difference or is smaller than a predetermined pressure difference, the first opening/closing means 257 is in an open state as shown in FIG. 8(a). Further, in FIG. 8(a), the valve body 273 is wide open, and the flow rate is large.

圧力差が大きくなるに従い、図8(a)→(b)→(c)のように弁体273が変化し、第1開閉手段が閉じる構成となっている。逆に、圧力差が小さくなっていくと、図8(c)→(b)→(a)のように第1開閉手段が開く構成となっている。 As the pressure difference increases, the valve body 273 changes as shown in FIGS. 8(a)→(b)→(c), and the first opening/closing means closes. Conversely, when the pressure difference becomes smaller, the first opening/closing means opens as shown in FIGS. 8(c)→(b)→(a).

このような構成を別の表現にすると以下のようになる。すなわち、弁体273の固定端273aと自由端273bとを結ぶ直線を第1直線とし、第1バイパス流路253の被吐出物が流れる方向を第2直線としたとき、第1直線と第2直線との角度は、第1開閉手段257の上流側と下流側の圧力差が大きくなるに伴って変化し、圧力差が閾値よりも大きくなった場合、弁体273の自由端273bが規制部材271と接触する角度になる。
このようにすることで、第1開閉手段257において、圧力差が大きくなると流量が小さくなる構成にしやすくなる。
Another way to express this configuration is as follows. That is, when the straight line connecting the fixed end 273a and the free end 273b of the valve body 273 is defined as a first straight line, and the direction in which the discharged material in the first bypass channel 253 flows is defined as a second straight line, the first straight line and the second straight line are defined as The angle with the straight line changes as the pressure difference between the upstream side and the downstream side of the first opening/closing means 257 increases, and when the pressure difference becomes larger than a threshold value, the free end 273b of the valve body 273 closes to the regulating member. The angle is such that it makes contact with 271.
By doing so, it becomes easy to configure the first opening/closing means 257 such that the flow rate decreases as the pressure difference increases.

ただし、この場合、弁体273は直線状の部材、例えば板状部材である必要はなく、湾曲に変形する場合であっても、第1直線は定義できる。また、図8(b)のように、第1開閉手段のところで被吐出物が流れる方向が変わった場合であっても、例えば紙面の左から右の方向のように、第2直線は定義できる。圧力差が小さい状態において、被吐出物の流れる方向の上流側に弁体273が傾いていることを表現できればよい。 However, in this case, the valve body 273 does not need to be a linear member, for example, a plate-shaped member, and the first straight line can be defined even if the valve body 273 is deformed into a curve. Furthermore, even if the direction in which the discharged material flows changes at the first opening/closing means as shown in FIG. 8(b), the second straight line can be defined, for example from left to right on the page. . It is only necessary to express that the valve body 273 is inclined toward the upstream side in the flow direction of the discharged material in a state where the pressure difference is small.

次に、本実施形態の他の例(実施例2)について図9を参照して説明する。図9は本例に係る吐出ヘッドの断面説明図であり、(a)は供給流路本流に沿う断面説明図、(b)は回収流路本流に沿う断面説明図である。 Next, another example (Example 2) of this embodiment will be described with reference to FIG. 9. FIG. 9 is an explanatory cross-sectional view of the ejection head according to this example, in which (a) is an explanatory cross-sectional view along the main flow of the supply flow path, and (b) is an explanatory cross-sectional view along the main flow of the recovery flow path.

本例の吐出ヘッド100は、供給側タンク部181と回収側タンク部182とを通じる第4バイパス流路254を有する。第4バイパス流路254には、第4バイパス流路254を開閉する第4開閉手段258を設けている。第4開閉手段258も圧力差によって開閉及び開放量が変化する弁体で構成している。 The ejection head 100 of this example has a fourth bypass flow path 254 that communicates with the supply side tank section 181 and the recovery side tank section 182. The fourth bypass flow path 254 is provided with a fourth opening/closing means 258 that opens and closes the fourth bypass flow path 254 . The fourth opening/closing means 258 is also constituted by a valve body whose opening/closing and opening amount changes depending on the pressure difference.

本例において、第1開閉手段257が開く圧力差は、第4開閉手段258が開く圧力差よりも大きく設定している。なお、上記の例と同様に本例においても、第2開閉手段と第3開閉手段は、第1開閉手段よりも大きい圧力差で開放可能である。
本例では、第1開閉手段257が開く状態になるときの圧力差を第1所定値とし、第4開閉手段258が開く状態になるときの圧力差を第4所定値としたとき、
第1所定値>第4所定値
としている。
また本例においては、第4開閉手段258についても、圧力差が大きくなると被吐出物の流量が小さくなるようにしている。
In this example, the pressure difference at which the first opening/closing means 257 opens is set to be larger than the pressure difference at which the fourth opening/closing means 258 opens. Note that in this example as well as in the above example, the second opening/closing means and the third opening/closing means can be opened with a pressure difference greater than that of the first opening/closing means.
In this example, when the pressure difference when the first opening/closing means 257 is in the open state is taken as the first predetermined value, and the pressure difference when the fourth opening/closing means 258 is in the open state is taken as the fourth predetermined value,
First predetermined value>fourth predetermined value.
Further, in this example, the fourth opening/closing means 258 is also configured such that the flow rate of the discharged material decreases as the pressure difference increases.

本例では、初期充填を行うとき、上記の例と同様にして、供給流路本流156と回収流路本流157との間の第1バイパス流路253が開いた後、圧力差が更に高まることで、第4開閉手段258が開状態になる。第4開閉手段258が開状態になることで、供給側タンク部181と回収側タンク部182とが第4バイパス流路254を介して通じる。 In this example, when initial filling is performed, the pressure difference further increases after the first bypass flow path 253 between the main supply flow path 156 and the main flow recovery flow path 157 is opened, similar to the above example. Then, the fourth opening/closing means 258 becomes open. When the fourth opening/closing means 258 is in the open state, the supply side tank section 181 and the recovery side tank section 182 communicate via the fourth bypass channel 254.

これにより、供給側タンク部181から回収側タンク部182に液体が流れて回収側タンク部182が確実に充填される。 Thereby, the liquid flows from the supply side tank section 181 to the recovery side tank section 182, and the recovery side tank section 182 is reliably filled.

したがって、まず、圧力室121内を低圧循環で充填した後、徐々に循環圧力を高めていくことで、共通流路本流と共通流路支流間、共通流路本流間、タンク部間の順にバイパス流路が開き、共通流路支流内→共通流路本流→回収側タンク部の順に充填することができる。 Therefore, first, the inside of the pressure chamber 121 is filled with low-pressure circulation, and then the circulation pressure is gradually increased to bypass the main flow path and the tributaries of the common flow path, between the main flow path of the common flow path, and between the tank sections in this order. The flow path is opened and filling can be performed in the order of common flow channel tributary → common flow channel main flow → recovery side tank section.

ここで、供給側タンク部181と回収側タンク部182とを通じる第4バイパス流路254を常時開放流路にすると、初期充填を行うときに、当初から供給側タンク部181から回収側タンク部182に液体が流れることになる。 Here, if the fourth bypass flow path 254 that connects the supply side tank section 181 and the recovery side tank section 182 is made a constantly open flow path, when performing initial filling, from the beginning, from the supply side tank section 181 to the recovery side tank section. The liquid will flow to 182.

そのため、供給流路本流156、供給流路支流152、回収流路本流157、回収流路支流153、圧力室121、個別供給流路122、個別回収流路123などの流路内に存在する気泡を排出するためには、大きな圧力で液体を供給する必要が生じてくる。 Therefore, air bubbles exist in the channels such as the main supply channel 156, the branch supply channel 152, the main stream 157 of the recovery channel, the branch 153 of the recovery channel, the pressure chamber 121, the individual supply channel 122, and the individual recovery channel 123. In order to discharge the liquid, it becomes necessary to supply the liquid under high pressure.

これに対し、本例では、第2バイパス流路251及び第3バイパス流路252、第1バイパス流路253、第4バイパス流路254の順に開くので、圧力室121内を低圧循環で充填した後、徐々に循環差圧を高めていくことで、共通流路本流と共通流路支流間、共通流路本流間、タンク部間の順にバイパス流路が開き、共通流路支流内→共通流路本流→タンク部の順に充填することができる。 In contrast, in this example, the second bypass flow path 251, the third bypass flow path 252, the first bypass flow path 253, and the fourth bypass flow path 254 are opened in this order, so that the inside of the pressure chamber 121 is filled with low pressure circulation. After that, by gradually increasing the circulation differential pressure, the bypass flow path opens in the following order: between the main flow of the common flow path and the tributaries of the common flow path, between the main flow of the common flow path, and between the tank section. Filling can be done in the order of main stream → tank section.

