JP2024004698A - Photocatalyst film-coated body and method for producing the same - Google Patents

Photocatalyst film-coated body and method for producing the same Download PDF

Info

Publication number
JP2024004698A
JP2024004698A JP2022104454A JP2022104454A JP2024004698A JP 2024004698 A JP2024004698 A JP 2024004698A JP 2022104454 A JP2022104454 A JP 2022104454A JP 2022104454 A JP2022104454 A JP 2022104454A JP 2024004698 A JP2024004698 A JP 2024004698A
Authority
JP
Japan
Prior art keywords
metal oxide
photocatalytic
film
less
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022104454A
Other languages
Japanese (ja)
Inventor
隆誠 加藤
Takamasa Kato
晴貴 越峠
Haruki Koshitouge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2022104454A priority Critical patent/JP2024004698A/en
Publication of JP2024004698A publication Critical patent/JP2024004698A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst film-coated body which can achieve high levels of transparency and photocatalytic activity simultaneously across a broad spectrum from ultraviolet to visible light, and a method for producing the same.
SOLUTION: A photocatalyst film-coated body includes metal oxides with a bandgap energy between the valence band and conduction band of 0.1 eV-5.5 eV, wherein the photocatalyst film has a light transmittance of 80% or more across the wavelength range of 200 nm-800 nm, and the photocatalyst film has a thickness of 0.5 nm-200 nm. There is also provided a method for producing the same.
SELECTED DRAWING: None
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、光触媒膜被覆体及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a photocatalytic membrane coating and a method for manufacturing the same.

光触媒は、一般にそのバンドギャップ以上のエネルギーの光を照射すると、伝導帯に電子が励起され、価電子帯に正孔が生じる。励起されて生じた電子は表面酸素を還元してスーパーオキサイドアニオン(・O )を生成すると共に、正孔は表面水酸基を酸化して水酸ラジカル(・OH)を生成し、これらの反応性活性酸素種が強い酸化分解機能を発揮し、光触媒からなる膜の表面に付着している有機物質を高効率で分解する光触媒性を有することが知られている。 Generally, when a photocatalyst is irradiated with light having an energy higher than its band gap, electrons are excited in the conduction band and holes are generated in the valence band. The excited electrons reduce surface oxygen and generate superoxide anions (・O 2 ), and the holes oxidize surface hydroxyl groups to generate hydroxyl radicals (・OH), and these reactions It is known that active oxygen species exhibit a strong oxidative decomposition function and have photocatalytic properties that decompose organic substances attached to the surface of a photocatalyst film with high efficiency.

このような光触媒の光触媒性を応用して、例えば脱臭、防汚、抗菌、殺菌、更には廃水中や廃ガス中の環境汚染上の問題となっている各種物質の分解・除去等が検討されている。 The photocatalytic properties of photocatalysts have been applied to, for example, deodorization, antifouling, antibacterial, and sterilization, as well as the decomposition and removal of various substances that pose environmental pollution problems in wastewater and waste gas. ing.

また、光触媒のもう1つの機能として、前記光触媒が光励起されると、光触媒膜表面は、水接触角が10°以下となる超親水化を発現することも知られている。このような光触媒の超親水化機能を応用して、例えば、防曇性、防滴性、防汚性、防霜性、滑雪性付与を目的として、高速道路の防音壁、道路反射鏡、各種反射体、街路灯、自動車をはじめとする車両のボディーコートやサイドミラーあるいはウインド用フィルム、窓ガラスを含む建材、道路標識、ロードサイド看板、冷凍・冷蔵用ショーケース、各種レンズ類やセンサー類、光源等に光触媒膜を用いることが検討されている。 It is also known that, as another function of the photocatalyst, when the photocatalyst is photoexcited, the surface of the photocatalyst film becomes superhydrophilic with a water contact angle of 10° or less. The superhydrophilic function of photocatalysts can be applied to, for example, soundproof walls on expressways, road reflectors, and various other products for the purpose of providing anti-fog, drip-proof, anti-fouling, anti-frost, and snow-sliding properties. Reflectors, street lights, vehicle body coats, side mirrors, and window films for automobiles and other vehicles, building materials including window glass, road signs, roadside signboards, refrigerator and freezer showcases, various lenses and sensors, and light sources. The use of photocatalytic films is being considered.

例えば、特許文献1には、光触媒機能を有する酸化チタン薄膜被覆ガラス板の実用性を特定の手法で向上させることが記載されている。具体的には、表面圧縮応力が特定値以下であるガラス基板の表面にチタン元素を含有する薄膜を形成し、薄膜表面を特定の温度で加熱し、特定条件下で冷却することにより、酸化チタン薄膜被覆ガラス板の表面圧縮応力を向上させ、摩擦耐性を向上することが記載されている。 For example, Patent Document 1 describes that the practicality of a glass plate coated with a titanium oxide thin film having a photocatalytic function is improved by a specific method. Specifically, a thin film containing titanium element is formed on the surface of a glass substrate whose surface compressive stress is below a specific value, and the thin film surface is heated to a specific temperature and cooled under specific conditions to produce titanium oxide. It is described that the surface compressive stress of a thin film coated glass plate is improved and the friction resistance is improved.

特開2003-112949号公報Japanese Patent Application Publication No. 2003-112949

透明性が要求されるガラス、プラスチック等の基材表面へ形成される光触媒膜には、光触媒膜自体の透明性も高いレベルで要求される。光触媒はそのバンドギャップ以上のエネルギーの光を吸収することから、高いレベルで透明性を確保するには膜厚を制御し表面に露出していない光触媒部を少なくする必要がある。
しかしながら、特許文献1に記載の酸化チタン薄膜被覆ガラス板においては、光触媒機能を有する酸化チタン膜の膜厚は、使用している酸化チタン粒子の粒径に対して十分に薄いものではなかった。そのため、特許文献1に記載の酸化チタン薄膜被覆ガラス板は、紫外線から可視光領域の広範な領域で高い透明性を有する用途に使用することが難しいものであった。
これまで、紫外線から可視光領域の広範な領域で透明性及び光触媒性を同時に高いレベルで実現可能な光触媒膜被覆体は知られていない。
A photocatalytic film formed on the surface of a substrate such as glass or plastic that requires transparency is also required to have a high level of transparency of the photocatalytic film itself. Since a photocatalyst absorbs light with an energy higher than its band gap, in order to ensure a high level of transparency, it is necessary to control the film thickness and reduce the amount of photocatalyst that is not exposed on the surface.
However, in the glass plate coated with a titanium oxide thin film described in Patent Document 1, the thickness of the titanium oxide film having a photocatalytic function was not sufficiently thin with respect to the particle size of the titanium oxide particles used. Therefore, it is difficult to use the glass plate coated with a titanium oxide thin film described in Patent Document 1 in applications that have high transparency in a wide range from ultraviolet to visible light.
Until now, there has been no known photocatalytic film coating that can simultaneously achieve high levels of transparency and photocatalytic properties in a wide range from ultraviolet to visible light.

本発明は、前記の問題を鑑み、紫外線から可視光領域の広範な領域で透明性及び光触媒性を同時に高いレベルで実現可能な光触媒膜被覆体及びその製造方法を提供することを目的とする。 In view of the above-mentioned problems, the present invention aims to provide a photocatalytic membrane coating that can simultaneously achieve high levels of transparency and photocatalytic properties in a wide range from ultraviolet to visible light, and a method for manufacturing the same.

上述した課題は、本発明の光触媒膜被覆体及びその製造方法によって解決される。詳しくは、本発明の光触媒膜を膜形成の対象となる基材の表面に形成することによって、上記課題は解決される。
即ち、本発明は、以下の[1]~[9]を要旨とする。
[1]価電子帯と伝導帯のバンドギャップエネルギーが0.1eV~5.5eVである金属酸化物を含む光触媒膜を有する光触媒膜被覆体であって、前記光触媒膜の波長200nm~800nmにおける光線透過率が80%以上であり、前記光触媒膜の膜厚が0.5nm~200nmである、光触媒膜被覆体。
[2]前記金属酸化物が、ジルコニウム、チタン、セリウム、インジウム、スズ、亜鉛、アルミニウム、マグネシウム、ケイ素、鉄、鉛、銅、タングステン、ニオブ、クロム、ストロンチウム、インジウム、ルテニウム、カドミウム、ガリウム、アンチモン、テルル、セレン及びハフニウムからなる群より選ばれる1種以上の金属元素を含有する、前記[1]に記載の光触媒膜被覆体。
[3]前記光触媒膜中の前記金属酸化物の最小粒径をXnmとし、前記光触媒膜の膜厚をYnmとしたときに、下記式(1)及び下記式(2)を満たす、前記[1]又は[2]に記載の光触媒膜被覆体。
0.5≦X≦200 ・・・(1)
1.0≦Y/X≦3.0 ・・・(2)
[4]前記光触媒膜の波長200nm~800nmにおける光線透過率が90%以上である、前記[1]~[3]のいずれかに記載の光触媒膜被覆体。
[5]前記光触媒膜の膜厚が0.5nm~100nmである、前記[1]~[4]のいずれかに記載の光触媒膜被覆体。
[6]JIS R 1703-1:2020に準拠して測定した前記光触媒膜の表面の水接触角が20°以下になるまでに要する時間が48時間以下である、前記[1]~[5]のいずれかに記載の光触媒膜被覆体。
[7]前記[1]~[6]のいずれかに記載の光触媒膜被覆体の製造方法であって、前記金属酸化物の粒子分散液を基材に塗布し、乾燥及びエージングした後、溶剤で洗浄し、0℃~1000℃で焼結する、光触媒膜被覆体の製造方法。
[8]前記金属酸化物の粒子のモード径が200nm以下である、前記[7]に記載の光触媒膜被覆体の製造方法。
[9]波長10nm~400nmにピークを有するスペクトルの光を照射する光源を更に有する、前記[1]~[6]のいずれかに記載の光触媒膜被覆体。
The above-mentioned problems are solved by the photocatalytic membrane coating and the manufacturing method thereof of the present invention. Specifically, the above problem is solved by forming the photocatalytic film of the present invention on the surface of a base material on which the film is to be formed.
That is, the gist of the present invention is the following [1] to [9].
[1] A photocatalytic film coating having a photocatalytic film containing a metal oxide whose band gap energy in the valence band and conduction band is 0.1 eV to 5.5 eV, wherein the photocatalytic film has a light beam at a wavelength of 200 nm to 800 nm. A photocatalytic membrane coating having a transmittance of 80% or more and a thickness of the photocatalytic membrane ranging from 0.5 nm to 200 nm.
[2] The metal oxide is zirconium, titanium, cerium, indium, tin, zinc, aluminum, magnesium, silicon, iron, lead, copper, tungsten, niobium, chromium, strontium, indium, ruthenium, cadmium, gallium, antimony. , tellurium, selenium, and hafnium.
[3] The [1 ] or the photocatalytic membrane coating according to [2].
0.5≦X≦200...(1)
1.0≦Y/X≦3.0...(2)
[4] The photocatalytic film coating according to any one of [1] to [3], wherein the photocatalytic film has a light transmittance of 90% or more at a wavelength of 200 nm to 800 nm.
[5] The photocatalytic film coating according to any one of [1] to [4] above, wherein the photocatalytic film has a thickness of 0.5 nm to 100 nm.
[6] [1] to [5] above, wherein the time required for the water contact angle on the surface of the photocatalytic film to become 20° or less as measured in accordance with JIS R 1703-1:2020 is 48 hours or less. The photocatalytic membrane coating according to any one of the above.
[7] The method for producing a photocatalyst film coated body according to any one of [1] to [6] above, wherein the metal oxide particle dispersion is applied to a base material, dried and aged, and then a solvent is added. A method for producing a photocatalyst membrane covering, which comprises washing at a temperature of 0°C to 1000°C and sintering at a temperature of 0°C to 1000°C.
[8] The method for producing a photocatalytic membrane coating according to [7] above, wherein the metal oxide particles have a mode diameter of 200 nm or less.
[9] The photocatalytic film coated body according to any one of [1] to [6] above, further comprising a light source that irradiates light with a spectrum having a peak at a wavelength of 10 nm to 400 nm.

本発明によれば、紫外線から可視光領域の広範な領域で透明性及び光触媒性を同時に高いレベルで実現可能な光触媒膜被覆体及びその製造方法を提供できる。 According to the present invention, it is possible to provide a photocatalytic film covering that can simultaneously achieve high levels of transparency and photocatalytic properties in a wide range from ultraviolet to visible light, and a method for manufacturing the same.

実施例1及び比較例1で得られた金属酸化物の薄膜付きの基材の波長200nm~400nmにおける光線透過率の測定結果を示すグラフである。1 is a graph showing the measurement results of light transmittance at wavelengths of 200 nm to 400 nm of base materials with metal oxide thin films obtained in Example 1 and Comparative Example 1. 実施例1及び比較例1で得られた金属酸化物の薄膜付きの基材の波長400nm~800nmにおける光線透過率の測定結果を示すグラフである。2 is a graph showing the measurement results of the light transmittance at wavelengths of 400 nm to 800 nm of the base materials with metal oxide thin films obtained in Example 1 and Comparative Example 1. 実施例2及び比較例2で得られた金属酸化物の薄膜付きの基材の波長200nm~400nmにおける光線透過率の測定結果を示すグラフである。2 is a graph showing the measurement results of the light transmittance at wavelengths of 200 nm to 400 nm of the base materials with metal oxide thin films obtained in Example 2 and Comparative Example 2. 実施例2及び比較例2で得られた金属酸化物の薄膜付きの基材の波長400nm~900nmにおける光線透過率の測定結果を示すグラフである。2 is a graph showing the measurement results of the light transmittance at wavelengths of 400 nm to 900 nm of the base materials with metal oxide thin films obtained in Example 2 and Comparative Example 2. 実施例1及び比較例1で得られた金属酸化物の薄膜付きの基材と、比較例5で得られた薄膜付きの基材における薄膜側の表面の水接触角の測定結果を示すグラフである。This is a graph showing the measurement results of the water contact angle of the thin film side surface of the base material with the metal oxide thin film obtained in Example 1 and Comparative Example 1 and the base material with the thin film obtained in Comparative Example 5. be.

本明細書において、「~」を用いて表される数値範囲は、「~」の両端の数値を含む。
本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
以下、本発明の実施形態に係る光触媒膜被覆体について説明する。
In this specification, a numerical range expressed using "~" includes the numbers at both ends of "~".
In this specification, the lower and upper limits described in stages for preferred numerical ranges (for example, ranges of content, etc.) can be independently combined. For example, from the description "preferably 10 to 90, more preferably 30 to 60", the "preferable lower limit (10)" and "more preferable upper limit (60)" are combined to become "10 to 60". You can also do that.
Hereinafter, a photocatalyst membrane covering according to an embodiment of the present invention will be described.

「光触媒膜被覆体」
本発明の光触媒膜被覆体は、以下に示す光触媒膜を有する。
光触媒膜被覆体は、以下に示す光源を更に有することが好ましい。
光触媒性は最表面で作用する観点から、光触媒膜被覆体は、光触媒膜を最表面に有することが好ましい。
光触媒膜は、例えば後述する基材上に形成される。即ち、光触媒膜被覆体の一実施形態としては、基材と、基材上に形成された光触媒膜とを有することが好ましく、これらに加えて光源を更に有することがより好ましい。
"Photocatalytic membrane coating"
The photocatalytic membrane coating of the present invention has the photocatalytic membrane shown below.
It is preferable that the photocatalyst membrane coating further includes a light source shown below.
From the viewpoint that the photocatalytic property acts on the outermost surface, it is preferable that the photocatalytic film coating has a photocatalytic film on the outermost surface.
The photocatalytic film is formed, for example, on a substrate described below. That is, one embodiment of the photocatalyst film covering preferably includes a base material and a photocatalyst film formed on the base material, and more preferably further includes a light source in addition to these.

<光触媒膜>
光触媒膜は、価電子帯と伝導帯のバンドギャップエネルギーが0.1eV~5.5eVである金属酸化物を含む。
本発明において、光触媒膜とは、金属酸化物を含有する薄膜(以下、「金属酸化物の薄膜」とも記載する。)を意味する。
本発明において、価電子帯とは、絶縁体や半導体において、原子核の周囲に束縛されている電子のうち、最外殻に存在する電子、即ち価電子によって満たされたエネルギーバンドのことを意味する。
本発明において、伝導帯とは、バンドギャップのある系において、バンドギャップの直上にある、空のバンドのことを意味する。
本発明において、バンドギャップエネルギーとは、価電子帯の最高部と伝導帯の最低部とのエネルギー差を意味する。
<Photocatalyst film>
The photocatalytic film includes a metal oxide whose valence band and conduction band have band gap energies of 0.1 eV to 5.5 eV.
In the present invention, the photocatalytic film means a thin film containing a metal oxide (hereinafter also referred to as a "metal oxide thin film").
In the present invention, the valence band refers to an energy band filled with electrons existing in the outermost shell of the electrons bound around the nucleus of an insulator or semiconductor, that is, valence electrons. .
In the present invention, the conduction band means an empty band immediately above the band gap in a system with a band gap.
In the present invention, band gap energy means the energy difference between the highest part of the valence band and the lowest part of the conduction band.

光触媒膜の膜厚は、0.5nm~200nmであり、0.5nm~100nmが好ましく、0.8nm~75nmがより好ましく、1.0nm~18nmが更に好ましい。光触媒膜の膜厚が上記範囲内であれば、高い透明性と機械的強度を維持できる。
本発明において、光触媒膜の膜厚は実施例に記載の方法で測定される。
The thickness of the photocatalytic film is 0.5 nm to 200 nm, preferably 0.5 nm to 100 nm, more preferably 0.8 nm to 75 nm, even more preferably 1.0 nm to 18 nm. If the thickness of the photocatalyst film is within the above range, high transparency and mechanical strength can be maintained.
In the present invention, the film thickness of the photocatalyst film is measured by the method described in the Examples.

光触媒膜の波長200nm~800nmの光線透過率は80%以上であり、90%以上であることが好ましい。前記波長域の光線透過率が80%以上であれば、様々な用途に適する十分な透明性が得られる。即ち、光触媒膜及び光触媒膜被覆体が透明であることを意味する。
本発明において、「波長Anm~Bnmの光線透過率がC%以上」とは、Anm~Bnmの波長領域の全域において、光線透過率がC%以上であることを意味する。
本発明において、光触媒膜及び光触媒膜被覆体の光線透過率は、石英ガラス基板の分光特性に対する相対値で示した値を意味する。
The light transmittance of the photocatalytic film at a wavelength of 200 nm to 800 nm is 80% or more, preferably 90% or more. If the light transmittance in the wavelength range is 80% or more, sufficient transparency suitable for various uses can be obtained. That is, it means that the photocatalyst film and the photocatalyst film covering are transparent.
In the present invention, "the light transmittance in the wavelength range of Anm to Bnm is C% or more" means that the light transmittance is C% or more in the entire wavelength range of Anm to Bnm.
In the present invention, the light transmittance of the photocatalyst film and the photocatalyst film coating means a value expressed as a relative value with respect to the spectral characteristics of the quartz glass substrate.

