JP2024003388A - Countermeasure pile against liquefaction and countermeasure method against liquefaction using therewith - Google Patents

Countermeasure pile against liquefaction and countermeasure method against liquefaction using therewith Download PDF

Info

Publication number
JP2024003388A
JP2024003388A JP2022102493A JP2022102493A JP2024003388A JP 2024003388 A JP2024003388 A JP 2024003388A JP 2022102493 A JP2022102493 A JP 2022102493A JP 2022102493 A JP2022102493 A JP 2022102493A JP 2024003388 A JP2024003388 A JP 2024003388A
Authority
JP
Japan
Prior art keywords
countermeasure
liquefaction
crushed
pile
seashells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022102493A
Other languages
Japanese (ja)
Inventor
薫 小林
Kaoru Kobayashi
理玖 脇本
Riku Wakimoto
顕治郎 本多
Kenjiro HONDA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A By C Co Ltd
Ibaraki University NUC
Original Assignee
A By C Co Ltd
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A By C Co Ltd, Ibaraki University NUC filed Critical A By C Co Ltd
Priority to JP2022102493A priority Critical patent/JP2024003388A/en
Publication of JP2024003388A publication Critical patent/JP2024003388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a countermeasure pile using a substitute material having high permeability and capable of suppressing degradation of draining performance caused by mixing of sand, in place of conventional ballast, to thereby develop suppressing effect of liquefaction occurrence over a long period, and a liquefaction countermeasure method using the countermeasure pile.
SOLUTION: A countermeasure pile is used in a liquefaction countermeasure method of driving a countermeasure pile for a liquefaction countermeasure, composed of ballast in ground. The countermeasure pile is structured by using crushed shell in place of ballast.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

特許法第30条第2項適用申請有り 公益社団法人 地盤工学会関東支部 第18回 地盤工学会関東支部発表会 GeoKanto2021<要旨集> 第4会場 防災5 防災5-6 p.44 2021年10月22日発行 (刊行物等)公益社団法人 地盤工学会関東支部 第18回 地盤工学会関東支部発表会 GeoKanto2021<要旨集> 第4会場 防災5 防災5-6 オンライン発表(ZOOM) 2021年10月22日開催Application for application of Article 30, Paragraph 2 of the Patent Act Public Interest Incorporated Association Japan Geotechnical Society Kanto Branch 18th Japan Geotechnical Society Kanto Branch Presentation GeoKanto2021 <Abstract> 4th venue Disaster Prevention 5 Disaster Prevention 5-6 p. 44 Published on October 22, 2021 (Publications, etc.) Japan Geotechnical Society Kanto Branch 18th Japan Geotechnical Society Kanto Branch Presentation GeoKanto2021 <Collection of Abstracts> 4th Venue Disaster Prevention 5 Disaster Prevention 5-6 Online Presentation (ZOOM) Held on October 22, 2021

本発明は液状化対策杭及びその対策杭を使用する液状化対策工法に関するものである。
The present invention relates to a liquefaction countermeasure pile and a liquefaction countermeasure construction method using the countermeasure pile.

過去の大規模地震あるいは中規模地震における影響として多数の液状化被害が確認され、報告されている。
ここで従来、液状化の被害を抑制する液状化対策工法の1つとして、グラベルドレーン工法が一般に知られている。グラベルドレーン工法とは軟弱地盤中に砕石で構成した液状化対策用の対策杭を打設することにより排水距離を短縮し、液状化地盤中の過剰間隙水圧の早期消散などの効果で液状化抑制を行う工法である。該グラベルドレーン工法によれば、前記対策杭を緩く堆積した砂地盤に打設することにより、液状化の発生を簡易な施工と安価なコストで抑制・防止できる。
Many liquefaction damages have been confirmed and reported as an effect of past large-scale or medium-sized earthquakes.
Conventionally, the gravel drain construction method is generally known as one of the liquefaction countermeasure construction methods for suppressing damage caused by liquefaction. What is the gravel drain construction method? By driving anti-liquefaction piles made of crushed stone into soft ground, the drainage distance is shortened, and liquefaction is suppressed by the early dissipation of excess pore water pressure in the liquefied ground. This is a construction method that performs According to the gravel drain construction method, by driving the countermeasure pile into loosely piled sandy ground, liquefaction can be suppressed and prevented with simple construction and low cost.

すなわち、グラベルドレーン工法は、砂地盤中に砕石で構成された対策杭を設けることで水平方向での排水距離を短縮し、地震時に生じる間隙水圧の上昇を抑止して、液状化を防止するものでる。 In other words, the gravel drain construction method shortens the horizontal drainage distance by installing countermeasure piles made of crushed stone in sandy ground, suppressing the increase in pore water pressure that occurs during earthquakes, and preventing liquefaction. Out.

しかしながら、近年液状化が発生するような地震により前記対策杭を構成する砕石の間隙に周囲の砂が混入する事態が生じ、砕石で構成された対策杭内の排水性能範囲が狭まり、もって対策杭の透水性が低下してしまい、再び地震が発生した際には液状化抑制効果が低下してしまうとの課題が生じていた。 However, in recent years, earthquakes that have caused liquefaction have caused surrounding sand to get mixed into the gaps between the crushed stones that make up the countermeasure pile, narrowing the drainage performance range of the countermeasure pile made of crushed stone, and causing the countermeasure pile to The problem was that the water permeability of the area would decrease, and if another earthquake were to occur, the liquefaction suppression effect would decrease.

すなわち、従来でのグラベルドレーン工法の施工に際し、液状化が発生するような地震に遭遇したときに、前記打設した対策杭周囲の砂類が対策杭を構成する砕石間の間隙に混入してしまい、これにより対策杭の排水性能が低下してしまうとの課題が生じたのである。 In other words, when constructing the conventional gravel drain method, when an earthquake that causes liquefaction occurs, the sand around the driven countermeasure piles gets mixed into the gaps between the crushed stones that make up the countermeasure piles. This caused a problem in that the drainage performance of the countermeasure pile deteriorated.

