JP2024005091A - Defoaming agent composition - Google Patents

Defoaming agent composition Download PDF

Info

Publication number
JP2024005091A
JP2024005091A JP2022105105A JP2022105105A JP2024005091A JP 2024005091 A JP2024005091 A JP 2024005091A JP 2022105105 A JP2022105105 A JP 2022105105A JP 2022105105 A JP2022105105 A JP 2022105105A JP 2024005091 A JP2024005091 A JP 2024005091A
Authority
JP
Japan
Prior art keywords
general formula
group
carbon atoms
integer
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022105105A
Other languages
Japanese (ja)
Inventor
理生 山田
Yoshio Yamada
多加志 田中
Takashi Tanaka
裕貴 木下
Hirotaka Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nicca Chemical Co Ltd
Original Assignee
Nicca Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicca Chemical Co Ltd filed Critical Nicca Chemical Co Ltd
Priority to JP2022105105A priority Critical patent/JP2024005091A/en
Publication of JP2024005091A publication Critical patent/JP2024005091A/en
Pending legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Paper (AREA)

Abstract

To provide a defoaming agent composition which is superior in both defoaming properties of initial defoamability and defoaming persistence, when added to a foamed liquid, and which, in addition to the defoaming properties, is capable of sufficiently inhibiting degradation in a size degree of obtained paper pulp, when used as a defoaming agent for a papermaking process in the paper pulp manufacturing industry.SOLUTION: A defoaming agent composition contains: (A) lecithin; and at least one kind of surfactant selected from the group consisting of (B) a polyoxyalkylene type nonionic surfactant, (C) a polyalkylene polyamine type nonionic surfactant, (D) a sulphate type anionic surfactant, and (E) a quaternary ammonium salt type cationic surfactant.SELECTED DRAWING: None

Description

本発明は、消泡剤組成物に関する。 The present invention relates to antifoam compositions.

従来から、製紙パルプ工業、塗料工業、繊維工業、合成樹脂工業、樹脂エマルジョン工業、セメント・コンクリート工業、食品工業及び発酵工業等の製造工程や、屎尿処理及び廃水処理等の処理工程においては、発泡障害のために生産性、処理能力の低下が問題になっている。特に近年は、前記の工業分野の製造・処理工程に分散剤、脱墨剤、サイズ剤、及びラテックス等の発泡の原因になる物質が多く用いられる傾向にあり、従来以上に発泡が問題になっている。このような発泡を防止するため、従来から様々な消泡剤が提案されており、例えば、一般的には、高級アルコール系エマルション消泡剤、又はシリコーン系消泡剤が使用されている。 Foaming has traditionally been used in manufacturing processes such as the paper and pulp industry, paint industry, textile industry, synthetic resin industry, resin emulsion industry, cement and concrete industry, food industry, and fermentation industry, as well as treatment processes such as human waste treatment and wastewater treatment. The problem is a decline in productivity and processing capacity due to the failure. Particularly in recent years, there has been a tendency for substances that cause foaming, such as dispersants, deinking agents, sizing agents, and latex, to be increasingly used in manufacturing and processing processes in the above-mentioned industrial fields, and foaming has become more of a problem than ever before. ing. In order to prevent such foaming, various antifoaming agents have been proposed in the past, and for example, higher alcohol emulsion antifoaming agents or silicone antifoaming agents are generally used.

特開2003-71207号公報(特許文献1)には、高級アルコール系エマルション消泡剤において、ウエランガム及び/又は構成単糖がモル比でフコース:グルコース:グルクロン酸:ラムノース=1~2:1~4:1~2:1~2である多糖類と、ザンサンガムと、ナトリウムカルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロースの中から選ばれた少なくとも1種、を含むことを特徴とするエマルション安定性が改善された高級アルコール系エマルション消泡剤が開示されている。しかしながら、高級アルコール系エマルション消泡剤においてはエマルション相分離、増粘・ゲル化が発生し十分な消泡効果が発揮されないという問題があった。 JP-A No. 2003-71207 (Patent Document 1) discloses that in a higher alcohol emulsion antifoaming agent, welan gum and/or constituent monosaccharides have a molar ratio of fucose: glucose: glucuronic acid: rhamnose = 1 to 2:1. Improved emulsion stability characterized by containing a polysaccharide having a ratio of 4:1 to 2:1 to 2, xanthan gum, and at least one selected from sodium carboxymethylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose. A higher alcohol-based emulsion antifoaming agent is disclosed. However, higher alcohol-based emulsion antifoaming agents have the problem that emulsion phase separation, thickening, and gelation occur, and a sufficient antifoaming effect is not exhibited.

また、特開2001-212403号公報(特許文献2)には、消泡性成分としてシリコーン系ブロック交互共重合体、微粉末無機化合物、乳化剤および水を含有する水中油型エマルジョンのシリコーン系消泡剤が開示されている。しかしながら、消泡性成分としてシリコーン系ブロック交互共重合体は、分散性が悪く、消泡効果が低下する恐れがあり、また、製紙パルプ工業に使用した場合、シリコーン系ブロック交互共重合体が部分的に小滴となり小斑点となる、いわゆるオイルスポットによって、得られる紙の品質を著しく損なう恐れがあり、そのことによる印刷適正が十分ではないという問題があった。 Furthermore, JP-A-2001-212403 (Patent Document 2) describes a silicone-based antifoaming agent for an oil-in-water emulsion containing a silicone-based block alternating copolymer, a finely powdered inorganic compound, an emulsifier, and water as an antifoaming component. Agents are disclosed. However, silicone-based alternating block copolymers as anti-foaming components have poor dispersibility and may reduce the anti-foaming effect. There is a risk that so-called oil spots, which turn into small droplets and small spots, can significantly impair the quality of the paper obtained, and this poses a problem in that the printing suitability is not sufficient.

特開2003-71207号公報Japanese Patent Application Publication No. 2003-71207 特開2001-212403号公報Japanese Patent Application Publication No. 2001-212403

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、発泡液に添加した場合に、初期消泡性と消泡持続性との双方の消泡性に優れており、かつ、紙パルプ製造工業の抄紙工程用消泡剤として使用した場合に、前記消泡性に加えて、得られる紙パルプのサイズ度の低下を十分に抑制することが可能な消泡剤組成物を提供することを目的とする。 The present invention has been made in view of the problems of the prior art described above, and has excellent defoaming properties in both initial defoaming properties and sustained defoaming properties when added to a foaming liquid, and Provided is an antifoaming composition that, when used as an antifoaming agent for the papermaking process in the paper pulp manufacturing industry, not only has the above-mentioned antifoaming properties but also can sufficiently suppress a decrease in the size of the resulting paper pulp. The purpose is to

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、レシチンと、特定の界面活性剤とを用いることによって、前記目的を達成することが可能な消泡剤組成物が得られることを見出し、本発明を完成するに至った。 As a result of extensive research to achieve the above object, the present inventors have found that an antifoam composition capable of achieving the above object can be obtained by using lecithin and a specific surfactant. This discovery led to the completion of the present invention.

すなわち、本発明は以下の態様を提供する。 That is, the present invention provides the following aspects.

[1](A)レシチンと、(B)ポリオキシアルキレン型非イオン界面活性剤、(C)ポリアルキレンポリアミン型非イオン界面活性剤、(D)硫酸塩型アニオン界面活性剤、及び(E)第四級アンモニウム塩型カチオン界面活性剤からなる群から選択される少なくとも1種の界面活性剤とを含有する、消泡剤組成物。 [1] (A) lecithin, (B) polyoxyalkylene type nonionic surfactant, (C) polyalkylene polyamine type nonionic surfactant, (D) sulfate type anionic surfactant, and (E) An antifoaming agent composition comprising at least one surfactant selected from the group consisting of quaternary ammonium salt type cationic surfactants.

[2](F)ポリプロピレングリコール及びポリプロピレングリコールと脂肪酸とのエステル化物のうちの少なくとも一方のポリプロピレングリコール系化合物を更に含有する、[1]に記載の消泡剤組成物。 [2] The antifoaming agent composition according to [1], further comprising (F) at least one polypropylene glycol compound selected from polypropylene glycol and an esterified product of polypropylene glycol and a fatty acid.

[3]前記(B)ポリオキシアルキレン型非イオン界面活性剤が、下記一般式(1)で表される化合物である、[1]又は[2]に記載の消泡剤組成物。 [3] The antifoam composition according to [1] or [2], wherein the polyoxyalkylene nonionic surfactant (B) is a compound represented by the following general formula (1).

-(AO)-R (1)
(一般式(1)中、Rは、炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基或はRO-であり、Rは、水素原子又はRC(=O)-であり、Rは、水素原子又は-C(=O)Rであり、R及びRは、それぞれ独立に、炭素数9~21の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基であり、AOは、炭素数2~4のアルキレンオキシ基であり、aは、AOの繰り返し単位の数で、1~200の整数であり、aが2以上の場合は、複数のAOは同一でも異なっていてもよい。)。
R 1 -(A 1 O) a -R 2 (1)
(In the general formula (1), R 1 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms or R 3 O-, and R 3 is , a hydrogen atom or R 4 C(=O)-, R 2 is a hydrogen atom or -C(=O)R 5 , and R 4 and R 5 each independently have a carbon number of 9 to 21 It is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group, A 1 O is an alkyleneoxy group having 2 to 4 carbon atoms, and a is a repeating unit of A 1 O. is an integer from 1 to 200, and when a is 2 or more, multiple A 1 O's may be the same or different.)

[4]前記(B)ポリオキシアルキレン型非イオン界面活性剤が、下記一般式(2)で表される化合物である、[1]~[3]のうちのいずれか1項に記載の消泡剤組成物。 [4] The eraser according to any one of [1] to [3], wherein the polyoxyalkylene nonionic surfactant (B) is a compound represented by the following general formula (2). Foam composition.

-(AO)-H (2)
(一般式(2)中、Rは、炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基であり、AOは、炭素数2~4のアルキレンオキシ基であり、bは、AOの繰り返し単位の数で、1~200の整数であり、bが2以上の場合は、複数のAOは同一でも異なっていてもよい。)。
R 6 -(A 2 O) b -H (2)
(In general formula (2), R 6 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms, and A 2 O is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 2 to 22 carbon atoms. 4 is an alkyleneoxy group, b is the number of repeating units of A 2 O, and is an integer from 1 to 200, and when b is 2 or more, multiple A 2 O may be the same or different. ).

[5]前記(B)ポリオキシアルキレン型非イオン界面活性剤が、下記一般式(3)又は(4)で表される化合物である、[1]~[4]のうちのいずれか1項に記載の消泡剤組成物。 [5] Any one of [1] to [4], wherein the (B) polyoxyalkylene type nonionic surfactant is a compound represented by the following general formula (3) or (4). The antifoam composition described in .

O-(EO)(PO)(EO)-R (3)
(一般式(3)中、Rは、水素原子又はRC(=O)-であり、Rは、水素原子又は-C(=O)R10であり、R及びR10は、それぞれ独立に、炭素数9~21の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基であり、EOは、エチレンオキシ基であり、POはプロピレンオキシ基であり、c及びeは、EOの繰り返し単位の数で、それぞれ独立に、1~199の整数であり、dは、POの繰り返し単位の数で、0~198の整数であり、c+d+eは、2~200である。)
R 7 O-(EO) c (PO) d (EO) e -R 8 (3)
(In general formula (3), R 7 is a hydrogen atom or R 9 C(=O)-, R 8 is a hydrogen atom or -C(=O)R 10 , and R 9 and R 10 are , each independently a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 9 to 21 carbon atoms, EO is an ethyleneoxy group, and PO is a propyleneoxy group. , c and e are the number of repeating units of EO and are each independently an integer of 1 to 199, d is the number of repeating units of PO and is an integer of 0 to 198, and c+d+e is an integer of 2 to 198. 200.)

11O-(PO)(EO)(PO)-R12 (4)
(一般式(4)中、R11は、水素原子又はR13C(=O)-であり、R12は、水素原子又は-C(=O)R14であり、R13及びR14は、それぞれ独立に、炭素数9~21の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基であり、EOは、エチレンオキシ基であり、POはプロピレンオキシ基であり、f及びhは、POの繰り返し単位の数で、それぞれ独立に、1~198の整数であり、gは、EOの繰り返し単位の数で、1~198の整数であり、f+g+hは、3~200である。)。
R 11 O-(PO) f (EO) g (PO) h -R 12 (4)
(In general formula (4), R 11 is a hydrogen atom or R 13 C(=O)-, R 12 is a hydrogen atom or -C(=O)R 14 , and R 13 and R 14 are , each independently a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 9 to 21 carbon atoms, EO is an ethyleneoxy group, and PO is a propyleneoxy group. , f and h are the number of repeating units of PO and are each independently an integer of 1 to 198, g is the number of repeating units of EO and is an integer of 1 to 198, and f+g+h is an integer of 3 to 198. 200).

[6]前記(C)ポリアルキレンポリアミン型非イオン界面活性剤が、少なくとも1つの窒素原子に下記一般式(5)で表される基が少なくとも1つ結合している化合物である、[1]~[5]のうちのいずれか1項に記載の消泡剤組成物。 [6] The polyalkylene polyamine type nonionic surfactant (C) is a compound in which at least one group represented by the following general formula (5) is bonded to at least one nitrogen atom, [1] The antifoaming agent composition according to any one of [5] to [5].

-(AO)-H (5)
(一般式(5)中、AOは、炭素数2~4のアルキレンオキシ基であり、iは、AOの繰り返し単位の数で、1~147の整数であり、iが2以上の場合は、複数のAOは同一でも異なっていてもよい。)。
-(A 3 O) i -H (5)
(In general formula (5), A 3 O is an alkyleneoxy group having 2 to 4 carbon atoms, i is the number of repeating units of A 3 O, and is an integer from 1 to 147, and i is 2 or more. In this case, the plural A 3 O's may be the same or different.)

[7]前記(C)ポリアルキレンポリアミン型非イオン界面活性剤が、下記一般式(6)で表される化合物である、[1]~[6]のうちのいずれか1項に記載の消泡剤組成物。 [7] The eraser according to any one of [1] to [6], wherein the polyalkylene polyamine type nonionic surfactant (C) is a compound represented by the following general formula (6). Foam composition.

(一般式(6)中、R15は、下記一般式(7)で表される基或は炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基であり、R16は、炭素数2~4のアルキレン基であり、AO、AO及びAOは、それぞれ独立に、炭素数2~4のアルキレンオキシ基であり、jは、下記一般式(8)で表される基の繰り返し単位の数で、1~3の整数であり、k、l及びmは、それぞれAO、AO及びAOの繰り返し単位の数で、それぞれ独立に、1~147の整数であり、kが2以上の場合は、複数のAOは同一でも異なっていてもよく、lが2以上の場合は、複数のAOは同一でも異なっていてもよく、mが2以上の場合は、複数のAOは同一でも異なっていてもよく、R15が下記一般式(7)で表される基の場合、k+l+m+nは4~200であり、R15が炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基の場合、k+l+mは3~200である。) (In general formula (6), R 15 is a group represented by the following general formula (7) or a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon having 8 to 22 carbon atoms. R 16 is an alkylene group having 2 to 4 carbon atoms, A 4 O, A 5 O and A 6 O are each independently an alkyleneoxy group having 2 to 4 carbon atoms, and j is , is the number of repeating units of the group represented by the following general formula (8), and is an integer of 1 to 3, and k, l, and m are the repeating units of A 4 O, A 5 O, and A 6 O, respectively. number, each independently an integer from 1 to 147; when k is 2 or more, multiple A 4 O may be the same or different; when l is 2 or more, multiple A 5 O may be the same or different; when m is 2 or more, multiple A 6 O may be the same or different; when R 15 is a group represented by the following general formula (7), k+l+m+n is 4 to 200, and when R 15 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms, k+l+m is 3 to 200.)

-(AO)-H (7)
(一般式(7)中、AOは、炭素数2~4のアルキレンオキシ基であり、nは、AOの繰り返し単位の数で、1~147の整数であり、nが2以上の場合は、複数のAOは同一でも異なっていてもよい。)
-(A 7 O) n -H (7)
(In general formula (7), A 7 O is an alkyleneoxy group having 2 to 4 carbon atoms, n is the number of repeating units of A 7 O, and is an integer from 1 to 147, and n is 2 or more. In this case, multiple A 7 O's may be the same or different.)

(一般式(8)中、R16、AO及びmはそれぞれ前記一般式(6)中のものと同義である。)。 (In general formula (8), R 16 , A 6 O and m each have the same meaning as in general formula (6) above.)

[8]前記(D)硫酸塩型アニオン界面活性剤が、下記一般式(9)で表される化合物である、[1]~[7]のうちのいずれか1項に記載の消泡剤組成物。 [8] The antifoaming agent according to any one of [1] to [7], wherein the sulfate-type anionic surfactant (D) is a compound represented by the following general formula (9). Composition.

17-X―SOY (9)
(一般式(9)中、R17は、炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基或は炭素数8~22の1価の芳香族炭化水素基であり、Xは、酸素原子又は下記一般式(10)で表される基であり、Yは、アルカリ金属、アルカリ土類金属、アンモニウム、有機塩基である。)
R 17 -X-SO 3 Y (9)
(In general formula (9), R 17 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms, or a monovalent aromatic group having 8 to 22 carbon atoms. (X is an oxygen atom or a group represented by the following general formula (10), and Y is an alkali metal, alkaline earth metal, ammonium, or organic base.)