透明性がより向上する観点から、光触媒膜の波長400~800nmにおける光線透過率(1)は、80%以上が好ましく、90%以上がより好ましい。
透明性がより向上する観点から、光触媒膜の波長280~400nmにおける光線透過率(2)は、80%以上が好ましく、90%以上がより好ましい。
透明性がより向上する観点から、光触媒膜の波長200~280nmにおける光線透過率(3)は、80%以上好ましく、90%以上がより好ましい。
光触媒膜は、光線透過率(1)~(3)がいずれも、80%以上が好ましく、90%以上がより好ましい。
From the viewpoint of further improving transparency, the light transmittance (1) of the photocatalytic film at a wavelength of 400 to 800 nm is preferably 80% or more, more preferably 90% or more.
From the viewpoint of further improving transparency, the light transmittance (2) of the photocatalyst film at a wavelength of 280 to 400 nm is preferably 80% or more, more preferably 90% or more.
From the viewpoint of further improving transparency, the light transmittance (3) of the photocatalytic film at a wavelength of 200 to 280 nm is preferably 80% or more, more preferably 90% or more.
The photocatalyst film preferably has light transmittances (1) to (3) of 80% or more, more preferably 90% or more.

透明性がより向上する観点から、光触媒膜の可視光領域の全域における光線透過率は、80%以上であり、90%以上が好ましい。なお、可視光領域とは、400nm以上780nm以下の波長領域を意味する。
透明性がより向上する観点から、光触媒膜のUV-A領域の全域における光線透過率は、80%以上であり、90%以上が好ましい。なお、UV-A領域とは、315nm以上400nm未満の波長領域を意味する。
透明性がより向上する観点から、光触媒膜のUV-B領域の全域における光線透過率は、80%以上であり、90%以上が好ましい。なお、UV-B領域とは、280nm以上315nm未満の波長領域を意味する。
透明性がより向上する観点から、光触媒膜のUV-C領域の全域における光線透過率は、200nm以上の領域で80%以上であり、90%以上が好ましい。なお、UV-C領域とは、100nm以上280nm未満の波長領域を意味する。
紫外領域の光線透過率を前記の各波長領域で高くすることにより、光触媒膜やそれを被覆した基材、即ち、光触媒膜被覆体を、紫外線照射用装置の保護カバー等の用途にも用いることができる。
From the viewpoint of further improving transparency, the light transmittance of the photocatalyst film in the entire visible light region is 80% or more, preferably 90% or more. Note that the visible light region means a wavelength region of 400 nm or more and 780 nm or less.
From the viewpoint of further improving transparency, the light transmittance of the photocatalyst film in the entire UV-A region is 80% or more, preferably 90% or more. Note that the UV-A region means a wavelength region of 315 nm or more and less than 400 nm.
From the viewpoint of further improving transparency, the light transmittance of the photocatalyst film in the entire UV-B region is 80% or more, preferably 90% or more. Note that the UV-B region means a wavelength region of 280 nm or more and less than 315 nm.
From the viewpoint of further improving transparency, the light transmittance of the photocatalytic film in the entire UV-C region is 80% or more in the region of 200 nm or more, preferably 90% or more. Note that the UV-C region means a wavelength region of 100 nm or more and less than 280 nm.
By increasing the light transmittance in the ultraviolet region in each of the wavelength ranges mentioned above, the photocatalytic film and the substrate coated with it, that is, the photocatalytic film coating, can also be used for applications such as protective covers for ultraviolet irradiation equipment. Can be done.

様々な用途に適する透明性をより確保しやすい観点から、光触媒膜の光線透過率は200nm~800nmの光線透過率が80%以上であり、100nm~900nmの光線透過率が80%以上であることがより好ましい。
なお、光触媒膜のヘイズは、特に限定されない。
From the viewpoint of easily ensuring transparency suitable for various uses, the light transmittance of the photocatalytic film should be 80% or more in the range from 200 nm to 800 nm, and the light transmittance in the range from 100 nm to 900 nm should be 80% or more. is more preferable.
Note that the haze of the photocatalyst film is not particularly limited.

光触媒膜に高い透明性を付与しやすい、具体的には、波長200nm~800nmの光線透過率を80%以上に容易に制御しやすくなる観点から、光触媒膜中の金属酸化物の最小粒径をXnmとし、金属酸化物薄膜の膜厚をYnmとしたときに、下記式(1)及び下記式(2)を満たすことが好ましい。
0.5≦X≦200 ・・・(1)
1.0≦Y/X≦3.0 ・・・(2)
From the viewpoint of easily imparting high transparency to the photocatalytic film, specifically, from the viewpoint of easily controlling the light transmittance of 80% or more in the wavelength range of 200 nm to 800 nm, the minimum particle size of the metal oxide in the photocatalytic film is It is preferable that the following formula (1) and the following formula (2) be satisfied, where Xnm is the thickness of the metal oxide thin film and Ynm is the thickness of the metal oxide thin film.
0.5≦X≦200...(1)
1.0≦Y/X≦3.0...(2)

Xについては、後述する。
Y/Xは、十分な機械的物性、耐久性を維持できる観点から、1.0以上であり、1.1以上が好ましく、1.2以上がより好ましい。また、Y/Xは、十分な光線透過率をより良好に維持できる観点から、3.0以下であり、2.5以下が好ましく、2.0以下がより好ましい。
X will be described later.
From the viewpoint of maintaining sufficient mechanical properties and durability, Y/X is 1.0 or more, preferably 1.1 or more, and more preferably 1.2 or more. Moreover, Y/X is 3.0 or less, preferably 2.5 or less, and more preferably 2.0 or less, from the viewpoint of better maintaining sufficient light transmittance.

光触媒膜の表面における、大気中での水接触角は特に限定されないが、紫外線から可視光領域の広範な領域で透明性及び光触媒性を同時により高いレベルで実現可能な光触媒膜被覆体とすることができる観点から、10°以下が好ましく、9.0°以下がより好ましく、8.5°以下が更に好ましい。
本明細書において、光触媒膜の表面における、大気中での水接触角は実施例に記載のJIS R 1703-1:2020(ファインセラミックス-光触媒材料のセルフクリーニング性能試験方法第1部:水接触角の測定)に準拠した方法で測定される。
Although the water contact angle in the air on the surface of the photocatalytic film is not particularly limited, the present invention provides a photocatalytic film coating that can simultaneously achieve higher levels of transparency and photocatalytic properties in a wide range from ultraviolet to visible light. From the viewpoint of being able to do this, the angle is preferably 10° or less, more preferably 9.0° or less, and even more preferably 8.5° or less.
In this specification, the water contact angle in the atmosphere on the surface of the photocatalytic film is determined according to JIS R 1703-1:2020 (Fine Ceramics - Self-cleaning performance test method for photocatalyst materials Part 1: Water contact angle) described in Examples. Measured using a method that complies with

光触媒膜の表面における、水中での油滴の接触角は特に限定されないが、紫外線から可視光領域の広範な領域で透明性及び光触媒性を同時により高いレベルで実現可能な光触媒膜被覆体とすることができる観点から、100°以上が好ましく、110°以上がより好ましく、115°以上が更に好ましい。
本明細書において、光触媒膜の表面における、水中での油滴の接触角は実施例に記載のJIS R 1703-1:2020(ファインセラミックス-光触媒材料のセルフクリーニング性能試験方法第1部:水接触角の測定)に準拠した方法で測定される。
Although the contact angle of oil droplets in water on the surface of the photocatalytic membrane is not particularly limited, the present invention provides a photocatalytic membrane coating that can simultaneously achieve higher levels of transparency and photocatalytic properties in a wide range from ultraviolet to visible light. From the viewpoint of possible bending, the angle is preferably 100° or more, more preferably 110° or more, and even more preferably 115° or more.
In this specification, the contact angle of oil droplets in water on the surface of a photocatalytic film is determined according to JIS R 1703-1:2020 (Fine Ceramics - Self-cleaning performance test method for photocatalyst materials Part 1: Water contact) described in Examples. angle measurements).

光触媒膜の表面の水接触角が20°以下になるまでに要する時間(以下、「水接触角低下時間」とも記載する。)は72時間以下が好ましく、48時間以下がより好ましい。水接触角低下時間が短いほど、光触媒性に優れる。
本発明において、光触媒膜の表面の水接触角は実施例に記載のJIS R 1703-1:2020(ファインセラミックス-光触媒材料のセルフクリーニング性能試験方法第1部:水接触角の測定)に準拠した方法で測定される。
The time required for the water contact angle on the surface of the photocatalyst film to become 20 degrees or less (hereinafter also referred to as "water contact angle reduction time") is preferably 72 hours or less, more preferably 48 hours or less. The shorter the water contact angle reduction time, the better the photocatalytic property.
In the present invention, the water contact angle on the surface of the photocatalytic film was determined in accordance with JIS R 1703-1:2020 (Fine Ceramics - Self-cleaning performance test method for photocatalytic materials Part 1: Measurement of water contact angle) described in Examples. Measured by method.

光触媒膜の表面粗さ(Ra)は、光触媒膜の均一性が高まる観点から、200nm以下が好ましく、100nm以下がより好ましく、70nm以下が更に好ましく、50nm以下がより更に好ましく、30nm以下が特に好ましく、15nm以下がより特に好ましく、10nm以下が更に特に好ましく、5nm以下が最も好ましく、3nm以下が特に最も好ましい。また、光触媒膜の表面粗さ(Ra)は、親水性、防曇性が高まる観点から、0.01nm以上が好ましく、0.03nm以上がより好ましく、0.05nm以上が更に好ましく、0.07nm以上が特に好ましく、0.1nm以上が最も好ましい。 The surface roughness (Ra) of the photocatalyst film is preferably 200 nm or less, more preferably 100 nm or less, even more preferably 70 nm or less, even more preferably 50 nm or less, and particularly preferably 30 nm or less, from the viewpoint of increasing the uniformity of the photocatalyst film. , 15 nm or less is more particularly preferred, 10 nm or less is even more particularly preferred, 5 nm or less is most preferred, and 3 nm or less is especially most preferred. In addition, the surface roughness (Ra) of the photocatalyst film is preferably 0.01 nm or more, more preferably 0.03 nm or more, even more preferably 0.05 nm or more, and 0.07 nm or more, from the viewpoint of increasing hydrophilicity and antifogging property. The thickness is particularly preferably 0.1 nm or more, and most preferably 0.1 nm or more.

光触媒膜の表面粗さの最大値(Rmax)は、光触媒膜の均一性が高まる観点から、500nm以下が好ましく、300nm以下がより好ましく、150nm以下が更に好ましくは、100nm以下がより更に好ましく、50nm以下が特に好ましく、30nm以下がより特に好ましく、20nm以下が更に特に好ましく、15nm以下が最も好ましい。また、光触媒膜の表面粗さの最大値(Rmax)は、親水性、防曇性が高まる観点から、0.05nm以上が好ましく、0.1nm以上がより好ましく、0.5nm以上が更に好ましく、0.7nm以上が特に好ましく、1.0nm以上が最も好ましい。 The maximum value (Rmax) of the surface roughness of the photocatalyst film is preferably 500 nm or less, more preferably 300 nm or less, even more preferably 150 nm or less, even more preferably 100 nm or less, and 50 nm or less, from the viewpoint of increasing the uniformity of the photocatalyst film. The following is particularly preferable, 30 nm or less is more particularly preferable, 20 nm or less is even more particularly preferable, and 15 nm or less is most preferable. Further, the maximum value (Rmax) of the surface roughness of the photocatalyst film is preferably 0.05 nm or more, more preferably 0.1 nm or more, and even more preferably 0.5 nm or more, from the viewpoint of increasing hydrophilicity and antifogging property. Particularly preferably 0.7 nm or more, and most preferably 1.0 nm or more.

<金属酸化物>
金属酸化物は、ジルコニウム、チタン、セリウム、インジウム、スズ、亜鉛、アルミニウム、マグネシウム、ケイ素、鉄、鉛、銅、タングステン、ニオブ、クロム、ストロンチウム、インジウム、ルテニウム、カドミウム、ガリウム、アンチモン、テルル、セレン及びハフニウムからなる群より選ばれる1種以上の金属元素を含有する金属酸化物であることが好ましい。
透明性がより高まる観点から、金属酸化物は、チタン、ジルコニウム、ハフニウム、亜鉛、スズからなる群より選ばれる1種以上の金属元素を含有する金属酸化物であることがより好ましく、酸化チタンを含有する金属酸化物であることが更に好ましい。
光触媒性の観点から、金属酸化物は、光触媒膜を構成していることが好ましい。
金属酸化物は、粒子状であることが好ましい。以下、粒子状の金属酸化物を「金属酸化物の粒子」とも記載する。
金属酸化物の最小粒径(X)及びモード径については、後述する。
<Metal oxide>
Metal oxides include zirconium, titanium, cerium, indium, tin, zinc, aluminum, magnesium, silicon, iron, lead, copper, tungsten, niobium, chromium, strontium, indium, ruthenium, cadmium, gallium, antimony, tellurium, and selenium. The metal oxide is preferably a metal oxide containing one or more metal elements selected from the group consisting of and hafnium.
From the viewpoint of further increasing transparency, the metal oxide is more preferably a metal oxide containing one or more metal elements selected from the group consisting of titanium, zirconium, hafnium, zinc, and tin. More preferably, it is a metal oxide containing.
From the viewpoint of photocatalytic properties, it is preferable that the metal oxide constitutes the photocatalytic film.
Preferably, the metal oxide is in particulate form. Hereinafter, particulate metal oxides will also be referred to as "metal oxide particles."
The minimum particle diameter (X) and mode diameter of the metal oxide will be described later.

<基材>
基材としては特に制限されないが、例えば、ガラス等の無機基材、ポリエチレンテレフタレート、ポリイミド、ポリカーボネート、ポリエチレンナフタレート等のポリマーフィルム基材等が挙げられる。
基材には、金属酸化物薄膜の密着性を高めるために表面処理が施されていてもよい。表面処理液としては、例えば、シランカップリング剤、有機金属等が挙げられる。シランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、トリス(2-メトキシエトキシ)ビニルシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-(メタクリロキシプロピル)トリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン等が挙げられる。有機金属としては、例えば、有機チタン、有機アルミニウム、有機ジルコニウム等が挙げられる。シランカップリング剤又は有機金属を有機溶媒、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等で0.1~5質量%の濃度に希釈したものを用いることもできる。この表面処理液をスピナー等で基材上に均一に塗布した後に乾燥することによって表面処理ができる。
<Base material>
Although the base material is not particularly limited, examples thereof include inorganic base materials such as glass, polymer film base materials such as polyethylene terephthalate, polyimide, polycarbonate, and polyethylene naphthalate.
The base material may be subjected to a surface treatment to improve the adhesion of the metal oxide thin film. Examples of the surface treatment liquid include silane coupling agents, organic metals, and the like. Examples of the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, tris(2-methoxyethoxy)vinylsilane, γ-glycidoxypropyltrimethoxysilane, γ-(methacryloxypropyl)trimethoxysilane, Examples include methoxysilane, γ-(2-aminoethyl)aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, and γ-aminopropyltriethoxysilane. Examples of the organic metal include organic titanium, organic aluminum, and organic zirconium. Silane coupling agent or organic metal diluted with an organic solvent such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, etc. to a concentration of 0.1 to 5% by mass. You can also use Surface treatment can be achieved by uniformly applying this surface treatment liquid onto a substrate using a spinner or the like and then drying it.

<光源>
光触媒膜を構成する金属酸化物のバンドギャップエネルギー以上のエネルギーを有する波長の光を照射することで光触媒性を発現できるという観点から、光触媒膜被覆体は、波長10nm~400nmにピークを有するスペクトルの光を照射する光源を有することが好ましい。
透明性がより高まる観点から、光触媒膜被覆体は基材側に光源を有することが好ましい。
光源としては特に限定されないが、例えば、放射熱による白熱電球、ハロゲン電球、放電発行による水銀灯、蛍光灯、電界発光によるエレクトロルミネセンス、発光ダイオード、レーザー発光によるエキシマレーザー等が挙げられる。
<Light source>
From the viewpoint that photocatalytic properties can be expressed by irradiating light with a wavelength having an energy greater than or equal to the band gap energy of the metal oxide constituting the photocatalytic film, the photocatalytic film coating has a spectrum having a peak in the wavelength range of 10 nm to 400 nm. It is preferable to have a light source that irradiates light.
From the viewpoint of further increasing transparency, it is preferable that the photocatalyst membrane covering has a light source on the base material side.
The light source is not particularly limited, but includes, for example, an incandescent lamp using radiant heat, a halogen lamp, a mercury lamp using discharge emission, a fluorescent lamp, electroluminescence using electroluminescence, a light emitting diode, an excimer laser using laser emission, and the like.

<作用効果>
本発明の光触媒膜被覆体が本発明の効果を奏する理由は、以下に限られるものではないが、以下の(i)のように推察することができる。
(i)価電子帯と伝導帯のバンドギャップエネルギーが0.1eV~5.5eVである金属酸化物を含む光触媒膜を有する光触媒膜被覆体において、光触媒膜の波長200nm~800nmにおける光線透過率が80%以上であり、光触媒膜の膜厚が0.5nm~200nmであることで、波長200nm~800nmの広範囲で、より好ましくは、波長200nm~900nmの広範囲で光触媒膜被覆体に高い光線透過率を付与できる。即ち、光触媒膜被覆体に優れた透明性を付与できるため、透明性を有する基材に光触媒膜を形成しても、光触媒膜被覆体の透明性が損なわれ難い。
以上の理由により、本発明の光触媒膜被覆体は、紫外線から可視光領域の広範な領域で透明性及び光触媒性を同時に高いレベルで実現可能であると推察される。
<Effect>
The reason why the photocatalyst membrane coating of the present invention exhibits the effects of the present invention can be inferred as shown in (i) below, although it is not limited to the following.
(i) In a photocatalytic film coating having a photocatalytic film containing a metal oxide whose band gap energy in the valence band and conduction band is 0.1 eV to 5.5 eV, the light transmittance of the photocatalytic film at a wavelength of 200 nm to 800 nm is 80% or more, and the film thickness of the photocatalytic film is 0.5 nm to 200 nm, so that the photocatalytic film coating has high light transmittance over a wide range of wavelengths of 200 nm to 800 nm, more preferably, over a wide range of wavelengths of 200 nm to 900 nm. can be granted. That is, since excellent transparency can be imparted to the photocatalytic membrane coating, even if the photocatalytic membrane is formed on a transparent base material, the transparency of the photocatalytic membrane coating is unlikely to be impaired.
For the above reasons, it is presumed that the photocatalytic membrane coating of the present invention can simultaneously achieve high levels of transparency and photocatalytic properties in a wide range from ultraviolet to visible light.

更に、以下の(ii)により、光触媒膜被覆体は、透明性及び光触媒性に加えて、防曇性及び防汚性に優れるようになるものと推察される。
(ii)光触媒膜の表面粗さ(Ra)が適度に小さい、具体的には200nm以下であれば、ナノオーダーで高さがある程度揃った微細な凹凸が形成され、光触媒膜の親水性を高くすることができる。このため、高湿度下でも曇りにくく、防曇性が高く、水中で有機物が付着しにくく、防汚性が高いという機能を基材に付与することができる。
以上の理由により、光触媒膜の表面粗さ(Ra)を適度に小さくすることで、光触媒膜被覆体は、透明性、防曇性及び防汚性に優れるようになるものと推察される。
Furthermore, it is presumed that due to the following (ii), the photocatalytic membrane coating has excellent antifogging properties and antifouling properties in addition to transparency and photocatalytic properties.
(ii) If the surface roughness (Ra) of the photocatalytic film is moderately small, specifically 200 nm or less, fine irregularities with uniform heights on the nano-order are formed, increasing the hydrophilicity of the photocatalytic film. can do. Therefore, the base material can be given the following functions: it is hard to fog even under high humidity, has high anti-fog properties, is hard to attract organic substances in water, and has high antifouling properties.
For the above reasons, it is presumed that by appropriately reducing the surface roughness (Ra) of the photocatalyst film, the photocatalyst film coating will have excellent transparency, antifogging properties, and antifouling properties.