そして、対策杭の排水性能が低下し、短期間または長期間で例えば液状化が発生するような地震が繰り返し発生した場合には、前記対策杭による液状化抑制効果の低下がさらに起こり、もって液状化被害のさらなる深刻化が懸念されるとの課題が指摘された。
If the drainage performance of the countermeasure pile deteriorates and, for example, earthquakes that cause liquefaction occur repeatedly in a short or long period of time, the liquefaction suppressing effect of the countermeasure pile will further deteriorate, resulting in liquefaction. It was pointed out that there is a concern that the damage caused by natural disasters will become even more serious.

特開2015-101938号公報Japanese Patent Application Publication No. 2015-101938

かくして、本発明は前記従来の課題を解決するために創案されたものであり、透水性が高く、砂類混入に伴う排水性能の低下を抑制できる代替材を従来の砕石に替えて対策杭の杭材として使用し、もって長期間にわたり液状化発生の抑制効果が発揮できる対策杭及びその対策杭を使用した液状化対策工法を提供することを目的とするものである。 Thus, the present invention was devised to solve the above-mentioned conventional problems, and it is possible to replace the conventional crushed stone with an alternative material that has high water permeability and can suppress the deterioration of drainage performance due to sand contamination. The object of the present invention is to provide a countermeasure pile that can be used as a pile material and exhibit a long-term liquefaction suppressing effect, and a liquefaction countermeasure construction method using the countermeasure pile.

従来では液状化が発生するような地震が多数観測された事例や数日間に前震、本震、余震と液状化が発生するような地震が短期間に複数回発生した事例もあり、かかる事例のように液状化が発生するような地震動が連続して生じた際においても液状化層である砂層から対策杭を構成する代替材の間隙への砂の混入を抑制でき、もって長期間にわたり液状化発生の抑制効果が発揮できる対策杭及びその対策杭を使用した液状化対策工法を提供できるのである。
In the past, there have been cases where many earthquakes that caused liquefaction were observed, and cases where multiple earthquakes that caused liquefaction occurred in a short period of time, including foreshocks, mainshocks, and aftershocks over several days. Even when seismic motions that cause liquefaction occur continuously, it is possible to prevent sand from entering the gap between the alternative material that makes up the countermeasure pile from the sand layer, which is the liquefaction layer, and thereby prevent liquefaction from occurring for a long period of time. Therefore, it is possible to provide countermeasure piles that can exhibit the effect of suppressing liquefaction, and a liquefaction countermeasure construction method using the countermeasure piles.

本発明は、
地盤中に砕石で構成した液状化対策用の対策杭を打設する液状化対策工法で使用される対策杭であって、
前記対策杭は、砕石の代替材として破砕貝殻を使用して構築した、
ことを特徴とし、
または、
前記破砕貝殻を使用しての構築は、相対密度(Dr)が60%乃至80%になるよう構築した、
ことを特徴とし、
または、
前記破砕貝殻は、75mm以下の粒径で構成され平板扁平形状をなして構成された、
ことを特徴とし、
または、
液状化層からなる地盤に液状化防止対策用の対策杭を構築して施工する液状化対策工法であり、
貝殻を破砕した所定の粒度組成を有する平板扁平形状の破砕貝殻を生成し、
前記生成した破砕貝殻で構成した対策杭を杭構築装置で液状化層地盤中に構築してなり、
前記対策杭の構築は、液状化層地盤の地中に前記破砕貝殻を積み重ね状態にして送出し、送出した破砕貝殻の相対密度(Dr)を、60%乃至80%とした、
ことを特徴とし、
または、
液状化層からなる地盤に液状化防止対策用の対策杭を構築して施工する液状化対策工法であり、
貝殻を破砕した所定の粒度組成を有する平板扁平形状の破砕貝殻を生成し、
前記生成した破砕貝殻で構成した対策杭の杭構築装置での構築は、液状化層における地盤の対象領域に対して対策杭複数個を分散配置すべく埋設構築してなり、
前記地盤の地中に前記破砕貝殻を積み重ね状態で送出し、送出した破砕貝殻の相対密度(Dr)を、60%乃至80%とした、
ことを特徴とし、
または、
液状化層からなる地盤に液状化防止対策用の対策杭を構築して施工する液状化対策工法であり、
貝殻を破砕した所定の粒度組成を有する平板扁平形状の破砕貝殻を生成し、
前記生成した破砕貝殻で構成した対策杭の杭構築装置での構築は、液状化層における地盤の対象領域に対して対策杭複数個を碁盤の目を形成する縦横線の交差部上に分散配置すべく埋設構築してなり、
前記地盤の地中に前記破砕貝殻を積み重ね状態で送出し、送出した破砕貝殻の相対密度(Dr)を、60%乃至80%とした、
ことを特徴とし、
または、
前記分散配置して埋設構築された対策杭の露出した上端開口には、前記上端開口が繋がるよう積み重ねられた破砕貝殻で塞がれたシェルマットが形成された、
ことを特徴とし、
または、
前記地盤の地中に積み重ね状態での破砕貝殻の送出は、前記破砕貝殻が水平方向積み重ね状態に締め固めされる、
ことを特徴とするものである。
The present invention
A countermeasure pile used in a liquefaction countermeasure construction method in which a countermeasure pile made of crushed stone is driven into the ground,
The countermeasure pile was constructed using crushed shells as an alternative material to crushed stone.
It is characterized by
or
The construction using the crushed shells was constructed so that the relative density (Dr) was 60% to 80%.
It is characterized by
or
The crushed seashell has a particle size of 75 mm or less and has a flat plate shape.
It is characterized by
or
This is a liquefaction prevention construction method that involves building and constructing countermeasure piles to prevent liquefaction in the ground consisting of a liquefaction layer.
producing crushed seashells in the form of flat plates having a predetermined particle size composition by crushing seashells;
A countermeasure pile made of the generated crushed seashells is constructed in the liquefaction layer ground using a pile construction device,
The countermeasure pile was constructed by sending out the crushed shells in a stacked state in the ground of the liquefaction layer, and setting the relative density (Dr) of the sent out crushed shells to 60% to 80%.
It is characterized by
or
This is a liquefaction prevention construction method that involves building and constructing countermeasure piles to prevent liquefaction in the ground consisting of a liquefaction layer.
producing crushed seashells in the form of flat plates having a predetermined particle size composition by crushing seashells;
The countermeasure piles made of the generated crushed seashells are constructed using a pile construction device by burying a plurality of countermeasure piles in a distributed manner in a target area of the ground in the liquefaction layer,
The crushed seashells were sent out in a stacked state into the ground, and the relative density (Dr) of the sent out crushed seashells was set to 60% to 80%.
It is characterized by
or
This is a liquefaction prevention construction method that involves building and constructing countermeasure piles to prevent liquefaction in the ground consisting of a liquefaction layer.
producing crushed seashells in the form of flat plates having a predetermined particle size composition by crushing seashells;
The construction of countermeasure piles made of the generated crushed seashells using a pile construction device involves distributing a plurality of countermeasure piles over the target area of the ground in the liquefaction layer at the intersections of vertical and horizontal lines forming a grid pattern. It will be buried as much as possible,
The crushed seashells were sent out in a stacked state into the ground, and the relative density (Dr) of the sent out crushed seashells was set to 60% to 80%.
It is characterized by
or
Shell mats are formed in the exposed upper end openings of the countermeasure piles, which are buried and constructed in a dispersed manner, and are covered with crushed shells stacked so that the upper end openings are connected.
It is characterized by
or
The sending of the crushed seashells in a stacked state in the ground is performed by compacting the crushed shells in a horizontally stacked state.
It is characterized by this.