-(AO)- (10)
(一般式(10)中、AOは、炭素数2~4のアルキレンオキシ基であり、pは、AOの繰り返し単位の数で、0~10の整数であり、pが2以上の場合は、複数のAOは同一でも異なっていてもよい。)。
-(A 8 O) p - (10)
(In general formula (10), A 8 O is an alkyleneoxy group having 2 to 4 carbon atoms, p is the number of repeating units of A 8 O, and is an integer from 0 to 10, and p is 2 or more. In this case, the plural A 8 O's may be the same or different.)

[9]前記(E)第四級アンモニウム塩型カチオン界面活性剤が、下記一般式(11)で表される化合物である、[1]~[8]のうちのいずれか1項に記載の消泡剤組成物。 [9] The quaternary ammonium salt type cationic surfactant (E) according to any one of [1] to [8], wherein the quaternary ammonium salt type cationic surfactant is a compound represented by the following general formula (11). Antifoam composition.

(一般式(11)中、R18は、炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基であり、R19は、炭素数1~22の直鎖状又は分岐状の飽和の1価の脂肪族炭化水素基、炭素数2~22の直鎖状又は分岐状の不飽和の1価の脂肪族炭化水素基或は下記一般式(12)で表される基であり、R20は、炭素数1~3の直鎖状又は分岐状の飽和の1価の脂肪族炭化水素基或は下記一般式(13)で表される基であり、R21は、炭素数1~3の直鎖状又は分岐状の飽和の1価の脂肪族炭化水素基、ベンジル基或はヒドロキシエチル基であり、Tq-は、対イオンであり、qは、1~3の整数である。) (In the general formula (11), R 18 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms, and R 19 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 22 carbon atoms. A linear or branched saturated monovalent aliphatic hydrocarbon group, a linear or branched unsaturated monovalent aliphatic hydrocarbon group having 2 to 22 carbon atoms, or the following general formula (12 ), and R 20 is a linear or branched saturated monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms or a group represented by the following general formula (13). , R 21 is a linear or branched saturated monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms, a benzyl group or a hydroxyethyl group, and T q- is a counter ion, q is an integer from 1 to 3.)

-(AO)-H (12)
(一般式(12)中、AOは、炭素数2~4のアルキレンオキシ基であり、rは、AOの繰り返し単位の数で、1~5の整数であり、rが2以上の場合は、複数のAOは同一でも異なっていてもよい。)
-(A 9 O) r -H (12)
(In general formula (12), A 9 O is an alkyleneoxy group having 2 to 4 carbon atoms, r is the number of repeating units of A 9 O, and is an integer of 1 to 5, and r is 2 or more. In this case, multiple A 9 O's may be the same or different.)

-(A10O)-H (13)
(一般式(13)中、A10Oは、炭素数2~4のアルキレンオキシ基であり、sは、A10Oの繰り返し単位の数で、1~5の整数であり、sが2以上の場合は、複数のA10Oは同一でも異なっていてもよい。)。
-(A 10 O) s -H (13)
(In general formula (13), A 10 O is an alkyleneoxy group having 2 to 4 carbon atoms, s is the number of repeating units of A 10 O, and is an integer of 1 to 5, and s is 2 or more In this case, the plural A 10 O's may be the same or different.)

[10]紙パルプ製造工業の抄紙工程用消泡剤である、[1]~[9]のうちのいずれか1項に記載の消泡剤組成物。 [10] The defoaming agent composition according to any one of [1] to [9], which is an antifoaming agent for the papermaking process in the paper pulp manufacturing industry.

本発明によれば、発泡液に添加した場合に、初期消泡性と消泡持続性との双方の消泡性に優れており、かつ、紙パルプ製造工業の抄紙工程用消泡剤として使用した場合に、前記消泡性に加えて、得られる紙パルプのサイズ度の低下を十分に抑制することが可能な消泡剤組成物を得ることが可能となる。 According to the present invention, when added to a foaming liquid, it has excellent defoaming properties in both initial defoaming properties and sustained defoaming properties, and can be used as a defoaming agent for the papermaking process in the paper pulp manufacturing industry. In this case, it becomes possible to obtain an antifoaming agent composition that not only has the above-mentioned antifoaming properties but also can sufficiently suppress a decrease in the sizing of the resulting paper pulp.

以下、本発明をその好適な実施形態に即して詳細に説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明及びその適用物を制限することを意図するものではない。 Hereinafter, the present invention will be explained in detail based on its preferred embodiments. Note that the following description of preferred embodiments is essentially just an example, and is not intended to limit the present invention and its applications.

本発明の消泡剤組成物は、(A)レシチン(以下、「(A)成分」ともいう)と、(B)ポリオキシアルキレン型非イオン界面活性剤(以下、「(B)成分」ともいう)、(C)ポリアルキレンポリアミン型非イオン界面活性剤(以下、「(C)成分」ともいう)、(D)硫酸塩型アニオン界面活性剤(以下、「(D)成分」ともいう)、及び(E)第四級アンモニウム塩型カチオン界面活性剤(以下、「(E)成分」ともいう)からなる群から選択される少なくとも1種の界面活性剤とを含有するものである。また、本発明の消泡剤組成物は、(F)ポリプロピレングリコール及びポリプロピレングリコールと脂肪酸とのエステル化物のうちの少なくとも一方のポリプロピレングリコール系化合物(以下、「(F)成分」ともいう)を更に含んでいることが好ましい。 The antifoam composition of the present invention comprises (A) lecithin (hereinafter also referred to as "component (A)") and (B) a polyoxyalkylene type nonionic surfactant (hereinafter also referred to as "component (B)"). ), (C) polyalkylene polyamine type nonionic surfactant (hereinafter also referred to as "(C) component"), (D) sulfate type anionic surfactant (hereinafter also referred to as "(D) component") , and (E) a quaternary ammonium salt type cationic surfactant (hereinafter also referred to as "component (E)"). The antifoam composition of the present invention further contains (F) a polypropylene glycol compound (hereinafter also referred to as "component (F)") of at least one of polypropylene glycol and an esterified product of polypropylene glycol and a fatty acid. It is preferable that it contains.

(A)レシチン
本発明に用いられる(A)レシチンは、下記式(A)で表される化合物である。
(A) Lecithin The lecithin (A) used in the present invention is a compound represented by the following formula (A).

このような(A)レシチンとしては、植物や動物、微生物等の生体から抽出され、必要に応じて精製したものを使用してもよいし、合成したものを使用してもよい。これらの中でも、動物由来のレシチン、植物由来のレシチンが好ましく、動物由来のレシチンとしては、卵黄や乳等由来のレシチンが挙げられ、植物由来のレシチンとしては、大豆、菜種、小麦、米、コーン、綿実、紅花、アマニ、ゴマ、ひまわり種子等由来のレシチンが挙げられる。また、本発明においては、これらのレシチンの水素添加物(水素添加レシチン)、酵素分解物(酵素分解レシチン)、分別物(分別レシチン)等を(A)成分として使用することもできる。 As such lecithin (A), one extracted from living organisms such as plants, animals, and microorganisms and purified as necessary may be used, or one that is synthesized may be used. Among these, animal-derived lecithin and plant-derived lecithin are preferred. Examples of animal-derived lecithin include lecithin derived from egg yolk and milk, and examples of plant-derived lecithin include soybean, rapeseed, wheat, rice, and corn. , lecithin derived from cottonseed, safflower, flaxseed, sesame, sunflower seed, etc. Further, in the present invention, hydrogenated products (hydrogenated lecithin), enzymatic decomposition products (enzyme-decomposed lecithin), fractionated products (fractionated lecithin), etc. of these lecithins can also be used as the component (A).

(B)ポリオキシアルキレン型非イオン界面活性剤
本発明に用いられる(B)ポリオキシアルキレン型非イオン界面活性剤としては特に制限はないが、例えば、下記一般式(1)で表される化合物が挙げられる。
-(AO)-R (1)
前記一般式(1)中、Rは、炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基或はRO-であり、Rは、水素原子又はRC(=O)-であり、Rは、水素原子又は-C(=O)Rであり、R及びRは、それぞれ独立に、炭素数9~21の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基である。
(B) Polyoxyalkylene type nonionic surfactant The (B) polyoxyalkylene type nonionic surfactant used in the present invention is not particularly limited, but for example, a compound represented by the following general formula (1) can be mentioned.
R 1 -(A 1 O) a -R 2 (1)
In the general formula (1), R 1 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms or R 3 O-, and R 3 is , a hydrogen atom or R 4 C(=O)-, R 2 is a hydrogen atom or -C(=O)R 5 , and R 4 and R 5 each independently have a carbon number of 9 to 21 It is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group.

Oは、炭素数2~4のアルキレンオキシ基であり、消泡性の観点から、炭素数2~3のアルキレンオキシ基が好ましく、エチレンオキシ基(以下、「EO」と略すこともある)単独、又はエチレンオキシ基(EO)/プロピレンオキシ基(以下、「PO」と略すこともある)の混合構造がより好ましく、EO/PO混合構造が更に好ましい。また、EO/POのモル比としては、1/99~100/0が好ましい。 A 1 O is an alkyleneoxy group having 2 to 4 carbon atoms, preferably an alkyleneoxy group having 2 to 3 carbon atoms from the viewpoint of antifoaming properties, and an ethyleneoxy group (hereinafter sometimes abbreviated as "EO"). ) alone or a mixed structure of ethyleneoxy group (EO)/propyleneoxy group (hereinafter sometimes abbreviated as "PO") is more preferable, and an EO/PO mixed structure is even more preferable. Further, the molar ratio of EO/PO is preferably 1/99 to 100/0.

aは、AOの繰り返し単位の数で、1~200の整数であり、aが2以上の場合は、複数のAOは同一でも異なっていてもよい。 a is the number of repeating units of A 1 O and is an integer from 1 to 200; when a is 2 or more, a plurality of A 1 O's may be the same or different;

このような(B)ポリオキシアルキレン型非イオン界面活性剤としては、例えば、ポリオキシアルキレン基を有するアルコール型非イオン界面活性剤、プルロニック(登録商標)型界面活性剤、ポリエチレングリコール、ポリエチレングリコールと脂肪酸とのエステル化物が挙げられる。 Examples of such polyoxyalkylene type nonionic surfactants (B) include alcohol type nonionic surfactants having a polyoxyalkylene group, Pluronic (registered trademark) type surfactants, polyethylene glycol, polyethylene glycol, and Examples include esterified products with fatty acids.

(アルコール型非イオン界面活性剤)
前記ポリオキシアルキレン基を有するアルコール型非イオン界面活性剤(以下、単に「アルコール型非イオン界面活性剤」ともいう)としては、例えば、下記一般式(2)で表される化合物が挙げられる。
-(AO)-H (2)
前記一般式(2)中、Rは、炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基である。また、サイズ度の低下を抑制するという観点から、前記脂肪族炭化水素基の炭素数としては12~22が好ましく、14~22がより好ましい。
(Alcohol type nonionic surfactant)
Examples of the alcohol type nonionic surfactant having a polyoxyalkylene group (hereinafter also simply referred to as "alcohol type nonionic surfactant") include, for example, a compound represented by the following general formula (2).
R 6 -(A 2 O) b -H (2)
In the general formula (2), R 6 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms. Further, from the viewpoint of suppressing a decrease in size, the number of carbon atoms in the aliphatic hydrocarbon group is preferably 12 to 22, more preferably 14 to 22.

Oは、炭素数2~4のアルキレンオキシ基であり、消泡性の観点から、炭素数2~3のアルキレンオキシ基が好ましく、エチレンオキシ基(以下、「EO」と略すこともある)単独、又はエチレンオキシ基(EO)/プロピレンオキシ基(以下、「PO」と略すこともある)の混合構造がより好ましく、EO/PO混合構造が更に好ましい。また、EO/POのモル比としては、1/99~100/0が好ましく、10/90~90/10がより好ましく、20/80~80/20が更に好ましい。 A 2 O is an alkyleneoxy group having 2 to 4 carbon atoms, preferably an alkyleneoxy group having 2 to 3 carbon atoms from the viewpoint of antifoaming properties, and is an ethyleneoxy group (hereinafter sometimes abbreviated as "EO"). ) alone or a mixed structure of ethyleneoxy group (EO)/propyleneoxy group (hereinafter sometimes abbreviated as "PO") is more preferable, and an EO/PO mixed structure is even more preferable. Further, the molar ratio of EO/PO is preferably 1/99 to 100/0, more preferably 10/90 to 90/10, and even more preferably 20/80 to 80/20.

bは、AOの繰り返し単位の数であり、1~200の整数であり、10~80の整数が好ましく、20~70の整数がより好ましい。また、bが2以上の場合は、複数のAOは同一でも異なっていてもよい。 b is the number of repeating units of A 2 O, and is an integer of 1 to 200, preferably an integer of 10 to 80, and more preferably an integer of 20 to 70. Further, when b is 2 or more, the plural A 2 O may be the same or different.

(プルロニック(登録商標)型界面活性剤、ポリエチレングリコール、及びポリエチレングリコールと脂肪酸とのエステル化物)
前記プルロニック(登録商標)型界面活性剤、前記ポリエチレングリコール、前記ポリエチレングリコールと脂肪酸とのエステル化物としては、下記一般式(3)又は(4)で表される化合物が挙げられる。
O-(EO)(PO)(EO)-R (3)
前記一般式(3)中、Rは、水素原子又はRC(=O)-であり、Rは、水素原子又は-C(=O)R10であり、R及びR10は、それぞれ独立に、炭素数9~21の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基である。EOは、エチレンオキシ基であり、POはプロピレンオキシ基である。c及びeは、EOの繰り返し単位の数であり、それぞれ独立に、1~199の整数であり、dは、POの繰り返し単位の数であり、0~198の整数であり、c+d+eは、2~200である。
11O-(PO)(EO)(PO)-R12 (4)
前記一般式(4)中、R11は、水素原子又はR13C(=O)-であり、R12は、水素原子又は-C(=O)R14であり、R13及びR14は、それぞれ独立に、炭素数9~21の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基である。EOは、エチレンオキシ基であり、POはプロピレンオキシ基である。f及びhは、POの繰り返し単位の数であり、それぞれ独立に、1~198の整数であり、gは、EOの繰り返し単位の数であり、1~198の整数であり、f+g+hは、3~200である。
(Pluronic (registered trademark) type surfactant, polyethylene glycol, and esterified product of polyethylene glycol and fatty acid)
Examples of the Pluronic (registered trademark) type surfactant, the polyethylene glycol, and the esterified product of polyethylene glycol and fatty acid include compounds represented by the following general formula (3) or (4).
R 7 O-(EO) c (PO) d (EO) e -R 8 (3)
In the general formula (3), R 7 is a hydrogen atom or R 9 C(=O)-, R 8 is a hydrogen atom or -C(=O)R 10 , and R 9 and R 10 are , each independently a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 9 to 21 carbon atoms. EO is an ethyleneoxy group and PO is a propyleneoxy group. c and e are the number of repeating units of EO and are each independently an integer of 1 to 199; d is the number of repeating units of PO and is an integer of 0 to 198; c+d+e is 2 ~200.
R 11 O-(PO) f (EO) g (PO) h -R 12 (4)
In the general formula (4), R 11 is a hydrogen atom or R 13 C(=O)-, R 12 is a hydrogen atom or -C(=O)R 14 , and R 13 and R 14 are , each independently a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 9 to 21 carbon atoms. EO is an ethyleneoxy group and PO is a propyleneoxy group. f and h are the number of repeating units of PO and are each independently an integer of 1 to 198; g is the number of repeating units of EO and is an integer of 1 to 198; f+g+h is 3 ~200.

前記一般式(3)において、R及びRが水素原子の場合、c+d+eとしては、サイズ度の低下を抑制するという観点から、15~80が好ましく、30~70がより好ましい。EO/POのモル比としては、消泡性の観点から、1/99~99/1が好ましく、10/90~40/60がより好ましい。 In the general formula (3), when R 7 and R 8 are hydrogen atoms, c+d+e is preferably 15 to 80, more preferably 30 to 70, from the viewpoint of suppressing a decrease in size. The molar ratio of EO/PO is preferably 1/99 to 99/1, more preferably 10/90 to 40/60, from the viewpoint of antifoaming properties.

また、前記一般式(3)において、RがRC(=O)-であり、Rが-C(=O)R10である場合、R及びR10の炭素数としては、サイズ度の低下を抑制するという観点から、それぞれ独立に、11~21が好ましく、13~21がより好ましい。c+d+eとしては、サイズ度の低下を抑制するという観点から、10~90が好ましい。EO/POのモル比としては、消泡性の観点から、1/99~100/0が好ましく、10/90~100/0がより好ましい。また、前記一般式(3)で表される化合物のHLBとしては、0~14が好ましい。 Furthermore, in the general formula (3), when R 7 is R 9 C(=O)- and R 8 is -C(=O)R 10 , the number of carbon atoms in R 9 and R 10 is as follows: From the viewpoint of suppressing a decrease in size, the number is preferably 11 to 21, and more preferably 13 to 21. c+d+e is preferably 10 to 90 from the viewpoint of suppressing a decrease in size. The molar ratio of EO/PO is preferably 1/99 to 100/0, more preferably 10/90 to 100/0, from the viewpoint of antifoaming properties. Further, the HLB of the compound represented by the general formula (3) is preferably 0 to 14.