更に、以下の(iii)、(iv)により、光触媒膜被覆体は、透明性及び光触媒性に加えて、機械的物性と耐久性とを同時に高いレベルで実現可能とし得るものと推察される。
(iii)光触媒膜は概して高い硬度を有するので、基材に光触媒膜を設けることにより、基材を傷付きにくくすることができる。
(iv)光触媒膜は、実質的に金属酸化物のみからなる膜として形成することもできる。したがって、実質的に金属酸化物のみからなる光触媒膜とした場合は、光触媒膜や光触媒膜被覆体の使用中に、光触媒膜から不純物等が溶け出して周囲に悪影響を及ぼす可能性が大きく低減され得る。
以上の理由により、光触媒膜被覆体は、機械的物性と耐久性とを同時に高いレベルで実現可能であると推察される。
Furthermore, due to the following (iii) and (iv), it is presumed that the photocatalytic membrane coating can simultaneously achieve high levels of mechanical properties and durability in addition to transparency and photocatalytic properties.
(iii) Since a photocatalyst film generally has high hardness, by providing a photocatalyst film on a base material, the base material can be made less likely to be damaged.
(iv) The photocatalytic film can also be formed as a film made essentially only of metal oxides. Therefore, if the photocatalytic film is made of substantially only metal oxides, the possibility that impurities etc. will leach out from the photocatalytic film and adversely affect the surrounding area during use of the photocatalytic film or photocatalytic film coating will be greatly reduced. obtain.
For the above reasons, it is inferred that the photocatalytic membrane coating can simultaneously achieve high levels of mechanical properties and durability.

<用途>
前記(i)~(iv)にて推察した効果を奏することにより、本発明の光触媒膜被覆体は、光学用のガラスや光学用のプラスチックの表面処理、医療用、紫外線照射装置用の金属、ガラス、プラスチック等の表面被覆用膜として極めて有用である。
具体的な例を挙げると、内視鏡レンズの表面に前記光触媒膜を設けた場合、繰り返し使用しても、傷つきにくく、曇りにくく、汚れにくいレンズが得られる。このため、内視鏡による観察や手術の精度を向上させることが可能である。また、実質的に金属酸化物のみからなる光触媒膜とすることにより、使用中に金属酸化物膜から不純物等が溶出してくることが極めて少なくなるため、人体への影響も非常に少なくすることができる。
<Application>
By exhibiting the effects inferred in (i) to (iv) above, the photocatalytic membrane coating of the present invention can be used for surface treatment of optical glass and optical plastic, for medical use, for metals for ultraviolet irradiation equipment, It is extremely useful as a film for coating the surfaces of glass, plastics, etc.
To give a specific example, when the photocatalytic film is provided on the surface of an endoscope lens, a lens that is hard to be damaged, hard to fog, and hard to get dirty can be obtained even after repeated use. Therefore, it is possible to improve the accuracy of endoscopic observation and surgery. Additionally, by using a photocatalytic film that consists essentially only of metal oxides, it is extremely unlikely that impurities will be eluted from the metal oxide film during use, which will greatly reduce the impact on the human body. Can be done.

<光触媒膜被覆体の製造方法>
光触媒膜被覆体を製造する方法としては特に限定されないが、例えば、所定の粒径を有する金属酸化物の粒子分散液を基材に塗布し(塗布工程)、得られた塗膜を乾燥及びエージングした後(乾燥及びエージング工程)、塗膜を溶剤で洗浄し(洗浄工程)、洗浄後の塗膜を0℃~1000℃で焼結する(焼結工程)ことで、光触媒膜被覆体を製造することができる。即ち、光触媒膜被覆体の製造方法は、塗布工程と、乾燥及びエージング工程と、洗浄工程と、焼結工程とを有することが好ましい。
金属酸化物の粒子としては、後記の方法により合成した金属酸化物の粒子を用いることが好ましい。
金属酸化物の粒子分散液を基材に均一に塗布できる観点から、金属酸化物の粒子分散液は、金属酸化物粒子を分散剤により有機溶媒中に分散安定化させた分散液であることが好ましい。
<Method for manufacturing photocatalyst membrane coating>
The method for producing the photocatalyst membrane coating is not particularly limited, but for example, a metal oxide particle dispersion having a predetermined particle size is applied to a substrate (coating step), and the resulting coating film is dried and aged. After that (drying and aging process), the coating film is washed with a solvent (cleaning process), and the washed coating film is sintered at 0°C to 1000°C (sintering process) to produce a photocatalyst film coated body. can do. That is, it is preferable that the method for manufacturing a photocatalyst film coated body includes a coating step, a drying and aging step, a washing step, and a sintering step.
As the metal oxide particles, it is preferable to use metal oxide particles synthesized by the method described below.
From the viewpoint of uniformly applying the metal oxide particle dispersion to the substrate, the metal oxide particle dispersion is preferably a dispersion in which metal oxide particles are stabilized by dispersion in an organic solvent using a dispersant. preferable.

なお、光触媒膜被覆体の製造方法においては、金属酸化物の粒子と基材表面との間で何らかの相互作用が生じるものと考えられる。そして、このことが一つの要因となって、紫外線から可視光領域の広範な領域で透明性及び光触媒性を同時に高いレベルで実現可能な光触媒膜被覆体を製造することができる。 In addition, in the method for manufacturing a photocatalyst film coated body, it is thought that some kind of interaction occurs between the metal oxide particles and the surface of the base material. This is one of the factors that makes it possible to produce a photocatalytic film coating that can simultaneously achieve high levels of transparency and photocatalytic properties in a wide range from ultraviolet to visible light.

[金属酸化物の粒子分散液の調製]
金属酸化物の粒子と後述の分散剤とを有機溶媒中に添加することで、また、後述のように金属酸化物の粒子を作製する際の反応液にカルボン酸類等の分散剤を添加しておくことで、金属酸化物の粒子が有機溶媒に分散し、安定した金属酸化物の粒子分散液(以下、単に「分散液」とも記載する。)を調製することができる。金属酸化物の粒子は、金属酸化物に結合又は金属酸化物を修飾している分散剤等の添加剤が有機溶媒によって溶媒和されるため、他の特殊な分散剤を加えたり、特殊な操作を追加したりすることなく、汎用の有機溶媒中に前記粒子を添加することによって、安定した分散液を調製することができる。
[Preparation of metal oxide particle dispersion]
By adding metal oxide particles and a dispersant described below into an organic solvent, or by adding a dispersant such as carboxylic acids to the reaction solution when producing metal oxide particles as described later. By allowing the metal oxide particles to disperse in the organic solvent, a stable metal oxide particle dispersion (hereinafter also simply referred to as "dispersion") can be prepared. In metal oxide particles, additives such as dispersants that bind to or modify metal oxides are solvated by organic solvents, so it is difficult to add other special dispersants or perform special operations. A stable dispersion can be prepared by adding the particles into a commonly used organic solvent without the need for additional solvents.

有機溶媒としては、金属酸化物の粒子を分散させ得るものであればどのようなものでも使用でき、単独又は数種類を組み合わせて使用することもできる。
有機溶媒としては、例えば、トルエン、キシレン、メシチレン、ニトロベンゼン等の芳香族炭化水素類;ヘキサン、オクタン、シクロヘキサン、デカヒドロナフタレン等の脂肪族炭化水素系;アセトン、メチルエチルケトン、ジエチルケトン、アセチルアセトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、N-メチルピロリドン等のケトン類;ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;ジエチルエーテル、テトラヒドロフラン、ジオキサン、メトキシエタノール、エトキシエタノール等のエーテル類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等の塩化脂肪族炭化水素類;メタノール、エタノール、イソプロピルアルコール等のアルコール類;酢酸エチル、酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等の酢酸エステル類等が挙げられる。金属酸化物の粒子の分散安定性が高まる観点から、有機溶媒としては、ヘキサン、シクロヘキサン、クロロホルム、ジエチルエーテル、トルエン、デカヒドロナフタレン、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)が好ましい。
Any organic solvent can be used as long as it can disperse metal oxide particles, and it can be used alone or in combination of several types.
Examples of organic solvents include aromatic hydrocarbons such as toluene, xylene, mesitylene, and nitrobenzene; aliphatic hydrocarbons such as hexane, octane, cyclohexane, and decahydronaphthalene; acetone, methyl ethyl ketone, diethyl ketone, acetylacetone, and methyl isobutyl. Ketones such as ketones, cyclopentanone, cyclohexanone, N-methylpyrrolidone; amides such as formamide, N,N-dimethylformamide, N,N-dimethylacetamide; diethyl ether, tetrahydrofuran, dioxane, methoxyethanol, ethoxyethanol, etc. ethers; chlorinated aliphatic hydrocarbons such as dichloromethane, chloroform, and 1,2-dichloroethane; alcohols such as methanol, ethanol, and isopropyl alcohol; ethyl acetate, butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate (PGMEA) Examples include acetate esters such as. From the viewpoint of increasing the dispersion stability of metal oxide particles, hexane, cyclohexane, chloroform, diethyl ether, toluene, decahydronaphthalene, butyl acetate, and propylene glycol monomethyl ether acetate (PGMEA) are preferable as the organic solvent.

分散液に用いる有機溶媒の量は特に限定されないが、経済的に安定した分散液を調製できる観点から、金属酸化物粒子と有機溶媒との合計質量に対して、80質量%以上が好ましく、85質量%以上がより好ましく、90質量%以上が更に好ましい。また、99.7質量%以下が好ましく、99.5質量%以下がより好ましく、99質量%以下が更に好ましい。 The amount of the organic solvent used in the dispersion is not particularly limited, but from the viewpoint of being able to prepare an economically stable dispersion, it is preferably 80% by mass or more, based on the total mass of the metal oxide particles and the organic solvent. It is more preferably at least 90% by mass, and even more preferably at least 90% by mass. Further, it is preferably 99.7% by mass or less, more preferably 99.5% by mass or less, and even more preferably 99% by mass or less.

分散剤としては、金属酸化物の粒子を分散させ得る作用を有する化合物であればどのような化合物でも使用でき、例えば、カプリル酸、アクリル酸、メタクリル酸、チグリン酸、プロピオン酸、メチル酪酸、ヘキサン酸、ノナン酸、o-トルイル酸、p-トルイル酸、安息香酸、p-t-ブチル安息香酸、4-トリフルオロメチル安息香酸、フェニルチオ酢酸、オレイン酸、ベヘン酸、ステアリン酸、ミリスチン酸、パルミチン酸等のカルボン酸が挙げられる。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。分散剤としては、カプリル酸、アクリル酸、4-トリフルオロメチル安息香酸が好ましい。 As a dispersant, any compound can be used as long as it has the ability to disperse metal oxide particles, such as caprylic acid, acrylic acid, methacrylic acid, tiglic acid, propionic acid, methylbutyric acid, and hexane. Acid, nonanoic acid, o-toluic acid, p-toluic acid, benzoic acid, pt-butylbenzoic acid, 4-trifluoromethylbenzoic acid, phenylthioacetic acid, oleic acid, behenic acid, stearic acid, myristic acid, palmitic acid. Examples include carboxylic acids such as acids. One type of these may be used alone, or two or more types may be used in combination in any combination and ratio. As the dispersant, caprylic acid, acrylic acid, and 4-trifluoromethylbenzoic acid are preferred.

分散液に用いる分散剤の量としては特に限定されないが、経済的に安定した分散液を調製できる観点から、金属酸化物の粒子100質量部に対して、10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上が更に好ましい。また、70質量部以下が好ましく、65質量部以下がより好ましく、60質量部以下が更に好ましい。 The amount of dispersant used in the dispersion is not particularly limited, but from the viewpoint of being able to prepare an economically stable dispersion, it is preferably 10 parts by mass or more, and 20 parts by mass, based on 100 parts by mass of metal oxide particles. The above is more preferable, and 30 parts by mass or more is still more preferable. Further, it is preferably 70 parts by mass or less, more preferably 65 parts by mass or less, and even more preferably 60 parts by mass or less.

金属酸化物の粒子分散液は、カルボン酸以外の低分子分散剤、バインダー樹脂等の高分子分散剤、増粘剤、界面活性剤、消泡剤、紫外線吸収剤、乳化剤等を更に含有していてもよい。 The metal oxide particle dispersion further contains a low molecular dispersant other than carboxylic acid, a polymer dispersant such as a binder resin, a thickener, a surfactant, an antifoaming agent, an ultraviolet absorber, an emulsifier, etc. You can.

[塗布工程]
金属酸化物の粒子分散液の基材への塗布方法は、基材の材質や形状により、自由に選択される。例えば、基材が直径又は長辺が300mm以下の平板状のものであれば、スピンコートが可能である。基材が広幅のフィルム状であれば、グラビアロール、リップロール、リバースロール等を用いてロールtoロールで連続的に塗布することも可能である。また、表面が立体的で複雑な形状の場合は、ディップコートやスプレーコートで塗布することも可能である。
基材としては、上述したものが挙げられる。また、表面処理が施された基材を用いてもよい。
本明細書において、基材へ塗布された金属酸化物の粒子分散液を「塗膜」とも記載する。
[Coating process]
The method for applying the metal oxide particle dispersion onto the base material can be freely selected depending on the material and shape of the base material. For example, if the base material has a flat plate shape with a diameter or long side of 300 mm or less, spin coating is possible. If the base material is in the form of a wide film, it is also possible to apply it continuously in a roll-to-roll manner using a gravure roll, lip roll, reverse roll, or the like. Furthermore, if the surface is three-dimensional and has a complex shape, it is also possible to apply by dip coating or spray coating.
Examples of the base material include those mentioned above. Furthermore, a surface-treated base material may be used.
In this specification, a metal oxide particle dispersion applied to a substrate is also referred to as a "coating film."

[乾燥及びエージング工程]
塗膜の乾燥(乾燥工程)は、塗膜中の有機溶媒を一定量以下にするために行われる。そのため、乾燥の温度と時間は、塗膜に要求される残存有機溶媒量とその有機溶媒の種類によって決定される。塗布後の乾燥条件は任意である。
また、乾燥雰囲気についても空気中、窒素雰囲気中、減圧下等、特に制限されない。具体的には、塗膜を乾燥するための温度は、20℃~300℃が好ましく、25℃~200℃がより好ましい。塗膜を乾燥するための時間は、1秒間~1800秒間が好ましく、2秒間~1200秒間がより好ましい。塗膜を乾燥することにより、塗膜中の有機溶媒の量を、塗布した分散液の質量に対し50質量%以下にすることができる。
[Drying and aging process]
Drying of the coating film (drying step) is performed to reduce the amount of organic solvent in the coating film to a certain amount or less. Therefore, the drying temperature and time are determined by the amount of residual organic solvent required for the coating film and the type of organic solvent. Drying conditions after application are arbitrary.
Further, the drying atmosphere is not particularly limited, and may be air, nitrogen atmosphere, reduced pressure, or the like. Specifically, the temperature for drying the coating film is preferably 20°C to 300°C, more preferably 25°C to 200°C. The time for drying the coating film is preferably 1 second to 1800 seconds, more preferably 2 seconds to 1200 seconds. By drying the coating film, the amount of organic solvent in the coating film can be reduced to 50% by mass or less based on the mass of the applied dispersion.

塗膜のエージング(エージング工程)は、後述の洗浄工程及び焼結工程を経て得られる金属酸化物の薄膜の欠陥を減少させ、金属酸化物の薄膜の機械的強度を向上させるために行う。塗膜のエージングにより、金属酸化物の粒子の凝集及び基材との間で非共有結合等の結合が起きていると考えられ、これにより上記目的を達成できると考えられる。その目的を達成するために、塗膜のエージングの条件は任意に設定される。具体的には、塗膜をエージングするための温度は、5℃~300℃が好ましく、10℃~200℃がより好ましい。塗膜をエージングするための時間は、0.01分間~180分間が好ましく、0.02分間~60分間がより好ましい。
なお、エージング工程は、乾燥工程の後に行ってもよいし、乾燥工程と合わせて行ってもよい。即ち、エージング工程は乾燥工程を兼ねていてもよい。
Aging of the coating film (aging process) is performed to reduce defects in the metal oxide thin film obtained through the cleaning process and sintering process described below, and to improve the mechanical strength of the metal oxide thin film. It is thought that the aging of the coating film causes aggregation of the metal oxide particles and non-covalent bonds or the like with the base material, and this is thought to be the reason for achieving the above objective. In order to achieve this purpose, the conditions for aging the coating film are set arbitrarily. Specifically, the temperature for aging the coating film is preferably 5°C to 300°C, more preferably 10°C to 200°C. The time for aging the coating film is preferably 0.01 minutes to 180 minutes, more preferably 0.02 minutes to 60 minutes.
Note that the aging step may be performed after the drying step, or may be performed together with the drying step. That is, the aging process may also serve as a drying process.

[洗浄工程]
乾燥及びエージング工程後の塗膜の洗浄は、塗膜中の金属酸化物の粒子の量を、基材に塗布した金属酸化物の粒子の質量に対し50質量%以下にするために行われる。乾燥及びエージング工程後の塗膜の洗浄に使用される溶剤(以下、「洗浄溶媒」とも記載する。)は、分散液の製造に使用した前記有機溶媒を使用することができる。また、エステル系溶媒を洗浄溶媒として用いてもよい。エステル系溶媒としては、例えば、酢酸ブチル等のモノカルボン酸エステル系溶媒、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等の多価アルコールの部分エーテルカルボキシレート系溶媒、ジエチルカーボネート等のカーボネート系溶媒を用いることができる。
[Washing process]
The coating film is washed after the drying and aging steps in order to reduce the amount of metal oxide particles in the coating film to 50% by mass or less based on the mass of metal oxide particles applied to the substrate. As the solvent used for cleaning the coating film after the drying and aging steps (hereinafter also referred to as "cleaning solvent"), the organic solvent used in the production of the dispersion can be used. Furthermore, an ester solvent may be used as a cleaning solvent. As the ester solvent, for example, a monocarboxylic acid ester solvent such as butyl acetate, a partial ether carboxylate solvent of a polyhydric alcohol such as propylene glycol monomethyl ether acetate (PGMEA), or a carbonate solvent such as diethyl carbonate may be used. Can be done.

塗膜の洗浄方法は、基材の種類や形状により任意に選択される。洗浄の条件を最適化することにより、所望の厚さの塗膜を得ることが可能となる観点から、塗膜を洗浄するための洗浄溶媒の温度は、0℃~80℃が好ましく、5℃~60℃がより好ましい。使用する洗浄溶媒の量は、所望の厚さの塗膜を得ることが可能となれば特に限定されない。 The method for cleaning the coating film is arbitrarily selected depending on the type and shape of the substrate. From the viewpoint that it is possible to obtain a coating film with a desired thickness by optimizing the cleaning conditions, the temperature of the cleaning solvent for cleaning the coating film is preferably 0°C to 80°C, and preferably 5°C. -60°C is more preferred. The amount of cleaning solvent to be used is not particularly limited as long as a coating film of desired thickness can be obtained.