本発明によれば、透水性が高く、砂類混入に伴う排水性能の低下を抑制できる代替材としての破砕貝殻を従来の砕石に替えて対策杭に使用し、もって長期間にわたり液状化発生の抑制効果が発揮できる対策杭及びその対策杭を使用した液状化対策工法を提供出来るとの優れた効果を奏する。
According to the present invention, crushed shells, which have high water permeability and can suppress the deterioration of drainage performance due to sand contamination, are used as countermeasure piles in place of conventional crushed stone, thereby preventing liquefaction over a long period of time. The present invention has the excellent effect of providing a countermeasure pile that can exert a suppressing effect and a liquefaction countermeasure construction method using the countermeasure pile.

振動装置の平面図である。It is a top view of a vibration device. 振動装置の正面図である。FIG. 3 is a front view of the vibration device. 土槽の正面図である。It is a front view of an earthen tank. 写真で示した振動装置の外観図である。It is an external view of the vibrating device shown in the photograph. 土槽の平面写真である。This is a plan view of the earthen tank. 砕石入り対策杭を示す写真である。This is a photo showing piles containing crushed stone. 破砕貝殻入り対策杭を示す写真である。This is a photo showing a pile that prevents crushed shells from entering. 土槽内に設置した砕石入り対策杭及び破砕貝殻入り対策杭を示す写真である。This is a photograph showing piles containing crushed stone and crushed shells installed in an earthen tank. 対策杭からシートを外す写真である。This photo shows the sheet being removed from the countermeasure pile. 実験したケースを示す表である。This is a table showing the cases tested. 実験結果を示す表である。It is a table showing experimental results. 加速度の波形を示す図(1)である。FIG. 1 is a diagram (1) showing a waveform of acceleration. 間隙水圧計の結果を示す図(1)である。It is a figure (1) showing the result of a pore water pressure meter. 加速度の波形を示す図(2)である。FIG. 2 is a diagram (2) showing a waveform of acceleration. 間隙水圧計の結果を示す図(2)である。It is a figure (2) showing the result of a pore water pressure meter. 加速度の波形を示す図(3)である。FIG. 3 is a diagram (3) showing a waveform of acceleration. 間隙水圧計の結果を示す図(3)である。It is a figure (3) showing the result of a pore water pressure meter. 加速度の波形を示す図(4)である。FIG. 4 is a diagram (4) showing a waveform of acceleration. 間隙水圧計の結果を示す図(4)である。It is a figure (4) showing the result of a pore water pressure meter. 加速度の波形を示す図(5)である。FIG. 5 is a diagram (5) showing a waveform of acceleration. 間隙水圧計の結果を示す図(5)である。It is a figure (5) which shows the result of a pore water pressure meter. 加速度の波形を示す図(6)である。FIG. 6 is a diagram (6) showing a waveform of acceleration. 間隙水圧計の結果を示す図(6)である。FIG. 6 is a diagram (6) showing the results of a pore water pressure meter. 均一な振動を一定時間与えた時の周期と加速度の関係を示す図である。FIG. 3 is a diagram showing the relationship between period and acceleration when uniform vibration is applied for a certain period of time. 液状化対策工法の概略構成を示す説明図である。FIG. 2 is an explanatory diagram showing a schematic configuration of a liquefaction countermeasure construction method. 本発明によるシェルマットと従来のグラベルマットの構成を説明する説明図である。FIG. 2 is an explanatory diagram illustrating the configurations of a shell mat according to the present invention and a conventional gravel mat. 貝殻を重機で破砕したときの粒度分布を示す説明図である。FIG. 2 is an explanatory diagram showing the particle size distribution when shells are crushed with heavy equipment. 本発明による対策杭構築装置の構成を説明する説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram illustrating the configuration of a countermeasure pile construction device according to the present invention.

本件発明者らは、まず例えばホタテなどの破砕貝殻7の粒径が所定の粒径からなる破砕貝殻7であれば、地震などからの振動の影響を受けても上部の砂層から下部の前記粒径を多く含む破砕貝殻7により構成された破砕貝殻層へは砂層の砂が混入しづらいことを確認している。 The inventors of the present invention first believe that if the crushed shell 7 of a scallop or the like has a predetermined particle size, even if the crushed shell 7 is affected by vibrations such as an earthquake, the particles from the upper sand layer to the lower layer It has been confirmed that sand from the sand layer is difficult to mix into the crushed shell layer composed of crushed shells 7 with a large diameter.