さらに、前記一般式(3)において、RがRC(=O)-であり、Rが水素原子の場合、Rの炭素数としては、サイズ度の低下を抑制するという観点から、11~21が好ましく、13~21がより好ましい。c+d+eとしては、サイズ度の低下を抑制するという観点から、10~90が好ましい。EO/POのモル比としては、消泡性の観点から、1/99~100/0が好ましく、10/90~100/0がより好ましい。また、前記一般式(3)で表される化合物のHLBとしては、0~14が好ましい。 Furthermore, in the general formula (3), when R 7 is R 9 C(=O)- and R 8 is a hydrogen atom, the number of carbon atoms in R 9 is determined from the viewpoint of suppressing the decrease in size. , 11-21 are preferred, and 13-21 are more preferred. c+d+e is preferably 10 to 90 from the viewpoint of suppressing a decrease in size. The molar ratio of EO/PO is preferably 1/99 to 100/0, more preferably 10/90 to 100/0, from the viewpoint of antifoaming properties. Further, the HLB of the compound represented by the general formula (3) is preferably 0 to 14.

このような前記一般式(3)で表される化合物のうち、消泡性の観点から、前記一般式(3)において、RがRC(=O)-であり、Rが水素原子である化合物、RがRC(=O)-であり、Rが-C(=O)R10である化合物が好ましく、RがRC(=O)-であり、Rが-C(=O)R10である化合物がより好ましい。 Among the compounds represented by the general formula (3), from the viewpoint of antifoaming properties, in the general formula (3), R 7 is R 9 C(=O)-, and R 8 is hydrogen. Preferred are compounds in which R 7 is R 9 C(=O)-, R 8 is -C(=O)R 10 , R 7 is R 9 C(=O)-, More preferred are compounds in which R 8 is -C(=O)R 10 .

前記一般式(4)において、R11及びR12が水素原子の場合、f+g+hとしては、サイズ度の低下を抑制するという観点から、15~80が好ましく、30~70がより好ましい。EO/POのモル比としては、消泡性の観点から、1/99~99/1が好ましく、10/90~40/60がより好ましい。 In the general formula (4), when R 11 and R 12 are hydrogen atoms, f+g+h is preferably 15 to 80, more preferably 30 to 70, from the viewpoint of suppressing a decrease in size. The molar ratio of EO/PO is preferably 1/99 to 99/1, more preferably 10/90 to 40/60, from the viewpoint of antifoaming properties.

また、前記一般式(4)において、R11がR13C(=O)-であり、R12が-C(=O)R14である場合、R13及びR14の炭素数としては、サイズ度の低下を抑制するという観点から、それぞれ独立に、11~21が好ましく、13~21がより好ましい。f+g+hとしては、サイズ度の低下を抑制するという観点から、10~90が好ましい。EO/POのモル比としては、消泡性の観点から、1/99~100/0が好ましく、10/90~100/0がより好ましい。また、前記一般式(4)で表される化合物のHLBとしては、0~14が好ましい。 Furthermore, in the general formula (4), when R 11 is R 13 C(=O)- and R 12 is -C(=O)R 14 , the number of carbon atoms in R 13 and R 14 is as follows: From the viewpoint of suppressing a decrease in size, the number is preferably 11 to 21, and more preferably 13 to 21. f+g+h is preferably 10 to 90 from the viewpoint of suppressing a decrease in size. The molar ratio of EO/PO is preferably 1/99 to 100/0, more preferably 10/90 to 100/0, from the viewpoint of antifoaming properties. Further, the HLB of the compound represented by the general formula (4) is preferably 0 to 14.

さらに、前記一般式(4)において、R11がR13C(=O)-であり、R12が水素原子の場合、R13の炭素数としては、サイズ度の低下を抑制するという観点から、11~21が好ましく、13~21がより好ましい。f+g+hとしては、サイズ度の低下を抑制するという観点から、10~90が好ましい。EO/POのモル比としては、消泡性の観点から、1/99~100/0が好ましく、10/90~100/0がより好ましい。また、前記一般式(3)で表される化合物のHLBとしては、0~14が好ましい。 Furthermore, in the general formula (4), when R 11 is R 13 C(=O)- and R 12 is a hydrogen atom, the number of carbon atoms in R 13 is determined from the viewpoint of suppressing the decrease in size. , 11-21 are preferred, and 13-21 are more preferred. f+g+h is preferably 10 to 90 from the viewpoint of suppressing a decrease in sizing. The molar ratio of EO/PO is preferably 1/99 to 100/0, more preferably 10/90 to 100/0, from the viewpoint of antifoaming properties. Further, the HLB of the compound represented by the general formula (3) is preferably 0 to 14.

このような前記一般式(4)で表される化合物のうち、消泡性の観点から、前記一般式(4)において、R11がR13C(=O)-であり、R12が水素原子である化合物、R11がR13C(=O)-であり、R12が-C(=O)R14である化合物が好ましく、R11がR13C(=O)-であり、R12が-C(=O)R14である化合物がより好ましい。 Among such compounds represented by the general formula (4), from the viewpoint of antifoaming properties, in the general formula (4), R 11 is R 13 C(=O)-, and R 12 is hydrogen. Preferred are compounds in which R 11 is R 13 C(=O)-, R 12 is -C(=O)R 14 , and R 11 is R 13 C(=O)-, More preferred are compounds in which R 12 is -C(=O)R 14 .

(C)ポリアルキレンポリアミン型非イオン界面活性剤
本発明に用いられる(C)ポリアルキレンポリアミン型非イオン界面活性剤としては特に制限はないが、例えば、少なくとも1つの窒素原子に下記一般式(5)で表される基が少なくとも1つ結合している化合物が挙げられる。
-(AO)-H (5)
前記一般式(5)中、AOは、炭素数2~4のアルキレンオキシ基であり、消泡性の観点から、炭素数2~3のアルキレンオキシ基が好ましく、EO単独、又はEO/POの混合構造がより好ましく、EO/PO混合構造が更に好ましい。また、EO/POのモル比としては、1/99~100/0が好ましく、10/90~90/10がより好ましく、20/80~80/20が更に好ましい。
(C) Polyalkylene polyamine type nonionic surfactant The polyalkylene polyamine type nonionic surfactant (C) used in the present invention is not particularly limited, but for example, at least one nitrogen atom has the following general formula (5 Examples include compounds to which at least one group represented by the following formula is bonded.
-(A 3 O) i -H (5)
In the general formula (5), A 3 O is an alkyleneoxy group having 2 to 4 carbon atoms, preferably an alkyleneoxy group having 2 to 3 carbon atoms from the viewpoint of antifoaming properties, and EO alone or EO/ A PO mixed structure is more preferred, and an EO/PO mixed structure is even more preferred. Further, the molar ratio of EO/PO is preferably 1/99 to 100/0, more preferably 10/90 to 90/10, and even more preferably 20/80 to 80/20.

iは、AOの繰り返し単位の数であり、1~147の整数であり、iが2以上の場合は、複数のAOは同一でも異なっていてもよい。 i is the number of repeating units of A 3 O and is an integer from 1 to 147; when i is 2 or more, a plurality of A 3 O may be the same or different.

このような少なくとも1つの窒素原子に前記一般式(5)で表される基が少なくとも1つ結合している化合物の中でも、消泡性の観点から、下記一般式(6)で表される化合物が好ましい。 Among such compounds in which at least one group represented by the above general formula (5) is bonded to at least one nitrogen atom, from the viewpoint of antifoaming properties, compounds represented by the following general formula (6) are preferred. is preferred.

前記一般式(6)中、R15は、下記一般式(7)で表される基或は炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基である。
-(AO)-H (7)
前記一般式(7)中、AOは、炭素数2~4のアルキレンオキシ基であり、消泡性の観点から、炭素数2~3のアルキレンオキシ基が好ましく、エチレンオキシ基(以下、「EO」と略すこともある)単独、又はエチレンオキシ基(EO)/プロピレンオキシ基(以下、「PO」と略すこともある)の混合構造がより好ましく、EO/PO混合構造が更に好ましい。
In the general formula (6), R 15 is a group represented by the following general formula (7) or a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon having 8 to 22 carbon atoms. It is the basis.
-(A 7 O) n -H (7)
In the general formula (7), A 7 O is an alkyleneoxy group having 2 to 4 carbon atoms, preferably an alkyleneoxy group having 2 to 3 carbon atoms from the viewpoint of antifoaming properties, and an ethyleneoxy group (hereinafter referred to as A single structure (sometimes abbreviated as "EO") or a mixed structure of an ethyleneoxy group (EO)/propyleneoxy group (hereinafter sometimes abbreviated as "PO") is more preferable, and an EO/PO mixed structure is even more preferable.

前記一般式(7)中、nは、AOの繰り返し単位の数であり、1~147の整数であり、nが2以上の場合は、複数のAOは同一でも異なっていてもよい。 In the general formula (7), n is the number of repeating units of A 7 O, and is an integer from 1 to 147, and when n is 2 or more, multiple A 7 O may be the same or different. good.

前記一般式(6)中、R16は、炭素数2~4のアルキレン基であり、炭素数2~3のアルキレン基が好ましい。AO、AO及びAOは、それぞれ独立に、炭素数2~4のアルキレンオキシ基であり、消泡性の観点から、それぞれ独立に、炭素数2~3のアルキレンオキシ基が好ましく、エチレンオキシ基(以下、「EO」と略すこともある)単独、又はエチレンオキシ基(EO)/プロピレンオキシ基(以下、「PO」と略すこともある)の混合構造がより好ましく、EO/PO混合構造が更に好ましい。 In the general formula (6), R 16 is an alkylene group having 2 to 4 carbon atoms, preferably an alkylene group having 2 to 3 carbon atoms. A 4 O, A 5 O and A 6 O each independently represent an alkyleneoxy group having 2 to 4 carbon atoms; Preferably, an ethyleneoxy group (hereinafter sometimes abbreviated as "EO") alone or a mixed structure of ethyleneoxy group (EO)/propyleneoxy group (hereinafter sometimes abbreviated as "PO") is more preferable, and EO /PO mixed structure is more preferred.

前記一般式(6)中、jは、下記一般式(8)で表される基の繰り返し単位の数で、1~3の整数である。 In the general formula (6), j is the number of repeating units of the group represented by the following general formula (8), and is an integer of 1 to 3.

前記一般式(8)中、R16、AO及びmはそれぞれ前記一般式(6)中のものと同義である。 In the general formula (8), R 16 , A 6 O and m each have the same meaning as in the general formula (6).

前記一般式(6)中、k、l及びmは、それぞれAO、AO及びAOの繰り返し単位の数であり、それぞれ独立に、1~147の整数であり、kが2以上の場合は、複数のAOは同一でも異なっていてもよく、lが2以上の場合は、複数のAOは同一でも異なっていてもよく、mが2以上の場合は、複数のAOは同一でも異なっていてもよい。 In the general formula (6), k, l and m are the numbers of repeating units of A 4 O, A 5 O and A 6 O, respectively, and are each independently an integer from 1 to 147, and when k is 2 In the above cases, the plural A 4 O's may be the same or different; if l is 2 or more, the plural A 5 O's may be the same or different; if m is 2 or more, the plural A 5 O's may be the same or different; if m is 2 or more, the plural A 5 O's may be the same or different; A 6 O may be the same or different.

前記一般式(6)において、R15が前記一般式(7)で表される基の場合、k+l+m+nは4~200であり、サイズ度の低下を抑制するという観点から、30~90が好ましい。EO/POのモル比としては、消泡性の観点から、1/99~99/1が好ましく、10/90~40/60がより好ましい。また、前記一般式(6)で表される化合物のHLBとしては、0~7が好ましい。 In the general formula (6), when R 15 is a group represented by the general formula (7), k+l+m+n is 4 to 200, preferably 30 to 90 from the viewpoint of suppressing a decrease in the degree of size. The molar ratio of EO/PO is preferably 1/99 to 99/1, more preferably 10/90 to 40/60, from the viewpoint of antifoaming properties. Further, the HLB of the compound represented by the general formula (6) is preferably 0 to 7.

前記一般式(6)において、R15が炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基の場合、k+l+mは3~200であり、サイズ度の低下を抑制するという観点から、3~90が好ましい。EO/POのモル比としては、消泡性の観点から、1/99~100/0が好ましく、10/90~80/20がより好ましい。また、前記一般式(6)で表される化合物のHLBとしては、0~10が好ましい。 In the general formula (6), when R 15 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms, k+l+m is 3 to 200, and the size degree 3 to 90 is preferable from the viewpoint of suppressing a decrease in . The molar ratio of EO/PO is preferably 1/99 to 100/0, more preferably 10/90 to 80/20, from the viewpoint of antifoaming properties. Further, the HLB of the compound represented by the general formula (6) is preferably 0 to 10.

このような前記一般式(6)で表される化合物のうち、消泡性の観点から、前記一般式(6)において、R15が前記一般式(7)で表される基である化合物が好ましい。 Among such compounds represented by the general formula (6), from the viewpoint of antifoaming properties, compounds in which R 15 in the general formula (6) is a group represented by the general formula (7) are preferred. preferable.

なお、前記「HLB」とは、Hydrophilic-Lipophilic Balanceの略語であり、界面活性剤の全分子量に占める親水基部分の分子量を示し、親水性親油性バランスを表すものである。前記(B)ポリオキシアルキレン型非イオン界面活性剤及び前記(C)ポリアルキレンポリアミン型非イオン界面活性剤のHLBは、以下のグリフィン(Griffin)の式により求められる。なお、プロピレンオキシ基は疎水基とする。 The above-mentioned "HLB" is an abbreviation for Hydrophilic-Lipophilic Balance, which indicates the molecular weight of the hydrophilic group portion in the total molecular weight of the surfactant, and represents the hydrophilic-lipophilic balance. The HLB of the polyoxyalkylene type nonionic surfactant (B) and the polyalkylenepolyamine type nonionic surfactant (C) is determined by the following Griffin equation. Note that the propyleneoxy group is a hydrophobic group.

(D)硫酸塩型アニオン界面活性剤
本発明に用いられる(D)硫酸塩型アニオン界面活性剤としては特に制限はないが、例えば、下記一般式(9)で表される化合物が挙げられる。
17-X―SOY (9)
前記一般式(9)中、R17は、炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基或は炭素数8~22の1価の芳香族炭化水素基であり、Xは、酸素原子又は下記一般式(10)で表される基である。
-(AO)- (10)
前記一般式(10)中、AOは、炭素数2~4のアルキレンオキシ基であり、消泡性の観点から、炭素数2~3のアルキレンオキシ基が好ましく、エチレンオキシ基(以下、「EO」と略すこともある)単独、又はエチレンオキシ基(EO)/プロピレンオキシ基(以下、「PO」と略すこともある)の混合構造がより好ましい。pは、AOの繰り返し単位の数であり、0~10の整数であり、pが2以上の場合は、複数のAOは同一でも異なっていてもよい。
(D) Sulfate-type anionic surfactant The sulfate-type anionic surfactant (D) used in the present invention is not particularly limited, but includes, for example, a compound represented by the following general formula (9).
R 17 -X-SO 3 Y (9)
In the general formula (9), R 17 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms or a monovalent aromatic group having 8 to 22 carbon atoms. is a group hydrocarbon group, and X is an oxygen atom or a group represented by the following general formula (10).
-(A 8 O) p - (10)
In the general formula (10), A 8 O is an alkyleneoxy group having 2 to 4 carbon atoms, preferably an alkyleneoxy group having 2 to 3 carbon atoms from the viewpoint of antifoaming properties, and an ethyleneoxy group (hereinafter referred to as A single structure (sometimes abbreviated as "EO") or a mixed structure of an ethyleneoxy group (EO)/propyleneoxy group (hereinafter sometimes abbreviated as "PO") is more preferable. p is the number of A 8 O repeating units and is an integer from 0 to 10; when p is 2 or more, the plural A 8 O's may be the same or different.

前記一般式(9)中、Yは、アルカリ金属、アルカリ土類金属、アンモニウム、有機塩基であり、アルカリ金属としては、ナトリウム、カリウム等が挙げられ、アルカリ土類金属としては、マグネシウム、カルシウム等が挙げられ、有機塩基としては、アルカノールアミン、塩基性アミノ酸等が挙げられる。 In the general formula (9), Y is an alkali metal, an alkaline earth metal, ammonium, or an organic base; examples of the alkali metal include sodium, potassium, etc., and examples of the alkaline earth metal include magnesium, calcium, etc. Examples of the organic base include alkanolamines and basic amino acids.

前記一般式(9)において、Xが酸素原子の場合、R17の炭素数としては、消泡性の観点から、12~22が好ましい。Xが前記一般式(10)で表される基であり、前記一般式(10)中のpが0の場合、R17の炭素数としては、消泡性の観点から、12~22が好ましく、14~12がより好ましい。Xが前記一般式(10)で表される基であり、前記一般式(10)中のpが1~10(好ましくは1~5)の場合、R17の炭素数としては、消泡性の観点から、12~22が好ましい。 In the general formula (9), when X is an oxygen atom, the number of carbon atoms in R 17 is preferably 12 to 22 from the viewpoint of antifoaming properties. When X is a group represented by the above general formula (10) and p in the above general formula (10) is 0, the number of carbon atoms in R 17 is preferably 12 to 22 from the viewpoint of antifoaming properties. , 14 to 12 are more preferred. When X is a group represented by the above general formula (10), and p in the above general formula (10) is 1 to 10 (preferably 1 to 5), the number of carbon atoms in R 17 is From the viewpoint of 12 to 22 is preferable.