乾燥工程と洗浄工程を両方備えることで、例えば、乾燥工程で十分に除去できない高沸点溶媒等を洗浄工程で十分に除去することができる。
乾燥工程及びエージング工程後に洗浄工程を備えることで、金属酸化物の粒子の凝集、基材との結合生成により塗膜の機械的強度を向上させ、かつ過剰な金属酸化物の粒子を除去することにより透過率も同時に向上させることができる。
By providing both a drying step and a washing step, for example, high boiling point solvents and the like that cannot be sufficiently removed in the drying step can be sufficiently removed in the washing step.
By providing a cleaning process after the drying process and the aging process, the mechanical strength of the coating film is improved by agglomeration of metal oxide particles and formation of bonds with the base material, and excess metal oxide particles are removed. Therefore, the transmittance can also be improved at the same time.

洗浄工後の塗膜の膜厚は特に限定されないが、紫外線から可視光領域の広範な領域で透明性及び光触媒性を同時により高いレベルで実現可能な光触媒膜被覆体とすることができる観点から、0.5nm~600nmが好ましく、0.5nm~300nmがより好ましく、1.0nm~150nmが更に好ましく、1.0nm~100nmがより更に好ましく、1.5nm~50nmが特に好ましく、1.5nm~25nmがより特に好ましく、2.0nm~15nmが更に特に好ましく、2.0nm~10nmが最も好ましい。 The thickness of the coating film after cleaning is not particularly limited, but from the viewpoint of creating a photocatalytic film coating that can simultaneously achieve a higher level of transparency and photocatalytic properties in a wide range from ultraviolet to visible light. , preferably 0.5 nm to 600 nm, more preferably 0.5 nm to 300 nm, even more preferably 1.0 nm to 150 nm, even more preferably 1.0 nm to 100 nm, particularly preferably 1.5 nm to 50 nm, and particularly preferably 1.5 nm to 300 nm. 25 nm is particularly preferred, 2.0 nm to 15 nm is even more particularly preferred, and 2.0 nm to 10 nm is most preferred.

[焼結工程]
洗浄工後の塗膜の焼結工程は、得られる金属酸化物の薄膜の機械的強度を向上させるために必要な工程であるが、その温度と時間は、使用する金属酸化物の粒子分散液の種類によって決定される。焼結工程によって金属酸化物の粒子が強固に結着し、所望の機械的強度を発現する。焼結工程の条件は、基材の耐熱性も考慮して決定すればよい。
洗浄工程と焼結工程の最適化により、得られる金属酸化物の薄膜の厚さが決定され、かつ、光触媒膜の表面に金属酸化物の粒子の大きさに由来するナノレベルの微細な凹凸構造が形成される。
[Sintering process]
The sintering process of the coating film after cleaning is a necessary process to improve the mechanical strength of the resulting metal oxide thin film, but the temperature and time depend on the metal oxide particle dispersion used. Determined by the type of The sintering process firmly binds the metal oxide particles and develops the desired mechanical strength. The conditions for the sintering process may be determined by taking into consideration the heat resistance of the base material.
By optimizing the cleaning and sintering processes, the thickness of the resulting metal oxide thin film is determined, and the surface of the photocatalytic film has a nano-level fine uneven structure derived from the size of the metal oxide particles. is formed.

上述した塗布工程、乾燥及びエージング工程、洗浄工程及び焼結工程を経ることで、金属酸化物の薄膜である光触媒膜が基材の表面に設けられ、基材の表面を光触媒膜が覆うことにより、金属酸化物の薄膜被覆体である光触媒膜被覆体が得られる。 By going through the above-mentioned coating process, drying and aging process, cleaning process, and sintering process, a photocatalytic film, which is a thin film of metal oxide, is provided on the surface of the base material, and by covering the surface of the base material with the photocatalytic film, , a photocatalytic membrane coating, which is a thin film coating of metal oxide, is obtained.

<金属酸化物の粒子>
前記金属酸化物の粒子としては、例えば、上述した金属酸化物と同じ金属酸化物の粒子が挙げられる。金属酸化物の粒子の具体例としては、例えば、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化インジウム、酸化スズ、酸化アルミニウム、酸化ケイ素、酸化ハフニウム、酸化亜鉛等の粒子が挙げられる。これらの中でも、透明な分散液が得られる観点から、酸化チタン、酸化ジルコニウム、酸化ハフニウム、酸化亜鉛、酸化スズのうちの1種以上の金属酸化物の粒子が好ましく、酸化チタンの粒子がより好ましい。
但し、金属酸化物の粒子を構成する金属酸化物は、ここに例示したものに限定されない。金属酸化物は、1種が単独で金属酸化物の粒子を構成していてもよく、2種以上が任意の組み合わせ及び比率で金属酸化物の粒子を構成していてもよい。
<Metal oxide particles>
Examples of the metal oxide particles include particles of the same metal oxide as the metal oxide described above. Specific examples of metal oxide particles include particles of zirconium oxide, titanium oxide, cerium oxide, indium oxide, tin oxide, aluminum oxide, silicon oxide, hafnium oxide, zinc oxide, and the like. Among these, from the viewpoint of obtaining a transparent dispersion, particles of one or more metal oxides from titanium oxide, zirconium oxide, hafnium oxide, zinc oxide, and tin oxide are preferable, and particles of titanium oxide are more preferable. .
However, the metal oxide constituting the metal oxide particles is not limited to those exemplified here. One type of metal oxide may constitute metal oxide particles alone, or two or more types may constitute metal oxide particles in any combination and ratio.

光触媒膜の耐擦傷性等が高まる観点から、金属酸化物の粒子は、金属酸化物のナノ粒子が好ましく、結晶性金属酸化物のナノ粒子がより好ましい。
本明細書においては、ナノサイズより大きい粒子径を有する金属酸化物の粒子や結晶性金属酸化物の粒子、金属酸化物のナノ粒子、結晶性金属酸化物のナノ粒子をまとめて「金属酸化物の粒子」と称することがある。
From the viewpoint of increasing the scratch resistance of the photocatalytic film, the metal oxide particles are preferably metal oxide nanoparticles, and more preferably crystalline metal oxide nanoparticles.
In this specification, metal oxide particles, crystalline metal oxide particles, metal oxide nanoparticles, and crystalline metal oxide nanoparticles having a particle size larger than nanosize are collectively referred to as "metal oxide". sometimes referred to as "particles".

金属酸化物の粒子の最小粒径(X)は任意であるが、金属酸化物の最小粒径(X)を規定することは、例えば、金属酸化物の粒子を目的に応じた分散媒体に透明分散させるためには重要である。
金属酸化物の最小粒径(X)、換言すれば、金属酸化物薄膜被覆体に含まれる金属酸化物の最小粒径(X)は、0.5nm以上が好ましく、1.0nm以上がより好ましい。また、金属酸化物の最小粒径(X)は、200nm以下が好ましく、100nm以下がより好ましく、50nm以下が更に好ましく、10nm以下が特に好ましい。金属酸化物の最小粒径(X)が前記下限値以上であれば、薄膜を形成したときに適度な微細な凹凸構造が形成されやすく、親水性を発現させやすくなる。金属酸化物の最小粒径(X)が前記上限値以下であれば、金属酸化物の粒子を透明に分散させやすくなり、また、薄膜を形成したときの表面凹凸構造が粗くなることが回避され、上述した範囲の表面粗さ(Ra)を持つ微細な凹凸構造を有する薄膜が形成されやすくなり、親水性を発現させやすくなる。
なお、金属酸化物の最小粒径(X)は、原子間力顕微鏡(AFM)により測定することができる。本明細書においては、実施例に記載の手順で、複数の粒子の一次粒子の粒子径を測定し、それらの粒子径のうち最小の値を最小粒径(X)としている。
Although the minimum particle size (X) of the metal oxide particles is arbitrary, specifying the minimum particle size (X) of the metal oxide particles can be done by, for example, This is important for dispersion.
The minimum particle size (X) of the metal oxide, in other words, the minimum particle size (X) of the metal oxide contained in the metal oxide thin film coating is preferably 0.5 nm or more, more preferably 1.0 nm or more. . Further, the minimum particle size (X) of the metal oxide is preferably 200 nm or less, more preferably 100 nm or less, even more preferably 50 nm or less, and particularly preferably 10 nm or less. If the minimum particle size (X) of the metal oxide is equal to or larger than the lower limit, an appropriate fine uneven structure is likely to be formed when a thin film is formed, and hydrophilicity will be easily developed. If the minimum particle size (X) of the metal oxide is below the above-mentioned upper limit, the metal oxide particles can be easily dispersed transparently, and a rough surface uneven structure can be avoided when a thin film is formed. , a thin film having a fine uneven structure having a surface roughness (Ra) within the above-mentioned range is easily formed, and hydrophilicity is easily developed.
Note that the minimum particle size (X) of the metal oxide can be measured using an atomic force microscope (AFM). In this specification, the particle diameters of the primary particles of a plurality of particles are measured according to the procedure described in Examples, and the smallest value among the particle diameters is defined as the minimum particle diameter (X).

また、金属酸化物の最小粒径(X)は、X線回折測定の2θ=30°付近の(111)面のピーク半価幅より下記のScherrer式(式(3))を用いて計算することができる。
〔Scherrer式〕
結晶子サイズ(D)=K・λ/(β・cosθ) ・・・(3)
ここで、KはScherrer定数でK=0.9であり、X線(CuKα1)波長(λ)=1.54056Å(1Å=1×10-10m)である。また、CuKα線由来のブラッグ角(θ)及び半価幅(βo)はプロファイルフィッティング法(Peason-XII関数又はPseud-Voigt関数)により算出される。更に、計算に用いた半価幅βは予め標準Siにより求めておいた装置由来の半価幅(βi)から下記式(4)を用いて補正される。
β=(βo-βi1/2 ・・・(4)
In addition, the minimum particle size (X) of the metal oxide is calculated using the following Scherrer formula (formula (3)) from the peak half-width of the (111) plane near 2θ = 30° in X-ray diffraction measurement. be able to.
[Scherrer style]
Crystallite size (D) = K・λ/(β・cosθ) (3)
Here, K is a Scherrer constant, K=0.9, and the X-ray (CuKα1) wavelength (λ)=1.54056 Å (1 Å=1×10 −10 m). Further, the Bragg angle (θ) and half-width (βo) derived from the CuKα ray are calculated by a profile fitting method (Peason-XII function or Pseud-Voigt function). Further, the half-width β used in the calculation is corrected using the following formula (4) from the device-derived half-width (βi) determined in advance using standard Si.
β=(βo 2 -βi 2 ) 1/2 ...(4)

金属酸化物のモード径、換言すれば、金属酸化物薄膜被覆体に含まれる金属酸化物のモード径は特に限定されないが、均一微細な凹凸構造を形成させ表面粗さ(Ra)を所定の範囲とすることができる観点から、0.1nm以上が好ましく、0.5nm以上がより好ましく、1.0nm以上が更に好ましい。また、金属酸化物のモード径は、表面粗さ(Ra)を所定の範囲とすることができる観点から、300nm以下が好ましく、250nm以下がより好ましく、200nm以下が更に好ましく、150nm以下が特に好ましく、100nm以下が最も好ましい。特に、上述した範囲の表面粗さ(Ra)を持つ微細な凹凸構造を有する薄膜が形成されやすくなる観点から、金属酸化物の粒子のモード径は200nm以下であることが好ましい。
なお、金属酸化物のモード径は、動的光散乱法によって測定される粒度分布の最頻粒子径である。本明細書においては、実施例に記載の手順で、複数の粒子の一次粒子の体積基準の粒度分布を測定することによりモード径を求めている。
The mode diameter of the metal oxide, in other words, the mode diameter of the metal oxide contained in the metal oxide thin film coating is not particularly limited, but it is possible to form a uniform fine uneven structure and keep the surface roughness (Ra) within a predetermined range. From the viewpoint of being able to achieve this, the thickness is preferably 0.1 nm or more, more preferably 0.5 nm or more, and even more preferably 1.0 nm or more. In addition, the mode diameter of the metal oxide is preferably 300 nm or less, more preferably 250 nm or less, still more preferably 200 nm or less, particularly preferably 150 nm or less, from the viewpoint of making the surface roughness (Ra) within a predetermined range. , 100 nm or less is most preferable. In particular, the mode diameter of the metal oxide particles is preferably 200 nm or less, from the viewpoint of facilitating the formation of a thin film having a fine uneven structure having a surface roughness (Ra) within the above-mentioned range.
Note that the mode diameter of the metal oxide is the mode particle diameter of the particle size distribution measured by a dynamic light scattering method. In this specification, the mode diameter is determined by measuring the volume-based particle size distribution of the primary particles of a plurality of particles using the procedure described in the Examples.

また、後述する金属酸化物の粒子の製造方法において、反応液原料の添加剤としてカルボン酸類を使用した場合、あるいは添加剤としてカルボン酸を添加せず、金属酸化物の粒子を回収後にカルボン酸類を使用した場合には、各粒子の表面にはカルボン酸類が吸着する。この場合、有機溶媒に対する各粒子の分散性は、より一層向上する。各粒子に吸着したカルボン酸類の量は任意であり、その用途に応じて所望の量を吸着させるようにすればよい。なお、前記金属酸化物粒子にカルボン酸類が吸着していることは赤外吸収分光法(IR)により確認できる。 In addition, in the method for producing metal oxide particles described below, when carboxylic acids are used as additives in the reaction liquid raw material, or when carboxylic acids are not added as additives and carboxylic acids are added after collecting metal oxide particles. When used, carboxylic acids are adsorbed on the surface of each particle. In this case, the dispersibility of each particle in the organic solvent is further improved. The amount of carboxylic acids adsorbed on each particle is arbitrary, and a desired amount may be adsorbed depending on the intended use. Note that it can be confirmed by infrared absorption spectroscopy (IR) that carboxylic acids are adsorbed on the metal oxide particles.

<金属酸化物の粒子の製造方法>
結晶性金属酸化物のナノ粒子に代表される金属酸化物の粒子は、例えば、金属酸化物の前駆体をアミン類の存在下、分子内に酸素原子を有する有機溶媒を用いたソルボサーマル法により合成する。
<Method for manufacturing metal oxide particles>
Metal oxide particles, typified by crystalline metal oxide nanoparticles, can be produced by, for example, processing a metal oxide precursor by a solvothermal method using an organic solvent having an oxygen atom in the molecule in the presence of amines. Synthesize.

[ソルボサーマル法]
ソルボサーマル法とは、所定の溶媒の存在下、密閉容器中で高温の環境下で粒子を製造する方法であり、使用する溶媒ならびに合成温度に応じた圧力下で行う。
通常、金属酸化物の前駆体と、分子内に酸素原子を有する有機溶媒又は水溶媒と、必要に応じて、所定量のアミン類とを共存させることにより、反応液を調製する。なお、反応液には、その他の成分が含有されていてもよい。例えば、反応液には、必要に応じて、アミン類以外の添加剤(以下、「その他の添加剤」とも記載する。)を含有させてもよい。これにより、この反応液は、分子内に酸素原子を有する有機溶媒中又は水溶媒に、金属酸化物の前駆体と、必要に応じてアミン類及びその他の添加剤の1つ以上が溶解又は分散した組成物として調製される。
[Solvothermal method]
The solvothermal method is a method of producing particles in a closed container in a high-temperature environment in the presence of a predetermined solvent, and is carried out under a pressure depending on the solvent used and the synthesis temperature.
Usually, a reaction solution is prepared by coexisting a metal oxide precursor, an organic or aqueous solvent having an oxygen atom in its molecule, and, if necessary, a predetermined amount of amines. Note that the reaction solution may contain other components. For example, the reaction solution may contain additives other than amines (hereinafter also referred to as "other additives"), if necessary. As a result, this reaction solution has a metal oxide precursor and, if necessary, one or more of amines and other additives dissolved or dispersed in an organic solvent having an oxygen atom in the molecule or an aqueous solvent. It is prepared as a composition.

[金属酸化物の前駆体]
金属酸化物の前駆体としては、所望の金属酸化物の粒子が得られる限り任意の物質を使用することができる。したがって、合成しようとする結晶性金属酸化物のナノ粒子等の金属酸化物の粒子に含有される金属元素を含有する金属単体や金属化合物から適切なものを任意に選択して使用することができる。
金属酸化物の前駆体としては、例えば、金属塩化物、金属アセテート、金属アルコキシド、金属水酸化物が挙げられる。これらの中でも、副生する不純物(例えば、塩化物等)の発生を抑制できる観点から、金属アルコキシド、金属アセテート、金属水酸化物が好ましい。
[Metal oxide precursor]
Any substance can be used as the metal oxide precursor as long as desired metal oxide particles can be obtained. Therefore, an appropriate metal can be arbitrarily selected and used from simple metals and metal compounds containing the metal element contained in metal oxide particles such as crystalline metal oxide nanoparticles to be synthesized. .
Examples of metal oxide precursors include metal chlorides, metal acetates, metal alkoxides, and metal hydroxides. Among these, metal alkoxides, metal acetates, and metal hydroxides are preferred from the viewpoint of suppressing the generation of by-product impurities (for example, chlorides, etc.).