そして、かかる確認を基に、ホタテなどの破砕貝殻7を対策杭2の杭材代替材として用いることで、液状化時に杭周辺の砂層から前記対策杭内部への砂混入が抑制され、砂混入に伴う排水性能の低下抑制が実現できることを今回発明したものである。 Based on this confirmation, by using crushed seashells 7 such as scallops as a substitute pile material for the countermeasure pile 2, sand contamination from the sand layer around the pile into the countermeasure pile during liquefaction is suppressed, and sand contamination is suppressed. This invention is capable of suppressing the decline in drainage performance associated with water discharge.

すなわち、本件発明者らは、地震動によって従来の対策杭2である砕石6で構成された対策杭2と砕石6の代替材として破砕貝殻7を用いた対策杭への砂の混入特性を比較し、砂混入に伴う排水性能の低下に関する評価とその排水性能の低下メカニズムについて検証を行った。これにより、繰り返し発生する地震動においても、過剰間隙水圧の発生を抑制でき、もって排水性能の低下を抑制できる対策杭2、すなわち破砕貝殻7を用いた液状化防止対策杭2の有効性を明らかにしたのである。
さらに、前記破砕貝殻7を杭材とした対策杭2を用い、液状化防止に効果を発揮する液状化対策工法についても発明した。
That is, the present inventors compared the characteristics of sand being mixed into a countermeasure pile 2 made of crushed stone 6, which is a conventional countermeasure pile 2, and a countermeasure pile using crushed shells 7 as a substitute material for the crushed stone 6 due to earthquake motion. We evaluated the decrease in drainage performance due to sand contamination and verified the mechanism of the decrease in drainage performance. This revealed the effectiveness of the countermeasure pile 2, which can suppress the generation of excessive pore water pressure and thereby suppress the deterioration of drainage performance even in repeated earthquake motions, that is, the liquefaction prevention countermeasure pile 2 using crushed shells 7. That's what I did.
Furthermore, we have also invented a liquefaction countermeasure construction method that is effective in preventing liquefaction by using countermeasure piles 2 using the crushed shells 7 as pile materials.

よって、以下に、まず破砕貝殻7を用いた液状化防止対策杭2の有効性を明らかにした実験の詳細につき述べ、次いで前記対策杭2を用い、液状化防止に効果を発揮する液状化対策工法の発明について説明する。 Therefore, below, we will first describe the details of the experiment that revealed the effectiveness of the liquefaction prevention countermeasure pile 2 using crushed seashells 7, and then explain the liquefaction countermeasure that is effective in preventing liquefaction using the countermeasure pile 2. The invention of the construction method will be explained.

(小型の振動装置1を用いた3次元的な砂混入特性把握実験)
本実験では振動装置1、間隙水圧計4を用いて、加速度の設定、液状化による間隙水圧の上昇、大規模な振動による対策杭2への3次元的な砂の混入により排水性能の低下についての評価を定性的に行った。また、地震の規模による対策杭2の排水性能の変化、液状化層である砂層の相対密度(Dr)の違いによる砂混入特性を確認した。
(Experiment to understand three-dimensional sand mixing characteristics using small vibrator 1)
In this experiment, we used a vibration device 1 and a pore water pressure gauge 4 to examine the acceleration settings, the increase in pore water pressure due to liquefaction, and the three-dimensional mixing of sand into the countermeasure pile 2 due to large-scale vibration, which caused a decrease in drainage performance. A qualitative evaluation was conducted. We also confirmed changes in the drainage performance of countermeasure pile 2 depending on the scale of the earthquake, and sand contamination characteristics due to differences in the relative density (Dr) of the sand layer, which is the liquefaction layer.

(振動装置実験の概要)
図1に振動装置1の平面図、図2に振動装置1の正面図、図3に土槽3の正面図を示す。土槽3は高さ406 mm、幅78 0mm、奥行き280 mmの大きさで形成されている。図4には写真で示した振動装置1の外観図を示している。図5は土槽3の平面写真である。厚さ3 mm、直径50 mmのアクリル板と目の粗いジオテキスタイルを円筒状に丸め、それらを接着させたものに砕石6又は破砕貝殻7を詰めたものを対策杭2とし、砕石入り対策杭2を図6に、破砕貝殻入り対策杭2を図7に示すように土槽3内に設置した(図3、図8も参照)。
(Summary of vibration device experiment)
FIG. 1 shows a plan view of the vibration device 1, FIG. 2 shows a front view of the vibration device 1, and FIG. 3 shows a front view of the soil tank 3. The soil tank 3 has a height of 406 mm, a width of 780 mm, and a depth of 280 mm. FIG. 4 shows an external view of the vibrating device 1 shown in a photograph. FIG. 5 is a plan view of the soil tank 3. Countermeasure pile 2 consists of an acrylic plate with a thickness of 3 mm and a diameter of 50 mm, and a coarse geotextile rolled into a cylindrical shape, which are glued together and filled with crushed stone 6 or crushed seashells 7. Countermeasure pile 2 with crushed stone As shown in FIG. 6, a pile 2 for preventing crushed shells was installed in a soil tank 3 as shown in FIG. 7 (see also FIGS. 3 and 8).