(E)第四級アンモニウム塩型カチオン界面活性剤
本発明に用いられる(E)第四級アンモニウム塩型カチオン界面活性剤としては特に制限はないが、例えば、下記一般式(11)で表される化合物が挙げられる。
(E) Quaternary ammonium salt type cationic surfactant The (E) quaternary ammonium salt type cationic surfactant used in the present invention is not particularly limited, but for example, it is represented by the following general formula (11). Compounds such as

前記一般式(11)中、R18は、炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基である。 In the general formula (11), R 18 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms.

19は、炭素数1~22の直鎖状又は分岐状の飽和の1価の脂肪族炭化水素基、炭素数2~22の直鎖状又は分岐状の不飽和の1価の脂肪族炭化水素基或は下記一般式(12)で表される基である。
-(AO)-H (12)
前記一般式(12)中、AOは、炭素数2~4のアルキレンオキシ基であり、rは、AOの繰り返し単位の数であり、1~5の整数である。また、rが2以上の場合は、複数のAOは同一でも異なっていてもよい。
R 19 is a linear or branched saturated monovalent aliphatic hydrocarbon group having 1 to 22 carbon atoms, a linear or branched unsaturated monovalent aliphatic hydrocarbon group having 2 to 22 carbon atoms; It is a hydrogen group or a group represented by the following general formula (12).
-(A 9 O) r -H (12)
In the general formula (12), A 9 O is an alkyleneoxy group having 2 to 4 carbon atoms, and r is the number of repeating units of A 9 O and is an integer of 1 to 5. Furthermore, when r is 2 or more, the plurality of A 9 O's may be the same or different.

20は、炭素数1~3の直鎖状又は分岐状の飽和の1価の脂肪族炭化水素基或は下記一般式(13)で表される基である。
-(A10O)-H (13)
前記一般式(13)中、A10Oは、炭素数2~4のアルキレンオキシ基であり、sは、A10Oの繰り返し単位の数であり、1~5の整数である。また、sが2以上の場合は、複数のA10Oは同一でも異なっていてもよい。
R 20 is a linear or branched saturated monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms or a group represented by the following general formula (13).
-(A 10 O) s -H (13)
In the general formula (13), A 10 O is an alkyleneoxy group having 2 to 4 carbon atoms, and s is the number of repeating units of A 10 O, and is an integer of 1 to 5. Further, when s is 2 or more, the plurality of A 10 O's may be the same or different.

21は、炭素数1~3の直鎖状又は分岐状の飽和の1価の脂肪族炭化水素基、ベンジル基或はヒドロキシエチル基である。 R 21 is a linear or branched saturated monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms, a benzyl group, or a hydroxyethyl group.

q-は、対イオンであり、無機アニオン、有機アニオンであれば特に制限はないが、例えば、無機アニオンとしては、硫酸イオン;硝酸イオン;リン酸イオン;塩化物イオン、臭化物イオン等のハロゲンイオン等が挙げられ、有機アニオンとしては、有機カルボン酸イオン、リン酸エステルイオン、アルキルカーボネートイオン、アニオン性ポリマーが挙げられる。 T q- is a counter ion, and is not particularly limited as long as it is an inorganic anion or an organic anion. For example, inorganic anions include sulfate ions; nitrate ions; phosphate ions; halogens such as chloride ions and bromide ions Examples of the organic anions include organic carboxylic acid ions, phosphate ester ions, alkyl carbonate ions, and anionic polymers.

(F)ポリプロピレングリコール系化合物
本発明に用いられる(F)ポリプロピレングリコール系化合物は、ポリプロピレングリコール及びポリプロピレングリコールと脂肪酸とのエステル化物のうちの少なくとも一方である。このような(F)ポリプロピレングリコール系化合物の分子量としては、消泡性の観点から、500~5000が好ましい。
(F) Polypropylene Glycol Compound The polypropylene glycol compound (F) used in the present invention is at least one of polypropylene glycol and an esterified product of polypropylene glycol and a fatty acid. The molecular weight of the polypropylene glycol compound (F) is preferably 500 to 5,000 from the viewpoint of antifoaming properties.

〔消泡剤組成物〕
本発明の消泡剤組成物は、前記(A)成分と、前記(B)成分~前記(E)成分からなる群から選択される少なくとも1種とを含有するものであるが、保管安定性の観点から、前記(A)成分と、前記(B)成分及び前記(C)成分からなる群から選択される少なくとも1種とを含有するものが好ましく、印刷品質を著しく損なうオイルスポットの発生を抑制するという観点から、前記(A)成分と、前記アルコール型非イオン界面活性剤以外の(B)成分(例えば、プルロニック(登録商標)型界面活性剤、ポリエチレングリコール、及びポリエチレングリコールと脂肪酸とのエステル化物)及び前記(C)成分からなる群から選択される少なくとも1種とを含有するものがより好ましく、前記(A)成分と前記アルコール型非イオン界面活性剤以外の(B)成分(例えば、プルロニック(登録商標)型界面活性剤、ポリエチレングリコール、及びポリエチレングリコールと脂肪酸とのエステル化物)とを含有するものが更に好ましい。
[Defoamer composition]
The antifoaming composition of the present invention contains the component (A) and at least one selected from the group consisting of the components (B) to (E), and has storage stability. From this point of view, it is preferable to use a product containing the component (A) and at least one member selected from the group consisting of the component (B) and the component (C), which prevents the occurrence of oil spots that significantly impair printing quality. From the viewpoint of suppression, the combination of the (A) component and the (B) component other than the alcohol type nonionic surfactant (for example, Pluronic (registered trademark) type surfactant, polyethylene glycol, and polyethylene glycol and fatty acid) esterified product) and at least one member selected from the group consisting of the above-mentioned (C) component. , a Pluronic (registered trademark) type surfactant, polyethylene glycol, and an esterified product of polyethylene glycol and a fatty acid).

本発明の消泡剤組成物において、前記(A)成分の含有量と、前記(B)成分~前記(E)成分の合計含有量の質量比〔(A)/(B)~(E)〕としては、消泡性の観点から、1/99~99/1が好ましく、50/50~99/1がより好ましい。 In the antifoam composition of the present invention, the mass ratio of the content of the component (A) to the total content of the components (B) to (E) [(A)/(B) to (E)] ] is preferably 1/99 to 99/1, more preferably 50/50 to 99/1, from the viewpoint of antifoaming properties.

また、本発明の消泡剤組成物が、前記(F)成分を含む場合、前記(A)成分及び前記(B)成分~前記(E)成分の合計含有量と前記(F)成分の含有量の質量比〔(A)~(E)/(F)〕としては、消泡性とサイズ度低下の抑制の観点から、99/1~1/99が好ましく、90/10~10/90がより好ましい。 Further, when the antifoam composition of the present invention contains the component (F), the total content of the component (A) and the component (B) to the component (E) and the content of the component (F) The mass ratio [(A) to (E)/(F)] is preferably 99/1 to 1/99, and 90/10 to 10/90, from the viewpoint of antifoaming properties and suppression of sizing reduction. is more preferable.

本発明の消泡剤組成物は、そのままの状態で使用してもよいが、水や有機溶媒を配合して、溶解、乳化又は分散させた状態で使用することができる。前記有機溶媒としては特に制限はないが、例えば、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ドデシルアルコール、ベンジルアルコール等のアルコール類;3-メチル-3-メトキシブタノール、3-メチル-3-メトキシブチルアセテート、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;エチレングリコール、プロピレングリコール、1,3-ブタンジオール、ヘキシレングリコール、ジエチレングリコール、ジプロピレングリコール等のグリコール類、等が挙げられる。 The antifoam composition of the present invention may be used as it is, or may be used after being dissolved, emulsified, or dispersed by adding water or an organic solvent. The organic solvent is not particularly limited, but includes, for example, methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, and nonyl. Alcohols such as alcohol, decyl alcohol, undecyl alcohol, dodecyl alcohol, benzyl alcohol; 3-methyl-3-methoxybutanol, 3-methyl-3-methoxybutyl acetate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Glycol monobutyl ether, ethylene glycol ethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, diethylene glycol mono-n-hexyl ether, diethylene glycol dibutyl ether, dipropylene glycol monoethyl ether, dipropylene glycol Glycol ethers such as monopropyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether; glycols such as ethylene glycol, propylene glycol, 1,3-butanediol, hexylene glycol, diethylene glycol, dipropylene glycol, etc. Can be mentioned.

また、本発明の消泡剤組成物には、本発明の効果を損なわない範囲において、消泡剤の技術分野で、消泡剤組成物に配合することが知られている他の成分を配合することができる。このような成分としては、例えば、防腐剤、消臭剤、芳香剤などが挙げられるが、これらに限定されるものではない。 In addition, the antifoam composition of the present invention may contain other components known to be included in antifoam compositions in the technical field of antifoaming agents, within a range that does not impair the effects of the present invention. can do. Examples of such components include, but are not limited to, preservatives, deodorants, and fragrances.

また、本発明の消泡剤組成物は、泡の種類に係わらず優れた消泡性を示すことから、ほとんどの業種で発生する泡の消泡に使用することが可能である。例えば、紙パルプ工業、塗料工業、繊維工業、合成樹脂エマルジョン工業、セメント・コンクリート工業、食品工業、屎尿・廃水処理等の水を多量に使用する製造処理工程に用いることができる。このような用途の中でも、本発明の消泡剤組成物で処理して得られた紙パルプにおいてサイズ度の低下が十分に抑制されることから、紙パルプ製造工業の抄紙工程用消泡剤として用いることが特に好ましい。 Furthermore, since the antifoam composition of the present invention exhibits excellent antifoaming properties regardless of the type of foam, it can be used for defoaming foam generated in most industries. For example, it can be used in manufacturing processes that use large amounts of water, such as paper and pulp industry, paint industry, textile industry, synthetic resin emulsion industry, cement/concrete industry, food industry, human waste/wastewater treatment, etc. Among these uses, the antifoaming agent composition of the present invention can be used as an antifoaming agent for the papermaking process in the paper pulp manufacturing industry, since the reduction in sizing is sufficiently suppressed in the paper pulp obtained by treatment. It is particularly preferred to use

本発明の消泡剤組成物の具体的な使用方法は特に制限されないが、例えば、発泡箇所または発泡箇所の上流に添加すればよく、定量ポンプ等で間欠添加または連続添加して使用することができる。その際、本発明の消泡剤組成物は、原液で使用しても希釈してもよく、消泡に際して適宜決定される。 The specific method of using the antifoam composition of the present invention is not particularly limited, but for example, it may be added to the foaming location or upstream of the foaming location, and it may be added intermittently or continuously using a metering pump or the like. can. At that time, the antifoam composition of the present invention may be used as a stock solution or may be diluted, which is determined as appropriate for defoaming.

また、本発明の消泡剤組成物の添加量も特に制限されないが、消泡性とコストの観点から、発泡性水溶液を基準に、好ましくは0.00001~1.0質量%であり、より好ましくは0.0001~0.1質量%であり、更に好ましくは0.0001~0.01質量%である。 Further, the amount of the antifoaming agent composition of the present invention added is not particularly limited, but from the viewpoint of antifoaming properties and cost, it is preferably 0.00001 to 1.0% by mass, and more preferably 0.00001 to 1.0% by mass based on the foaming aqueous solution. It is preferably 0.0001 to 0.1% by mass, more preferably 0.0001 to 0.01% by mass.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例及び比較例で使用した化合物を以下に示す。以下の記載において、EO及びPOは、それぞれ、エチレンオキシ基及びプロピレンオキシ基を示し、それらの数字は付加モル数を示す。 EXAMPLES Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. The compounds used in Examples and Comparative Examples are shown below. In the following description, EO and PO represent an ethyleneoxy group and a propyleneoxy group, respectively, and their numbers represent the number of moles added.

〔化合物A〕
レシチン(試薬名:レシチン(大豆由来)、東京化成工業株式会社製)。
[Compound A]
Lecithin (Reagent name: Lecithin (derived from soybean), manufactured by Tokyo Chemical Industry Co., Ltd.).

〔化合物B1~B14〕
前記一般式(2)で表される化合物として、以下の表1に示す構造を有するものをそれぞれ合成した。
-(AO)-H (2)
[Compounds B1 to B14]
Compounds represented by the general formula (2) having the structures shown in Table 1 below were synthesized.
R 6 -(A 2 O) b -H (2)

(合成例B1)
耐熱反応容器に、オクタデシルアルコール100gと水酸化カリウム0.6gを加えて窒素置換を行った。100℃にて減圧し、1時間脱水を行った後、120~130℃に加熱した。ここに、エチレンオキシド33gを120~140℃で導入し、同温度にて3時間熟成した。次に、プロピレンオキシド129gを120~140℃で導入し、同温度にて12時間の熟成を行うことで化合物B1を得た。
(Synthesis example B1)
100 g of octadecyl alcohol and 0.6 g of potassium hydroxide were added to a heat-resistant reaction vessel, and the vessel was purged with nitrogen. After dehydrating for 1 hour under reduced pressure at 100°C, the mixture was heated to 120-130°C. To this, 33 g of ethylene oxide was introduced at 120 to 140°C, and the mixture was aged at the same temperature for 3 hours. Next, 129 g of propylene oxide was introduced at 120 to 140°C, and the mixture was aged at the same temperature for 12 hours to obtain Compound B1.

(合成例B2)
導入したエチレンオキシドを49g、プロピレンオキシドを193gに変更した以外は、合成例B1と同様にして化合物B2を得た。
(Synthesis example B2)
Compound B2 was obtained in the same manner as Synthesis Example B1, except that the amount of ethylene oxide introduced was changed to 49 g and the amount of propylene oxide introduced was changed to 193 g.

(合成例B3)
導入したエチレンオキシドを81g、プロピレンオキシドを322gに変更した以外は、合成例B1と同様にして化合物B3を得た。
(Synthesis example B3)
Compound B3 was obtained in the same manner as in Synthesis Example B1, except that the amount of ethylene oxide introduced was changed to 81 g and the amount of propylene oxide introduced was changed to 322 g.

(合成例B4)
オクタデシルアルコールをオクチルアルコールに変更し、導入したエチレンオキシドを338g、プロピレンオキシドを1338gに変更した以外は、合成例B1と同様にして化合物B4を得た。
(Synthesis example B4)
Compound B4 was obtained in the same manner as Synthesis Example B1, except that octadecyl alcohol was changed to octyl alcohol, the amount of ethylene oxide introduced was changed to 338 g, and the amount of propylene oxide introduced was changed to 1338 g.

(合成例B5)
オクタデシルアルコールをドデシルアルコールに変更し、導入したエチレンオキシドを237g、プロピレンオキシドを935gに変更した以外は、合成例B1と同様にして化合物B5を得た。
(Synthesis example B5)
Compound B5 was obtained in the same manner as Synthesis Example B1, except that octadecyl alcohol was changed to dodecyl alcohol, the amount of ethylene oxide introduced was changed to 237 g, and the amount of propylene oxide introduced was changed to 935 g.

(合成例B6)
導入したエチレンオキシドを163g、プロピレンオキシドを644gに変更した以外は、合成例B1と同様にして化合物B6を得た。
(Synthesis example B6)
Compound B6 was obtained in the same manner as Synthesis Example B1, except that the amount of ethylene oxide introduced was changed to 163 g and the amount of propylene oxide introduced was changed to 644 g.

(合成例B7)
導入したエチレンオキシドを489g、プロピレンオキシドを215gに変更した以外は、合成例B1と同様にして化合物B7を得た。
(Synthesis example B7)
Compound B7 was obtained in the same manner as Synthesis Example B1, except that the amount of ethylene oxide introduced was changed to 489 g and the amount of propylene oxide introduced was changed to 215 g.

(合成例B8)
導入したエチレンオキシドを244g、プロピレンオキシドを967gに変更した以外は、合成例B1と同様にして化合物B8を得た。
(Synthesis example B8)
Compound B8 was obtained in the same manner as Synthesis Example B1, except that 244 g of ethylene oxide and 967 g of propylene oxide were introduced.

(合成例B9)
導入したエチレンオキシドを81g、プロピレンオキシドを752gに変更した以外は、合成例B1と同様にして化合物B9を得た。
(Synthesis example B9)
Compound B9 was obtained in the same manner as Synthesis Example B1, except that the amount of ethylene oxide introduced was changed to 81 g and the amount of propylene oxide introduced was changed to 752 g.

(合成例B10)
導入したエチレンオキシドを49g、プロピレンオキシドを795gに変更した以外は、合成例B1と同様にして化合物B10を得た。
(Synthesis example B10)
Compound B10 was obtained in the same manner as Synthesis Example B1, except that the amount of ethylene oxide introduced was changed to 49 g and the amount of propylene oxide introduced was changed to 795 g.