第4バイパス流路254は、図9に示すような位置に設けられていてもよいが、第4バイパス流路254は、供給側タンク部181及び回収側タンク部182の最上部に設けられていることが好ましい。
図10は、第4バイパス流路の他の例を示す図であり、(a)は供給流路本流に沿う断面説明図、(b)は回収流路本流に沿う断面説明図である。
このように、第4バイパス流路が、タンクの最上部にあることで、タンク上部の気泡を循環によって除去することができる。
The fourth bypass flow path 254 may be provided at a position as shown in FIG. Preferably.
FIG. 10 is a diagram showing another example of the fourth bypass flow path, in which (a) is an explanatory cross-sectional view along the main flow of the supply flow path, and (b) is an explanatory cross-sectional view along the main flow of the recovery flow path.
In this way, by having the fourth bypass flow path at the top of the tank, air bubbles at the top of the tank can be removed by circulation.

次に、本実施形態の他の例(実施例3)について図11を参照して説明する。図11は同実施形態に係る吐出ヘッドの流路構成を説明する平面説明図である。 Next, another example (Example 3) of this embodiment will be described with reference to FIG. 11. FIG. 11 is an explanatory plan view illustrating the flow path configuration of the ejection head according to the same embodiment.

本例の吐出ヘッド100においては、上記の例と同様に、供給流路本流156と回収流路本流157とを通じる第1バイパス流路253を設けている。そして、第1バイパス流路253には、第1バイパス流路253を開閉する第1開閉手段257を設けている。 In the ejection head 100 of this example, as in the above example, a first bypass flow path 253 is provided that communicates with the main supply flow path 156 and the main flow recovery flow path 157. The first bypass flow path 253 is provided with a first opening/closing means 257 that opens and closes the first bypass flow path 253 .

また、上記の例とは異なり、隣り合う供給流路支流152と回収流路支流153とを通じる供給側の第5バイパス流路261aと回収側の第5バイパス流路261bを設けている。 Further, unlike the above example, a fifth bypass flow path 261a on the supply side and a fifth bypass flow path 261b on the recovery side are provided, which communicate the adjacent supply flow path tributary 152 and recovery flow path tributary 153.

したがって、例えば、1つの回収流路支流153を挟んで両側に配置される2つの供給流路支流152にそれぞれ通じる2つの第5バイパス流路261aが設けられる。同様に、1つの供給流路支流152を挟んで両側に配置される2つの回収流路支流153にそれぞれ通じる2つの第5バイパス流路261bが設けられる。 Therefore, for example, two fifth bypass flow paths 261a are provided which respectively communicate with two supply flow path tributaries 152 arranged on both sides with one recovery flow path tributary 153 in between. Similarly, two fifth bypass channels 261b are provided which respectively communicate with two recovery channel tributaries 153 arranged on both sides of one supply channel tributary 152.

第5バイパス流路261aは、供給流路本流156から供給流路支流152への入口側で、かつ、供給口54及び回収口55よりも供給流路本流156側で、供給流路支流152と回収流路支流153とを通じている。 The fifth bypass flow path 261a is on the inlet side from the main supply flow path 156 to the supply flow path tributary 152, and on the side of the main supply flow path 156 than the supply port 54 and the recovery port 55, and is connected to the supply flow path tributary 152. It communicates with a recovery channel tributary 153.

第5バイパス流路261bは、回収流路支流153から回収流路本流157への入口側で、かつ、供給口54及び回収口55よりも回収流路本流157側で、供給流路支流152と回収流路支流153とを通じている。 The fifth bypass channel 261b is connected to the supply channel tributary 152 on the inlet side from the recovery channel tributary 153 to the recovery channel main stream 157, and on the recovery channel main stream 157 side from the supply port 54 and the recovery port 55. It communicates with a recovery channel tributary 153.

第5バイパス流路261aには、第5バイパス流路261aを開閉する第5開閉手段262aを設けている。また、第5バイパス流路261aには、第5バイパス流路261bを開閉する第5開閉手段262bを設けている。 The fifth bypass flow path 261a is provided with a fifth opening/closing means 262a that opens and closes the fifth bypass flow path 261a. Further, the fifth bypass flow path 261a is provided with a fifth opening/closing means 262b that opens and closes the fifth bypass flow path 261b.

第5開閉手段262a、262bは、いずれも、第1開閉手段151などと同様に、圧力差によって流路を開閉するとともに、圧力差の大きさによって開放量が変化する弁体で構成している。 The fifth opening/closing means 262a, 262b, like the first opening/closing means 151, etc., are both configured with valve bodies that open and close the flow passages depending on the pressure difference, and whose opening amount changes depending on the magnitude of the pressure difference. .

本例では、第5開閉手段262a、262bは、いずれも、第1開閉手段257よりも小さい圧力差で開放可能として、第5バイパス流路261a、261bは第1バイパス流路253よりも小さい圧力差で開くようにようしている。 In this example, the fifth opening/closing means 262a, 262b can both be opened with a smaller pressure difference than the first opening/closing means 257, and the fifth bypass channels 261a, 261b have a pressure smaller than that of the first bypass channel 253. I'm trying to make a difference.

次に、このように構成した吐出ヘッド100に対する液体充填について説明する。
吐出ヘッド100に液体を初期充填するときには、前述したように、供給流路本流156、供給流路支流152、回収流路本流157、回収流路支流153、圧力室121、個別供給流路122、個別回収流路123などの流路内に存在する気泡を回収側タンク部182や回収ポート184まで排出することが必要である。
Next, liquid filling into the ejection head 100 configured as described above will be described.
When initially filling the ejection head 100 with liquid, as described above, the main supply channel 156, the tributary supply channel 152, the main recovery channel 157, the tributary recovery channel 153, the pressure chamber 121, the individual supply channel 122, It is necessary to discharge air bubbles existing in channels such as the individual recovery channel 123 to the recovery side tank section 182 and the recovery port 184.

そこで、本例において、吐出ヘッド100の流路に液体を充填するとき、まず、第5開閉手段262a、262bが閉じる圧力差になる圧力で、供給側タンク部181から供給口171を通じて供給流路本流156に液体を供給する。このとき、第1開閉手段257及び第5開閉手段262a、262bは、いずれも閉じた状態にあり、第1バイパス流路253、第5バイパス流路261a、261bは閉じている。 Therefore, in this example, when filling the flow path of the ejection head 100 with liquid, first, the supply flow path is passed from the supply side tank section 181 to the supply port 171 at a pressure such that the fifth opening/closing means 262a and 262b close the pressure difference. Main stream 156 is supplied with liquid. At this time, the first opening/closing means 257 and the fifth opening/closing means 262a, 262b are both in a closed state, and the first bypass flow path 253 and the fifth bypass flow paths 261a, 261b are closed.

これにより、供給流路本流156に供給された液体は、供給流路支流152から個別供給流路122、圧力室121、個別回収流路123を経て、回収流路支流153に至り、回収流路支流153から回収流路本流157に流れる。 As a result, the liquid supplied to the main supply channel 156 passes from the supply channel tributary 152 to the individual supply channel 122, the pressure chamber 121, and the individual recovery channel 123, reaches the recovery channel tributary 153, and then reaches the recovery channel tributary 153. It flows from the tributary stream 153 to the main stream 157 of the recovery channel.

次いで、供給側タンク部181から供給口171を通じて供給流路本流156に供給する液体の圧力を上げると、供給流路支流152と回収流路支流153との圧力差が第5所定値(第5所定値<第1所定値)以上になり、第5開閉手段262a、262bが開状態になる。第5開閉手段262a、262bが開状態になることで第5バイパス流路261a、261bが開放され、供給流路支流152と回収流路支流153とが第5バイパス流路261a、261bを介して通じる。 Next, when the pressure of the liquid supplied from the supply side tank part 181 to the main supply channel 156 through the supply port 171 is increased, the pressure difference between the supply channel tributary 152 and the recovery channel tributary 153 increases to a fifth predetermined value (fifth (predetermined value<first predetermined value) or more, and the fifth opening/closing means 262a, 262b are in the open state. When the fifth opening/closing means 262a, 262b are in the open state, the fifth bypass channels 261a, 261b are opened, and the supply channel tributary 152 and the recovery channel tributary 153 are connected via the fifth bypass channels 261a, 261b. It gets through.