なお、乾燥砂が対策杭2の間隙に混入しないようにシートを対策杭2に巻き付けた。注水口はパイプを半分に切断し、土槽3の底部まで届く長さのものを使用している。注水口から砂の逆流防止のためにパイプの先端にガーゼを詰め込んだ。間隙水圧計4は2つの砕石6入り対策杭2及び破砕貝殻入り対策杭2の間にそれぞれ地表面から50 mm、100 mmの位置に設置した(図3参照)。 Note that a sheet was wrapped around the countermeasure pile 2 to prevent dry sand from entering the gap between the countermeasure piles 2. For the water inlet, the pipe is cut in half and is long enough to reach the bottom of the soil tank 3. Gauze was packed at the tip of the pipe to prevent sand from flowing back from the water inlet. The pore water pressure gauge 4 was installed between the two countermeasure piles 2 containing crushed stone 6 and the countermeasure pile 2 containing crushed shells at positions 50 mm and 100 mm from the ground surface, respectively (see Figure 3).

(試料の物理特性)
試料は砕石6の対策杭2には粒径4.75~19 mmに調整した砕石5号、6号、7号(図6参照)を混合した試料及び破砕貝殻7の対策杭2には、重機破砕した青森県産のホタテの破砕貝殻7を使用し(図7参照)、液状化層及び非液状化層の生成には、豊浦砂を使用し、これらの3種類の試料を用いた。
(Physical properties of sample)
The sample is a mixture of crushed stones No. 5, No. 6, and No. 7 (see Figure 6) adjusted to a grain size of 4.75 to 19 mm for the countermeasure pile 2 of crushed stone 6, and a sample prepared by heavy machinery crushing for the countermeasure pile 2 of crushed shell 7. Crushed scallop shells 7 from Aomori Prefecture were used (see Figure 7), Toyoura sand was used to generate the liquefied layer and the non-liquefied layer, and these three types of samples were used.

(実験手順)
振動装置1に土槽3を取り付け、間隙水圧計4を設置する。使用する試料の質量を計測し、計測した豊浦砂の乾燥砂をスコップで土槽3内に入れ、相対密度Dr=69.8 %(ρ=1.58 g/cm)の非液状化層にするために、砂締めバイブレーターを使用し、非液状化層が土槽3の底面からの高さが100 mmになるまで締固める。
(Experimental procedure)
A soil tank 3 is attached to the vibration device 1, and a pore water pressure gauge 4 is installed. Measure the mass of the sample to be used, and shovel the measured dry Toyoura sand into the soil tank 3 to create a non-liquefaction layer with a relative density Dr = 69.8% (ρ d = 1.58 g/cm 3 ). Then, use a sand compaction vibrator to compact the soil until the non-liquefied layer reaches a height of 100 mm from the bottom of the soil tank 3.

次いで、砕石6を相対密度Dr=60.2%(ρ=1.56g/cm)で詰めた砕石6入り対策杭2及びホタテの破砕貝殻7を相対密度Dr=59.9 %(ρ=0.909 g/cm)で詰めた破砕貝殻7入り対策杭2を図3の図面、図8に示す写真映像のように設置した。 Next, the countermeasure pile 2 containing crushed stone 6 packed with crushed stone 6 at a relative density Dr = 60.2% (ρ d = 1.56 g/cm 3 ) and the crushed scallop shell 7 were packed at a relative density Dr = 59.9% (ρ d = 1.56 g/cm 3 ). A countermeasure pile 2 containing crushed seashells 7 packed with d = 0.909 g/cm 3 ) was installed as shown in the drawing in FIG. 3 and the photographic image shown in FIG. 8.

その後、乾燥砂を土槽3内に漏斗を使用して、空中落下法で均一に相対密度Dr=29.9 %又はDr=48.8 %(ρ=1.47 g/cm、ρ=1.52 g/cm)でゆっくりと締固めた。
砂を空中落下法で入れる際には前記対策杭2に乾燥砂が混入しないように対策杭2の上から袋を被せることとした。次に、注水口のパイプに水を貯めたタンクに繋げたホースを入れ注水を開始した(図4の写真映像参照)。
Thereafter, dry sand was placed in the soil tank 3 using a funnel and uniformly dropped in the air to a relative density of Dr = 29.9% or Dr = 48.8% (ρ d = 1.47 g/cm 3 , ρ d = 1.52 g/cm 3 ) and compacted slowly.
When adding sand by the aerial drop method, a bag was placed over the countermeasure pile 2 to prevent dry sand from getting mixed into the countermeasure pile 2. Next, we inserted a hose connected to the water tank into the water inlet pipe and started injecting water (see the photographic video in Figure 4).

液状化層5となる砂層が不飽和の状態で振動を与えボイリングが発生することを防止するために水位面が地表面になるまで2時間程度ゆっくりと注水し飽和させた。注水後、パイプに水専用掃除機に繋げたホースを入れて排水し、水位面を非液状化層まで低下させた(水位が地表面の状態でシートを引き抜いた場合、引き抜いた衝撃で周囲が液状化するのを防止するためであり、または対策杭2に砂が混入してしまうのを防止するためである)。 In order to prevent the sand layer, which will become the liquefaction layer 5, from vibrating and causing boiling in an unsaturated state, water was slowly poured for about 2 hours until the water level reached the ground surface to saturate the sand layer. After water was poured, a hose connected to a water vacuum cleaner was inserted into the pipe to drain the water, and the water level was lowered to a non-liquefied layer (if the sheet was pulled out while the water level was at ground level, the impact of pulling it out would cause This is to prevent liquefaction or to prevent sand from getting mixed into the countermeasure pile 2).

その後、乾燥砂混入防止のためのシートをゆっくりと引き抜き(図9の写真映像参照)、再度、水位面が地表面になるまで注水した後に、振動装置1を振動数5.1 Hz、10波、振動時間2秒でそれぞれのケースの加速度に設定し、正弦波の水平振動を与えた。 After that, the sheet to prevent dry sand from being mixed in was slowly pulled out (see the photo in Figure 9), water was poured again until the water level reached the ground surface, and then the vibration device 1 was set at a frequency of 5.1 Hz and 10 waves. , vibration time was set to 2 seconds, acceleration was set for each case, and horizontal sine wave vibration was applied.