(合成例B11)
導入したエチレンオキシドを570g、プロピレンオキシドを107gに変更した以外は、合成例B1と同様にして化合物B11を得た。
(Synthesis example B11)
Compound B11 was obtained in the same manner as Synthesis Example B1, except that 570 g of ethylene oxide and 107 g of propylene oxide were introduced.

(合成例B12)
導入したエチレンオキシドを603g、プロピレンオキシドを64gに変更した以外は、合成例B1と同様にして化合物B12を得た。
(Synthesis example B12)
Compound B12 was obtained in the same manner as Synthesis Example B1, except that 603 g of ethylene oxide and 64 g of propylene oxide were introduced.

(合成例B13)
導入したエチレンオキシドを326g、プロピレンオキシドを1289gに変更した以外は、合成例B1と同様にして化合物B13を得た。
(Synthesis example B13)
Compound B13 was obtained in the same manner as in Synthesis Example B1, except that the amount of ethylene oxide introduced was changed to 326 g and the amount of propylene oxide introduced was changed to 1289 g.

(合成例B14)
導入したエチレンオキシドを407g、プロピレンオキシドを1611gに変更した以外は、合成例B1と同様にして化合物B14を得た。
(Synthesis example B14)
Compound B14 was obtained in the same manner as Synthesis Example B1, except that the amount of ethylene oxide introduced was changed to 407 g and the amount of propylene oxide introduced was changed to 1611 g.

〔化合物B15~B37〕
前記一般式(3)で表される化合物として、以下の表2に示す構造を有するものをそれぞれ合成した。
O-(EO)(PO)(EO)-R (3)
[Compounds B15 to B37]
Compounds represented by the general formula (3) having the structures shown in Table 2 below were synthesized.
R 7 O-(EO) c (PO) d (EO) e -R 8 (3)

(合成例B15)
耐熱反応容器に、ジプロピレングリコール100g、水酸化カリウム0.6gを加えて窒素置換を行った。100℃にて減圧し、1時間脱水を行った後、120~130℃に加熱した。ここに、プロピレンオキシド424gを120~140℃で導入し、同温度にて12時間熟成した。次に、エチレンオキシド72gを120~140℃で導入し、同温度にて3時間熟成を行うことで化合物B15を得た。
(Synthesis example B15)
100 g of dipropylene glycol and 0.6 g of potassium hydroxide were added to a heat-resistant reaction container, and the container was purged with nitrogen. After dehydrating for 1 hour under reduced pressure at 100°C, the mixture was heated to 120-130°C. To this, 424 g of propylene oxide was introduced at 120 to 140°C, and the mixture was aged at the same temperature for 12 hours. Next, 72 g of ethylene oxide was introduced at 120 to 140° C., and ripening was performed at the same temperature for 3 hours to obtain compound B15.

(合成例B16)
導入したプロピレンオキシドを610g、エチレンオキシドを92gに変更した以外は、合成例B15と同様にして化合物B16を得た。
(Synthesis example B16)
Compound B16 was obtained in the same manner as Synthesis Example B15, except that the amount of propylene oxide introduced was changed to 610 g and the amount of ethylene oxide introduced was changed to 92 g.

(合成例B17)
導入したプロピレンオキシドを1208g、エチレンオキシドを82gに変更した以外は、合成例B15と同様にして化合物B17を得た。
(Synthesis example B17)
Compound B17 was obtained in the same manner as Synthesis Example B15, except that the amount of propylene oxide introduced was changed to 1208 g and the amount of ethylene oxide introduced was changed to 82 g.

(合成例B18)
導入したプロピレンオキシドを1208g、エチレンオキシドを158gに変更した以外は、合成例B15と同様にして化合物B18を得た。
(Synthesis example B18)
Compound B18 was obtained in the same manner as Synthesis Example B15, except that the amount of propylene oxide introduced was changed to 1208 g and the amount of ethylene oxide introduced was changed to 158 g.

(合成例B19)
導入したプロピレンオキシドを1208g、エチレンオキシドを341gに変更した以外は、合成例B15と同様にして化合物B19を得た。
(Synthesis example B19)
Compound B19 was obtained in the same manner as Synthesis Example B15, except that the amount of propylene oxide introduced was changed to 1208 g and the amount of ethylene oxide introduced was changed to 341 g.

(合成例B20)
導入したプロピレンオキシドを1208g、エチレンオキシドを883gに変更した以外は、合成例B15と同様にして化合物B20を得た。
(Synthesis example B20)
Compound B20 was obtained in the same manner as Synthesis Example B15, except that the amount of propylene oxide introduced was changed to 1208 g and the amount of ethylene oxide introduced was changed to 883 g.

(合成例B21)
導入したプロピレンオキシドを2324g、エチレンオキシドを282gに変更した以外は、合成例B15と同様にして化合物B21を得た。
(Synthesis example B21)
Compound B21 was obtained in the same manner as Synthesis Example B15, except that the amount of propylene oxide introduced was changed to 2324 g and the amount of ethylene oxide introduced was changed to 282 g.

(合成例B22)
導入したプロピレンオキシドを2324g、エチレンオキシドを621gに変更した以外は、合成例B15と同様にして化合物B22を得た。
(Synthesis example B22)
Compound B22 was obtained in the same manner as Synthesis Example B15, except that the amount of propylene oxide introduced was changed to 2324 g and the amount of ethylene oxide introduced was changed to 621 g.

(合成例B23)
導入したプロピレンオキシドを2324g、エチレンオキシドを1632gに変更した以外は、合成例B15と同様にして化合物B23を得た。
(Synthesis example B23)
Compound B23 was obtained in the same manner as Synthesis Example B15, except that the amount of propylene oxide introduced was changed to 2324 g and the amount of ethylene oxide introduced was changed to 1632 g.

(合成例B24)
反応容器に、分子量400のポリエチレングリコール100gとオクタデカ-9-エン酸を71g当量を投入し、窒素通入しながら180℃~230℃にて約20時間反応を行うことで化合物B24を得た。
(Synthesis example B24)
A reaction vessel was charged with 100 g of polyethylene glycol having a molecular weight of 400 and 71 g equivalent of octadec-9-enoic acid, and the reaction was carried out at 180° C. to 230° C. for about 20 hours while nitrogen was introduced, to obtain compound B24.

(合成例B25)
オクタデカ-9-エン酸を142gに変更した以外は、合成例B24と同様にして化合物B25を得た。
(Synthesis example B25)
Compound B25 was obtained in the same manner as Synthesis Example B24, except that 142 g of octadec-9-enoic acid was used.

(合成例B26)
耐熱反応容器に、ジプロピレングリコール100g、水酸化カリウム0.6gを加えて窒素置換を行った。100℃にて減圧し、1時間脱水を行った後、120~130℃に加熱した。ここに、プロピレンオキシド303gを120~140℃で導入し、同温度にて12時間熟成した。次に、エチレンオキシド89gを120~140℃で導入し、同温度にて3時間熟成を行うことでポリオキシエチレンポリオキシプロピレングリコールを得た。反応容器に、得られたポリオキシエチレンポリオキシプロピレングリコール100gとオクタデカ-9-エン酸86gを投入し、窒素通入しながら180℃~230℃にて約20時間反応を行うことで化合物B26を得た。
(Synthesis example B26)
100 g of dipropylene glycol and 0.6 g of potassium hydroxide were added to a heat-resistant reaction container, and the container was purged with nitrogen. After dehydrating for 1 hour under reduced pressure at 100°C, the mixture was heated to 120-130°C. To this, 303 g of propylene oxide was introduced at 120 to 140°C, and the mixture was aged at the same temperature for 12 hours. Next, 89 g of ethylene oxide was introduced at 120 to 140°C, and ripening was performed at the same temperature for 3 hours to obtain polyoxyethylene polyoxypropylene glycol. 100 g of the obtained polyoxyethylene polyoxypropylene glycol and 86 g of octadec-9-enoic acid were put into a reaction vessel, and the reaction was carried out at 180°C to 230°C for about 20 hours while nitrogen was passed through, thereby producing compound B26. Obtained.

(合成例B27)
分子量400のポリエチレングリコールを分子量600のポリエチレングリコールに変更し、オクタデカ-9-エン酸を47gに変更した以外は、合成例B24と同様にして化合物B27を得た。
(Synthesis example B27)
Compound B27 was obtained in the same manner as Synthesis Example B24, except that polyethylene glycol with a molecular weight of 400 was changed to polyethylene glycol with a molecular weight of 600 and octadec-9-enoic acid was changed to 47 g.

(合成例B28)
オクタデカ-9-エン酸をデカン酸57gに変更した以外は、合成例B27と同様にして化合物B28を得た。
(Synthesis example B28)
Compound B28 was obtained in the same manner as Synthesis Example B27 except that 57 g of decanoic acid was used instead of octadec-9-enoic acid.

(合成例B29)
オクタデカ-9-エン酸をドデカン酸67gに変更した以外は、合成例B27と同様にして化合物B29を得た。
(Synthesis example B29)
Compound B29 was obtained in the same manner as Synthesis Example B27 except that 67 g of dodecanoic acid was used instead of octadec-9-enoic acid.

(合成例B30)
オクタデカ-9-エン酸を94gに変更した以外は、合成例B27と同様にして化合物B30を得た。
(Synthesis example B30)
Compound B30 was obtained in the same manner as Synthesis Example B27 except that 94 g of octadec-9-enoic acid was used.

(合成例B31)
耐熱反応容器に、ジプロピレングリコール100g、水酸化カリウム0.6gを加えて窒素置換を行った。100℃にて減圧し、1時間脱水を行った後、120~130℃に加熱した。ここに、プロピレンオキシド571gを120~140℃で導入し、同温度にて12時間熟成した後。次に、エチレンオキシド985gを120~140℃で導入し、同温度にて3時間熟成を行うことでポリオキシエチレンポリオキシプロピレングリコールを得た。反応容器に、得られたポリオキシエチレンポリオキシプロピレングリコール100gとオクタデカ-9-エン酸25gを投入し、窒素通入しながら180℃~230℃にて約20時間反応を行うことで化合物B31を得た。
(Synthesis example B31)
100 g of dipropylene glycol and 0.6 g of potassium hydroxide were added to a heat-resistant reaction vessel, and the vessel was purged with nitrogen. After dehydrating for 1 hour under reduced pressure at 100°C, the mixture was heated to 120-130°C. To this, 571 g of propylene oxide was introduced at 120 to 140°C, and the mixture was aged at the same temperature for 12 hours. Next, 985 g of ethylene oxide was introduced at 120 to 140°C, and ripening was performed at the same temperature for 3 hours to obtain polyoxyethylene polyoxypropylene glycol. 100 g of the obtained polyoxyethylene polyoxypropylene glycol and 25 g of octadec-9-enoic acid were placed in a reaction vessel, and the reaction was carried out at 180°C to 230°C for about 20 hours while nitrogen was passed through, thereby producing compound B31. Obtained.

(合成例B32)
分子量400のポリエチレングリコールを分子量3000のポリエチレングリコールに変更し、オクタデカ-9-エン酸を19gに変更した以外は、合成例B25と同様にして化合物B32を得た。
(Synthesis example B32)
Compound B32 was obtained in the same manner as Synthesis Example B25, except that polyethylene glycol with a molecular weight of 400 was changed to polyethylene glycol with a molecular weight of 3000, and octadec-9-enoic acid was changed to 19 g.

(合成例B33)
耐熱反応容器に、ジプロピレングリコール100g、水酸化カリウム0.6gを加えて窒素置換を行った。100℃にて減圧し、1時間脱水を行った後、120~130℃に加熱した。ここに、プロピレンオキシド2736gを120~140℃で導入し、同温度にて12時間熟成した。次に、エチレンオキシド148gを120~140℃で導入し、同温度にて3時間熟成を行うことでポリオキシエチレンポリオキシプロピレングリコールを得た。反応容器に、得られたポリオキシエチレンポリオキシプロピレングリコール100gとオクタデカ-9-エン酸14gを投入し、窒素通入しながら180℃~230℃にて約20時間反応を行うことで化合物B33を得た。
(Synthesis example B33)
100 g of dipropylene glycol and 0.6 g of potassium hydroxide were added to a heat-resistant reaction container, and the container was purged with nitrogen. After dehydrating for 1 hour under reduced pressure at 100°C, the mixture was heated to 120-130°C. To this, 2736 g of propylene oxide was introduced at 120 to 140°C, and the mixture was aged at the same temperature for 12 hours. Next, 148 g of ethylene oxide was introduced at 120 to 140°C, and ripening was performed at the same temperature for 3 hours to obtain polyoxyethylene polyoxypropylene glycol. 100 g of the obtained polyoxyethylene polyoxypropylene glycol and 14 g of octadec-9-enoic acid were placed in a reaction container, and the reaction was carried out at 180° C. to 230° C. for about 20 hours while nitrogen was passed through, thereby producing compound B33. Obtained.

(合成例B34)
耐熱反応容器に、ジプロピレングリコール100g、水酸化カリウム0.6gを加えて窒素置換を行った。100℃にて減圧し、1時間脱水を行った後、120~130℃に加熱した。ここに、プロピレンオキシド2588gを120~140℃で導入し、同温度にて12時間熟成した。次に、エチレンオキシド299gを120~140℃で導入し、同温度にて3時間熟成を行うことでポリオキシエチレンポリオキシプロピレングリコールを得た。反応容器に、得られたポリオキシエチレンポリオキシプロピレングリコール100gとオクタデカ-9-エン酸14gを投入し、窒素通入しながら180℃~230℃にて約20時間反応を行うことで化合物B34を得た。
(Synthesis example B34)
100 g of dipropylene glycol and 0.6 g of potassium hydroxide were added to a heat-resistant reaction container, and the container was purged with nitrogen. After dehydrating for 1 hour under reduced pressure at 100°C, the mixture was heated to 120-130°C. To this, 2,588 g of propylene oxide was introduced at 120 to 140°C, and the mixture was aged at the same temperature for 12 hours. Next, 299 g of ethylene oxide was introduced at 120 to 140°C, and ripening was performed at the same temperature for 3 hours to obtain polyoxyethylene polyoxypropylene glycol. 100 g of the obtained polyoxyethylene polyoxypropylene glycol and 14 g of octadec-9-enoic acid were placed in a reaction vessel, and the reaction was carried out at 180°C to 230°C for about 20 hours while nitrogen was passed through, thereby producing compound B34. Obtained.

(合成例B35)
耐熱反応容器に、ジプロピレングリコール100g、水酸化カリウム0.6gを加えて窒素置換を行った。100℃にて減圧し、1時間脱水を行った後、120~130℃に加熱した。ここに、プロピレンオキシド1108gを120~140℃で導入し、同温度にて12時間熟成した。次に、エチレンオキシド1776gを120~140℃で導入し、同温度にて3時間熟成を行うことでポリオキシエチレンポリオキシプロピレングリコールを得た。反応容器に、得られたポリオキシエチレンポリオキシプロピレングリコール100gとオクタデカ-9-エン酸14gを投入し、窒素通入しながら180℃~230℃にて約20時間反応を行うことで化合物B35を得た。
(Synthesis example B35)
100 g of dipropylene glycol and 0.6 g of potassium hydroxide were added to a heat-resistant reaction container, and the container was purged with nitrogen. After dehydrating for 1 hour under reduced pressure at 100°C, the mixture was heated to 120-130°C. To this, 1108 g of propylene oxide was introduced at 120 to 140°C, and the mixture was aged at the same temperature for 12 hours. Next, 1776 g of ethylene oxide was introduced at 120 to 140°C, and ripening was performed at the same temperature for 3 hours to obtain polyoxyethylene polyoxypropylene glycol. 100 g of the obtained polyoxyethylene polyoxypropylene glycol and 14 g of octadec-9-enoic acid were placed in a reaction vessel, and the reaction was carried out at 180°C to 230°C for about 20 hours while nitrogen was passed through, thereby producing compound B35. Obtained.

(合成例B36)
分子量400のポリエチレングリコールを分子量4000のポリエチレングリコールに変更し、オクタデカ-9-エン酸を7gに変更した以外は、合成例B25と同様にして化合物B36を得た。
(Synthesis example B36)
Compound B36 was obtained in the same manner as Synthesis Example B25, except that polyethylene glycol with a molecular weight of 400 was changed to polyethylene glycol with a molecular weight of 4000, and octadec-9-enoic acid was changed to 7 g.

(合成例B37)
オクタデカ-9-エン酸を14gに変更した変更した以外は、合成例B36と同様にして化合物B37を得た。
(Synthesis example B37)
Compound B37 was obtained in the same manner as Synthesis Example B36, except that octadec-9-enoic acid was changed to 14 g.

〔化合物B38〕
前記一般式(4)で表される化合物として、以下の表3に示す構造を有するものを合成した。
11O-(PO)(EO)(PO)-R12 (4)
[Compound B38]
Compounds represented by the general formula (4) having the structures shown in Table 3 below were synthesized.
R 11 O-(PO) f (EO) g (PO) h -R 12 (4)

(合成例B38)
耐熱反応容器に、ジエチレングリコール100g、水酸化カリウム0.6gを加えて窒素置換を行った。100℃にて減圧し、1時間脱水を行った後、120~130℃に加熱した。ここに、エチレンオキシド452gを120~140℃で導入し、同温度にて3時間熟成した。次に、プロピレンオキシド2216gを120~140℃で導入し、同温度にて12時間熟成を行うことで化合物B38を得た。
(Synthesis example B38)
100 g of diethylene glycol and 0.6 g of potassium hydroxide were added to a heat-resistant reaction vessel, and the vessel was purged with nitrogen. After dehydrating for 1 hour under reduced pressure at 100°C, the mixture was heated to 120-130°C. To this, 452 g of ethylene oxide was introduced at 120 to 140°C, and the mixture was aged at the same temperature for 3 hours. Next, 2216 g of propylene oxide was introduced at 120 to 140°C, and ripening was performed at the same temperature for 12 hours to obtain Compound B38.