金属酸化物の前駆体としては、例えば、チタニウムメトキシド、チタニウムエトキシド、チタニウム-ジ-n-ブトキシド(ビス-2,4-ペンタンジオネート)、チタニウム-ジイソプロポキシド(ビス-2,4-ペンタンジオネート)、チタニウム-ジイソプロポキシド(ビスエチルアセトアセテート)、チタニウム-2-ヘキソキサイド、チタニウム-n-ブトキシド、チタニウムテトライソプロポキシド、チタニウムメトキシプロポキシド、チタニウム-n-ノニロキシド、チタニウムオキシド(ビステトラメチルペンタンジオネート)、チタニウム-n-プロポキシド、チタニウムステアリルオキシド、チタニウムトリイソステアリルイソプロポキシド、チタニウムトリメチルシロキシド、ジルコニウム-n-ブトキシド、ジルコニウム-t-ブトキシド、ジルコニウム-ジ-n-ブトキシド(ビス-2,4-ペンタンジオネート)、ジルコニウム-ジイソプロポキシド(ビス-2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)、ジルコニウムエトキシド、ジルコニウムプロポキシド、ジルコニウム-2-エチルヘキサノエート、ジルコニウム-2-エチルヘキソキシド、ジルコニウムイソプロポキシド、ジルコニウム-2-メチル-2-ブトキシド、ジルコニウム-2,4-ペンタンジオネート、ジルコニウム-n-プロポキシド、ジルコニウム-2,2,6,6-テトラメチル-3,5-ヘプタンジオネート、ジルコニウムトリメチルシロキシド、ジルコニルプロピオネート、ハフニウム-n-ブトキシド、ハフニウム-t-ブトキシド、ハフニウムエトキシド、ハフニウム-2,4-ペンタンジオネート、ハフニウムテトラメチルヘプタンジオネート、セリウム(III)アセテート水和物、セリウム-t-ブトキシド、セリウム-2-エチルヘキサノエート、セリウムイソプロポキシド、セリウムメトキシエトキシド、セリウム-2,4-ペンタンジオネート水和物、セリウム-2,2,6,6-テトラメチルヘプタンジオネート、水酸化セリウム、塩化スズ(IV)五水和物等が挙げられる。 Examples of metal oxide precursors include titanium methoxide, titanium ethoxide, titanium di-n-butoxide (bis-2,4-pentanedionate), titanium diisopropoxide (bis-2,4 -pentanedionate), titanium-diisopropoxide (bisethylacetoacetate), titanium-2-hexoxide, titanium-n-butoxide, titanium tetraisopropoxide, titanium methoxypropoxide, titanium-n-nonyloxide, titanium oxide (bistetramethylpentanedionate), titanium-n-propoxide, titanium stearyl oxide, titanium triisostearyl isopropoxide, titanium trimethyl siloxide, zirconium-n-butoxide, zirconium-t-butoxide, zirconium-di-n -butoxide (bis-2,4-pentanedionate), zirconium-diisopropoxide (bis-2,2,6,6-tetramethyl-3,5-heptanedioate), zirconium ethoxide, zirconium propoxide , zirconium-2-ethylhexanoate, zirconium-2-ethylhexoxide, zirconium isopropoxide, zirconium-2-methyl-2-butoxide, zirconium-2,4-pentanedionate, zirconium-n-propoxide , zirconium-2,2,6,6-tetramethyl-3,5-heptanedionate, zirconium trimethyl siloxide, zirconyl propionate, hafnium-n-butoxide, hafnium-t-butoxide, hafnium ethoxide, hafnium- 2,4-pentanedionate, hafnium tetramethylheptanedionate, cerium (III) acetate hydrate, cerium-t-butoxide, cerium-2-ethylhexanoate, cerium isopropoxide, cerium methoxyethoxide, cerium -2,4-pentanedionate hydrate, cerium-2,2,6,6-tetramethylheptanedioate, cerium hydroxide, tin(IV) chloride pentahydrate, and the like.

金属酸化物の前駆体は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
金属酸化物の前駆体は、反応液中においてどのような状態で存在していてもよい。但し、通常は、金属酸化物の前駆体は分子内に酸素原子を有する有機溶媒又は水溶媒中に溶解した状態で存在することが好ましい。
One type of metal oxide precursor may be used alone, or two or more types may be used in combination in any combination and ratio.
The metal oxide precursor may be present in any state in the reaction solution. However, it is usually preferable that the metal oxide precursor exists in a dissolved state in an organic solvent or an aqueous solvent having an oxygen atom in its molecule.

[分子内に酸素原子を有する有機溶媒]
分子内に酸素原子を有する有機溶媒は、金属酸化物の前駆体が結晶性金属酸化物のナノ粒子等の金属酸化物の粒子へと変化する反応の反応溶媒として機能すると共に、金属酸化物の前駆体に酸素を供給する酸素供給源としても機能する。この分子内に酸素原子を有する有機溶媒は、酸素を含有する有機溶媒であれば他に制限は無く任意のものを使用することができる。分子内に酸素原子を有する有機溶媒の炭素数は、本発明の効果を著しく損なわない限り任意であるが、前記反応の反応性及び酸素供給性能が高まる観点から、1以上30以下が好ましく、20以下がより好ましく、10以下が更に好ましい。
分子内に酸素原子を有する有機溶媒の分子量は、本発明の効果を著しく損なわない限り任意であるが、前記反応の反応性及び酸素供給性能が高まる観点から、32以上が好ましく、50以上がより好ましく、70以上が更に好ましい。また、分子内に酸素原子を有する有機溶媒の分子量は、500以下が好ましく、400以下がより好ましく、300以下が更に好ましい。
分子内に酸素原子を有する有機溶媒の沸点は、本発明の効果を著しく損なわない限り任意であるが、溶媒の揮発性の観点から、50℃以上が好ましく、70℃以上がより好ましく、100℃以上が更に好ましく、150℃以上が特に好ましい。また、分子内に酸素原子を有する有機溶媒の沸点は、300℃以下が好ましく、270℃以下がより好ましく、250℃以下が更に好ましい。
[Organic solvent with oxygen atom in molecule]
Organic solvents having oxygen atoms in their molecules function as reaction solvents for reactions in which metal oxide precursors are transformed into metal oxide particles such as crystalline metal oxide nanoparticles, and also serve as reaction solvents for reactions in which metal oxide precursors are transformed into metal oxide particles such as crystalline metal oxide nanoparticles. It also functions as an oxygen source that supplies oxygen to the precursor. As the organic solvent having an oxygen atom in its molecule, any organic solvent containing oxygen can be used without any other limitations. The carbon number of the organic solvent having an oxygen atom in the molecule is arbitrary as long as it does not significantly impair the effects of the present invention, but from the viewpoint of increasing the reactivity of the reaction and oxygen supply performance, it is preferably 1 or more and 30 or less, and 20 or more. The following is more preferable, and 10 or less is still more preferable.
The molecular weight of the organic solvent having an oxygen atom in the molecule is arbitrary as long as it does not significantly impair the effects of the present invention, but from the viewpoint of increasing the reactivity of the reaction and oxygen supply performance, it is preferably 32 or more, and more preferably 50 or more. Preferably, 70 or more is more preferable. Further, the molecular weight of the organic solvent having an oxygen atom in the molecule is preferably 500 or less, more preferably 400 or less, and still more preferably 300 or less.
The boiling point of the organic solvent having an oxygen atom in the molecule is arbitrary as long as it does not significantly impair the effects of the present invention, but from the viewpoint of solvent volatility, it is preferably 50°C or higher, more preferably 70°C or higher, and 100°C or higher. The temperature is more preferably 150° C. or higher, particularly preferably 150° C. or higher. Further, the boiling point of the organic solvent having an oxygen atom in the molecule is preferably 300°C or lower, more preferably 270°C or lower, and even more preferably 250°C or lower.

分子内に酸素原子を有する有機溶媒としては、例えば、アルコール類、ケトン類、アルデヒド類、エーテル類、エステル類、シロキサン類が挙げられる。また、これらの分子内に酸素原子を有する有機溶媒の1分子中に含まれる酸素原子の個数は、1個以上であれば特に限定されない。
分子内に酸素原子を有する有機溶媒としては、例えば、エタノール、メタノール、1-オクタノール、ベンジルアルコール、メトキシエタノール、エチレングリコール、ジエチレングリコール、メチルエタノールアミン、ジエタノールアミン、アセトン、ベンズアルデヒド、シクロヘキサノン、アセトフェノン、ジフェニルエーテル、ヘキサメチルジシロキサンが挙げられる。これらの中でも、酸素供給性能に優れる観点から、ベンジルアルコール、メトキシエタノールが好ましい。
なお、分子内に酸素原子を有する有機溶媒は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
Examples of organic solvents having an oxygen atom in the molecule include alcohols, ketones, aldehydes, ethers, esters, and siloxanes. Further, the number of oxygen atoms contained in one molecule of the organic solvent having oxygen atoms in these molecules is not particularly limited as long as it is one or more.
Examples of organic solvents having an oxygen atom in the molecule include ethanol, methanol, 1-octanol, benzyl alcohol, methoxyethanol, ethylene glycol, diethylene glycol, methylethanolamine, diethanolamine, acetone, benzaldehyde, cyclohexanone, acetophenone, diphenyl ether, and hexane. Examples include methyldisiloxane. Among these, benzyl alcohol and methoxyethanol are preferred from the viewpoint of excellent oxygen supply performance.
Note that the organic solvents having an oxygen atom in the molecule may be used alone or in combination of two or more in any combination and ratio.

分子内に酸素原子を有する有機溶媒の使用量に制限はないが、分子内に酸素原子を有する有機溶媒中の金属酸化物の前駆体の濃度は、0.1mol/L以上が好ましく、0.3mol/L以上がより好ましく、0.5mol/L以上が更に好ましい。また、分子内に酸素原子を有する有機溶媒中の金属酸化物の前駆体の濃度は、1.0mol/L以下が好ましく、0.8mol/L以下がより好ましく、0.6mol/L以下が更に好ましい。分子内に酸素原子を有する有機溶媒の使用量が前記範囲内であれば、ゲル化が生じにくく、また、金属酸化物の粒子の収量が低くなりにくい。 Although there is no limit to the amount of the organic solvent having an oxygen atom in the molecule, the concentration of the metal oxide precursor in the organic solvent having an oxygen atom in the molecule is preferably 0.1 mol/L or more, and 0.1 mol/L or more. It is more preferably 3 mol/L or more, and even more preferably 0.5 mol/L or more. Further, the concentration of the metal oxide precursor in the organic solvent having an oxygen atom in the molecule is preferably 1.0 mol/L or less, more preferably 0.8 mol/L or less, and even more preferably 0.6 mol/L or less. preferable. When the amount of the organic solvent having an oxygen atom in the molecule is within the above range, gelation is less likely to occur and the yield of metal oxide particles is less likely to decrease.

[水溶媒]
水溶媒の使用量に制限はないが、水溶媒中の金属酸化物の前駆体の濃度は、0.1mol/L以上が好ましく、0.3mol/L以上がより好ましく、0.5mol/L以上が更に好ましい。また、水溶媒中の金属酸化物の前駆体の濃度は、1.0mol/L以下が好ましく、0.8mol/L以下がより好ましく、0.6mol/L以下が更に好ましい。水溶媒の使用量が前記範囲内であれば、ゲル化が生じにくく、また、金属酸化物粒子の収量が低くなりにくい。
[Water solvent]
Although there is no limit to the amount of the water solvent used, the concentration of the metal oxide precursor in the water solvent is preferably 0.1 mol/L or more, more preferably 0.3 mol/L or more, and 0.5 mol/L or more. is even more preferable. Further, the concentration of the metal oxide precursor in the aqueous solvent is preferably 1.0 mol/L or less, more preferably 0.8 mol/L or less, and even more preferably 0.6 mol/L or less. When the amount of the water solvent used is within the above range, gelation is less likely to occur and the yield of metal oxide particles is less likely to decrease.

[アミン類]
アミン類は、1級アミン類、2級アミン類及び3級アミン類のいずれを用いてもよい。但し、3級アミン類を用いると、金属酸化物の粒子の製造方法においてアミン類を使用した効果が小さくなる場合があるため、1級アミン類及び2級アミン類のうちの1種以上を用いることが好ましい。中でも、酸化劣化による着色が少ないという観点から、1級アミン類が好ましい。
また、アミン類としては、合成の際の粒子安定剤としての作用が高いという観点から、脂肪族アミン類が好ましい。特に、粒子成長の促進剤あるいは抑制剤としての効果が高いという観点から、1級及び2級のうちの1種以上の脂肪族アミン類を使用することが好ましい。
アミン類の炭素数は、本発明の効果を著しく損なわない限り任意であるが、8以上が好ましく、14以上がより好ましく、16以上が更に好ましい。また、アミン類の炭素数は、24以下が好ましく、20以下がより好ましく、18以下が更に好ましい。アミン類の炭素数が前記範囲内にあれば、高温下で変性したアミンを除去しやすく、また、合成の際の粒子の安定剤としての効果を確保しやすい。
アミン類としては、例えば、1級アミンのうち、脂肪族アミンとしては、オレイルアミン、オクチルアミン等が挙げられる。芳香族アミンとしては、例えば、アニリン等が挙げられる。2級アミンのうち、脂肪族アミンとしては、例えば、ジオクチルアミン、メチルエタノールアミン、ジエタノールアミン等が挙げられる。
アミン類は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
[Amines]
As the amines, any of primary amines, secondary amines, and tertiary amines may be used. However, if tertiary amines are used, the effect of using amines in the method for producing metal oxide particles may be reduced, so one or more of primary amines and secondary amines may be used. It is preferable. Among these, primary amines are preferred from the viewpoint of less coloring due to oxidative deterioration.
Further, as the amines, aliphatic amines are preferable from the viewpoint of high action as a particle stabilizer during synthesis. In particular, it is preferable to use one or more types of aliphatic amines among primary and secondary aliphatic amines from the viewpoint of their high effectiveness as particle growth promoters or inhibitors.
The carbon number of the amine is arbitrary as long as it does not significantly impair the effects of the present invention, but is preferably 8 or more, more preferably 14 or more, and even more preferably 16 or more. Further, the number of carbon atoms in the amine is preferably 24 or less, more preferably 20 or less, and even more preferably 18 or less. If the carbon number of the amine is within the above range, it is easy to remove the amine that has been modified at high temperatures, and it is easy to ensure the effect as a stabilizer for particles during synthesis.
Examples of amines include, among primary amines, aliphatic amines such as oleylamine and octylamine. Examples of aromatic amines include aniline. Among secondary amines, examples of aliphatic amines include dioctylamine, methylethanolamine, diethanolamine, and the like.
One type of amine may be used alone, or two or more types may be used in combination in any combination and ratio.

アミン類の使用量は、金属酸化物の前駆体の全モル数に対して、0.5倍モル以上が好ましく、1.0倍モル以上がより好ましく、1.5倍モル以上が更に好ましい。また、アミン類の使用量は、金属酸化物の前駆体の全モル数に対して、10倍モル以下が好ましく、6.0倍モル以下がより好ましく、4.0倍モル以下が更に好ましい。アミン類の使用量が前記下限値以上であれば、アミン類を使用した効果を確保しやすくなり、得られる金属酸化物粒子の粒子サイズが大きくなりにくく、得られる金属酸化物粒子の結晶性を良好にしやすくなる。また、アミン類の使用量が前記上限値以下であれば、前記製造方法において不純物の発生が抑制され、得られる金属酸化物の粒子の品質を良好にしやすくなる。 The amount of amines used is preferably 0.5 times or more, more preferably 1.0 times or more, and still more preferably 1.5 times or more, based on the total number of moles of the metal oxide precursor. The amount of amines used is preferably 10 times or less, more preferably 6.0 times or less, and even more preferably 4.0 times or less, based on the total number of moles of the metal oxide precursor. If the amount of amines used is above the lower limit value, it will be easier to ensure the effect of using amines, the particle size of the obtained metal oxide particles will be less likely to increase, and the crystallinity of the obtained metal oxide particles will be improved. It becomes easier to improve. Moreover, if the amount of amines used is below the above-mentioned upper limit, the generation of impurities is suppressed in the above-mentioned manufacturing method, and it becomes easy to improve the quality of the obtained metal oxide particles.

なお、アミン類は、結晶成長促進剤、及び結晶成長抑制剤として作用することができる。
例えば、金属酸化物の粒子として酸化ジルコニウムを合成する場合、アミン類の使用により結晶成長が促進される。したがって、このようなアミン類を含む合成方法を用いることで、金属酸化物の粒子を従来よりも低温かつ短時間で合成しやすくなる。すなわち、金属酸化物の前駆体に対するアミン類の添加、合成温度、合成時間、分子内に酸素原子を有する有機溶媒又は水溶媒等を適宜調節することで金属酸化物の粒子の結晶性、粒子のモード径等を制御することができる。
Note that amines can act as crystal growth promoters and crystal growth inhibitors.
For example, when synthesizing zirconium oxide as metal oxide particles, crystal growth is promoted by the use of amines. Therefore, by using a synthesis method involving such amines, it becomes easier to synthesize metal oxide particles at a lower temperature and in a shorter time than conventional methods. That is, by appropriately adjusting the addition of amines to the metal oxide precursor, synthesis temperature, synthesis time, organic solvent or aqueous solvent having oxygen atoms in the molecule, etc., the crystallinity of the metal oxide particles and the particle size can be improved. Mode diameter etc. can be controlled.

[その他の添加剤]
反応液には、金属酸化物の前駆体、分子内に酸素原子を有する有機溶媒又は水溶媒、アミン類の他に、その他の添加剤を共存させてもよい。
その他の添加剤としては、例えば、カルボン酸類、分子内に酸素原子を有する有機溶媒以外の溶媒(以下、「その他の溶媒」とも記載する。)、ホスフィン類等が挙げられる。
[Other additives]
In addition to the metal oxide precursor, an organic or aqueous solvent having an oxygen atom in its molecule, and amines, other additives may be present in the reaction solution.
Examples of other additives include carboxylic acids, solvents other than organic solvents having an oxygen atom in the molecule (hereinafter also referred to as "other solvents"), phosphines, and the like.

(カルボン酸類)
カルボン酸類は、得られる結晶性金属酸化物のナノ粒子等の金属酸化物の粒子をカルボン酸類で修飾するための化合物である。分子内に酸素原子を有する有機溶媒又は水溶媒中にカルボン酸類を共存させることにより、表面にカルボン酸類を有する金属酸化物の粒子を得られるようになる。そのため、金属酸化物の粒子の有機溶媒又は水溶媒に対する分散性を向上させることが可能となる。分子内に酸素原子を有する有機溶媒又は水溶媒中にカルボン酸類を共存させて金属酸化物の粒子を合成してもよいし、カルボン酸類を共存させずに金属酸化物の粒子を合成した後にカルボン酸類を金属酸化物の粒子に作用させてもよい。合成中の副反応や不純物の混入を防止する観点から、金属酸化物の粒子を作製した後にカルボン酸類を作用させることが好ましい。分子内に酸素原子を有する有機溶媒又は水溶媒中にカルボン酸類を共存させる方法であれば、金属酸化物の粒子の合成後にカルボン酸類や分散剤を添加する工程を省略することができる。
(carboxylic acids)
Carboxylic acids are compounds for modifying metal oxide particles such as crystalline metal oxide nanoparticles with carboxylic acids. By allowing carboxylic acids to coexist in an organic solvent or an aqueous solvent having an oxygen atom in the molecule, metal oxide particles having carboxylic acids on the surface can be obtained. Therefore, it becomes possible to improve the dispersibility of metal oxide particles in an organic solvent or an aqueous solvent. Metal oxide particles may be synthesized by coexisting carboxylic acids in an organic solvent or aqueous solvent having an oxygen atom in the molecule, or metal oxide particles may be synthesized without carboxylic acids coexisting, and then carboxylic acids may be synthesized. An acid may be applied to the metal oxide particles. From the viewpoint of preventing side reactions during synthesis and contamination of impurities, it is preferable to allow carboxylic acids to act on the metal oxide particles after preparing them. If the method involves coexisting carboxylic acids in an organic solvent or aqueous solvent having an oxygen atom in the molecule, the step of adding carboxylic acids or a dispersant after synthesis of metal oxide particles can be omitted.