加振後、土槽3内の水を水専用掃除機で排水し、対策杭2に砂が混入しないように周辺の砂を取り除き、対策杭2を取り出した。対策杭2内の混入した砂、砕石6及び破砕貝殻7を容器に取り出し、乾燥炉で(110±5 ℃)24時間炉乾燥を行った。 After the vibration, the water in the soil tank 3 was drained using a water vacuum cleaner, the surrounding sand was removed to prevent sand from getting into the countermeasure pile 2, and the countermeasure pile 2 was taken out. The mixed sand, crushed stones 6, and crushed shells 7 in the countermeasure pile 2 were taken out into a container and dried in a drying oven (110±5°C) for 24 hours.

前記乾燥炉での乾燥後、砂と砕石6、破砕貝殻7をふるい分けし、砂の質量を測定した。そして、砂混入に伴う平均的な飽和透水係数を計算し、砂混入時の砕石6入り対策杭2と破砕貝殻7入り対策杭2との排水性能の低下を評価した。 After drying in the drying oven, the sand, crushed stones 6, and crushed shells 7 were sieved, and the mass of the sand was measured. Then, the average saturated hydraulic conductivity due to sand contamination was calculated, and the deterioration in drainage performance of Pile 2 containing 6 pieces of crushed stone and Pile 2 containing 7 pieces of crushed shells when sand was mixed was evaluated.

(実験ケース)
図10に実験ケースを示す。図10に示した実験ケースでは波数10波、振動数5.2Hz、振動時間2秒、振動回数1回、加速度はそれぞれの実験ケースごとに設定し、正弦波の水平振動を与えた。最大加速度の大きさの違いによる地震の規模の影響による砂混入量の比較し、確認した。
(Experimental case)
Figure 10 shows an experimental case. In the experimental case shown in FIG. 10, the wave number was 10 waves, the vibration frequency was 5.2 Hz, the vibration time was 2 seconds, the number of vibrations was 1 time, and the acceleration was set for each experimental case to give a sinusoidal horizontal vibration. We compared and confirmed the amount of sand mixed in due to the influence of the magnitude of the earthquake due to the difference in the magnitude of the maximum acceleration.

現実の実施工では対策杭2を打設することで対策杭2の周辺地盤が締め固まることから、今回の実験ではゆるく締固めた相対密度Dr= 29.9 %(ρ= 1.47 g/cm)と周囲の地盤が対策杭2打設により締め固まったことを再現するために相対密度Dr= 48.8 %(ρ=1.52 g/cm)のケースの実験を行うことで液状化層5の相対密度(Dr)の違いによる砂の混入量をも比較した。 In actual construction, driving countermeasure pile 2 compacts the ground around countermeasure pile 2, so in this experiment, the loosely compacted relative density Dr = 29.9% (ρ d = 1.47 g /cm 3 ) and the surrounding ground was compacted by driving two countermeasure piles, we conducted an experiment with a relative density Dr = 48.8% (ρ d =1.52 g/cm 3 ). Therefore, the amount of sand mixed in due to the difference in relative density (Dr) of the liquefaction layer 5 was also compared.

(実験結果及び考察)
実験結果を図11に示す。振動を与える前の基本混入量は、相対密度Dr=29.9 %では砕石:86.6g、破砕貝殻:81、82g、相対密度Dr=48.8 %では砕石:93.40 g、破砕貝殻:96.73 gであった。
(Experimental results and discussion)
The experimental results are shown in FIG. The basic mixed amount before applying vibration is: crushed stone: 86.6 g, crushed shells: 81, 82 g when relative density Dr = 29.9%, crushed stone: 93.40 g, crushed shells when relative density Dr = 48.8% :96.73 g.

caseAは最大加速度101gal(加速度の波形:図12参照、間隙水圧計の結果:図13参照)、caseBは最大加速度149 gal(加速度の波形:図14参照、間隙水圧計の結果:図15参照)、caseCは最大加速度188gal(加速度の波形:図16参照、間隙水圧計の結果:図17参照)、caseDは最大加速度55 gal(加速度の波形:図18参照、間隙水圧計の結果:図19参照)、caseEは最大加速度95gal(加速度の波形:図20参照、間隙水圧計の結果:図21参照)、caseFは最大加速度192 gal(加速度の波形:図22参照、間隙水圧計の結果:図23参照)であった。 Case A has a maximum acceleration of 101 gal (acceleration waveform: see Figure 12, pore water pressure gauge results: see Figure 13), case B has a maximum acceleration of 149 gal (acceleration waveform: see Figure 14, pore water pressure gauge results: see Figure 15) , caseC has a maximum acceleration of 188 gal (acceleration waveform: see Figure 16, pore water pressure gauge results: see Figure 17), caseD has a maximum acceleration of 55 gal (acceleration waveform: see Figure 18, pore water pressure gauge results: see Figure 19) ), caseE has a maximum acceleration of 95 gal (acceleration waveform: see Figure 20, pore water pressure gauge results: see Figure 21), caseF has a maximum acceleration of 192 gal (acceleration waveform: see Figure 22, pore water pressure gauge results: Figure 23) ).

caseB、C、Fは間隙水圧が上昇していることから液状化が発生していることが分かる。しかし、液状化した場合、本来であれば間隙水圧計GL-10cmの値が10 g/cm2まで上昇するが、実験結果は5~8 g/cm2となった。土槽3が完全飽和していないためにこのような結果となったことが考えられる。 In cases B, C, and F, the pore water pressure increases, indicating that liquefaction has occurred. However, in the case of liquefaction, the value of the pore water pressure gauge GL-10cm would normally rise to 10 g/cm 2 , but the experimental results showed it to be 5 to 8 g/cm 2 . It is conceivable that this result occurred because the soil tank 3 was not completely saturated.

caseA、D、Eは間隙水圧が上昇していないことから液状化していないことが分かる。液状化していないときの砂の混入量は基本混入量と比較し、あまり変化がないことから、液状化が発生しない小規模の地震であれば砂は混入しないと考えられる。 In cases A, D, and E, the pore water pressure did not increase, indicating that liquefaction did not occur. The amount of sand mixed in when there is no liquefaction does not change much compared to the basic amount, so it is thought that sand will not be mixed in if it is a small earthquake that does not cause liquefaction.