〔化合物C1~C18〕
前記一般式(6)で表される化合物として、以下の表4及び表5に示す構造を有するものをそれぞれ合成した。
[Compounds C1 to C18]
Compounds represented by the general formula (6) having the structures shown in Tables 4 and 5 below were synthesized.

(R15は、炭素数8~22の炭化水素基(表4)又は-(AO)-H(表5)である。) (R 15 is a hydrocarbon group having 8 to 22 carbon atoms (Table 4) or -(A 7 O) n -H (Table 5).)

(合成例C1)
耐熱反応容器に、オクタデシルプロピレンジアミン100g、水酸化カリウム0.6gを加えて窒素置換を行った。100℃にて減圧し、1時間脱水を行った後、120~130℃に加熱した。ここに、エチレンオキシド40gを120~140℃で導入し、同温度にて3時間熟成を行うことで化合物C1を得た。
(Synthesis example C1)
100 g of octadecylpropylene diamine and 0.6 g of potassium hydroxide were added to a heat-resistant reaction vessel, and the vessel was purged with nitrogen. After dehydrating for 1 hour under reduced pressure at 100°C, the mixture was heated to 120-130°C. To this, 40 g of ethylene oxide was introduced at 120 to 140° C., and ripening was performed at the same temperature for 3 hours to obtain compound C1.

(合成例C2)
耐熱反応容器に、オクタデシルプロピレンジアミン100g、水酸化カリウム0.6gを加えて窒素置換を行った。100℃にて減圧し、1時間脱水を行った後、120~130℃に加熱した。ここに、エチレンオキシド404gを120~140℃で導入し、同温度にて3時間熟成した。次に、プロピレンオキシド178gを120~140℃で導入し、同温度にて12時間熟成を行うことで化合物C2を得た。
(Synthesis example C2)
100 g of octadecylpropylene diamine and 0.6 g of potassium hydroxide were added to a heat-resistant reaction vessel, and the vessel was purged with nitrogen. After dehydrating for 1 hour under reduced pressure at 100°C, the mixture was heated to 120-130°C. To this, 404 g of ethylene oxide was introduced at 120 to 140°C, and the mixture was aged at the same temperature for 3 hours. Next, 178 g of propylene oxide was introduced at 120 to 140°C, and the mixture was aged at the same temperature for 12 hours to obtain compound C2.

(合成例C3)
オクタデシルプロピレンジアミンをオクチルプロピレンジアミンに変更し、導入したエチレンオキシドを236g、プロピレンオキシドを1027gに変更した以外は、合成例C2と同様にして化合物C3を得た。
他はC2合成例と同様に操作した。
(Synthesis example C3)
Compound C3 was obtained in the same manner as Synthesis Example C2, except that octadecylpropylene diamine was changed to octylpropylene diamine, the amount of ethylene oxide introduced was changed to 236 g, and the amount of propylene oxide introduced was changed to 1027 g.
The other operations were the same as in the C2 synthesis example.

(合成例C4)
オクタデシルプロピレンジアミンをドデシルプロピレンジアミンに変更し、導入したエチレンオキシドを182g、プロピレンオキシドを790gに変更した以外は、合成例C2と同様にして化合物C4を得た。
(Synthesis example C4)
Compound C4 was obtained in the same manner as Synthesis Example C2, except that octadecylpropylene diamine was changed to dodecylpropylene diamine, the amount of ethylene oxide introduced was changed to 182 g, and the amount of propylene oxide introduced was changed to 790 g.

(合成例C5)
導入したエチレンオキシドを135g、プロピレンオキシドを590gに変更した以外は、合成例C2と同様にして化合物C5を得た。
(Synthesis example C5)
Compound C5 was obtained in the same manner as Synthesis Example C2, except that the amount of ethylene oxide introduced was changed to 135 g and the amount of propylene oxide introduced was changed to 590 g.

(合成例C6)
導入したエチレンオキシドを202g、プロピレンオキシドを888gに変更した以外は、合成例C2と同様にして化合物C6を得た。
(Synthesis example C6)
Compound C6 was obtained in the same manner as Synthesis Example C2, except that the amount of ethylene oxide introduced was changed to 202 g and the amount of propylene oxide introduced was changed to 888 g.

(合成例C7)
導入したエチレンオキシドを404g、プロピレンオキシドを888gに変更した以外は、合成例C2と同様にして化合物C7を得た。
(Synthesis example C7)
Compound C7 was obtained in the same manner as Synthesis Example C2, except that the amount of ethylene oxide introduced was changed to 404 g and the amount of propylene oxide introduced was changed to 888 g.

(合成例C8)
導入したエチレンオキシドを674g、プロピレンオキシドを888gに変更した以外は、合成例C2と同様にして化合物C8を得た。
(Synthesis example C8)
Compound C8 was obtained in the same manner as Synthesis Example C2, except that the amount of ethylene oxide introduced was changed to 674 g and the amount of propylene oxide introduced was changed to 888 g.

(合成例C9)
導入したエチレンオキシドを1212g、プロピレンオキシドを888gに変更した以外は、合成例C2と同様にして化合物C9を得た。
(Synthesis example C9)
Compound C9 was obtained in the same manner as Synthesis Example C2, except that the amount of ethylene oxide introduced was changed to 1212 g and the amount of propylene oxide introduced was changed to 888 g.

(合成例C10)
耐熱反応容器に、アデカカーポールMD-100(株式会社ADEKA製)100g、水酸化カリウム0.6gを加えて窒素置換を行った。100℃にて減圧し、1時間脱水を行った後、120~130℃に加熱した。ここに、プロピレンオキシド258gを120~140℃で導入し、同温度にて12時間熟成した。次に、エチレンオキシド45gを120~140℃で導入し、同温度にて3時間熟成を行うことで化合物C10を得た。
(Synthesis example C10)
100 g of ADEKA CARPOL MD-100 (manufactured by ADEKA Co., Ltd.) and 0.6 g of potassium hydroxide were added to a heat-resistant reaction vessel, and the vessel was purged with nitrogen. After dehydrating for 1 hour under reduced pressure at 100°C, the mixture was heated to 120-130°C. To this, 258 g of propylene oxide was introduced at 120 to 140°C, and the mixture was aged at the same temperature for 12 hours. Next, 45 g of ethylene oxide was introduced at 120 to 140°C, and ripening was performed at the same temperature for 3 hours to obtain compound C10.

(合成例C11)
導入したプロピレンオキシドを258g、エチレンオキシドを151gに変更した以外は、合成例C10と同様にして化合物C11を得た。
(Synthesis example C11)
Compound C11 was obtained in the same manner as Synthesis Example C10, except that the amount of propylene oxide introduced was changed to 258 g and the amount of ethylene oxide introduced was changed to 151 g.

(合成例C12)
導入したプロピレンオキシドを377g、エチレンオキシドを45gに変更した以外は、合成例C10と同様にして化合物C12を得た。
(Synthesis example C12)
Compound C12 was obtained in the same manner as Synthesis Example C10, except that the amount of propylene oxide introduced was changed to 377 g and the amount of ethylene oxide introduced was changed to 45 g.

(合成例C13)
導入したプロピレンオキシドを536g、エチレンオキシドを75gに変更した以外は、合成例C10と同様にして化合物C13を得た。
(Synthesis example C13)
Compound C13 was obtained in the same manner as Synthesis Example C10, except that the amount of propylene oxide introduced was changed to 536 g and the amount of ethylene oxide introduced was changed to 75 g.

(合成例C14)
導入したプロピレンオキシドを536g、エチレンオキシドを271gに変更した以外は、合成例C10と同様にして化合物C14を得た。
(Synthesis example C14)
Compound C14 was obtained in the same manner as Synthesis Example C10, except that the amount of propylene oxide introduced was changed to 536 g and the amount of ethylene oxide introduced was changed to 271 g.

(合成例C15)
導入したプロピレンオキシドを775g、エチレンオキシドを90gに変更した以外は、合成例C10と同様にして化合物C15を得た。
(Synthesis example C15)
Compound C15 was obtained in the same manner as Synthesis Example C10, except that the amount of propylene oxide introduced was changed to 775 g and the amount of ethylene oxide introduced was changed to 90 g.

(合成例C16)
導入したプロピレンオキシドを874g、エチレンオキシドを241gに変更した以外は、合成例C10と同様にして化合物C16を得た。
(Synthesis example C16)
Compound C16 was obtained in the same manner as Synthesis Example C10, except that the amount of propylene oxide introduced was changed to 874 g and the amount of ethylene oxide introduced was changed to 241 g.

(合成例C17)
導入したプロピレンオキシドを953g、エチレンオキシドを693gに変更した以外は、合成例C10と同様にして化合物C17を得た。
(Synthesis example C17)
Compound C17 was obtained in the same manner as Synthesis Example C10, except that the amount of propylene oxide introduced was changed to 953 g and the amount of ethylene oxide introduced was changed to 693 g.

(合成例C18)
導入したプロピレンオキシドを1867g、エチレンオキシドを196gに変更した以外は、合成例C10と同様にして化合物C18を得た。
(Synthesis example C18)
Compound C18 was obtained in the same manner as Synthesis Example C10, except that the amount of propylene oxide introduced was changed to 1867 g and the amount of ethylene oxide introduced was changed to 196 g.

〔化合物D1~D8〕
前記一般式(9)で表される化合物として、以下の表6に示す構造を有するものをそれぞれ合成した。
17-X―SOY (9)
(Xは、-(AO)-である。)
[Compounds D1 to D8]
Compounds represented by the general formula (9) having the structures shown in Table 6 below were synthesized.
R 17 -X-SO 3 Y (9)
(X is -(A 8 O) p -.)

(合成例D1)
耐熱反応容器に、ドデシルアルコール100g、水酸化カリウム0.2gを加えて窒素置換を行った。100℃にて減圧し、脱水を行った後、120~130℃に加熱した。ここに、エチレンオキシドを487gを120~140℃で導入し、同温度にて3時間の熟成を行うことで反応物を得た。反応容器に、得られた反応物を100g投入し、窒素通入しながら110℃で脱水した後、120~130℃に加熱した。ここに、スルファミン酸を35g導入し3時間反応を行うことで化合物D1を得た。
(Synthesis example D1)
100 g of dodecyl alcohol and 0.2 g of potassium hydroxide were added to a heat-resistant reaction vessel, and the vessel was purged with nitrogen. After dehydration was performed by reducing the pressure at 100°C, the mixture was heated to 120-130°C. To this, 487 g of ethylene oxide was introduced at 120 to 140°C, and ripening was performed at the same temperature for 3 hours to obtain a reaction product. 100 g of the obtained reaction product was put into a reaction vessel, dehydrated at 110°C while nitrogen was introduced, and then heated to 120 to 130°C. Compound D1 was obtained by introducing 35 g of sulfamic acid and reacting for 3 hours.

(合成例D2)
導入したエチレンオキシドを71g、スルファミン酸を31gに変更した以外は、合成例D1と同様にして化合物D2を得た。
(Synthesis example D2)
Compound D2 was obtained in the same manner as Synthesis Example D1, except that 71 g of ethylene oxide and 31 g of sulfamic acid were introduced.

(合成例D3)
ドデシルアルコールをオクタデシルアルコールに変更し、導入したエチレンオキシドを49g、スルファミン酸を24gに変更した以外は、合成例D1と同様にして化合物D3を得た。
(Synthesis example D3)
Compound D3 was obtained in the same manner as Synthesis Example D1, except that dodecyl alcohol was changed to octadecyl alcohol, the amount of ethylene oxide introduced was changed to 49 g, and the amount of sulfamic acid was changed to 24 g.

(合成例D4)
耐熱反応容器に、ドデシルアルコール100g、水酸化カリウム0.2gを加えて窒素置換を行った。100℃にて減圧し、脱水を行った後、120~130℃に加熱した。ここに、エチレンオキシド47gを120~140℃で導入し、同温度にて3時間熟成した。次に、プロピレンオキシド62gを120~140℃で導入し、同温度にて9時間の熟成を行うことで反応物を得た。反応容器に、得られた反応物を100g投入し、窒素通入しながら110℃で脱水した後、120~130℃に加熱した。ここに、スルファミン酸を25g導入し3時間反応を行うことで化合物D4を得た。
(Synthesis example D4)
100 g of dodecyl alcohol and 0.2 g of potassium hydroxide were added to a heat-resistant reaction vessel, and the vessel was purged with nitrogen. After dehydration was performed by reducing the pressure at 100°C, the mixture was heated to 120-130°C. To this, 47 g of ethylene oxide was introduced at 120 to 140°C, and the mixture was aged at the same temperature for 3 hours. Next, 62 g of propylene oxide was introduced at 120 to 140°C, and aging was performed at the same temperature for 9 hours to obtain a reaction product. 100 g of the obtained reaction product was put into a reaction vessel, dehydrated at 110°C while nitrogen was introduced, and then heated to 120 to 130°C. Compound D4 was obtained by introducing 25 g of sulfamic acid and reacting for 3 hours.

(合成例D5)
ドデシルアルコールをデシルアルコールに変更し、導入したエチレンオキシドを84g、スルファミン酸を33gに変更した以外は、合成例D1と同様にして化合物D5を得た。
(Synthesis example D5)
Compound D5 was obtained in the same manner as Synthesis Example D1, except that dodecyl alcohol was changed to decyl alcohol, the amount of ethylene oxide introduced was changed to 84 g, and the amount of sulfamic acid introduced was changed to 33 g.

(合成例D6)
導入したエチレンオキシドを142g、スルファミン酸を22gに変更した以外は、合成例D1と同様にして化合物D6を得た。
(Synthesis example D6)
Compound D6 was obtained in the same manner as Synthesis Example D1, except that 142 g of ethylene oxide and 22 g of sulfamic acid were introduced.

(合成例D7)
ドデシルアルコールをオクタデシルデシルアルコールに変更し、エチレンオキシドを163g、スルファミン酸を22gに変更した以外は、合成例D1と同様にして化合物D7を得た。
(Synthesis example D7)
Compound D7 was obtained in the same manner as Synthesis Example D1, except that dodecyl alcohol was changed to octadecyldecyl alcohol, ethylene oxide was changed to 163 g, and sulfamic acid was changed to 22 g.

(合成例D8)
テイカパワーL121(テイカ株式会社製)を水酸化ナトリウムで中和して化合物D8を得た。
(Synthesis example D8)
Compound D8 was obtained by neutralizing Teika Power L121 (manufactured by Teika Corporation) with sodium hydroxide.

〔化合物E1~E4〕
前記一般式(11)で表される化合物として、以下の表7に示す構造を有するものをそれぞれ合成した。
[Compounds E1 to E4]
Compounds represented by the general formula (11) having the structures shown in Table 7 below were synthesized.

(合成例E1)
反応容器に、オクチルジメチルアミン100g、水181gを加えて85~95℃に加熱した。ここに、窒素通入しながら塩化ベンジル81gを滴下し、4級化反応を行うことで化合物E1を得た。
(Synthesis example E1)
100 g of octyldimethylamine and 181 g of water were added to a reaction vessel and heated to 85 to 95°C. Thereto, 81 g of benzyl chloride was added dropwise while passing nitrogen through the solution, and a quaternization reaction was carried out to obtain compound E1.

(合成例E2)
反応容器に、ドデシルジメチルアミン100g、水159gを加えて85~95℃に加熱した。ここに、窒素通入しながら塩化ベンジル59gを滴下し、4級化反応を行うことで化合物E2を得た。
(Synthesis example E2)
100 g of dodecyldimethylamine and 159 g of water were added to a reaction vessel and heated to 85 to 95°C. Thereto, 59 g of benzyl chloride was added dropwise while passing nitrogen through the solution, and a quaternization reaction was carried out to obtain compound E2.

(合成例E3)
反応容器に、オクタデカ-9-エン-ジメチルアミン100g、水143gを加えて85~95℃に加熱した。ここに、窒素通入しながら塩化ベンジル43gを滴下し、4級化反応を行うことで化合物E3を得た。
(Synthesis example E3)
100 g of octadec-9-ene-dimethylamine and 143 g of water were added to a reaction vessel and heated to 85 to 95°C. Thereto, 43 g of benzyl chloride was added dropwise while passing nitrogen through the solution, and a quaternization reaction was carried out to obtain compound E3.

(合成例E4)
反応容器に、ジドデシルメチルアミン100g、水135gを加えて85~95℃に加熱した。ここに、窒素通入しながら塩化ベンジル35gを滴下し、4級化反応を行うことで化合物E4を得た。
(Synthesis example E4)
100 g of didodecylmethylamine and 135 g of water were added to a reaction vessel and heated to 85 to 95°C. Thereto, 35 g of benzyl chloride was added dropwise while passing nitrogen through the solution, and a quaternization reaction was carried out to obtain compound E4.