カルボン酸類の具体的種類に制限は無く、金属酸化物の粒子に結合できる限り任意の化合物を用いることができる。着色が少ないという観点から、カルボン酸類としては脂肪族カルボン酸類が好ましい。
また、カルボン酸類の炭素数は、本発明の効果を著しく損なわない限り任意であるが、2以上が好ましく、3以上がより好ましい。また、カルボン酸類の炭素数は、24以下が好ましく、20以下がより好ましく、18以下が更に好ましい。カルボン酸類の炭素数を前記範囲内にすることで、高温下で変性したカルボン酸を除去しやすく、また、修飾剤としての効果を確保しやすくなる。
カルボン酸類としては、例えば、アクリル酸、メタクリル酸、チグリン酸、プロピオン酸、カプリル酸、メチル酪酸、ヘキサン酸、ノナン酸、o-トルイル酸、p-トルイル酸、安息香酸、p-t-ブチル安息香酸、フェニルチオ酢酸、オレイン酸、ベヘン酸、ステアリン酸、ミリスチン酸、パルミチン酸等が挙げられる。
カルボン酸類は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
There is no restriction on the specific type of carboxylic acids, and any compound can be used as long as it can bind to metal oxide particles. From the viewpoint of less coloring, aliphatic carboxylic acids are preferred as the carboxylic acids.
Further, the number of carbon atoms in the carboxylic acids is arbitrary as long as it does not significantly impair the effects of the present invention, but it is preferably 2 or more, and more preferably 3 or more. Further, the number of carbon atoms in the carboxylic acids is preferably 24 or less, more preferably 20 or less, and even more preferably 18 or less. By setting the number of carbon atoms in the carboxylic acid within the above range, it becomes easier to remove the carboxylic acid that has been modified at high temperatures, and it becomes easier to ensure the effect as a modifier.
Examples of carboxylic acids include acrylic acid, methacrylic acid, tiglic acid, propionic acid, caprylic acid, methylbutyric acid, hexanoic acid, nonanoic acid, o-toluic acid, p-toluic acid, benzoic acid, and pt-butylbenzoic acid. Examples include phenylthioacetic acid, oleic acid, behenic acid, stearic acid, myristic acid, palmitic acid, and the like.
One type of carboxylic acids may be used alone, or two or more types may be used in combination in any combination and ratio.

カルボン酸類の使用量に制限はないが、金属酸化物の前駆体の全モル数に対して、0.1倍モル以上が好ましく、0.75倍モル以上がより好ましく、1.0倍モル以上が更に好ましい。また、カルボン酸類の使用量は、金属酸化物の前駆体の全モル数に対して、5.0倍モル以下が好ましく、3.0倍モル以下がより好ましく、2.0倍モル以下が更に好ましく、1.5倍モル以下が特に好ましい。カルボン酸類の使用量を前記上限値以下とすることで、カルボン酸類を使用した効果を得やすくなる。また、カルボン酸類の使用量を前記下限値以上とすることで、金属酸化物粒子の製造方法においてゲルの発生が抑制され、得られる金属酸化物粒子の品質を良好にしやすくなる。
また、アミン類とカルボン酸類とを併用する場合には、ゲルの発生を抑制できる観点から、カルボン酸類の使用量は、アミン類の全モル数に対して、通常0.5倍モル以下が好ましく、0.25倍モル以下がより好ましい。
There is no limit to the amount of carboxylic acids used, but it is preferably 0.1 times or more, more preferably 0.75 times or more, and 1.0 times or more based on the total number of moles of the metal oxide precursor. is even more preferable. The amount of carboxylic acids used is preferably 5.0 times or less, more preferably 3.0 times or less, and even more preferably 2.0 times or less, based on the total number of moles of the metal oxide precursor. Preferably, 1.5 times the mole or less is particularly preferable. By setting the amount of carboxylic acids to be used below the upper limit value, it becomes easier to obtain the effects of using carboxylic acids. In addition, by setting the amount of carboxylic acids to be equal to or more than the lower limit value, generation of gel is suppressed in the method for producing metal oxide particles, and the quality of the obtained metal oxide particles can be easily improved.
In addition, when using amines and carboxylic acids in combination, the amount of carboxylic acids used is preferably 0.5 times or less based on the total number of moles of amines, from the viewpoint of suppressing gel formation. , more preferably 0.25 times the mole or less.

なお、金属酸化物の粒子を製造する際の添加剤としてカルボン酸類を用いた場合、カルボン酸類も上述したアミン類と同様に金属酸化物の粒子の表面に吸着し、金属酸化物の粒子と有機溶媒との親和性を向上させる。これにより、金属酸化物の粒子同士が強く引き合うことが抑制されるため、カルボン酸類を使用した場合には、金属酸化物の粒子同士の凝集はより一層に抑制される。 Note that when carboxylic acids are used as additives when producing metal oxide particles, the carboxylic acids also adsorb to the surface of the metal oxide particles in the same way as the amines mentioned above, and the metal oxide particles and organic Improves affinity with solvents. This prevents the metal oxide particles from strongly attracting each other, so when carboxylic acids are used, aggregation of the metal oxide particles is further suppressed.

(その他の溶媒)
反応液には、分子内に酸素原子を有する有機溶媒又は水溶媒以外のその他の溶媒を含有させてもよい。その他の溶媒は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
その他の溶媒としては、例えば、トルエン、キシレン、メシチレンなどの芳香族炭化水素類、ヘキサン、オクタン、シクロヘキサン、デカヒドロナフタレンなどの脂肪族炭化水素系、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類、ジクロロメタン、クロロホルム、1,2-ジクロロエタンなどの塩化脂肪族炭化水素類等が挙げられる。
その他の溶媒は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Other solvents)
The reaction solution may contain an organic solvent having an oxygen atom in its molecule or a solvent other than the water solvent. One type of other solvents may be used alone, or two or more types may be used in combination in any combination and ratio.
Examples of other solvents include aromatic hydrocarbons such as toluene, xylene, and mesitylene, aliphatic hydrocarbons such as hexane, octane, cyclohexane, and decahydronaphthalene, formamide, N,N-dimethylformamide, N,N -Amides such as dimethylacetamide, chlorinated aliphatic hydrocarbons such as dichloromethane, chloroform, and 1,2-dichloroethane, and the like.
One type of other solvents may be used alone, or two or more types may be used in combination in any combination and ratio.

[反応液の調製方法]
結晶性金属酸化物のナノ粒子等の金属酸化物の粒子を製造するための反応液の調製方法は、特に限定されず任意である。また、金属酸化物の前駆体、分子内に酸素原子を有する有機溶媒又は水溶媒、及び、必要に応じて用いられるアミン類及びその他の添加剤を混合する順序も特に限定されず任意である。但し、金属酸化物の前駆体は、空気中の水分と速やかに反応するものが多い。そのため、水分を含まない窒素雰囲気等の不活性ガス中で混合することが好ましい。例えば、分子内に酸素原子を有する有機溶媒を所定時間窒素バブリングした後、金属酸化物の前駆体を所定量混合、攪拌し、その後、必要に応じてアミン類及び添加剤を所定量混合する方法が挙げられる。
[Preparation method of reaction solution]
The method for preparing the reaction solution for producing metal oxide particles such as crystalline metal oxide nanoparticles is not particularly limited and is arbitrary. Further, the order in which the metal oxide precursor, the organic solvent or aqueous solvent having an oxygen atom in the molecule, and the amines and other additives used as necessary are mixed is not particularly limited and may be arbitrary. However, many metal oxide precursors react quickly with moisture in the air. Therefore, it is preferable to mix in an inert gas such as a nitrogen atmosphere that does not contain moisture. For example, a method in which an organic solvent having an oxygen atom in its molecule is bubbled with nitrogen for a predetermined period of time, a predetermined amount of a metal oxide precursor is mixed and stirred, and then a predetermined amount of amines and additives are mixed as necessary. can be mentioned.

[反応工程]
反応液を所定の反応条件に保持し、反応を進行させ、反応液内において金属酸化物の粒子を得る。
反応条件を以下に示す。
[Reaction process]
The reaction solution is maintained under predetermined reaction conditions, the reaction is allowed to proceed, and metal oxide particles are obtained in the reaction solution.
The reaction conditions are shown below.

(反応温度)
反応温度(ここでは、反応液の温度を意味する。)は特に限定されず、結晶性金属酸化物のナノ粒子等の所望の金属酸化物の粒子が得られる限り任意である。但し、比較的低い温度で金属酸化物の粒子を得られることが利点の一つであり、反応温度は、100℃以上が好ましく、120℃以上がより好ましく、160℃以上が更に好ましい。また、反応温度は、240℃以下が好ましく、220℃以下がより好ましく、200℃以下が更に好ましい。反応温度が前記範囲内であれば、結晶性を有する金属酸化物のナノ粒子が得られやすく、有機物の分解による副生物の量が多くなりにくく、結晶性金属酸化物のナノ粒子の品質が良好となる。なお、反応温度は一定でも変動していてもよい。また、反応液の温度が、前記反応温度の範囲内に継続的に収まっていてもよく、断続的に収まっていてもよい。更に、反応液内の温度は均一でも不均一でもよい。したがって、金属酸化物の粒子が得られる限り、例えば反応液内の一部が前記反応温度の範囲外となっていても構わない。
(reaction temperature)
The reaction temperature (here, it means the temperature of the reaction solution) is not particularly limited, and is arbitrary as long as desired metal oxide particles such as crystalline metal oxide nanoparticles can be obtained. However, one of the advantages is that metal oxide particles can be obtained at a relatively low temperature, and the reaction temperature is preferably 100°C or higher, more preferably 120°C or higher, and even more preferably 160°C or higher. Further, the reaction temperature is preferably 240°C or lower, more preferably 220°C or lower, and even more preferably 200°C or lower. If the reaction temperature is within the above range, it is easy to obtain crystalline metal oxide nanoparticles, the amount of by-products due to the decomposition of organic matter is less likely to increase, and the quality of the crystalline metal oxide nanoparticles is good. becomes. Note that the reaction temperature may be constant or may vary. Further, the temperature of the reaction solution may be continuously within the above reaction temperature range, or may be intermittently within the range of the reaction temperature. Furthermore, the temperature within the reaction solution may be uniform or non-uniform. Therefore, as long as metal oxide particles are obtained, for example, a part of the reaction solution may be outside the reaction temperature range.

(反応圧力)
反応を進行させる際の圧力条件は特に限定されず、結晶性金属酸化物のナノ粒子等の所望の金属酸化物の粒子が得られる限り任意である。但し、通常は、圧力条件は自圧以下である。なお、ここで自圧とは、分子内に酸素原子を有する有機溶媒又は水溶媒の前記温度における蒸気圧を指す。
(reaction pressure)
The pressure conditions under which the reaction proceeds are not particularly limited, and may be arbitrary as long as desired metal oxide particles such as crystalline metal oxide nanoparticles can be obtained. However, the pressure condition is usually lower than the autogenous pressure. Note that the autostatic pressure herein refers to the vapor pressure at the above temperature of an organic solvent or an aqueous solvent having an oxygen atom in its molecule.

(反応時間)
反応時間は特に限定されず、結晶性金属酸化物のナノ粒子等の所望の金属酸化物の粒子を得ることができる限り任意である。但し、金属酸化物の粒子の製造方法においては、金属酸化物の前駆体、分子内に酸素原子を有する有機溶媒又は水溶媒、及び、必要に応じてアミン類を反応系に共存させることにより、従来よりも短時間で、金属酸化物の粒子を得ることができることが利点の一つである。このため、反応時間は48時間以下が好ましく、24時間以下がより好ましく、18時間以下が更に好ましい。また、反応時間は1時間以上が好ましく、4時間以上がより好ましく、8時間以上が更に好ましい。
(reaction time)
The reaction time is not particularly limited, and is arbitrary as long as desired metal oxide particles such as crystalline metal oxide nanoparticles can be obtained. However, in the method for producing metal oxide particles, by coexisting a metal oxide precursor, an organic solvent or aqueous solvent having an oxygen atom in the molecule, and, if necessary, amines in the reaction system, One of the advantages is that metal oxide particles can be obtained in a shorter time than conventional methods. Therefore, the reaction time is preferably 48 hours or less, more preferably 24 hours or less, and even more preferably 18 hours or less. Moreover, the reaction time is preferably 1 hour or more, more preferably 4 hours or more, and even more preferably 8 hours or more.

(反応の際の雰囲気)
反応の際の雰囲気は特に限定されず、結晶性金属酸化物のナノ粒子等の所望の金属酸化物の粒子を得ることができる限り任意である。但し、反応は不活性雰囲気下で行なうことが好ましい。金属酸化物の前駆体は、空気中の水分と速やかに反応するものが多いためである。なお、ここで不活性雰囲気とは、金属酸化物の前駆体、分子内に酸素原子を有する有機溶媒又は水溶媒、及び、アミン類のいずれもが雰囲気と反応しないことを意味する。
不活性雰囲気を構成する雰囲気ガスとしては、例えば、窒素、アルゴン、ヘリウムが挙げられる。なお、不活性雰囲気には、単独の不活性ガスを用いてもよく、2種以上の不活性ガスを用いてもよい。
前記の反応条件を満たすためには、例えば、反応液を密閉容器内において前記の所定の反応温度に保持するようにすればよい。例えば、反応液を不活性雰囲気下でオートクレーブ容器等の密閉容器に封入し、密閉容器内で加熱して前記の所定の反応温度に保持するようにすればよい。
(Atmosphere during reaction)
The atmosphere during the reaction is not particularly limited and may be arbitrary as long as desired metal oxide particles such as crystalline metal oxide nanoparticles can be obtained. However, the reaction is preferably carried out under an inert atmosphere. This is because many metal oxide precursors quickly react with moisture in the air. Note that the inert atmosphere here means that none of the metal oxide precursor, the organic solvent or water solvent having an oxygen atom in the molecule, and the amines react with the atmosphere.
Examples of the atmospheric gas constituting the inert atmosphere include nitrogen, argon, and helium. In addition, a single inert gas may be used for the inert atmosphere, or two or more types of inert gases may be used.
In order to satisfy the above reaction conditions, for example, the reaction solution may be maintained at the above predetermined reaction temperature in a closed container. For example, the reaction solution may be sealed in an airtight container such as an autoclave container under an inert atmosphere, heated within the airtight container, and maintained at the predetermined reaction temperature.

(反応の際の工程)
反応液の調製と反応の進行とは、一連の工程として行なうことも可能である。例えば、予め所定の反応条件を整えておいた環境で、金属酸化物の前駆体と、分子内に酸素原子を有する有機溶媒又は水溶媒と、必要に応じてアミン類及び添加剤の1つ以上とを混合すれば、反応液の調整と反応の進行とを、互いに区別しない一連の工程として行なうことが可能となる。
このような合成方法により結晶性金属酸化物のナノ粒子等の所望の金属酸化物の粒子を得ることができるが、金属酸化物の粒子は、一次粒子(金属酸化物の結晶の粒子が他の粒子と接していない単独の粒子を意味する。)の状態もしくは弱い凝集状態のスラリーとして得られる。
(Process during reaction)
Preparation of the reaction solution and progress of the reaction can also be performed as a series of steps. For example, in an environment where predetermined reaction conditions have been prepared, a metal oxide precursor, an organic solvent or aqueous solvent having an oxygen atom in the molecule, and one or more of amines and additives as necessary. By mixing the two, it becomes possible to carry out the preparation of the reaction solution and the progress of the reaction as a series of steps that are not distinguished from each other.
Desired metal oxide particles, such as crystalline metal oxide nanoparticles, can be obtained by such a synthesis method, but metal oxide particles are primary particles (metal oxide crystal particles formed by other particles). It is obtained as a slurry in a state of (meaning a single particle not in contact with other particles) or a weakly agglomerated state.

[その他の工程]
金属酸化物の粒子の製造方法は、必要に応じて、上述した反応工程以外のその他の工程を実施してもよい。
例えば、反応工程の後、回収工程を行なってもよい。回収工程では、反応工程で得られた結晶性金属酸化物のナノ粒子等の金属酸化物の粒子を単離し、回収する。回収の際の手法は任意であるが、例えば、金属酸化物の粒子を含む組成物(反応液)と貧溶媒とを混合することにより、容易に沈殿が生じ、金属酸化物の粒子を沈殿物として回収することができる。ここで、貧溶媒とはアミン類及びカルボン酸類のうちの1種以上が吸着した金属酸化物の粒子に対する溶媒を意味する。貧溶媒としては、例えば、アルコール類が挙げられる。なお、貧溶媒の使用により、金属酸化物の粒子を洗浄することも可能となる。
また、沈殿した金属酸化物の粒子の回収は、遠心分離、フィルターろ過、その他の通常の回収方法が適用できる。
[Other processes]
In the method for producing metal oxide particles, steps other than the above-mentioned reaction step may be performed as necessary.
For example, a recovery step may be performed after the reaction step. In the recovery step, metal oxide particles such as crystalline metal oxide nanoparticles obtained in the reaction step are isolated and recovered. The recovery method is arbitrary, but for example, by mixing a composition (reaction solution) containing metal oxide particles with a poor solvent, precipitation can easily occur, and the metal oxide particles can be separated into precipitates. It can be recovered as Here, the term "poor solvent" refers to a solvent for metal oxide particles to which one or more of amines and carboxylic acids have been adsorbed. Examples of poor solvents include alcohols. Note that the use of a poor solvent also makes it possible to wash the metal oxide particles.
Furthermore, centrifugation, filter filtration, and other conventional recovery methods can be used to recover the precipitated metal oxide particles.

次に、本発明を実施例により更に詳細に説明するが、本発明は、これらに限定されるものではない。 Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

[製造例1:金属酸化物の粒子1の作製]
45.90mLの1-オクタノール(分子内に酸素原子を有する有機溶媒)を200mLのビーカーに入れ、オレイン酸22.78g、チタニウムテトライソプロポキシド1.5mL(モル数=5mmol)を加え、30分間攪拌しながら窒素バブリングして反応液を調製した。この反応液をステンレス製密閉容器に封入し、140℃で7時間加熱した。反応終了後、得られた反応液に大過剰のアセトンを添加して沈殿物を生成させ、遠心分離して沈殿物を回収した。沈殿物をエタノールで3回洗浄後、回収、乾燥して、結晶性酸化チタン(金属酸化物のナノ結晶)0.24gを得た。これを金属酸化物の粒子1とした。
金属酸化物の粒子1について、動的光散乱法に基づき、粒径測定システム(大塚電子株式会社製、「ELSZ-2000」)で測定した粒度分布のモード径(最頻径)を確認したところ、8nmであった。
[Production Example 1: Production of metal oxide particles 1]
Put 45.90 mL of 1-octanol (an organic solvent having an oxygen atom in the molecule) into a 200 mL beaker, add 22.78 g of oleic acid, and 1.5 mL of titanium tetraisopropoxide (number of moles = 5 mmol), and stir for 30 minutes. A reaction solution was prepared by bubbling nitrogen while stirring. This reaction solution was sealed in a stainless steel sealed container and heated at 140° C. for 7 hours. After the reaction was completed, a large excess of acetone was added to the resulting reaction solution to generate a precipitate, and the precipitate was collected by centrifugation. The precipitate was washed three times with ethanol, collected, and dried to obtain 0.24 g of crystalline titanium oxide (metal oxide nanocrystals). This was designated as metal oxide particle 1.
Regarding metal oxide particles 1, the mode diameter (most frequent diameter) of the particle size distribution was confirmed using a particle size measurement system (manufactured by Otsuka Electronics Co., Ltd., "ELSZ-2000") based on dynamic light scattering method. , 8 nm.