手動で与えた振動(1回振動)による砂の混入量(砕石:128.05 g、破砕貝殻:137.12 g)と本実験の実験結果を照らし合わせると、砕石6入り対策杭2、破砕貝殻7入り対策杭2ともにcaseBの最大加速度149galの砂の混入量より多く、caseCの最大加速度188galの砂の混入量より少ないことから、手動での実験は最大加速度149~188gal程度の振動であったことが考えられる。 Comparing the amount of sand mixed in (crushed stone: 128.05 g, crushed shells: 137.12 g) due to manually applied vibration (1 vibration) and the experimental results of this experiment, it was found that 6 pieces of crushed stone and 2 piles were crushed. Since the amount of mixed sand in both shells 7 and 2 has a maximum acceleration of 149 gal, and is less than the mixed amount of sand in case C, which has a maximum acceleration of 188 gal, in the manual experiment, vibrations with a maximum acceleration of 149 to 188 gal were detected. It is possible that

加速度は震度を表す値ではないが、均一な振動を一定時間与えた時の周期と加速度の関係を図24に示す。
この関係から本実験は小型の振動装置1で一定加速度、周期(T=0.196 秒)、振幅で振動を与えていることから特にcaseB、C、Fについては推定震度5弱程度であることが分かった。
Although acceleration is not a value representing seismic intensity, FIG. 24 shows the relationship between period and acceleration when uniform vibration is applied for a certain period of time.
From this relationship, in this experiment, vibration was applied using a small vibration device 1 with a constant acceleration, period (T = 0.196 seconds), and amplitude, so the estimated seismic intensity was approximately 5 lower for cases B, C, and F. I understand.

そして、震度5弱の液状化が発生するような地震であれば液状化の対策杭2に破砕貝殻7を用いることで液状化時の振動による砂の混入に伴う排水性能の低下は砕石6を用いるよりも小さくすることが出来ると図11に示す実験結果である砂混入率の値などから確認できた。
そして、液状化の対策杭2に破砕貝殻7を用いることで繰り返し地震に対応し、長期的な液状化抑制効果を発揮できる可能性があることも確認できた。
In the case of an earthquake that causes liquefaction with a seismic intensity of less than 5, crushed shells 7 can be used as the liquefaction countermeasure pile 2 to prevent the deterioration of drainage performance due to the mixing of sand caused by vibrations during liquefaction. It was confirmed from the experimental results shown in FIG. 11, such as the value of the sand mixing ratio, that it can be made smaller than when using the sand.
It was also confirmed that by using crushed shells 7 for the liquefaction countermeasure pile 2, it would be possible to cope with repeated earthquakes and exert a long-term liquefaction suppressing effect.

caseCの最大加速度188galとcaseFの最大加速度192galは同程度の加速度であることから液状化層5の相対密度(Dr)の違いによる砂混入の比較をすると、相対密度Dr=29.9 %でゆるく締固めたcaseCの砂の混入量は砕石:136.26g、破砕貝殻:139.67g、これに対して相対密度Dr=48.8 %で締固めたcaseFの砂の混入量は砕石:124.00g、破砕貝殻:113.07gとなった。
このことから、ゆるく堆積した砂地盤であるほど砂が混入することも確認できた。
Since the maximum acceleration of caseC, 188gal, and the maximum acceleration of caseF, 192gal, are about the same acceleration, when comparing the sand contamination due to the difference in the relative density (Dr) of the liquefaction layer 5, it is found that the relative density Dr = 29.9% and the sand is loose. The amount of sand mixed in compacted case C is crushed stone: 136.26 g, crushed shell: 139.67 g, whereas the mixed amount of sand in case F, compacted with relative density Dr = 48.8%, is crushed stone: 124. 00g, crushed shells: 113.07g.
From this, it was confirmed that the looser the sandy ground, the more sand gets mixed in.

尚、本実験において、砕石6入り対策杭2と破砕貝殻7入り対策杭2についての砂混入量、砂混入率、透水係数を比較して結果を示してあるが、前記ほぼすべての項目で破砕貝殻7入り対策杭2の方が勝っており、破砕貝殻7入り対策杭2を用いることにより長期的に液状化抑制効果を発揮できることが確認できた。
特に、砂混入率を比較すると、砕石6入り対策杭2と破砕貝殻7入り対策杭2との差は全てのケースで破砕貝殻7入り対策杭2の砂混入率の値がかなり小さいことが確認できる。
In addition, in this experiment, the results are shown by comparing the amount of sand mixed in, the sand mixing rate, and the hydraulic conductivity of Pile 2 containing 6 crushed stones and Pile 2 containing 7 crushed shells. Pile 2 containing 7 shells was superior, and it was confirmed that the use of Pile 2 containing 7 crushed shells could exert a long-term liquefaction suppressing effect.
In particular, when comparing the sand contamination rate, it was confirmed that the difference between Pile 2 with 6 pieces of crushed stone and Pile 2 with 7 pieces of crushed seashells was significantly smaller in all cases. can.

ここで、透水係数(m/sec)の値は、破砕貝殻7入り対策杭2や砕石6入り対策杭2の有する空隙が混入してくる砂でどれだけ埋められているかにより決定される。 Here, the value of the permeability coefficient (m/sec) is determined by how much the voids of the pile 2 containing crushed shells 7 and the pile 2 containing crushed stones 6 are filled with incoming sand.

すなわち、前記空隙に砂が混入したとする。その場合、たとえ、砂の混入量は同じであったとしても、砕石6入り対策杭2と破砕貝殻7入り対策杭2が有する空隙の量は大幅に異なり、破砕貝殻7入り対策杭2が有する空隙の量の方が圧倒的に多い。よって、同じ量の砂が空隙に混入してもその透水性能は破砕貝殻7入り対策杭2については、低下しないのである。 That is, it is assumed that sand has entered the void. In that case, even if the amount of sand mixed in is the same, the amount of voids that the pile 2 with 6 crushed stones and the pile 2 with 7 crushed shells have is significantly different, and the pile 2 with 7 crushed shells has The amount of voids is overwhelmingly larger. Therefore, even if the same amount of sand is mixed into the voids, the water permeability of the crushed shell 7 prevention pile 2 does not decrease.