〔化合物F1~F4〕
ポリプロピレングリコール系化合物として、以下の表8に示すポリプロピレングリコールを準備し、また、ポリプロピレングリコールと脂肪酸とのエステル化物を合成した。
[Compounds F1 to F4]
Polypropylene glycols shown in Table 8 below were prepared as polypropylene glycol compounds, and esters of polypropylene glycol and fatty acids were synthesized.

(合成例F4)
反応容器に、アデカポリエーテルP-3000(株式会社ADEKA製)100g、オクタデシル脂肪酸18gを投入し、窒素通入しながら180℃~230℃にて約20時間反応を行うことで化合物F4を得た。
(Synthesis example F4)
Compound F4 was obtained by putting 100 g of ADEKA Polyether P-3000 (manufactured by ADEKA Co., Ltd.) and 18 g of octadecyl fatty acid into a reaction container, and conducting a reaction at 180° C. to 230° C. for about 20 hours while supplying nitrogen. .

〔ポリオキシシエチレン(13)ポリオキシプロピレン(15)グリコール大豆油脂肪酸エステル〕
(合成例)
耐熱反応容器に、大豆油100g、オクタデカ-9-エン酸9g、水酸化カリウム0.9を加えて窒素置換を行った。100℃にて減圧し1時間脱水を行った後、120~130℃に加熱したエチレンオキシド59gを120~140℃で導入し、同温度にて3時間熟成した。次に、プロピレンオキシド90gを120~140℃で導入し、同温度にて12時間熟成を行うことでポリオキシシエチレン(13)ポリオキシプロピレン(15)グリコール大豆油脂肪酸エステルを得た。
[Polyoxyethylene (13) polyoxypropylene (15) glycol soybean oil fatty acid ester]
(Synthesis example)
100 g of soybean oil, 9 g of octadec-9-enoic acid, and 0.9 g of potassium hydroxide were added to a heat-resistant reaction vessel, and the vessel was purged with nitrogen. After dehydration was performed for 1 hour under reduced pressure at 100°C, 59 g of ethylene oxide heated to 120-130°C was introduced at 120-140°C, and aged at the same temperature for 3 hours. Next, 90 g of propylene oxide was introduced at 120 to 140° C. and aged at the same temperature for 12 hours to obtain polyoxyethylene (13) polyoxypropylene (15) glycol soybean oil fatty acid ester.

〔その他の化合物〕
サポニン:試薬、東京化成工業株式会社製。
大豆油:大豆白絞油(S)、日清オイリオグループ株式会社製。
ひまわり油:ハイオレックヒマワリ油、横関油脂工業株式会社製。
キャデリンワックス:TOWAX-4F4、東亜化成株式会社製。
カルナバワックス:TOWAX-1F6、東亜化成株式会社製。
[Other compounds]
Saponin: Reagent, manufactured by Tokyo Chemical Industry Co., Ltd.
Soybean oil: White soybean oil (S), manufactured by Nisshin Oilio Group Co., Ltd.
Sunflower oil: Hiolec sunflower oil, manufactured by Yokozeki Oil Industry Co., Ltd.
Cadderin wax: TOWAX-4F4, manufactured by Toa Kasei Co., Ltd.
Carnauba wax: TOWAX-1F6, manufactured by Toa Kasei Co., Ltd.

<消泡性の評価>
(1)発泡試験液1の作成
ステンレス容器にイオン交換水840g及びポリビニルアルコール(PVA-117、株式会社クラレ製)100gを投入した後、加熱溶解した。カオリン60gを投入し、均一に混合した後、室温まで冷却して発泡試験液1を得た。
<Evaluation of antifoaming property>
(1) Preparation of foaming test liquid 1 840 g of ion-exchanged water and 100 g of polyvinyl alcohol (PVA-117, manufactured by Kuraray Co., Ltd.) were put into a stainless steel container, and then heated and dissolved. After 60 g of kaolin was added and mixed uniformly, the mixture was cooled to room temperature to obtain foaming test liquid 1.

(2)発泡試験液2の作成
10Lパルパー(熊谷理機工業株式会社製、パルプ離解機)にダンボール古紙500gを投入し、40℃の温水10Lを加え、10分間攪拌離解した。離解後のパルプスラリーを100メッシュの金網を用いてろ過を行い、パルプを取り除いた後、エマルジョンサイズ剤[星光PMC株式会社製「AL-120F」]を2g添加して発泡試験液2を作成した。
(2) Preparation of foaming test liquid 2 500 g of used cardboard was put into a 10 L pulper (manufactured by Kumagai Riki Kogyo Co., Ltd., pulp disintegrator), 10 L of 40° C. warm water was added, and the mixture was stirred and disintegrated for 10 minutes. The pulp slurry after disintegration was filtered using a 100 mesh wire mesh to remove the pulp, and then 2g of emulsion sizing agent ["AL-120F" manufactured by Seiko PMC Co., Ltd.] was added to create foaming test liquid 2. .

(3)消泡性の評価
以下の循環落下法を用いて消泡性を評価した。
(3) Evaluation of defoaming property Defoaming property was evaluated using the following circulating drop method.

〔装置〕
二重構造で下部がゴム栓で閉じられている円筒状のガラス製シリンダー装置(内側Φ100mm、外側Φ130mm、高さ1000mm)の内側に発泡試験液を充填し、ポンプ(メーカー:株式会社イワキ製)にて装置下部より装置上部に発泡試験液を吸い上げ、落とし循環することにより泡を発生する装置。この装置はガラス製シリンダーの外側と内側の間に温調用の熱媒を循環し、試験中も温度を一定に保つことができる。装置上部から液面の落差は600mmで、発泡試験液出口のノズル径はΦ8mmである。
〔Device〕
A foaming test liquid was filled inside a cylindrical glass cylinder device (inside Φ100 mm, outside Φ130 mm, height 1000 mm) with a double structure and the bottom closed with a rubber stopper, and a pump (manufacturer: Iwaki Co., Ltd.) was used. A device that generates foam by sucking up the foaming test liquid from the bottom of the device to the top of the device, dropping it, and circulating it. This device circulates a heating medium between the outside and inside of the glass cylinder to maintain a constant temperature during the test. The liquid level drop from the top of the device was 600 mm, and the nozzle diameter at the outlet of the foaming test liquid was Φ8 mm.

〔試験方法〕
ガラス製シリンダーの上部の管からガラス製シリンダー内の液面に循環液を落下させることで発泡を促し、液面からの泡上部までの高さを測定し、消泡性を評価した。
〔Test method〕
Foaming was promoted by dropping the circulating liquid from the tube at the top of the glass cylinder onto the liquid surface inside the glass cylinder, and the height from the liquid surface to the top of the bubbles was measured to evaluate defoaming performance.

〔試験条件〕
ガラス製シリンダーに発泡試験液1又は2を1L入れ、40℃に温調した。ポンプにて循環すると同時にマイクロピペット(GILSON社製、容量200μl)にて所定量の消泡剤をイオン交換水で希釈した液を添加した。次に、循環流量5L/分にて循環し、30秒後、5分後の泡高さを測定した。30秒後の泡高さが初期消泡性を表し、5分後の泡高さが消泡持続性を表す。泡の高さが低いほど消泡性が高い。
〔Test conditions〕
1 L of foaming test liquid 1 or 2 was placed in a glass cylinder, and the temperature was adjusted to 40°C. While circulating with a pump, a predetermined amount of antifoaming agent diluted with ion-exchanged water was added using a micropipette (manufactured by GILSON, volume: 200 μl). Next, the mixture was circulated at a circulation flow rate of 5 L/min, and the foam height was measured after 30 seconds and 5 minutes. The foam height after 30 seconds represents the initial defoaming property, and the foam height after 5 minutes represents the durability of defoaming. The lower the foam height, the higher the defoaming property.

(4)サイズ度の評価
〔試験紙の作成〕
広葉樹晒しクラフトパルプと針葉樹晒しクラフトパルプを質量比70/30に配合した混合パルプ250gに水10Lを加えたパルプスラリーをナイアガラビーター(熊谷理機工業株式会社製)で叩解する。ろ水度は、カナダ標準形ろ水度試験機(株式会社東洋精機製作所製)にて測定した値が420mlになるように調製した。
(4) Evaluation of size degree [Preparation of test paper]
A pulp slurry prepared by adding 10 L of water to 250 g of mixed pulp containing bleached hardwood kraft pulp and bleached softwood kraft pulp at a mass ratio of 70/30 is beaten with a Niagara beater (manufactured by Kumagai Riki Kogyo Co., Ltd.). The freeness was adjusted so that the value measured with a Canadian standard freeness tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) was 420 ml.

このパルプスラリー64gをケミスターラーを用いて撹拌し、5分後にマイクロピペット(GILSON社製、容量200μl)にてエマルジョンサイズ剤[星光PMC株式会社製「AL-120F」]32μlを添加し、その5分後に硫酸バンド(硫酸アルミニウム:試薬)を用いてpHを4.7に調整し、さらにその5分後にマイクロピペット(GILSON製、容量1000μl)にて所定量の消泡剤をイオン交換水で希釈した液を添加した。その後、5分間撹拌を継続して紙料の調製を終了した。 64 g of this pulp slurry was stirred using a Chemister stirrer, and 5 minutes later, 32 μl of an emulsion sizing agent [AL-120F, manufactured by Seiko PMC Co., Ltd.] was added using a micropipette (manufactured by GILSON, volume 200 μl), and After 5 minutes, adjust the pH to 4.7 using sulfuric acid band (aluminum sulfate: reagent), and after 5 minutes, dilute the specified amount of antifoaming agent with ion-exchanged water using a micropipette (manufactured by GILSON, capacity 1000 μl). The solution was added. Thereafter, stirring was continued for 5 minutes to complete the preparation of the paper stock.

この紙料を、試験用角型シートマシン(熊谷理機工業株式会社製)を用いて坪量80g/mに抄紙した。次いで、プレス機を用いて300kPaで5分間プレス処理を行い、さらに試験用のヤンキードライヤー(熊谷理機工業株式会社製)を用いて105℃で3分間乾燥し、試験紙を得た。 This paper stock was made into paper with a basis weight of 80 g/m 2 using a test square sheet machine (manufactured by Kumagai Riki Kogyo Co., Ltd.). Next, press treatment was performed using a press machine at 300 kPa for 5 minutes, and further drying was performed at 105° C. for 3 minutes using a Yankee dryer for testing (manufactured by Kumagai Riki Kogyo Co., Ltd.) to obtain a test paper.

〔サイズ度測定方法〕
JIS P 8122(JISハンドブック 紙・パルプ 2020)にしたがってサイズ度を測定した。5点測定し、その平均値(秒)から求めた。サイズ度は、紙の吸水性の強弱を表すものであり、測定時間が長いほどサイズ度が高いことを表す。
[Size measurement method]
The degree of size was measured according to JIS P 8122 (JIS Handbook Paper/Pulp 2020). It was measured at 5 points and calculated from the average value (seconds). The degree of size indicates the strength of water absorption of paper, and the longer the measurement time, the higher the degree of size.

(実施例1~77)
レシチン(化合物A)と表9~表15に示した化合物B1~B14、B15~B38、C1~C18、D1~D8、E1~E4、F1~F4を表9~表15に示した配合比で混合した消泡剤を調製した。これらの消泡剤をそれぞれ用いて、前記方法により、消泡性及びサイズ度を評価した。なお、実施例1~39、42~77の消泡性の評価においては、1mgの消泡剤をイオン交換水で100倍に希釈した液100μlを添加(発泡試験液に対する消泡剤の添加量:1ppm)し、サイズ度の評価においては、0.1gの消泡剤をイオン交換水で100倍に希釈した液640μlを添加(パルプ絶乾に対する消泡剤の添加量:400ppm)した。また、実施例40の消泡性の評価においては、1mgの消泡剤をイオン交換水で100倍に希釈した液10μlを添加(発泡試験液に対する消泡剤の添加量:0.1ppm)し、サイズ度の評価においては、0.01gの消泡剤をイオン交換水で100倍に希釈した液640μlを添加(パルプ絶乾に対する消泡剤の添加量:40ppm)した。さらに、実施例41の消泡性の評価においては、1mgの消泡剤をイオン交換水で10倍に希釈した液100μlを添加(発泡試験液に対する消泡剤の添加量:10ppm)し、サイズ度の評価においては、1gの消泡剤をイオン交換水で100倍に希釈した液640μlを添加(パルプ絶乾に対する消泡剤の添加量:4000ppm)した。得られた結果を表9~表15に示す。
(Examples 1 to 77)
Lecithin (compound A) and compounds B1 to B14, B15 to B38, C1 to C18, D1 to D8, E1 to E4, and F1 to F4 shown in Tables 9 to 15 were mixed in the mixing ratios shown in Tables 9 to 15. A mixed antifoam was prepared. Using each of these antifoaming agents, antifoaming properties and sizing were evaluated by the methods described above. In addition, in the evaluation of antifoaming properties in Examples 1 to 39 and 42 to 77, 100 μl of a solution obtained by diluting 1 mg of antifoaming agent 100 times with ion-exchanged water was added (the amount of antifoaming agent added to the foaming test solution : 1 ppm), and in the evaluation of the sizing degree, 640 μl of a solution prepared by diluting 0.1 g of antifoaming agent 100 times with ion-exchanged water was added (amount of antifoaming agent added to bone-dry pulp: 400 ppm). In addition, in the evaluation of antifoaming properties in Example 40, 10 μl of a solution obtained by diluting 1 mg of antifoaming agent 100 times with ion exchange water was added (amount of antifoaming agent added to the foaming test solution: 0.1 ppm). In the evaluation of the degree of sizing, 640 μl of a solution prepared by diluting 0.01 g of an antifoaming agent 100 times with ion-exchanged water was added (amount of antifoaming agent added to bone-dry pulp: 40 ppm). Furthermore, in the evaluation of antifoaming properties in Example 41, 100 μl of a solution prepared by diluting 1 mg of antifoaming agent 10 times with ion-exchanged water was added (amount of antifoaming agent added to the foaming test solution: 10 ppm), and the size In the evaluation of the strength, 640 μl of a solution obtained by diluting 1 g of antifoaming agent 100 times with ion-exchanged water was added (amount of antifoaming agent added to bone-dry pulp: 4000 ppm). The results obtained are shown in Tables 9 to 15.

(比較例1)
消泡剤を添加しなかった以外は実施例1と同様にして、消泡性及びサイズ度を評価した。得られた結果を表16に示す。
(Comparative example 1)
Defoaming properties and sizing were evaluated in the same manner as in Example 1 except that no defoaming agent was added. The results obtained are shown in Table 16.

(比較例2~14)
消泡剤として、表16に示した化合物を用いた以外は実施例1と同様にして、消泡性及びサイズ度を評価した。なお、比較例9においては、化合物B30と化合物F3とを質量比B30/F3=90/10で混合したものを消泡剤として用いた。得られた結果を表16に示す。
(Comparative Examples 2 to 14)
Defoaming properties and sizing properties were evaluated in the same manner as in Example 1, except that the compounds shown in Table 16 were used as antifoaming agents. In Comparative Example 9, a mixture of Compound B30 and Compound F3 at a mass ratio of B30/F3=90/10 was used as an antifoaming agent. The results obtained are shown in Table 16.

表9~16に示した結果から明らかなように、(A)レシチンと、(B)ポリオキシアルキレン型非イオン界面活性剤、(C)ポリアルキレンポリアミン型非イオン界面活性剤、(D)硫酸塩型アニオン界面活性剤、及び(E)第四級アンモニウム塩型カチオン界面活性剤からなる群から選択される少なくとも1種の界面活性剤とを含有する消泡剤組成物は、初期消泡性と消泡持続性との双方の消泡性に優れており、かつ、紙パルプ製造工業の抄紙工程用消泡剤として使用した場合に、前記消泡性に加えて、得られる紙パルプのサイズ度の低下を十分に抑制することが可能であることが確認された。 As is clear from the results shown in Tables 9 to 16, (A) lecithin, (B) polyoxyalkylene type nonionic surfactant, (C) polyalkylenepolyamine type nonionic surfactant, and (D) sulfuric acid. An antifoaming agent composition containing at least one surfactant selected from the group consisting of a salt-type anionic surfactant and (E) a quaternary ammonium salt-type cationic surfactant has initial antifoaming properties. When used as an antifoaming agent for the papermaking process in the pulp and paper manufacturing industry, in addition to the above antifoaming properties, the size of the paper pulp obtained is excellent. It was confirmed that it is possible to sufficiently suppress the decrease in the degree of deterioration.

以上説明したように、本発明によれば、発泡液に添加した場合に、初期消泡性と消泡持続性との双方の消泡性に優れており、かつ、紙パルプ製造工業の抄紙工程用消泡剤として使用した場合に、前記消泡性に加えて、得られる紙パルプのサイズ度の低下を十分に抑制することが可能な消泡剤組成物を得ることが可能となる。 As explained above, according to the present invention, when added to a foaming liquid, it has excellent antifoaming properties in both initial antifoaming properties and sustained antifoaming properties, and also in the papermaking process of the paper pulp manufacturing industry. When used as an antifoaming agent, it becomes possible to obtain an antifoaming agent composition that not only has the above-mentioned antifoaming properties but also can sufficiently suppress a decrease in the size of the resulting paper pulp.