これにより、供給流路本流156から供給流路支流152に入った液体は、供給流路支流152から第5バイパス流路261aを経て回収流路支流153の上流側に流れ、第5バイパス流路261bを経て回収流路支流153の下流側に流れる。 As a result, the liquid that has entered the supply channel tributary 152 from the main supply channel 156 flows from the supply channel tributary 152 to the upstream side of the recovery channel tributary 153 via the fifth bypass channel 261a, and flows into the fifth bypass channel 261b to the downstream side of the recovery channel tributary 153.

このとき、供給流路支流152内の下流側に残存する気泡は第5バイパス流路261aを通じて回収流路支流153の下流側に排出される。また、回収流路支流153内の上流側に残存する気泡は第5バイパス流路261bから流入する液体によって回収流路支流153の上流側に送られる。これによって、供給流路支流152内及び回収流路支流153内に液体が確実に充填される。 At this time, the bubbles remaining on the downstream side of the supply channel tributary 152 are discharged to the downstream side of the recovery channel tributary 153 through the fifth bypass channel 261a. Further, the bubbles remaining on the upstream side of the recovery channel tributary 153 are sent to the upstream side of the recovery channel tributary 153 by the liquid flowing in from the fifth bypass channel 261b. This ensures that the supply channel tributary 152 and the recovery channel tributary 153 are filled with liquid.

そして、供給側タンク部181から供給口71を通じて供給流路本流156に供給する液体の圧力を上げることで、供給流路本流156と回収流路支流153との圧力差が第3所定値以上になり、第1開閉手段257が開状態になる。第1開閉手段257が開状態になることで第1バイパス流路253が開放され、供給流路本流156と回収流路本流157とが第1バイパス流路253を介して通じる。 By increasing the pressure of the liquid supplied from the supply side tank section 181 to the main supply channel 156 through the supply port 71, the pressure difference between the main supply channel 156 and the tributary recovery channel 153 becomes equal to or higher than the third predetermined value. Then, the first opening/closing means 257 becomes open. When the first opening/closing means 257 is in the open state, the first bypass flow path 253 is opened, and the main supply flow path 156 and the main flow recovery flow path 157 communicate with each other via the first bypass flow path 253.

これにより、供給流路本流156に供給された液体は第1バイパス流路253を経て回収流路本流157に流れる。このとき、供給流路本流156内に残存する気泡は回収流路本流157に排出され、供給流路本流156内に液体が確実に充填される。 As a result, the liquid supplied to the main supply channel 156 flows to the main recovery channel 157 via the first bypass channel 253 . At this time, bubbles remaining in the main stream 156 of the supply channel are discharged to the main stream 157 of the recovery channel, and the main stream 156 of the supply channel is reliably filled with liquid.

そして、回収流路本流157に移送された気泡は回収口172を通じて回収側タンク部182に送られることで、回収流路本流157内も液体が確実に充填される。 The air bubbles transferred to the main stream 157 of the recovery channel are sent to the recovery side tank section 182 through the recovery port 172, thereby ensuring that the main stream 157 of the recovery channel is also filled with liquid.

なお、本例においても、上記の例を適用して、供給側タンク部181と回収側タンク部182とを通じる第4バイパス流路254と、第4バイパス流路254を開閉する第4開閉手段258とを備えることができる。 In addition, in this example, the above-mentioned example is also applied, and the fourth bypass flow path 254 that communicates with the supply side tank section 181 and the recovery side tank section 182, and the fourth opening/closing means for opening and closing the fourth bypass flow path 254. 258.

次に、本発明に係る吐出装置としての印刷装置の一例について図12及び図13を参照して説明する。図12は同印刷装置の概略説明図、図13は同印刷装置の吐出ユニットの平面説明図である。 Next, an example of a printing device as a discharge device according to the present invention will be described with reference to FIGS. 12 and 13. FIG. 12 is a schematic explanatory diagram of the printing apparatus, and FIG. 13 is a plan explanatory diagram of a discharge unit of the printing apparatus.

印刷装置1は、液体を吐出する装置であり、シート材Pを搬入する搬入部10と、前処理部20と、印刷部30と、乾燥部40と、搬出部50とを備えている。 The printing device 1 is a device that discharges liquid, and includes a carry-in section 10 for carrying in the sheet material P, a pre-processing section 20, a printing section 30, a drying section 40, and a carry-out section 50.

印刷装置1は、搬入部10から搬入(供給)されるシート材Pに対し、前処理手段である前処理部20で必要に応じて前処理液を付与(塗布)し、印刷部30で液体を付与して所要の印刷を行い、乾燥部40でシート材Pに付着した液体を乾燥させた後、シート材Pを搬出部50に排出する。 The printing apparatus 1 applies (applies) a pretreatment liquid as necessary to the sheet material P carried in (supplied) from the carry-in section 10 in a pretreatment section 20 serving as a pretreatment means, and applies (applies) a pretreatment liquid as necessary to the sheet material P carried in (supplied) from a carry-in section 10 . is applied to perform the required printing, and after drying the liquid adhering to the sheet material P in the drying section 40, the sheet material P is discharged to the carry-out section 50.

搬入部10は、複数のシート材Pを収容する搬入トレイ11(下段搬入トレイ11A、上段搬入トレイ11B)と、搬入トレイ11からシート材Pを1枚ずつ分離して送り出す給送装置12(12A、12B)とを備え、シート材Pを前処理部20に供給する。 The carry-in section 10 includes a carry-in tray 11 (lower carry-in tray 11A, upper carry-in tray 11B) that accommodates a plurality of sheet materials P, and a feeding device 12 (12A) that separates sheet materials P from the carry-in tray 11 one by one and sends them out. , 12B), and supplies the sheet material P to the preprocessing section 20.

前処理部20は、例えばインクを凝集させ、裏写りを防止する作用効果を有する処理液をシート材Pの印刷面に付与する処理液付与手段である塗布部21などを備えている。 The pre-processing section 20 includes a coating section 21 that is a processing liquid applying means that applies a processing liquid having the effect of coagulating ink and preventing show-through to the printing surface of the sheet material P, for example.

印刷部30は、シート材Pを周面に担持して回転する担持部材(回転部材)であるドラム31と、ドラム31に担持されたシート材Pに向けて液体を吐出する液体吐出部32を備えている。 The printing section 30 includes a drum 31 that is a supporting member (rotating member) that rotates while supporting the sheet material P on its circumferential surface, and a liquid discharge section 32 that discharges liquid toward the sheet material P supported on the drum 31. We are prepared.

また、印刷部30は、前処理部20から送り込まれたシート材Pを受け取ってドラム31との間でシート材Pを渡す渡し胴34と、ドラム31によって搬送されたシート材Pを受け取って乾燥部40に渡す受け渡し胴35を備えている。 The printing section 30 also includes a transfer cylinder 34 that receives the sheet material P fed from the preprocessing section 20 and passes the sheet material P to and from the drum 31, and a transfer cylinder 34 that receives the sheet material P conveyed by the drum 31 and dries it. It is provided with a delivery cylinder 35 for delivering to the section 40.

前処理部20から印刷部30へ搬送されてきたシート材Pは、渡し胴34に設けられた把持手段(シートグリッパ)によって先端が把持され、渡し胴34の回転に伴って搬送される。渡し胴34により搬送されたシート材Pは、ドラム31との対向位置でドラム31へ受け渡される。 The leading end of the sheet material P conveyed from the pre-processing section 20 to the printing section 30 is gripped by a gripping means (sheet gripper) provided on the transfer cylinder 34, and is conveyed as the transfer cylinder 34 rotates. The sheet material P conveyed by the transfer drum 34 is delivered to the drum 31 at a position facing the drum 31.

ドラム31の表面にも把持手段(シートグリッパ)が設けられており、シート材Pの先端が把持手段(シートグリッパ)によって把持される。ドラム31の表面には、複数の吸引穴が分散して形成され、吸引手段によってドラム31の所要の吸引穴から内側へ向かう吸い込み気流を発生させる。 A gripping means (sheet gripper) is also provided on the surface of the drum 31, and the leading end of the sheet material P is gripped by the gripping means (sheet gripper). A plurality of suction holes are formed in a distributed manner on the surface of the drum 31, and suction means generates a suction airflow directed inward from the required suction holes of the drum 31.