[製造例2:金属酸化物の粒子2の作製]
37.32mLのベンジルアルコール(分子内に酸素原子を有する有機溶媒)を200mLのビーカーに入れ、塩化スズ(IV)五水和物1.75g(モル数=5mmol)を加え、30分間攪拌しながら窒素バブリングして反応液を調製した。この反応液をステンレス製密閉容器に封入し、130℃で3時間加熱した。反応終了後、得られた反応液に大過剰のアセトンを添加して沈殿物を生成させ、遠心分離して沈殿物を回収した。沈殿物をエタノールで3回洗浄後、回収、乾燥して、結晶性酸化スズ(金属酸化物のナノ結晶)0.4gを得た。これを金属酸化物の粒子2とした。
金属酸化物の粒子2について、動的散乱法に基づき、粒径測定システム(大塚電子株式会社製、「ELSZ-2000」)で測定した粒度分布のモード径(最頻径)を確認したところ、8nmであった。
[Production Example 2: Production of metal oxide particles 2]
37.Pour 32 mL of benzyl alcohol (an organic solvent having an oxygen atom in the molecule) into a 200 mL beaker, add 1.75 g of tin(IV) chloride pentahydrate (number of moles = 5 mmol), and stir for 30 minutes. A reaction solution was prepared by bubbling nitrogen. This reaction solution was sealed in a stainless steel sealed container and heated at 130° C. for 3 hours. After the reaction was completed, a large excess of acetone was added to the resulting reaction solution to generate a precipitate, and the precipitate was collected by centrifugation. The precipitate was washed three times with ethanol, collected, and dried to obtain 0.4 g of crystalline tin oxide (metal oxide nanocrystals). This was designated as metal oxide particle 2.
Regarding metal oxide particles 2, we checked the mode diameter (most frequent diameter) of the particle size distribution measured with a particle size measurement system (manufactured by Otsuka Electronics Co., Ltd., "ELSZ-2000") based on the dynamic scattering method. It was 8 nm.

[製造例3:金属酸化物の粒子3の作製]
500mLのベンジルアルコール(分子内に酸素原子を有する有機溶媒)を1Lの3つ口フラスコに入れ、30分窒素バブリングした。窒素バブリングしたまま、金属酸化物の前駆体として70質量%のジルコニウムイソプロポキシドの1-プロパノール溶液116.7g(ジルコニウムイソプロポキシドのモル数=0.25mol)を加え、30分攪拌し、ここにオレイルアミン100.3g(アミン類=0.375mol)を添加して更に30分攪拌して反応液を調製した。この反応液をステンレス製密閉容器に封入し、200℃で48時間加熱した。反応終了後、得られた乳白色スラリー状の反応液に大過剰のエタノールを添加して沈殿物を生成させ、遠心分離して沈殿物を回収した。沈殿物をエタノールで3回洗浄後、回収、乾燥して、結晶性酸化ジルコニウム(金属酸化物のナノ結晶)20gを得た。これを金属酸化物の粒子3とした。
金属酸化物の粒子3について、透過型電子顕微鏡(日本電子株式会社製、「JEM-ARM200F」)を用いて200万倍(加速電圧200kV)で観察された画像をもとに、粒子100個の大きさ(一次粒子径)を計測し、算術平均して平均粒子径を求めたところ、5nmであった。
[Production Example 3: Production of metal oxide particles 3]
500 mL of benzyl alcohol (an organic solvent having an oxygen atom in the molecule) was placed in a 1 L three-necked flask, and nitrogen bubbling was carried out for 30 minutes. While bubbling with nitrogen, 116.7 g of a 70% by mass 1-propanol solution of zirconium isopropoxide (number of moles of zirconium isopropoxide = 0.25 mol) was added as a metal oxide precursor, and the mixture was stirred for 30 minutes. 100.3 g of oleylamine (amines = 0.375 mol) was added to the mixture, and the mixture was further stirred for 30 minutes to prepare a reaction solution. This reaction solution was sealed in a stainless steel sealed container and heated at 200° C. for 48 hours. After the reaction was completed, a large excess of ethanol was added to the resulting milky white slurry reaction solution to form a precipitate, and the precipitate was collected by centrifugation. The precipitate was washed three times with ethanol, collected, and dried to obtain 20 g of crystalline zirconium oxide (metal oxide nanocrystals). This was designated as metal oxide particle 3.
Regarding metal oxide particles 3, 100 particles were observed based on an image observed at 2 million times (acceleration voltage 200 kV) using a transmission electron microscope (manufactured by JEOL Ltd., "JEM-ARM200F"). The size (primary particle diameter) was measured and the average particle diameter was determined by arithmetic averaging, which was 5 nm.

[製造例4:金属酸化物の粒子4の作製]
135gの純水を300mLビーカーに入れ、セリウム(III)アセテート水和物3.52g(モル数=10.50mmol)を加え、攪拌しながら5mol/LのNaOH水溶液を15mL滴下し、そのまま1時間攪拌した。その後、遠心分離してゲルを回収し純水で6回洗浄して75gの純水を入れて前駆体溶液を得た。次に、39.84mmol/Lのオレイン酸Na水溶液35gを100mLビーカーに入れ、攪拌しながら15gの前駆体溶液を添加して反応液を調製した。この反応液をステンレス製密閉容器に封入し、180℃で6時間加熱した。反応終了後、得られた反応液に大過剰の純水を添加し、遠心分離して沈殿物を回収した。沈殿物をメタノールで3回洗浄後、回収、乾燥して、結晶性酸化セリウム(金属酸化物のナノ結晶)0.38gを得た。これを金属酸化物の粒子4とした。
金属酸化物の粒子4について、動的散乱法に基づき、粒径測定システム(大塚電子株式会社製、「ELSZ-2000」)で測定した粒度分布のモード径(最頻径)を確認したところ、8nmであった。
[Production Example 4: Production of metal oxide particles 4]
Put 135 g of pure water in a 300 mL beaker, add 3.52 g of cerium (III) acetate hydrate (number of moles = 10.50 mmol), drop 15 mL of 5 mol/L NaOH aqueous solution while stirring, and stir for 1 hour. did. Thereafter, the gel was collected by centrifugation, washed six times with pure water, and 75 g of pure water was added to obtain a precursor solution. Next, 35 g of a 39.84 mmol/L Na oleate aqueous solution was put into a 100 mL beaker, and 15 g of the precursor solution was added while stirring to prepare a reaction solution. This reaction solution was sealed in a stainless steel sealed container and heated at 180° C. for 6 hours. After the reaction was completed, a large excess of pure water was added to the resulting reaction solution, and the mixture was centrifuged to collect the precipitate. The precipitate was washed three times with methanol, collected, and dried to obtain 0.38 g of crystalline cerium oxide (metal oxide nanocrystals). This was designated as metal oxide particle 4.
Regarding the metal oxide particles 4, we checked the mode diameter (most frequent diameter) of the particle size distribution measured with a particle size measurement system (manufactured by Otsuka Electronics Co., Ltd., "ELSZ-2000") based on the dynamic scattering method. It was 8 nm.

[製造例5:金属酸化物の粒子分散液3の調製]
製造例3で得られた結晶性酸化ジルコニウム(金属酸化物の粒子3)0.3gを、有機溶媒である酢酸ブチル28.5gに添加し、沈殿している結晶性酸化ジルコニウムをほぐしながら、超音波洗浄機にて60min分散させた。その後、分散剤としてカプリル酸0.09gとアクリル酸0.06gを加え(分散剤は結晶性酸化ジルコニウムに対して合計50質量%)、更に、超音波洗浄機にて60分、分散させ、透明な金属酸化物の粒子分散液3を調製した。
[Production Example 5: Preparation of metal oxide particle dispersion 3]
0.3 g of crystalline zirconium oxide (metal oxide particles 3) obtained in Production Example 3 was added to 28.5 g of butyl acetate, an organic solvent, and while loosening the precipitated crystalline zirconium oxide, Dispersion was performed using a sonic cleaner for 60 minutes. After that, 0.09 g of caprylic acid and 0.06 g of acrylic acid were added as dispersants (total of dispersants were 50% by mass based on the crystalline zirconium oxide), and further dispersed in an ultrasonic cleaner for 60 minutes to make the crystal clear. A metal oxide particle dispersion liquid 3 was prepared.

[製造例6:金属酸化物の粒子分散液1の調製]
金属酸化物の粒子3の代わりに、製造例1で得られた結晶性酸化チタン(金属酸化物の粒子1)を用い、分散剤を4-トリフルオロメチル安息香酸60質量%とアクリル酸40質量%(分散剤は結晶性酸化ジルコニウムに対して合計100質量%)に代えた以外は製造例5と同じ手順で、透明な金属酸化物の粒子分散液1を調製した。
[Production Example 6: Preparation of metal oxide particle dispersion 1]
Instead of metal oxide particles 3, the crystalline titanium oxide (metal oxide particles 1) obtained in Production Example 1 was used, and the dispersants were 60% by mass of 4-trifluoromethylbenzoic acid and 40% by mass of acrylic acid. % (total 100% by mass of the dispersant based on the crystalline zirconium oxide), a transparent metal oxide particle dispersion 1 was prepared in the same manner as in Production Example 5.

[製造例7:金属酸化物の粒子分散液2の調製]
金属酸化物の粒子3の代わりに、製造例2で得られた結晶性酸化スズ(金属酸化物の粒子2)を用い、更に有機溶媒をプロピレングリコールモノメチルエーテルアセテート(以下、PGMEAとも記す)に代え、分散剤をカプリル酸のみ(分散剤は結晶性酸化スズに対して合計100質量%)に代えた以外は製造例5と同じ手順で、透明な金属酸化物の粒子分散液2を調製した。
[Production Example 7: Preparation of metal oxide particle dispersion 2]
Instead of metal oxide particles 3, the crystalline tin oxide (metal oxide particles 2) obtained in Production Example 2 was used, and the organic solvent was replaced with propylene glycol monomethyl ether acetate (hereinafter also referred to as PGMEA). A transparent metal oxide particle dispersion 2 was prepared in the same manner as in Production Example 5, except that only caprylic acid was used as the dispersant (the total amount of the dispersant was 100% by mass based on the crystalline tin oxide).

[製造例8:金属酸化物の粒子分散液4の調製]
金属酸化物の粒子3の代わりに、製造例4で得られた結晶性酸化セリウム(金属酸化物の粒子4)を用い、更に有機溶媒をPGMEAに代え、分散剤を4-トリフルオロメチル安息香酸のみ(分散剤は結晶性酸化セリウムに対して合計100質量%)に代えた以外は製造例5と同じ手順で、透明な金属酸化物の粒子分散液4を調製した。
[Production Example 8: Preparation of metal oxide particle dispersion liquid 4]
Instead of metal oxide particles 3, the crystalline cerium oxide (metal oxide particles 4) obtained in Production Example 4 was used, the organic solvent was replaced with PGMEA, and the dispersant was 4-trifluoromethylbenzoic acid. A transparent metal oxide particle dispersion liquid 4 was prepared in the same manner as in Production Example 5 except that the dispersant was replaced with only 100% by mass of the dispersant based on the crystalline cerium oxide.

[実施例1:光触媒膜1の形成]
基材として直径25mmの石英ガラス基板(厚さ1mm)上に、金属酸化物の粒子分散液1を1mLスポイトで滴下し、3000rpmの速度で20秒間回転させて基材上に塗布した(塗布工程)。その後、ホットプレートを用いて80℃で60秒間プレベークして、基材上に塗膜を形成した(乾燥及びエージング工程)。
次に、塗膜が形成された基材を、洗浄溶媒として酢酸ブチルに1分間浸漬することにより、塗布面を洗浄した(洗浄工程)。
洗浄工程後の塗膜付き基材を、4時間かけて室温から800℃まで昇温して、800℃で30分間保持し、その後、放冷することより塗膜を焼結し(焼結工程)、基材上に金属酸化物の薄膜からなる光触媒膜1を形成し、金属酸化物の薄膜付きの基材(光触媒膜被覆体)を得た。
[Example 1: Formation of photocatalyst film 1]
1 mL of metal oxide particle dispersion 1 was dropped onto a quartz glass substrate (thickness: 1 mm) with a diameter of 25 mm as a base material using a dropper, and was applied onto the base material by rotating at a speed of 3000 rpm for 20 seconds (coating process ). Thereafter, it was prebaked at 80° C. for 60 seconds using a hot plate to form a coating film on the substrate (drying and aging step).
Next, the coated surface was cleaned by immersing the base material on which the coating film was formed in butyl acetate as a cleaning solvent for 1 minute (cleaning step).
After the cleaning process, the substrate with the coating film was heated from room temperature to 800°C over 4 hours, held at 800°C for 30 minutes, and then allowed to cool to sinter the coating film (sintering process). ), a photocatalytic film 1 made of a thin film of a metal oxide was formed on a base material to obtain a base material (photocatalyst film coated body) with a thin film of a metal oxide.

[実施例2:光触媒膜2の形成]
金属酸化物の粒子分散液1を金属酸化物の粒子分散液2に代えて、更に洗浄溶媒として酢酸ブチルに代えてPGMEAを用いること以外は実施例1と同様の操作を行うことで、基材上に金属酸化物の薄膜からなる光触媒膜2を形成し、金属酸化物の薄膜付きの基材(光触媒膜被覆体)を得た。
[Example 2: Formation of photocatalyst film 2]
By performing the same operation as in Example 1 except for replacing metal oxide particle dispersion 1 with metal oxide particle dispersion 2 and using PGMEA instead of butyl acetate as the cleaning solvent, the base material A photocatalytic film 2 made of a thin film of metal oxide was formed thereon to obtain a base material (photocatalyst film coated body) with a thin film of metal oxide.

[実施例3:光触媒膜3の形成]
焼結工程において、800℃での高温焼結に代えて、室温25℃でのXeエキシマランプによる光焼結を行ったこと以外は実施例1と同様の操作を行うことで、基材上に金属酸化物の薄膜からなる光触媒膜3を形成し、金属酸化物の薄膜付きの基材(光触媒膜被覆体)を得た。
[Example 3: Formation of photocatalyst film 3]
In the sintering process, the same procedure as in Example 1 was performed except that instead of high-temperature sintering at 800°C, photosintering was performed using a Xe excimer lamp at room temperature of 25°C. A photocatalytic film 3 made of a thin film of metal oxide was formed to obtain a base material (photocatalyst film coating) with a thin film of metal oxide.

[比較例1:金属酸化物の薄膜C1の形成]
基材として直径25mmの石英ガラス基板(厚さ1mm)上に、金属酸化物の粒子分散液1を1mLスポイトで滴下し、1000rpmの速度で20秒間回転させて基材上に塗布した(塗布工程)。その後、ホットプレートを用いて80℃で60秒間プレベークして、基材上に塗膜を形成した(乾燥及びエージング工程)。
乾燥及びエージング工程後の塗膜付き基材を、4時間かけて室温から800℃まで昇温して、800℃で30分間保持し、その後、放冷することより塗膜を焼結し(焼結工程)、基材上に金属酸化物の薄膜C1を形成し、金属酸化物の薄膜付きの基材を得た。
[Comparative Example 1: Formation of metal oxide thin film C1]
1 mL of metal oxide particle dispersion 1 was dropped onto a quartz glass substrate (thickness: 1 mm) with a diameter of 25 mm as a base material using a dropper, and was applied onto the base material by rotating at a speed of 1000 rpm for 20 seconds (coating process ). Thereafter, it was prebaked at 80° C. for 60 seconds using a hot plate to form a coating film on the substrate (drying and aging step).
After the drying and aging process, the substrate with the coated film is heated from room temperature to 800°C over 4 hours, held at 800°C for 30 minutes, and then allowed to cool to sinter the coated film. Bonding step), a metal oxide thin film C1 was formed on the base material to obtain a base material with a metal oxide thin film.

[比較例2:金属酸化物の薄膜C2の形成]
金属酸化物の粒子分散液1の代わりに、金属酸化物の粒子分散液2を用いること以外は比較例1と同様の操作を行うことで、基材上に金属酸化物の薄膜C2を形成し、金属酸化物の薄膜付きの基材を得た。
[Comparative Example 2: Formation of metal oxide thin film C2]
A thin film C2 of metal oxide was formed on the substrate by performing the same operation as in Comparative Example 1 except that metal oxide particle dispersion 2 was used instead of metal oxide particle dispersion 1. , a substrate with a thin film of metal oxide was obtained.

[比較例3:金属酸化物の薄膜C3の形成]
金属酸化物の粒子分散液1の代わりに、金属酸化物の粒子分散液3を用いること以外は比較例1と同様の操作を行うことで、基材上に金属酸化物の薄膜C3を形成し、金属酸化物の薄膜付きの基材を得た。
[Comparative Example 3: Formation of metal oxide thin film C3]
A thin film C3 of metal oxide was formed on the substrate by performing the same operation as in Comparative Example 1 except that metal oxide particle dispersion 3 was used instead of metal oxide particle dispersion 1. , a substrate with a thin film of metal oxide was obtained.

[比較例4:金属酸化物の薄膜C4の形成]
金属酸化物の粒子分散液1の代わりに、金属酸化物の粒子分散液4を用いること以外は比較例1と同様の操作を行うことで、基材上に金属酸化物の薄膜C4を形成し、金属酸化物の薄膜付きの基材を得た。
[Comparative Example 4: Formation of metal oxide thin film C4]
A thin film C4 of metal oxide was formed on the substrate by performing the same operation as in Comparative Example 1 except that metal oxide particle dispersion 4 was used instead of metal oxide particle dispersion 1. , a substrate with a thin film of metal oxide was obtained.

[比較例5:薄膜C5の形成]
金属酸化物の粒子分散液1を塗布しないこと以外は実施例1と同様の操作を行うことで、基材上に薄膜C5を形成し、薄膜付きの基材を得た。
[Comparative Example 5: Formation of thin film C5]
A thin film C5 was formed on the base material by performing the same operation as in Example 1 except that the metal oxide particle dispersion liquid 1 was not applied, and a base material with a thin film was obtained.

[比較例6:金属酸化物の薄膜C6の形成]
焼結工程において、800℃での高温焼結に代えて、室温25℃でのXeエキシマランプによる光焼結を行ったこと以外は比較例1と同様の操作を行うことで、基材上に金属酸化物の薄膜C6を形成し、金属酸化物の薄膜付きの基材を得た。
[Comparative Example 6: Formation of metal oxide thin film C6]
In the sintering process, the same operation as in Comparative Example 1 was performed except that instead of high-temperature sintering at 800°C, photosintering was performed using a Xe excimer lamp at room temperature of 25°C. A metal oxide thin film C6 was formed to obtain a base material with a metal oxide thin film.

各実施例及び比較例で得られた薄膜の物性値の測定と評価は以下の手順で行った。 The physical property values of the thin films obtained in each Example and Comparative Example were measured and evaluated using the following procedure.

[金属酸化物の薄膜の物性値の測定]
(金属酸化物の粒子のAFM表面観察での一次粒子径(最小粒径(X))の測定)
金属酸化物の粒子の最小粒径(X)の測定は、原子間力顕微鏡(AFM)であるブルカー・エイエックスエス社製の「NanoScope V / Dimension Icon」を用いて行った。AFM測定条件は、測定モードをタッピングモードとし、測定範囲を1μm×1μm、測定点数512×512とした。観察された表面上の金属酸化物の粒子のうち最小粒径のものを一次粒子径の測定値(最小粒径(X))とした。結果を表1に示す。
[Measurement of physical properties of metal oxide thin film]
(Measurement of primary particle diameter (minimum particle diameter (X)) in AFM surface observation of metal oxide particles)
The minimum particle size (X) of the metal oxide particles was measured using an atomic force microscope (AFM) "NanoScope V/Dimension Icon" manufactured by Bruker AXS. The AFM measurement conditions were such that the measurement mode was tapping mode, the measurement range was 1 μm×1 μm, and the number of measurement points was 512×512. Among the observed metal oxide particles on the surface, the one with the smallest particle size was taken as the measured value of the primary particle size (minimum particle size (X)). The results are shown in Table 1.