したがって、本発明の消泡剤組成物は、例えば、紙パルプ工業、塗料工業、繊維工業、合成樹脂エマルジョン工業、セメント・コンクリート工業、食品工業、屎尿・廃水処理等の水を多量に使用する製造処理工程等の様々な業種で発生する泡の消泡に有用であり、中でも、本発明の消泡剤組成物で処理して得られた紙パルプはサイズ度の低下が抑制されることから、紙パルプ製造工業の抄紙工程用消泡剤として特に有用なものである。 Therefore, the antifoam composition of the present invention can be used in, for example, manufacturing processes that use a large amount of water, such as paper and pulp industry, paint industry, textile industry, synthetic resin emulsion industry, cement/concrete industry, food industry, human waste/wastewater treatment, etc. It is useful for defoaming foam generated in various industries such as processing processes, and in particular, the paper pulp obtained by treating with the defoamer composition of the present invention is suppressed from decreasing in size. It is particularly useful as an antifoaming agent for the papermaking process in the pulp and paper manufacturing industry.

Claims (10)

(A)レシチンと、
(B)ポリオキシアルキレン型非イオン界面活性剤、(C)ポリアルキレンポリアミン型非イオン界面活性剤、(D)硫酸塩型アニオン界面活性剤、及び(E)第四級アンモニウム塩型カチオン界面活性剤からなる群から選択される少なくとも1種の界面活性剤と
を含有することを特徴とする消泡剤組成物。
(A) lecithin;
(B) Polyoxyalkylene type nonionic surfactant, (C) Polyalkylenepolyamine type nonionic surfactant, (D) Sulfate type anionic surfactant, and (E) Quaternary ammonium salt type cationic surfactant. and at least one surfactant selected from the group consisting of antifoaming agents.
(F)ポリプロピレングリコール及びポリプロピレングリコールと脂肪酸とのエステル化物のうちの少なくとも一方のポリプロピレングリコール系化合物を更に含有することを特徴とする請求項1に記載の消泡剤組成物。 The antifoaming agent composition according to claim 1, further comprising (F) a polypropylene glycol compound selected from polypropylene glycol and an esterified product of polypropylene glycol and a fatty acid. 前記(B)ポリオキシアルキレン型非イオン界面活性剤が、下記一般式(1)で表される化合物であることを特徴とする請求項1に記載の消泡剤組成物。
-(AO)-R (1)
(一般式(1)中、Rは、炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基或はRO-であり、Rは、水素原子又はRC(=O)-であり、Rは、水素原子又は-C(=O)Rであり、R及びRは、それぞれ独立に、炭素数9~21の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基であり、AOは、炭素数2~4のアルキレンオキシ基であり、aは、AOの繰り返し単位の数で、1~200の整数であり、aが2以上の場合は、複数のAOは同一でも異なっていてもよい。)
The antifoam composition according to claim 1, wherein the polyoxyalkylene type nonionic surfactant (B) is a compound represented by the following general formula (1).
R 1 -(A 1 O) a -R 2 (1)
(In the general formula (1), R 1 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms or R 3 O-, and R 3 is , a hydrogen atom or R 4 C(=O)-, R 2 is a hydrogen atom or -C(=O)R 5 , and R 4 and R 5 each independently have a carbon number of 9 to 21 It is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group, A 1 O is an alkyleneoxy group having 2 to 4 carbon atoms, and a is a repeating unit of A 1 O. is an integer from 1 to 200, and if a is 2 or more, multiple A 1 O's may be the same or different.)
前記(B)ポリオキシアルキレン型非イオン界面活性剤が、下記一般式(2)で表される化合物であることを特徴とする請求項1に記載の消泡剤組成物。
-(AO)-H (2)
(一般式(2)中、Rは、炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基であり、AOは、炭素数2~4のアルキレンオキシ基であり、bは、AOの繰り返し単位の数で、1~200の整数であり、bが2以上の場合は、複数のAOは同一でも異なっていてもよい。)
The antifoam composition according to claim 1, wherein the polyoxyalkylene type nonionic surfactant (B) is a compound represented by the following general formula (2).
R 6 -(A 2 O) b -H (2)
(In general formula (2), R 6 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms, and A 2 O is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 2 to 22 carbon atoms. 4 is an alkyleneoxy group, b is the number of repeating units of A 2 O, and is an integer from 1 to 200, and when b is 2 or more, multiple A 2 O may be the same or different. .)
前記(B)ポリオキシアルキレン型非イオン界面活性剤が、下記一般式(3)又は(4)で表される化合物であることを特徴とする請求項1に記載の消泡剤組成物。
O-(EO)(PO)(EO)-R (3)
(一般式(3)中、Rは、水素原子又はRC(=O)-であり、Rは、水素原子又は-C(=O)R10であり、R及びR10は、それぞれ独立に、炭素数9~21の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基であり、EOは、エチレンオキシ基であり、POはプロピレンオキシ基であり、c及びeは、EOの繰り返し単位の数で、それぞれ独立に、1~199の整数であり、dは、POの繰り返し単位の数で、0~198の整数であり、c+d+eは、2~200である。)
11O-(PO)(EO)(PO)-R12 (4)
(一般式(4)中、R11は、水素原子又はR13C(=O)-であり、R12は、水素原子又は-C(=O)R14であり、R13及びR14は、それぞれ独立に、炭素数9~21の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基であり、EOは、エチレンオキシ基であり、POはプロピレンオキシ基であり、f及びhは、POの繰り返し単位の数で、それぞれ独立に、1~198の整数であり、gは、EOの繰り返し単位の数で、1~198の整数であり、f+g+hは、3~200である。)
The antifoaming agent composition according to claim 1, wherein the polyoxyalkylene type nonionic surfactant (B) is a compound represented by the following general formula (3) or (4).
R 7 O-(EO) c (PO) d (EO) e -R 8 (3)
(In general formula (3), R 7 is a hydrogen atom or R 9 C(=O)-, R 8 is a hydrogen atom or -C(=O)R 10 , and R 9 and R 10 are , each independently a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 9 to 21 carbon atoms, EO is an ethyleneoxy group, and PO is a propyleneoxy group. , c and e are the number of repeating units of EO and are each independently an integer of 1 to 199, d is the number of repeating units of PO and is an integer of 0 to 198, and c+d+e is an integer of 2 to 198. 200.)
R 11 O-(PO) f (EO) g (PO) h -R 12 (4)
(In general formula (4), R 11 is a hydrogen atom or R 13 C(=O)-, R 12 is a hydrogen atom or -C(=O)R 14 , and R 13 and R 14 are , each independently a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 9 to 21 carbon atoms, EO is an ethyleneoxy group, and PO is a propyleneoxy group. , f and h are the number of repeating units of PO and are each independently an integer of 1 to 198, g is the number of repeating units of EO and is an integer of 1 to 198, and f+g+h is an integer of 3 to 198. 200.)
前記(C)ポリアルキレンポリアミン型非イオン界面活性剤が、少なくとも1つの窒素原子に下記一般式(5)で表される基が少なくとも1つ結合している化合物であることを特徴とする請求項1に記載の消泡剤組成物。
-(AO)-H (5)
(一般式(5)中、AOは、炭素数2~4のアルキレンオキシ基であり、iは、AOの繰り返し単位の数で、1~147の整数であり、iが2以上の場合は、複数のAOは同一でも異なっていてもよい。)
A claim characterized in that the polyalkylene polyamine type nonionic surfactant (C) is a compound in which at least one group represented by the following general formula (5) is bonded to at least one nitrogen atom. 1. The antifoam composition according to 1.
-(A 3 O) i -H (5)
(In general formula (5), A 3 O is an alkyleneoxy group having 2 to 4 carbon atoms, i is the number of repeating units of A 3 O, and is an integer from 1 to 147, and i is 2 or more. In this case, multiple A 3 O's may be the same or different.)
前記(C)ポリアルキレンポリアミン型非イオン界面活性剤が、下記一般式(6)で表される化合物であることを特徴とする請求項1に記載の消泡剤組成物。
(一般式(6)中、R15は、下記一般式(7)で表される基或は炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基であり、R16は、炭素数2~4のアルキレン基であり、AO、AO及びAOは、それぞれ独立に、炭素数2~4のアルキレンオキシ基であり、jは、下記一般式(8)で表される基の繰り返し単位の数で、1~3の整数であり、k、l及びmは、それぞれAO、AO及びAOの繰り返し単位の数で、それぞれ独立に、1~147の整数であり、kが2以上の場合は、複数のAOは同一でも異なっていてもよく、lが2以上の場合は、複数のAOは同一でも異なっていてもよく、mが2以上の場合は、複数のAOは同一でも異なっていてもよく、R15が下記一般式(7)で表される基の場合、k+l+m+nは4~200であり、R15が炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基の場合、k+l+mは3~200である。)
-(AO)-H (7)
(一般式(7)中、AOは、炭素数2~4のアルキレンオキシ基であり、nは、AOの繰り返し単位の数で、1~147の整数であり、nが2以上の場合は、複数のAOは同一でも異なっていてもよい。)
(一般式(8)中、R16、AO及びmはそれぞれ前記一般式(6)中のものと同義である。)
The antifoam composition according to claim 1, wherein the polyalkylene polyamine type nonionic surfactant (C) is a compound represented by the following general formula (6).
(In the general formula (6), R 15 is a group represented by the following general formula (7) or a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon having 8 to 22 carbon atoms. group, R 16 is an alkylene group having 2 to 4 carbon atoms, A 4 O, A 5 O and A 6 O are each independently an alkylene group having 2 to 4 carbon atoms, and j is , is the number of repeating units of the group represented by the following general formula (8), and is an integer of 1 to 3, and k, l, and m are the repeating units of A 4 O, A 5 O, and A 6 O, respectively. number, each independently an integer from 1 to 147; when k is 2 or more, multiple A 4 O may be the same or different; when l is 2 or more, multiple A 5 O may be the same or different; when m is 2 or more, multiple A 6 O may be the same or different; when R 15 is a group represented by the following general formula (7), k+l+m+n is 4 to 200, and when R 15 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms, k+l+m is 3 to 200.)
-(A 7 O) n -H (7)
(In general formula (7), A 7 O is an alkyleneoxy group having 2 to 4 carbon atoms, n is the number of repeating units of A 7 O, and is an integer from 1 to 147, and n is 2 or more. In this case, multiple A 7 O's may be the same or different.)
(In general formula (8), R 16 , A 6 O and m each have the same meaning as in general formula (6) above.)
前記(D)硫酸塩型アニオン界面活性剤が、下記一般式(9)で表される化合物であることを特徴とする請求項1に記載の消泡剤組成物。
17-X―SOY (9)
(一般式(9)中、R17は、炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基或は炭素数8~22の1価の芳香族炭化水素基であり、Xは、酸素原子又は下記一般式(10)で表される基であり、Yは、アルカリ金属、アルカリ土類金属、アンモニウム、有機塩基である。)
-(AO)- (10)
(一般式(10)中、AOは、炭素数2~4のアルキレンオキシ基であり、pは、AOの繰り返し単位の数で、0~10の整数であり、pが2以上の場合は、複数のAOは同一でも異なっていてもよい。)
The antifoam composition according to claim 1, wherein the sulfate-type anionic surfactant (D) is a compound represented by the following general formula (9).
R 17 -X-SO 3 Y (9)
(In general formula (9), R 17 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms, or a monovalent aromatic group having 8 to 22 carbon atoms. (X is an oxygen atom or a group represented by the following general formula (10), and Y is an alkali metal, alkaline earth metal, ammonium, or organic base.)
-(A 8 O) p - (10)
(In general formula (10), A 8 O is an alkyleneoxy group having 2 to 4 carbon atoms, p is the number of repeating units of A 8 O, and is an integer from 0 to 10, and p is 2 or more. In this case, multiple A 8 O's may be the same or different.)
前記(E)第四級アンモニウム塩型カチオン界面活性剤が、下記一般式(11)で表される化合物であることを特徴とする請求項1に記載の消泡剤組成物。
(一般式(11)中、R18は、炭素数8~22の直鎖状又は分岐状の飽和又は不飽和の1価の脂肪族炭化水素基であり、R19は、炭素数1~22の直鎖状又は分岐状の飽和の1価の脂肪族炭化水素基、炭素数2~22の直鎖状又は分岐状の不飽和の1価の脂肪族炭化水素基或は下記一般式(12)で表される基であり、R20は、炭素数1~3の直鎖状又は分岐状の飽和の1価の脂肪族炭化水素基或は下記一般式(13)で表される基であり、R21は、炭素数1~3の直鎖状又は分岐状の飽和の1価の脂肪族炭化水素基、ベンジル基或はヒドロキシエチル基であり、Tq-は、対イオンであり、qは、1~3の整数である。)
-(AO)-H (12)
(一般式(12)中、AOは、炭素数2~4のアルキレンオキシ基であり、rは、AOの繰り返し単位の数で、1~5の整数であり、rが2以上の場合は、複数のAOは同一でも異なっていてもよい。)
-(A10O)-H (13)
(一般式(13)中、A10Oは、炭素数2~4のアルキレンオキシ基であり、sは、A10Oの繰り返し単位の数で、1~5の整数であり、sが2以上の場合は、複数のA10Oは同一でも異なっていてもよい。)
The antifoam composition according to claim 1, wherein the quaternary ammonium salt type cationic surfactant (E) is a compound represented by the following general formula (11).
(In general formula (11), R 18 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 8 to 22 carbon atoms, and R 19 is a linear or branched saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 22 carbon atoms. A linear or branched saturated monovalent aliphatic hydrocarbon group, a linear or branched unsaturated monovalent aliphatic hydrocarbon group having 2 to 22 carbon atoms, or the following general formula (12 ), and R 20 is a linear or branched saturated monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms or a group represented by the following general formula (13). , R 21 is a linear or branched saturated monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms, a benzyl group or a hydroxyethyl group, T q- is a counter ion, q is an integer from 1 to 3.)
-(A 9 O) r -H (12)
(In general formula (12), A 9 O is an alkyleneoxy group having 2 to 4 carbon atoms, r is the number of repeating units of A 9 O, and is an integer of 1 to 5, and r is 2 or more. In this case, multiple A 9 O's may be the same or different.)
-(A 10 O) s -H (13)
(In general formula (13), A 10 O is an alkyleneoxy group having 2 to 4 carbon atoms, s is the number of repeating units of A 10 O, and is an integer of 1 to 5, and s is 2 or more In this case, multiple A 10 O's may be the same or different.)
紙パルプ製造工業の抄紙工程用消泡剤であることを特徴とする請求項1に記載の消泡剤組成物。 The antifoaming composition according to claim 1, which is an antifoaming agent for a papermaking process in the paper pulp manufacturing industry.
JP2022105105A 2022-06-29 2022-06-29 Defoaming agent composition Pending JP2024005091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022105105A JP2024005091A (en) 2022-06-29 2022-06-29 Defoaming agent composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022105105A JP2024005091A (en) 2022-06-29 2022-06-29 Defoaming agent composition

Publications (1)

Publication Number Publication Date
JP2024005091A true JP2024005091A (en) 2024-01-17

Family

ID=89539571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022105105A Pending JP2024005091A (en) 2022-06-29 2022-06-29 Defoaming agent composition

Country Status (1)

Country Link
JP (1) JP2024005091A (en)

Similar Documents

Publication Publication Date Title
JP6251382B2 (en) Biodiesel emulsion defoamer and method for producing the same
AU2005313960B2 (en) Defoamer emulsion compositions for pulp mill applications
AU2005313959B2 (en) Defoamers for pulp and papermaking applications
KR19980701892A (en) Use as antifoam of alkoxylation products of epoxidized fats
US5320777A (en) Foam control compositions
CN113512901B (en) Preparation method of fatty alcohol emulsion defoaming agent
EP1268933A1 (en) Foam control composition and method for controlling foam in aqueous systems
AU2001236835A1 (en) Foam control composition and method for controlling foam in aqueous systems
US5562862A (en) Polybutene-based foam control composition for aqueous systems
JP2024005091A (en) Defoaming agent composition
JPH0368401A (en) Defoaming agent
CA2121059C (en) Processing aid for paper making
JPS60202732A (en) Stable substituted succinic anhydride/ emulsifier composition
FI109035B (en) I collected in the flotation process to clean the recycled paper
CN101733039B (en) High-grade fatty alcohol emulsion and preparation method thereof
CN116099237A (en) Preparation process and preparation method of high-carbon alcohol defoaming agent
EP0537018A1 (en) Foam control compositions
AU728234B2 (en) Deinking process
JPH09505767A (en) Block polymer containing ester group as defoaming agent for water system
EP0177260A1 (en) Aqueous dispersed solution of substituted succinic anhydride and process for producing the same
JP2001020191A (en) Defoaming agent for pulp production and production of pulp
JP2014101586A (en) Synthetic fiber treatment agent for paper making, method of manufacturing synthetic fiber for paper making and method of manufacturing of paper making nonwoven fabric
CA2220408A1 (en) Method of bleaching cellulose pulp
CN115155114B (en) Method for stabilizing high-carbon alcohol emulsion by using in-situ synthesized colloidal silicon dioxide and application thereof
JP2019105000A (en) Deinking agent, deinking method, and method of producing recycled paper