そして、渡し胴34からドラム31へ受け渡されたシート材Pは、シートグリッパによって先端が把持されるとともに、吸引手段による吸い込み気流によってドラム31上に吸着担持され、ドラム31の回転に伴って搬送される。 The sheet material P transferred from the transfer drum 34 to the drum 31 is gripped at the leading end by a sheet gripper, is suctioned and supported on the drum 31 by the suction airflow by the suction means, and is conveyed as the drum 31 rotates. be done.

液体吐出部32は、吐出手段である吐出ユニット33(33A~33D)を備えている。例えば、吐出ユニット33Aはシアン(C)の液体を、吐出ユニット33Bはマゼンタ(M)の液体を、吐出ユニット33Cはイエロー(Y)の液体を、吐出ユニット33Dはブラック(K)の液体を、それぞれ吐出する。また、その他、白色、金色(銀色)などの特殊な液体の吐出を行う吐出ユニットを使用することもできる。 The liquid discharge section 32 includes a discharge unit 33 (33A to 33D) which is a discharge means. For example, the ejection unit 33A emits cyan (C) liquid, the ejection unit 33B emits magenta (M) liquid, the ejection unit 33C emits yellow (Y) liquid, and the ejection unit 33D emits black (K) liquid. Discharge each. In addition, it is also possible to use a discharge unit that discharges a special liquid such as white or gold (silver).

吐出ユニット33は、例えば、図13に示すように、複数のノズル111を二次元マトリクス状に配列した複数の吐出ヘッド100をベース部材331に千鳥状に配置したフルライン型ヘッドである。 For example, as shown in FIG. 13, the ejection unit 33 is a full-line head in which a plurality of ejection heads 100 each having a plurality of nozzles 111 arranged in a two-dimensional matrix are arranged in a staggered manner on a base member 331.

液体吐出部32の各吐出ユニット33は、印刷情報に応じた駆動信号によりそれぞれ吐出動作が制御される。ドラム31に担持されたシート材Pが液体吐出部32との対向領域を通過するときに、吐出ユニット33から各色の液体が吐出され、当該印刷情報に応じた画像が印刷される。 The ejection operation of each ejection unit 33 of the liquid ejection section 32 is controlled by a drive signal according to print information. When the sheet material P carried by the drum 31 passes through an area facing the liquid ejection section 32, liquids of each color are ejected from the ejection unit 33, and an image corresponding to the print information is printed.

乾燥部40は、印刷部30でシート材P上に付着した液体を乾燥させる。これにより、液体中の水分等の液分が蒸発し、シート材P上に液体中に含まれる着色剤が定着し、また、シート材Pのカールが抑制される。 The drying section 40 dries the liquid deposited on the sheet material P in the printing section 30. As a result, liquid components such as water in the liquid evaporate, the colorant contained in the liquid is fixed on the sheet material P, and curling of the sheet material P is suppressed.

反転機構部60は、乾燥部40を通過したシート材Pに対して両面印刷をおこなうときに、スイッチバック方式で、シート材Pを反転する機構であり、反転されたシート材Pは印刷部30の搬送経路61を通じて渡し胴34よりも上流側に逆送される。 The reversing mechanism section 60 is a mechanism that reverses the sheet material P using a switchback method when double-sided printing is performed on the sheet material P that has passed through the drying section 40, and the reversed sheet material P is transferred to the printing section 30. It is sent back to the upstream side of the transfer cylinder 34 through the conveyance path 61 .

搬出部50は、複数のシート材Pが積載される搬出トレイ51を備えている。乾燥部40から反転機構部60を介して搬送されてくるシート材Pは、搬出トレイ51上に順次積み重ねられて保持される。 The carry-out section 50 includes a carry-out tray 51 on which a plurality of sheet materials P are loaded. The sheet materials P conveyed from the drying section 40 via the reversing mechanism section 60 are sequentially stacked and held on the carry-out tray 51.

以上の吐出ヘッド100で吐出する被吐出物は、ヘッドから吐出可能な粘度や表面張力を有するものであればよく、特に限定されないが、常温、常圧下において、または加熱、冷却により粘度が30mPa・s以下となるものであることが好ましい。より具体的には、水や有機溶媒等の溶媒、染料や顔料等の着色剤、重合性化合物、樹脂、界面活性剤等の機能性付与材料、DNA、アミノ酸やたんぱく質、カルシウム等の生体適合材料、天然色素等の可食材料、などを含む溶液、懸濁液、エマルジョンなどであり、これらは例えば、インクジェット用インク、表面処理液、電子素子や発光素子の構成要素や電子回路レジストパターンの形成用液、三次元造形用材料液等の用途で用いることができる。 The material to be discharged by the above-mentioned discharge head 100 may have a viscosity and surface tension that can be discharged from the head, and is not particularly limited. It is preferable that it be less than or equal to s. More specifically, solvents such as water and organic solvents, coloring agents such as dyes and pigments, functional materials such as polymerizable compounds, resins, and surfactants, and biocompatible materials such as DNA, amino acids, proteins, and calcium. , edible materials such as natural pigments, etc., and these include, for example, inkjet inks, surface treatment liquids, constituent elements of electronic devices and light emitting devices, and formation of electronic circuit resist patterns. It can be used for purposes such as a liquid for use in liquids, a material liquid for three-dimensional modeling, etc.

ここで、立体造形物を形成するために用いられる液体(三次元造形用材料液)として、例えば、治療の手技トレーニングに用いられる三次元立体構造体を形成するための、ハイドロゲル形成材料が挙げられる。 Here, examples of liquids used to form three-dimensional objects (material liquid for three-dimensional printing) include hydrogel-forming materials for forming three-dimensional three-dimensional structures used in therapeutic training. It will be done.

ハイドロゲル形成材料は、水及び重合性モノマーを含有し、鉱物、有機溶媒を含有することが好ましく、更に必要に応じて、重合開始剤、その他の成分を含有する。重合性モノマーは、不飽和炭素-炭素結合を1つ以上有する化合物であり、紫外線や電子線等の活性エネルギー線により重合する重合性モノマーが好ましい。 The hydrogel-forming material contains water and a polymerizable monomer, preferably contains a mineral and an organic solvent, and further contains a polymerization initiator and other components as necessary. The polymerizable monomer is a compound having one or more unsaturated carbon-carbon bonds, and preferably a polymerizable monomer that is polymerized by active energy rays such as ultraviolet rays or electron beams.

前記重合性モノマーとしては、例えば、単官能モノマー、多官能モノマーなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記多官能モノマーとしては、例えば、2官能モノマー、3官能モノマー、4官能以上のモノマーなどが挙げられる。
Examples of the polymerizable monomer include monofunctional monomers and polyfunctional monomers. These may be used alone or in combination of two or more.
Examples of the polyfunctional monomer include bifunctional monomers, trifunctional monomers, and tetrafunctional or higher functional monomers.

鉱物としては、特に制限はなく、目的に応じて適宜選択することができるが、ハイドロゲルが水を主成分とすることから、粘土鉱物が好ましく、更に、水中で一次結晶のレベルで均一に分散可能な層状粘土鉱物が好ましく、水膨潤性層状粘土鉱物がより好ましい。 The mineral is not particularly limited and can be selected as appropriate depending on the purpose, but since the hydrogel has water as its main component, clay minerals are preferable, and furthermore, clay minerals are preferable because they are uniformly dispersed in water at the level of primary crystals. Possible layered clay minerals are preferred, and water-swellable layered clay minerals are more preferred.

有機溶媒としては、例えば、水溶性有機溶媒などが挙げられる。前記水溶性有機溶媒の水溶性とは、前記有機溶媒が水に対して30質量%以上溶解可能であることを意味する。 Examples of the organic solvent include water-soluble organic solvents. The water solubility of the water-soluble organic solvent means that the organic solvent can be dissolved in water in an amount of 30% by mass or more.