(金属酸化物の薄膜の膜厚の測定)
焼結後の金属酸化物の薄膜について、ジェー・エー・ウーラム・ジャパン株式会社製の「分光エリプソメータRC2」を用いて厚さをそれぞれ測定し、それらを金属酸化物の薄膜の膜厚(膜厚(Y))とした。結果を表1に示す。
(Measurement of film thickness of metal oxide thin film)
The thickness of the metal oxide thin film after sintering was measured using a "Spectroscopic Ellipsometer RC2" manufactured by JA Woollam Japan Co., Ltd., and the thickness of the metal oxide thin film (film thickness (Y)). The results are shown in Table 1.

(水接触角の測定及び親水性の評価)
実施例1、2及び比較例1~4で得られた金属酸化物の薄膜付きの基材と、比較例5で得られた薄膜付きの基材について、親水性を評価するために、JIS R 1703-1:2020(ファインセラミックス-光触媒材料のセルフクリーニング性能試験方法第1部:水接触角の測定)に準拠して以下の手順で、薄膜側の表面における水接触角を測定した。
大気中で、薄膜側の表面にピペットで1μLの純水を滴下し、0.1秒経過後に側面から撮影し、撮影画像に基づいて接触角を測定することにより評価した。具体的には、水接触角が10°以下であれば親水性が十分高いものと評価し、水接触角が10°を超える場合は親水性が不足しているものと評価した。結果を表1に示す。
(Measurement of water contact angle and evaluation of hydrophilicity)
In order to evaluate the hydrophilicity of the base material with the metal oxide thin film obtained in Examples 1 and 2 and Comparative Examples 1 to 4 and the base material with the thin film obtained in Comparative Example 5, JIS R 1703-1:2020 (Fine Ceramics - Self-cleaning Performance Test Method for Photocatalytic Materials Part 1: Measurement of Water Contact Angle), the water contact angle on the surface of the thin film side was measured according to the following procedure.
In the atmosphere, 1 μL of pure water was dropped onto the surface of the thin film using a pipette, and after 0.1 seconds, a photograph was taken from the side, and the contact angle was measured based on the photographed image for evaluation. Specifically, if the water contact angle was 10 degrees or less, it was evaluated that the hydrophilicity was sufficiently high, and if the water contact angle exceeded 10 degrees, it was evaluated that the hydrophilicity was insufficient. The results are shown in Table 1.

(光線透過率の測定及び透明性の評価)
実施例1~3及び比較例1~4、6で得られた金属酸化物の薄膜付きの基材と、比較例5で得られた薄膜付きの基材について、オーシャンオプティクス社製の「分光光度計USB-4000」を用いて、薄膜側の表面における200nmから800nmの波長領域の光線透過率の測定を行った。全波長領域において80%以上の光線透過率を示す場合、十分透明であると判断して「A」と評価し、いずれかの波長領域で光線透過率が70%以上80%未満である場合を「B」と評価し、いずれかの波長領域で光線透過率が70%未満である場合を「C」と評価した。結果を表1に示す。
また、実施例1及び比較例1で得られた金属酸化物の薄膜付きの基材の光線透過率のグラフを図1、2に示し、実施例2及び比較例2で得られた金属酸化物の薄膜付きの基材の光線透過率のグラフを図3、4に示す。実線が実施例1及び実施例2で得られた金属酸化物の薄膜付きの基材の光線透過率の測定結果であり、破線が比較例1及び比較例2で得られた金属酸化物の薄膜付きの基材の光線透過率の測定結果である。なお、図1~4に示す光線透過率の測定結果は、同様の手順で測定した単独の石英ガラス基板の光線透過率性に対する相対値で示したものであり、光線透過率100%の場合、石英ガラス基板の光線透過率と等しいことを意味する。
(Measurement of light transmittance and evaluation of transparency)
The substrates with the metal oxide thin films obtained in Examples 1 to 3 and Comparative Examples 1 to 4, and 6, and the substrate with the thin film obtained in Comparative Example 5 were tested using a spectrophotometer manufactured by Ocean Optics. The light transmittance in the wavelength range from 200 nm to 800 nm on the surface of the thin film was measured using a 2000-nm USB-4000. If it shows a light transmittance of 80% or more in all wavelength regions, it is judged to be sufficiently transparent and is evaluated as "A", and if the light transmittance in any wavelength region is 70% or more and less than 80%. It was evaluated as "B", and the case where the light transmittance was less than 70% in any wavelength region was evaluated as "C". The results are shown in Table 1.
In addition, graphs of the light transmittance of the base materials with thin films of metal oxides obtained in Example 1 and Comparative Example 1 are shown in FIGS. Graphs of the light transmittance of the base material with the thin film are shown in FIGS. 3 and 4. The solid line is the measurement result of the light transmittance of the base material with the metal oxide thin film obtained in Example 1 and Example 2, and the broken line is the measurement result of the metal oxide thin film obtained in Comparative Example 1 and Comparative Example 2. These are the measurement results of the light transmittance of the base material with the attached. The measurement results of the light transmittance shown in FIGS. 1 to 4 are shown as relative values to the light transmittance of a single quartz glass substrate measured using the same procedure, and when the light transmittance is 100%, This means that the light transmittance is equal to that of a quartz glass substrate.

[光触媒性の評価]
実施例1~3及び比較例1~4、6で得られた金属酸化物の薄膜付きの基材と、比較例5で得られた薄膜付きの基材について、薄膜側の表面に2.5μg/mLの濃度のメチレンブルー水溶液5mLを滴下し、紫外線照度170mW/cmのハンディータイプUVランプ(HLR100T-2)により紫外線を5分間照射して、メチレンブルー水溶液の退色状態を目視にて評価した。メチレンブルー水溶液が目視にて色を判別できない程度に、無色に退色している場合、十分な光触媒性を発現できたと判断して「A」と評価し、メチレンブルー水溶液が殆ど退色していないか、全く退色しておらず、目視にてメチレンブルー水溶液の色を明確に判別できた場合を「B」と評価した。結果を表1に示す。
[Evaluation of photocatalytic property]
Regarding the base material with the thin film of metal oxide obtained in Examples 1 to 3 and Comparative Examples 1 to 4, and 6, and the base material with the thin film obtained in Comparative Example 5, 2.5 μg was applied to the surface of the thin film side. 5 mL of methylene blue aqueous solution with a concentration of /mL was added dropwise, and ultraviolet rays were irradiated for 5 minutes using a handy type UV lamp (HLR100T-2) with an ultraviolet illuminance of 170 mW/cm 2 to visually evaluate the fading state of the methylene blue aqueous solution. If the methylene blue aqueous solution has faded to a colorless level to the extent that the color cannot be visually distinguished, it is judged that sufficient photocatalytic properties have been expressed and is evaluated as "A". A case where the color of the methylene blue aqueous solution could be clearly distinguished by visual observation without fading was evaluated as "B". The results are shown in Table 1.

[セルフクリーニング性の評価]
実施例1及び比較例1で得られた金属酸化物の薄膜付きの基材と、比較例5で得られた薄膜付きの基材について、JIS R 1703-1:2020(ファインセラミックス-光触媒材料のセルフクリーニング性能試験方法第1部:水接触角の測定)に準拠して、薄膜側の表面に紫外線を照射しながら、水接触角を測定した。具体的には、紫外線を照射する前と、紫外線の照射開始から1時間後、2時間後、4時間後、6時間後、24時間後、28時間後、48時間後における薄膜側の表面の水接触角を測定した。水接触角が20°以下になるまでに要した時間を表1に示す。なお、48時間経過後も水接触角が20°以下とならない場合を「×」と評価した。また、紫外線を照射する前と各経過時間における水接触角の測定結果を図5に示す。
[Self-cleaning evaluation]
Regarding the base material with the metal oxide thin film obtained in Example 1 and Comparative Example 1 and the base material with the thin film obtained in Comparative Example 5, JIS R 1703-1:2020 (Fine Ceramics - Photocatalyst Materials) The water contact angle was measured while irradiating the surface of the thin film with ultraviolet rays in accordance with Self-cleaning Performance Test Method Part 1: Measurement of Water Contact Angle. Specifically, the surface of the thin film before irradiation with ultraviolet rays and 1 hour, 2 hours, 4 hours, 6 hours, 24 hours, 28 hours, and 48 hours after the start of ultraviolet irradiation. Water contact angle was measured. Table 1 shows the time required for the water contact angle to become 20° or less. In addition, a case where the water contact angle did not become 20° or less even after 48 hours was evaluated as "x". Moreover, the measurement results of the water contact angle before irradiation with ultraviolet rays and at each elapsed time are shown in FIG.

Figure 2024004698000001
Figure 2024004698000001

表1及び図1~4の結果から明らかなように、実施例1、2で得られた金属酸化物の薄膜付きの基材は、200nm~800nmの全波長領域において、単独の石英ガラス基板と同等の高い透明性を示し、透過率が低下しにくく、十分に透明であった。
一方、比較例1、2で得られた金属酸化物の薄膜付きの基材は、200nm~800nmの波長領域において、透過率が80%以下となる波長領域が存在していた。
As is clear from the results in Table 1 and Figures 1 to 4, the metal oxide thin film-covered substrates obtained in Examples 1 and 2 were superior to a single quartz glass substrate in the entire wavelength range of 200 nm to 800 nm. It showed the same high transparency, the transmittance did not easily decrease, and it was sufficiently transparent.
On the other hand, in the base materials with thin metal oxide films obtained in Comparative Examples 1 and 2, there was a wavelength range in which the transmittance was 80% or less in the wavelength range of 200 nm to 800 nm.

また、表1の結果から明らかなように、実施例1~3で得られた金属酸化物の薄膜付きの基材は、薄膜側の表面に紫外領域の光を吸収するバンドギャップエネルギーを有する金属酸化物のナノ構造体を有することにより、透明性及び光触媒性に優れていた。また、実施例1で得られた金属酸化物の薄膜付きの基材は、セルフクリーニング性にも優れていた。
一方、塗膜を溶媒洗浄せずに焼結した比較例1~4及び比較例6で得られた金属酸化物の薄膜付きの基材では、金属酸化物の最小粒径(X)に対して薄膜の膜厚(Y)が十分に薄くなく、透明性が悪い波長領域が存在した。特に、比較例4で得られた金属酸化物の薄膜付きの基材は、光触媒性にも劣っていた。
比較例5で得られた薄膜付きの基材では、薄膜が金属酸化物を含んでおらず、光触媒性及びセルフクリーニング性に劣っていた。
Furthermore, as is clear from the results in Table 1, the base materials with the metal oxide thin films obtained in Examples 1 to 3 had a metal oxide on the surface on the thin film side that had a bandgap energy that absorbed light in the ultraviolet region. By having an oxide nanostructure, it had excellent transparency and photocatalytic properties. Further, the base material with the metal oxide thin film obtained in Example 1 also had excellent self-cleaning properties.
On the other hand, in the base materials with the metal oxide thin film obtained in Comparative Examples 1 to 4 and Comparative Example 6, in which the coating film was sintered without solvent cleaning, the minimum particle size (X) of the metal oxide The film thickness (Y) of the thin film was not sufficiently thin, and there was a wavelength region with poor transparency. In particular, the base material with the metal oxide thin film obtained in Comparative Example 4 was also poor in photocatalytic properties.
In the base material with a thin film obtained in Comparative Example 5, the thin film did not contain a metal oxide and had poor photocatalytic properties and self-cleaning properties.

本発明によれば、透明性及び光触媒性を同時に高いレベルで実現可能な光触媒膜被覆体とその製造方法を提供することができ、本発明の光触媒膜被覆体は光学材料、医療用材料、紫外線照射用装置等の幅広い分野において好適に使用することができることから、産業上、極めて重要である。 According to the present invention, it is possible to provide a photocatalytic film covering that can simultaneously achieve high levels of transparency and photocatalytic properties, and a method for producing the same. It is extremely important industrially because it can be suitably used in a wide range of fields such as irradiation equipment.

Claims (9)

価電子帯と伝導帯のバンドギャップエネルギーが0.1eV~5.5eVである金属酸化物を含む光触媒膜を有する光触媒膜被覆体であって、
前記光触媒膜の波長200nm~800nmにおける光線透過率が80%以上であり、
前記光触媒膜の膜厚が0.5nm~200nmである、光触媒膜被覆体。
A photocatalytic film coating having a photocatalytic film containing a metal oxide having a band gap energy of valence band and conduction band of 0.1 eV to 5.5 eV,
The light transmittance of the photocatalytic film at a wavelength of 200 nm to 800 nm is 80% or more,
A photocatalytic film coating, wherein the photocatalytic film has a thickness of 0.5 nm to 200 nm.
前記金属酸化物が、ジルコニウム、チタン、セリウム、インジウム、スズ、亜鉛、アルミニウム、マグネシウム、ケイ素、鉄、鉛、銅、タングステン、ニオブ、クロム、ストロンチウム、インジウム、ルテニウム、カドミウム、ガリウム、アンチモン、テルル、セレン及びハフニウムからなる群より選ばれる1種以上の金属元素を含有する、請求項1に記載の光触媒膜被覆体。 The metal oxide is zirconium, titanium, cerium, indium, tin, zinc, aluminum, magnesium, silicon, iron, lead, copper, tungsten, niobium, chromium, strontium, indium, ruthenium, cadmium, gallium, antimony, tellurium, The photocatalytic membrane coating according to claim 1, containing one or more metal elements selected from the group consisting of selenium and hafnium. 前記光触媒膜中の前記金属酸化物の最小粒径をXnmとし、前記光触媒膜の膜厚をYnmとしたときに、下記式(1)及び下記式(2)を満たす、請求項1又は2に記載の光触媒膜被覆体。
0.5≦X≦200 ・・・(1)
1.0≦Y/X≦3.0 ・・・(2)
According to claim 1 or 2, the metal oxide in the photocatalytic film satisfies the following formula (1) and the following formula (2) when the minimum particle size of the metal oxide is X nm and the film thickness of the photocatalyst film is Y nm. The photocatalytic membrane coating described above.
0.5≦X≦200...(1)
1.0≦Y/X≦3.0...(2)
前記光触媒膜の波長200nm~800nmにおける光線透過率が90%以上である、請求項1又は2に記載の光触媒膜被覆体。 The photocatalytic film coating according to claim 1 or 2, wherein the photocatalytic film has a light transmittance of 90% or more in a wavelength range of 200 nm to 800 nm. 前記光触媒膜の膜厚が0.5nm~100nmである、請求項1又は2に記載の光触媒膜被覆体。 The photocatalytic film coating according to claim 1 or 2, wherein the photocatalytic film has a thickness of 0.5 nm to 100 nm. JIS R 1703-1:2020に準拠して測定した前記光触媒膜の表面の水接触角が20°以下になるまでに要する時間が48時間以下である、請求項1又は2に記載の光触媒膜被覆体。 The photocatalytic film coating according to claim 1 or 2, wherein the time required for the water contact angle on the surface of the photocatalytic film to become 20° or less as measured in accordance with JIS R 1703-1:2020 is 48 hours or less. body. 請求項1又は2に記載の光触媒膜被覆体の製造方法であって、
前記金属酸化物の粒子分散液を基材に塗布し、乾燥及びエージングした後、溶剤で洗浄し、0℃~1000℃で焼結する、光触媒膜被覆体の製造方法。
A method for producing a photocatalytic membrane coating according to claim 1 or 2, comprising:
A method for producing a photocatalyst film coated body, comprising applying the metal oxide particle dispersion to a substrate, drying and aging, washing with a solvent, and sintering at 0° C. to 1000° C.
前記金属酸化物の粒子のモード径が200nm以下である、請求項7に記載の光触媒膜被覆体の製造方法。 The method for producing a photocatalytic membrane coating according to claim 7, wherein the metal oxide particles have a mode diameter of 200 nm or less. 波長10nm~400nmにピークを有するスペクトルの光を照射する光源を更に有する、請求項1又は2に記載の光触媒膜被覆体。 The photocatalytic membrane coating according to claim 1 or 2, further comprising a light source that irradiates light with a spectrum having a peak in a wavelength range of 10 nm to 400 nm.
JP2022104454A 2022-06-29 2022-06-29 Photocatalyst film-coated body and method for producing the same Pending JP2024004698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022104454A JP2024004698A (en) 2022-06-29 2022-06-29 Photocatalyst film-coated body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022104454A JP2024004698A (en) 2022-06-29 2022-06-29 Photocatalyst film-coated body and method for producing the same

Publications (1)

Publication Number Publication Date
JP2024004698A true JP2024004698A (en) 2024-01-17

Family

ID=89540053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022104454A Pending JP2024004698A (en) 2022-06-29 2022-06-29 Photocatalyst film-coated body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2024004698A (en)

Similar Documents

Publication Publication Date Title
KR100809758B1 (en) Fine particles of tin-modified rutile-type titanium dioxide
JP5704133B2 (en) Core-shell type tetragonal titanium oxide solid solution aqueous dispersion, method for producing the same, ultraviolet shielding silicone coating composition, and coated article
US5755867A (en) Photocatalytic hydrophilic coating compositions
JP6961931B2 (en) Metatitanic acid particles and their production methods, photocatalyst-forming compositions, photocatalysts, and structures
WO2012032868A1 (en) Manufacturing method for surface-modified titanium particles, dispersion of titanium particles, and resin having titanium particles dispersed therein
JP7060583B2 (en) Method for producing iron-containing rutile-type titanium oxide fine particle dispersion, iron-containing rutile-type titanium oxide fine particles and their uses
WO2009051271A1 (en) Photocatalytic film, method for production of photocatalytic film, article, and hydrophilization method
WO2010143645A1 (en) Near-infrared shielding coating agent curable at ordinary temperatures, near-infrared shielding film using same, and manufacturing method therefor
JP6876908B2 (en) Titanium oxide particles and their production method, photocatalyst forming composition, photocatalyst, and structure
JP4823045B2 (en) Water-based photocatalytic composition
JP2007063477A (en) Inorganic coating composition, hydrophilic coating film, and agricultural film
JP2007270098A (en) High-refractive index coating composition
JP6491934B2 (en) Antireflection article manufacturing method and antireflection article
JP6186301B2 (en) Antireflection article, image display device, and method of manufacturing antireflection article
JP2002346393A (en) Photocatalyst and method for manufacturing the same
JP2017043505A (en) Manufacturing method of uv light shielding material particulates, uv light shielding material particulate dispersoid using uv light shielding material particulates, and uv light shielding body
JP5298401B2 (en) Method for producing inorganic coating composition, hydrophilic coating film and agricultural film
JP4631013B2 (en) Acicular titanium oxide fine particles, production method thereof and use thereof
JP2024004698A (en) Photocatalyst film-coated body and method for producing the same
JP4238551B2 (en) Hydrophilic film-forming coating liquid and method for producing the same, method of using the coating liquid, and film-coated substrate formed using the coating liquid
JP4238011B2 (en) Method for producing metal sulfide
JP2010101919A (en) Camera lens
JP5016193B2 (en) Particulate metal oxides and their applications
JP7150727B2 (en) Manufacture of doped nanoparticles and their use
JP2022146908A (en) Metal oxide thin film, method for producing the same, and metal oxide thin film-coated body