前記水溶性有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール等の炭素数1以上4以下のアルキルアルコール類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;アセトン、メチルエチルケトン、ジアセトンアルコール等のケトン又はケトンアルコール類;テトラヒドロフラン、ジオキサン等のエーテル類;エチレングリコール、プロピレングリコール、1,2-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,2,6-ヘキサントリオール、チオグリコール、ヘキシレングリコール、グリセリン等の多価アルコール;ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール類;エチレングリコールモノメチル(又はエチル)エーテル、ジエチレングリコールメチル(又はエチル)エーテル、トリエチレングリコールモノメチル(又はエチル)エーテル等の多価アルコールの低級アルコールエーテル類;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類;N-メチル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノンなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、保湿性の点から、多価アルコール、グリセリン、プロピレングリコールが好ましく、グリセリン、プロピレングリコールがより好ましい。 The water-soluble organic solvent is not particularly limited and can be appropriately selected depending on the purpose, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, Alkyl alcohols having 1 to 4 carbon atoms such as tert-butyl alcohol; amides such as dimethylformamide and dimethylacetamide; ketones or ketone alcohols such as acetone, methyl ethyl ketone and diacetone alcohol; ethers such as tetrahydrofuran and dioxane; Ethylene glycol, propylene glycol, 1,2-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, diethylene glycol, triethylene glycol, 1,2,6-hexanetriol, thio Polyhydric alcohols such as glycol, hexylene glycol, and glycerin; Polyalkylene glycols such as polyethylene glycol and polypropylene glycol; Ethylene glycol monomethyl (or ethyl) ether, diethylene glycol methyl (or ethyl) ether, triethylene glycol monomethyl (or ethyl) Lower alcohol ethers of polyhydric alcohols such as ethers; alkanolamines such as monoethanolamine, diethanolamine, triethanolamine; N-methyl-2-pyrrolidone, 2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone Examples include. These may be used alone or in combination of two or more. Among these, polyhydric alcohol, glycerin, and propylene glycol are preferred, and glycerin and propylene glycol are more preferred, from the viewpoint of moisturizing properties.

重合開始剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、光重合開始剤、熱重合開始剤などが挙げられる。
前記光重合開始剤としては、光(特に波長220nm~400nmの紫外線)の照射によりラジカルを生成する任意の物質を用いることができる。
The polymerization initiator is not particularly limited and can be appropriately selected depending on the purpose, and includes, for example, a photopolymerization initiator, a thermal polymerization initiator, and the like.
As the photopolymerization initiator, any substance that generates radicals upon irradiation with light (especially ultraviolet rays with a wavelength of 220 nm to 400 nm) can be used.

なお、ハイドロゲル形成材料を用いて立体造形する場合には、UV照射機構を設け、吐出したハイドロゲル形成材料にUV照射することで硬化して形成する。 Note that when three-dimensional modeling is performed using a hydrogel-forming material, a UV irradiation mechanism is provided, and the discharged hydrogel-forming material is cured and formed by irradiating it with UV.

(ハイドロゲル形成材料具体例)
減圧脱気を30分間実施したイオン交換水120.0質量部を撹拌させながら、層状粘土鉱物として[Mg5.34Li0.66Si20(OH)]Na 0.66の組成を有する合成ヘクトライト(ラポナイトXLG、RockWood社製)12.0質量部を少しずつ添加して撹拌した。更に、エチドロン酸(東京化成工業株式会社製)0.6質量部を加えて撹拌して分散液を作製した。
(Specific example of hydrogel forming material)
While stirring 120.0 parts by mass of ion-exchanged water that had been degassed under reduced pressure for 30 minutes, a composition of [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na - 0.66 as a layered clay mineral was prepared. 12.0 parts by mass of synthetic hectorite (Laponite XLG, manufactured by Rockwood) having the following were added little by little and stirred. Furthermore, 0.6 parts by mass of etidronic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred to prepare a dispersion.

得られた分散液に、重合性モノマーとして、活性アルミナのカラムを通過させ重合禁止剤を除去したアクリロイルモルホリン(KJケミカルズ株式会社製)44.0質量部、メチレンビスアクリルアミド(東京化成工業株式会社製)0.4質量部を添加した。
更に、グリセリン(阪本薬品工業株式会社製)20.0質量、N,N,N’,N’-テトラメチルエチレンジアミン(東京化成工業株式会社製)0.8質量部混合し、ハイドロゲル形成用材料を得た。
To the resulting dispersion, 44.0 parts by mass of acryloylmorpholine (manufactured by KJ Chemicals Co., Ltd.), which had been passed through an activated alumina column to remove the polymerization inhibitor, and methylene bisacrylamide (manufactured by Tokyo Kasei Kogyo Co., Ltd.) were added as polymerizable monomers. ) 0.4 part by mass was added.
Furthermore, 20.0 parts by mass of glycerin (manufactured by Sakamoto Pharmaceutical Co., Ltd.) and 0.8 parts by mass of N,N,N',N'-tetramethylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed to form a material for forming a hydrogel. I got it.

本発明に係る吐出ヘッド100は、上述したように、細胞からなる組織体を人工的に形成するために、細胞を任意に配置するためのインクジェット法にも使用可能であり、細胞懸濁液(細胞インク)を吐出可能である。 As described above, the ejection head 100 according to the present invention can also be used in an inkjet method for arbitrarily arranging cells in order to artificially form a tissue body made of cells, Cell ink) can be ejected.

細胞懸濁液(細胞インク)は、少なくとも細胞及び細胞乾燥抑制剤を含有する。更に、細胞懸濁液(細胞インク)は、細胞を分散させる分散培を含有し、必要に応じて、分散剤、pH調整剤などのその他の添加材料を含有してもよい。 The cell suspension (cell ink) contains at least cells and a cell desiccation inhibitor. Furthermore, the cell suspension (cell ink) contains a dispersion medium in which cells are dispersed, and may contain other additive materials such as a dispersant and a pH adjuster, if necessary.

細胞は、その種類等については特に制限はなく、目的に応じて適宜選択することができ、分類学的に、例えば、真核細胞、原核細胞、多細胞生物細胞、単細胞生物細胞を問わず、すべての細胞について使用することができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 There are no particular restrictions on the type of cell, and it can be selected as appropriate depending on the purpose. Taxonomically, for example, regardless of whether it is a eukaryotic cell, a prokaryotic cell, a multicellular biological cell, or a unicellular biological cell, Can be used for all cells. These may be used alone or in combination of two or more.

真核細胞としては、例えば、動物細胞、昆虫細胞、植物細胞、真菌などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、動物細胞が好ましく、細胞が細胞集合体を形成する場合は、細胞と細胞とが互いに接着し、物理化学的な処理を行わなければ単離しない程度の細胞接着性を有する接着性細胞がより好ましい。 Examples of eukaryotic cells include animal cells, insect cells, plant cells, and fungi. These may be used alone or in combination of two or more. Among these, animal cells are preferable, and when the cells form a cell aggregate, cells adhere to each other and have cell adhesion to the extent that they cannot be isolated without physicochemical treatment. Cells are more preferred.

細胞乾燥抑制剤としては、細胞の表面を覆い、細胞の乾燥を抑制する働きを有するものであり、例えば、多価アルコール類、ゲル状多糖類、及び細胞外基質から選ばれる蛋白質などが挙げられる。 Cell desiccation inhibitors are substances that cover the surface of cells and have the function of suppressing cell desiccation, such as polyhydric alcohols, gel polysaccharides, and proteins selected from extracellular matrices. .

分散培としては、細胞培養用の培地や緩衝液が好ましい。
培地は、細胞組織体の形成と維持に必要な成分を含み、乾燥を防ぎ浸透圧などの外部環境を整える溶液であり、培地として知られているものであれば適宜選択して使用することができる。細胞を常時培地液内に浸しておく必要がない場合には、細胞懸濁液から培地は適宜除去することができる。
緩衝液は、細胞や目的に合わせpHを調整するためのものであり、公知のものを適宜選択して使用することができる。
The dispersion medium is preferably a cell culture medium or buffer.
A medium is a solution that contains components necessary for the formation and maintenance of cell tissues, prevents dryness and adjusts the external environment such as osmotic pressure, and can be appropriately selected and used as long as it is known as a medium. can. If it is not necessary to keep the cells constantly immersed in the medium, the medium can be removed from the cell suspension as appropriate.
The buffer is used to adjust the pH depending on the cells and purpose, and any known buffer can be appropriately selected and used.

(細胞懸濁液(細胞インク)具体例)
緑色蛍光染料(商品名:Cell Tracker Green、Life Technologies社製)を10mmol/L(mM)の濃度でジメチルスルホキシド(以下、「DMSO」と称す)へ溶解させ、無血清ダルベッコ変法イーグル培地(Life Technologies社製)と混合し、濃度10μmol/L(μM)の緑色蛍光染料含有無血清培地を調製した。
(Specific example of cell suspension (cell ink))
A green fluorescent dye (trade name: Cell Tracker Green, manufactured by Life Technologies) was dissolved in dimethyl sulfoxide (hereinafter referred to as "DMSO") at a concentration of 10 mmol/L (mM), and added to serum-free Dulbecco's modified Eagle's medium (Life Technologies). Technologies) to prepare a serum-free medium containing a green fluorescent dye at a concentration of 10 μmol/L (μM).

次に、培養したNIH/3T3細胞(Clone 5611、JCRB Cell Bank)のディッシュに緑色蛍光染料含有無血清培地を5mL添加し、インキュベーター(KM-CC17RU2、パナソニック株式会社製、37℃、5体積%CO2環境))内で30分間培養した。 Next, 5 mL of a serum-free medium containing a green fluorescent dye was added to a dish of cultured NIH/3T3 cells (Clone 5611, JCRB Cell Bank), and placed in an incubator (KM-CC17RU2, manufactured by Panasonic Corporation, 37°C, 5% CO2 by volume). environment)) for 30 minutes.

その後、アスピレータを用いて、上澄みを除去した。ディッシュにリン酸緩衝生理食塩水(Life Technologies社製、以下、PBS(-)とも称する)を5mL加え、アスピレータでPBS(-)を吸引除去し、表面を洗浄した。PBS(-)による洗浄作業を2回繰り返した後、0.05質量%トリプシン-0.05質量%EDTA溶液(life technologies社製)をディッシュ1枚あたり2mL加えた。 Thereafter, the supernatant was removed using an aspirator. 5 mL of phosphate buffered saline (manufactured by Life Technologies, hereinafter also referred to as PBS(-)) was added to the dish, and the PBS(-) was removed by suction using an aspirator to wash the surface. After repeating the washing operation with PBS(-) twice, 2 mL of 0.05% by mass trypsin-0.05% by mass EDTA solution (manufactured by Life Technologies) was added to each dish.

次に、インキュベーター内にて5分間加温し、ディッシュから細胞を剥離した後、10質量%ウシ胎児血清(以下、「FBS」とも称す)及び1質量%抗生物質(Antibiotic-Antimycotic Mixed Stock Solution(100x)、ナカライテスク株式会社製)を含むD-MEMを4mL加えた。 Next, after heating in an incubator for 5 minutes to detach the cells from the dish, 10% by mass fetal bovine serum (hereinafter also referred to as "FBS") and 1% by mass antibiotic (Antibiotic-Antimycotic Mixed Stock Solution) were added. 100x), manufactured by Nacalai Tesque Co., Ltd.) was added.

次に、トリプシンを失活させた細胞懸濁液を50mL遠沈管1本に移し、遠心分離(商品名:H-19FM、KOKUSAN社製、1,200rpm、5分間、5℃)を行い、アスピレータを用いて上清を除去した。除去後、遠沈管に10質量%FBS及び1質量%抗生物質を含むD-MEMを2mL添加し、穏やかにピペッティングを行い、細胞を分散させ細胞懸濁液を得た。 Next, the cell suspension in which trypsin was inactivated was transferred to a 50 mL centrifuge tube, centrifuged (product name: H-19FM, manufactured by KOKUSAN, 1,200 rpm, 5 minutes, 5°C), and aspirated. The supernatant was removed using After removal, 2 mL of D-MEM containing 10% by mass FBS and 1% by mass antibiotic was added to the centrifuge tube, and gently pipetting was performed to disperse the cells to obtain a cell suspension.

該細胞懸濁液から10μLをエッペンドルフチューブに取り出し、培地を70μL添加後、10μLを別のエッペンドルフチューブに取り出し、0.4質量%トリパンブルー染色液10μLを加えてピペッティングを行った。染色した細胞懸濁液から10μL取り出してPMMA製プラスチックスライドに載せた。商品名:Countess Automated Cell Counter(インビトロジェン社製)を用いて細胞数を計測して細胞数を求めることで、細胞数を計測した細胞懸濁液を得た。 10 μL of the cell suspension was taken out into an Eppendorf tube, and after adding 70 μL of the medium, 10 μL was taken out into another Eppendorf tube, 10 μL of 0.4% trypan blue staining solution was added, and pipetting was performed. 10 μL was taken out from the stained cell suspension and placed on a PMMA plastic slide. A cell suspension with a counted cell number was obtained by counting the number of cells using a brand name: Countess Automated Cell Counter (manufactured by Invitrogen).

分散培としてPBS(-)を用いた。PBS(-)へ、細胞乾燥抑制剤としてグリセリン(分子生物学用グレード、和光純薬工業株式会社製)を質量比0.5質量%となるように溶解させ、NIH/3T3細胞懸濁液を6×106cell/mLとなるように分散培へ分散させて、細胞インクを得た。 PBS(-) was used as a dispersion medium. Glycerin (molecular biology grade, manufactured by Wako Pure Chemical Industries, Ltd.) as a cell drying inhibitor was dissolved in PBS (-) to a mass ratio of 0.5%, and the NIH/3T3 cell suspension was added. A cell ink was obtained by dispersing the cells in a dispersion medium at 6×10 6 cells/mL.

本発明の態様は、例えば、以下のとおりである。
<1>被吐出物を吐出する複数のノズルと、
前記複数のノズルに各々連通する複数の圧力室と、
2以上の前記圧力室に通じる複数の供給流路支流と、
2以上の前記圧力室に通じる複数の回収流路支流と、
前記複数の供給流路支流に通じる供給流路本流と、
前記複数の回収流路支流に通じる回収流路本流と、
前記供給流路本流と前記回収流路本流とを通じる第1バイパス流路と、
前記第1バイパス流路を開閉する第1開閉手段と、を備え、
前記供給流路支流は、前記被吐出物を前記2以上の圧力室に供給する流路であり、
前記回収流路支流は、前記2以上の圧力室から前記被吐出物を回収する流路であり、
前記供給流路本流は、前記被吐出物を前記複数の供給流路支流に供給する流路であり、
前記回収流路本流は、前記複数の回収流路支流から前記被吐出物を回収する流路であり、
前記第1バイパス流路を流れる前記被吐出物の流量は、前記第1開閉手段の上流側と下流側の圧力差が大きくなるに伴って小さくなることを特徴とする吐出ヘッド。
<2>前記供給流路支流と前記回収流路本流とを通じる第2バイパス流路と、
前記回収流路支流と前記供給流路本流とを通じる第3バイパス流路と、
前記第2バイパス流路を開閉する第2開閉手段と、
前記第3バイパス流路を開閉する第3開閉手段と、を備え、
前記第2開閉手段は、当該第2開閉手段の上流側と下流側の圧力差によって開閉し、
前記第3開閉手段は、当該第3開閉手段の上流側と下流側の圧力差によって開閉し、
前記第2開閉手段と前記第3開閉手段は、前記第1開閉手段よりも大きい圧力差で開く状態になることを特徴とする<1>に記載の吐出ヘッド。
<3>前記第2バイパス流路と前記供給流路支流との接続部は、前記供給流路支流の端部に設けられていることを特徴とする<2>に記載の吐出ヘッド。
<4>前記第3バイパス流路と前記回収流路支流との接続部は、前記回収流路支流の端部に設けられていることを特徴とする<2>又は<3>に記載の吐出ヘッド。
<5>前記供給流路本流に通じる供給側タンクと、
前記回収流路本流に通じる回収側タンクと、
前記供給側タンクと前記回収側タンクとを通じる第4バイパス流路と、
前記第4バイパス流路を開閉する第4開閉手段と、を備え、
前記第4開閉手段は、当該第4開閉手段の上流側と下流側の圧力差によって開閉し、
前記第1開閉手段は、前記第4開閉手段よりも大きい圧力差で開く状態になることを特徴とする<1>から<4>のいずれかに記載の吐出ヘッド。
<6>前記第4バイパス流路は、前記供給側タンク及び前記回収側タンクの最上部に設けられていることを特徴とする<5>に記載の吐出ヘッド。
<7>前記第1開閉手段は、片持ち梁構造であり、一端側を固定端とし他端側を自由端とした弁体を有し、前記第1バイパス流路に設けられた前記弁体の自由端を所定の位置で規制する規制部材と前記弁体の自由端とが接触している場合、閉じた状態になり、
前記弁体の自由端は、前記第1開閉手段の上流側と下流側の圧力差が閾値よりも小さい場合、前記規制部材と接触する位置よりも前記被吐出物が流れる方向の上流側に位置することを特徴とする<1>から<6>のいずれかに記載の吐出ヘッド。
<8>前記弁体の固定端と自由端とを結ぶ直線を第1直線とし、前記第1バイパス流路の前記被吐出物が流れる方向を第2直線としたとき、
前記第1直線と前記第2直線との角度は、前記第1開閉手段の上流側と下流側の圧力差が大きくなるに伴って変化し、圧力差が閾値よりも大きくなった場合、前記弁体の自由端が前記規制部材と接触する角度になることを特徴とする<7>に記載の吐出ヘッド。
<9><1>から<8>のいずれかに記載の吐出ヘッドを備えていることを特徴とする吐出装置。
Aspects of the present invention are, for example, as follows.
<1> A plurality of nozzles that eject objects to be ejected;
a plurality of pressure chambers each communicating with the plurality of nozzles;
a plurality of supply channel tributaries that communicate with the two or more pressure chambers;
a plurality of recovery channel tributaries that communicate with the two or more pressure chambers;
a main supply flow path leading to the plurality of supply flow path tributaries;
a main recovery channel that communicates with the plurality of recovery channel tributaries;
a first bypass channel that connects the main stream of the supply channel and the main stream of the recovery channel;
A first opening/closing means for opening and closing the first bypass flow path,
The supply flow path tributary is a flow path that supplies the material to be discharged to the two or more pressure chambers,
The recovery channel tributary is a channel that recovers the discharged material from the two or more pressure chambers,
The main supply flow path is a flow path that supplies the material to be discharged to the plurality of supply flow path tributaries,
The main recovery flow path is a flow path that recovers the discharged material from the plurality of recovery flow path tributaries,
The ejection head is characterized in that the flow rate of the object to be ejected flowing through the first bypass passage becomes smaller as the pressure difference between the upstream side and the downstream side of the first opening/closing means becomes larger.
<2> a second bypass flow path that connects the supply flow path tributary and the recovery flow path main stream;
a third bypass flow path that connects the recovery flow path tributary and the supply flow path main stream;
a second opening/closing means for opening and closing the second bypass flow path;
A third opening/closing means for opening and closing the third bypass flow path,
The second opening/closing means opens and closes depending on the pressure difference between the upstream side and the downstream side of the second opening/closing means,
The third opening/closing means opens and closes depending on the pressure difference between the upstream side and the downstream side of the third opening/closing means,
The ejection head according to <1>, wherein the second opening/closing means and the third opening/closing means are opened with a larger pressure difference than the first opening/closing means.
<3> The ejection head according to <2>, wherein the connection portion between the second bypass flow path and the supply flow path tributary is provided at an end of the supply flow path tributary.
<4> The discharge according to <2> or <3>, wherein the connection part between the third bypass flow path and the recovery flow path tributary is provided at an end of the recovery flow path tributary. head.
<5> A supply side tank communicating with the main stream of the supply flow path;
a recovery side tank communicating with the main stream of the recovery channel;
a fourth bypass flow path passing through the supply side tank and the recovery side tank;
A fourth opening/closing means for opening and closing the fourth bypass flow path,
The fourth opening/closing means opens and closes depending on the pressure difference between the upstream side and the downstream side of the fourth opening/closing means,
The ejection head according to any one of <1> to <4>, wherein the first opening/closing means opens with a larger pressure difference than the fourth opening/closing means.
<6> The ejection head according to <5>, wherein the fourth bypass flow path is provided at the top of the supply side tank and the recovery side tank.
<7> The first opening/closing means has a cantilever structure, and has a valve body with one end as a fixed end and the other end as a free end, and the valve body is provided in the first bypass flow path. When the regulating member that regulates the free end of the valve body at a predetermined position is in contact with the free end of the valve body, the valve body is in a closed state;
When the pressure difference between the upstream side and the downstream side of the first opening/closing means is smaller than a threshold value, the free end of the valve body is located upstream of the position where it contacts the regulating member in the direction in which the discharged material flows. The ejection head according to any one of <1> to <6>, characterized in that:
<8> When the straight line connecting the fixed end and the free end of the valve body is defined as a first straight line, and the direction in which the discharged material flows in the first bypass flow path is defined as a second straight line,
The angle between the first straight line and the second straight line changes as the pressure difference between the upstream side and the downstream side of the first opening/closing means increases, and when the pressure difference becomes larger than a threshold value, the valve The ejection head according to <7>, wherein the free end of the body is at an angle that makes contact with the regulating member.
<9> An ejection device comprising the ejection head according to any one of <1> to <8>.

1 印刷装置
10 搬入部
20 前処理部
30 印刷部
40 乾燥部
50 搬出部
21 塗布部
33 吐出ユニット
100 吐出ヘッド
110 ノズル板
111 ノズル
120 個別流路部材
121 圧力室
122 個別供給流路
123 個別回収流路
130 振動板部材
140 圧電素子
150 共通流路部材
152 供給流路支流
153 回収流路支流
154 供給口
155 回収口
156 供給流路本流
157 回収流路本流
251 第2バイパス流路
252 第3バイパス流路
253 第1バイパス流路
254 第4バイパス流路
255 第2開閉手段
256 第3開閉手段
257 第1開閉手段
258 第4開閉手段
260 流量制御弁
261a、261b 第5バイパス流路
262a、262b 第5開閉手段
271 規制部材
273 弁体
1 Printing device 10 Carrying-in section 20 Pre-processing section 30 Printing section 40 Drying section 50 Carrying-out section 21 Coating section 33 Discharge unit 100 Discharge head 110 Nozzle plate 111 Nozzle 120 Individual channel member 121 Pressure chamber 122 Individual supply channel 123 Individual recovery flow Channel 130 Vibration plate member 140 Piezoelectric element 150 Common channel member 152 Supply channel tributary 153 Recovery channel tributary 154 Supply port 155 Recovery port 156 Supply channel main stream 157 Recovery channel main stream 251 Second bypass channel 252 Third bypass flow Path 253 First bypass flow path 254 Fourth bypass flow path 255 Second opening/closing means 256 Third opening/closing means 257 First opening/closing means 258 Fourth opening/closing means 260 Flow rate control valve 261a, 261b Fifth bypass flow path 262a, 262b Fifth Opening/closing means 271 Regulating member 273 Valve body

特開2017-159561号公報Japanese Patent Application Publication No. 2017-159561 特開2019-209595号公報JP2019-209595A

Claims (9)

被吐出物を吐出する複数のノズルと、
前記複数のノズルに各々連通する複数の圧力室と、
2以上の前記圧力室に通じる複数の供給流路支流と、
2以上の前記圧力室に通じる複数の回収流路支流と、
前記複数の供給流路支流に通じる供給流路本流と、
前記複数の回収流路支流に通じる回収流路本流と、
前記供給流路本流と前記回収流路本流とを通じる第1バイパス流路と、
前記第1バイパス流路を開閉する第1開閉手段と、を備え、
前記供給流路支流は、前記被吐出物を前記2以上の圧力室に供給する流路であり、
前記回収流路支流は、前記2以上の圧力室から前記被吐出物を回収する流路であり、
前記供給流路本流は、前記被吐出物を前記複数の供給流路支流に供給する流路であり、
前記回収流路本流は、前記複数の回収流路支流から前記被吐出物を回収する流路であり、
前記第1バイパス流路を流れる前記被吐出物の流量は、前記第1開閉手段の上流側と下流側の圧力差が大きくなるに伴って小さくなることを特徴とする吐出ヘッド。
a plurality of nozzles for discharging a material to be discharged;
a plurality of pressure chambers each communicating with the plurality of nozzles;
a plurality of supply channel tributaries that communicate with the two or more pressure chambers;
a plurality of recovery channel tributaries that communicate with the two or more pressure chambers;
a main supply flow path leading to the plurality of supply flow path tributaries;
a main recovery channel that communicates with the plurality of recovery channel tributaries;
a first bypass channel that connects the main stream of the supply channel and the main stream of the recovery channel;
A first opening/closing means for opening and closing the first bypass flow path,
The supply flow path tributary is a flow path that supplies the material to be discharged to the two or more pressure chambers,
The recovery channel tributary is a channel that recovers the discharged material from the two or more pressure chambers,
The main supply flow path is a flow path that supplies the material to be discharged to the plurality of supply flow path tributaries,
The main recovery flow path is a flow path that recovers the discharged material from the plurality of recovery flow path tributaries,
The ejection head is characterized in that the flow rate of the object to be ejected flowing through the first bypass passage becomes smaller as the pressure difference between the upstream side and the downstream side of the first opening/closing means becomes larger.
前記供給流路支流と前記回収流路本流とを通じる第2バイパス流路と、
前記回収流路支流と前記供給流路本流とを通じる第3バイパス流路と、
前記第2バイパス流路を開閉する第2開閉手段と、
前記第3バイパス流路を開閉する第3開閉手段と、を備え、
前記第2開閉手段は、当該第2開閉手段の上流側と下流側の圧力差によって開閉し、
前記第3開閉手段は、当該第3開閉手段の上流側と下流側の圧力差によって開閉し、
前記第2開閉手段と前記第3開閉手段は、前記第1開閉手段よりも大きい圧力差で開く状態になることを特徴とする請求項1に記載の吐出ヘッド。
a second bypass flow path that connects the supply flow path tributary and the recovery flow path main stream;
a third bypass flow path that connects the recovery flow path tributary and the supply flow path main stream;
a second opening/closing means for opening and closing the second bypass flow path;
A third opening/closing means for opening and closing the third bypass flow path,
The second opening/closing means opens and closes depending on the pressure difference between the upstream side and the downstream side of the second opening/closing means,
The third opening/closing means opens and closes depending on the pressure difference between the upstream side and the downstream side of the third opening/closing means,
The ejection head according to claim 1, wherein the second opening/closing means and the third opening/closing means are opened with a larger pressure difference than the first opening/closing means.
前記第2バイパス流路と前記供給流路支流との接続部は、前記供給流路支流の端部に設けられていることを特徴とする請求項2に記載の吐出ヘッド。 The ejection head according to claim 2, wherein a connecting portion between the second bypass flow path and the supply flow path tributary is provided at an end of the supply flow path tributary. 前記第3バイパス流路と前記回収流路支流との接続部は、前記回収流路支流の端部に設けられていることを特徴とする請求項2に記載の吐出ヘッド。 The ejection head according to claim 2, wherein a connection portion between the third bypass flow path and the recovery flow path tributary is provided at an end of the recovery flow path tributary. 前記供給流路本流に通じる供給側タンクと、
前記回収流路本流に通じる回収側タンクと、
前記供給側タンクと前記回収側タンクとを通じる第4バイパス流路と、
前記第4バイパス流路を開閉する第4開閉手段と、を備え、
前記第4開閉手段は、当該第4開閉手段の上流側と下流側の圧力差によって開閉し、
前記第1開閉手段は、前記第4開閉手段よりも大きい圧力差で開く状態になることを特徴とする請求項1に記載の吐出ヘッド。
a supply side tank communicating with the main stream of the supply flow path;
a recovery side tank communicating with the main stream of the recovery channel;
a fourth bypass flow path passing through the supply side tank and the recovery side tank;
A fourth opening/closing means for opening and closing the fourth bypass flow path,
The fourth opening/closing means opens and closes depending on the pressure difference between the upstream side and the downstream side of the fourth opening/closing means,
The ejection head according to claim 1, wherein the first opening/closing means is opened at a pressure difference greater than that of the fourth opening/closing means.
前記第4バイパス流路は、前記供給側タンク及び前記回収側タンクの最上部に設けられていることを特徴とする請求項5に記載の吐出ヘッド。 The ejection head according to claim 5, wherein the fourth bypass flow path is provided at the top of the supply side tank and the recovery side tank. 前記第1開閉手段は、片持ち梁構造であり、一端側を固定端とし他端側を自由端とした弁体を有し、前記第1バイパス流路に設けられた前記弁体の自由端を所定の位置で規制する規制部材と前記弁体の自由端とが接触している場合、閉じた状態になり、
前記弁体の自由端は、前記第1開閉手段の上流側と下流側の圧力差が閾値よりも小さい場合、前記規制部材と接触する位置よりも前記被吐出物が流れる方向の上流側に位置することを特徴とする請求項1に記載の吐出ヘッド。
The first opening/closing means has a cantilever structure, and has a valve body with one end as a fixed end and the other end as a free end, and the free end of the valve body provided in the first bypass flow path. When the regulating member that regulates the valve at a predetermined position is in contact with the free end of the valve body, the valve body is in a closed state;
When the pressure difference between the upstream side and the downstream side of the first opening/closing means is smaller than a threshold value, the free end of the valve body is located upstream of the position where it contacts the regulating member in the direction in which the discharged material flows. The ejection head according to claim 1, characterized in that:
前記弁体の固定端と自由端とを結ぶ直線を第1直線とし、前記第1バイパス流路の前記被吐出物が流れる方向を第2直線としたとき、
前記第1直線と前記第2直線との角度は、前記第1開閉手段の上流側と下流側の圧力差が大きくなるに伴って変化し、圧力差が閾値よりも大きくなった場合、前記弁体の自由端が前記規制部材と接触する角度になることを特徴とする請求項7に記載の吐出ヘッド。
When a straight line connecting the fixed end and the free end of the valve body is defined as a first straight line, and a direction in which the discharged material flows in the first bypass flow path is defined as a second straight line,
The angle between the first straight line and the second straight line changes as the pressure difference between the upstream side and the downstream side of the first opening/closing means increases, and when the pressure difference becomes larger than a threshold value, the valve 8. The ejection head according to claim 7, wherein the free end of the body is at an angle that makes contact with the regulating member.
請求項1~8のいずれかに記載の吐出ヘッドを備えていることを特徴とする吐出装置。
An ejection device comprising the ejection head according to any one of claims 1 to 8.
JP2023057974A 2022-07-04 2023-03-31 Discharge head and discharge device Pending JP2024006951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23177969.5A EP4303017A1 (en) 2022-07-04 2023-06-07 Discharge head and discharge apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022107666 2022-07-04
JP2022107666 2022-07-04

Publications (1)

Publication Number Publication Date
JP2024006951A true JP2024006951A (en) 2024-01-17

Family

ID=89539427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023057974A Pending JP2024006951A (en) 2022-07-04 2023-03-31 Discharge head and discharge device

Country Status (1)

Country Link
JP (1) JP2024006951A (en)

Similar Documents

Publication Publication Date Title
CN104943377B (en) Ink jet recording method and ink group
CN106414513B (en) Composition, ink, composition container and image or cured article and forming method thereof and formation device
Ng et al. Polyvinylpyrrolidone-based bioink: influence of bioink properties on printing performance and cell proliferation during inkjet-based bioprinting
US8042898B2 (en) Inkjet recording apparatus and method
CN113165374B (en) Printing head assembly for 3D biological printer
CN108146079B (en) Ink jet recording apparatus, printing apparatus, and cured product manufacturing method
JP2024006951A (en) Discharge head and discharge device
JP2023135705A (en) Discharge head and discharge device
EP4303017A1 (en) Discharge head and discharge apparatus
US10800180B2 (en) Liquid circulation device and liquid discharge apparatus
JP2023140528A (en) Liquid discharge head, liquid discharge unit and device
JP2023143550A (en) Liquid discharge head, liquid discharge unit and liquid discharge device
US10112389B2 (en) Inkjet head and coating apparatus using same
JP2023143551A (en) Liquid discharge head, liquid discharge unit and liquid discharge device
JP2023140533A (en) Liquid discharge head, liquid discharge unit and discharge device
JP2022145590A (en) Compound introduction device and compound introduction method
EP4249262A1 (en) Liquid discharge head, liquid discharge unit, and liquid discharge apparatus
US20230302800A1 (en) Liquid discharge head, liquid discharge unit, and liquid discharge apparatus
US20070064050A1 (en) Ink-jet ink, ink-jet ink set and ink-jet recording method
US10828903B2 (en) Ink absorbing member accommodation container and ink absorbing structure
EP3925779B1 (en) Liquid discharge apparatus
CN212068595U (en) Mixing arrangement of waterborne glazing oil
US20220298529A1 (en) Compound introduction apparatus and compound introduction method
JP2022145594A (en) Compound introduction device and compound introduction method
JP6688484B2 (en) Sheet material suction device and image forming apparatus