してみると、図11に示す結果では、ケースA乃至ケースFのいずれの場合も、破砕貝殻7入り対策杭2の方が砂混入率の値が圧倒的に小さいことが認識でき、その透水性能、換言すれば排水性能は低下しないことが認識できるのである。 As a result, it can be seen from the results shown in Figure 11 that in all cases A to F, the value of the sand contamination rate is overwhelmingly smaller for the countermeasure pile 2 containing 7 crushed shells, and its water permeability is It can be recognized that performance, in other words, drainage performance, does not deteriorate.

(まとめ)
振動装置1により与えた振動は液状化が発生するような地震と同程度の規模と考えられ、破砕貝殻7を液状化の対策杭2に用いることで、液状化時の振動による砂混入に伴う対策杭2の排水性能の低下を抑制でき、液状化抑制効果を長期的に発揮できるとの結果を得た。
(summary)
The vibration given by the vibration device 1 is considered to be on the same scale as an earthquake that causes liquefaction, and by using the crushed shells 7 as the liquefaction countermeasure pile 2, it is possible to reduce the amount of sand mixed in due to the vibration during liquefaction. The results showed that the deterioration of the drainage performance of Countermeasure Pile 2 could be suppressed and the liquefaction suppressing effect could be exerted over a long period of time.

また、液状化層5の砂地盤の相対密度(Dr)が低いほど砂混入が起こりやすいことが確認できた。現実問題としては対策杭2の打設や盛土、建築構造物からの上載荷重により地盤に拘束圧が発生することによるなどして周辺地盤が締め固まることで、振動による対策杭2への砂混入に伴う排水性能の低下傾向はさらに緩やかになると考えられる。 Furthermore, it was confirmed that the lower the relative density (Dr) of the sandy ground of the liquefaction layer 5, the more easily sand contamination occurs. The actual problem is that the surrounding ground is compacted due to confining pressure generated in the ground due to driving of countermeasure pile 2, embankment, and overload from building structures, and sand gets mixed into countermeasure pile 2 due to vibration. It is thought that the trend of decline in drainage performance accompanying this will become even more gradual.

次に、本発明による破砕貝殻7入り対策杭2を使用した液状化対策工法の発明につき説明する。
図25に示すように、対策杭2を構築して液状防止対策すべき地盤は、液状化層5からなる地盤である。液状化層5からなる地盤は、含水状態の砂質土からなり、地震時には振動によって砂粒の間に飽和していた水が流動し、砂粒の粒間結合が破られて液体のようにふるまうことで支持力を失う層と考えられる。
Next, the invention of the liquefaction countermeasure construction method using the countermeasure pile 2 containing crushed seashells 7 according to the present invention will be explained.
As shown in FIG. 25, the ground on which countermeasure piles 2 are constructed to take measures to prevent liquefaction is the ground consisting of a liquefaction layer 5. The ground consisting of the liquefaction layer 5 consists of sandy soil in a water-containing state, and during an earthquake, saturated water flows between the sand grains due to vibration, and the intergranular bonds of the sand grains are broken, causing the soil to behave like a liquid. This is considered to be the layer that loses its supporting capacity.

液状化層5が液状化すると、流動化した間隙水の水圧が急上昇し、過剰間隙水が発生する。
本発明では、図25に示す様に前記液状化層5からなる地盤に液状化防止対策用の対策杭2を構築して液状化対策工法を施工する。
まず、液状化防止対策用の対策杭2は 、前記液状化層5の全域に亘って複数個を散点状にちらばせて埋設し、構築するのが良い。
When the liquefied layer 5 liquefies, the water pressure of the fluidized pore water rapidly increases, and excess pore water is generated.
In the present invention, as shown in FIG. 25, countermeasure piles 2 for liquefaction prevention measures are constructed in the ground consisting of the liquefaction layer 5, and a liquefaction prevention construction method is implemented.
First, the countermeasure piles 2 for preventing liquefaction are preferably constructed by burying a plurality of piles scattered over the entire area of the liquefaction layer 5.

ここで、液状化対策工法の一つであるグラベルドレーン工法に使用される液状化対策用の対策杭2は、地震時に発生する液状化層5の過剰間隙水を上方向に排水するため、液状化層5内に略垂直方向に向かって埋設される柱状体として構成されるものである。 Here, the liquefaction countermeasure pile 2 used in the gravel drain construction method, which is one of the liquefaction countermeasure construction methods, is used to drain excess pore water in the liquefaction layer 5 upward during an earthquake. It is constructed as a columnar body buried in the formed layer 5 in a substantially vertical direction.

すなわち、該対策杭2は、液状化層5における地盤の対象領域全域に対して所定の間隔(水平方向間隔)をもって複数個が例えば格子状に分散配置されて埋設されている(図26参照)。
尚、埋設するエリアによっては、複数の正三角形に分けて分散させ、その頂点部に対策杭2を埋設する構成でも構わない。
That is, a plurality of countermeasure piles 2 are buried in the entire target area of the ground in the liquefaction layer 5 at predetermined intervals (horizontal intervals), for example, in a grid pattern (see FIG. 26). .
Depending on the area to be buried, it may be divided into a plurality of equilateral triangles and dispersed, and the countermeasure piles 2 may be buried at the vertices of the triangles.

前述したように、従来グラベルドレーン工法に使用される液状化対策用の対策杭2は、砕石6入りの対策杭2であった。しかしながら、本件発明者らは島国である日本において大量に存在する貝殻に注目した。貝殻は破砕すると、その多くが略平板な扁平形となる。ブロック形状には決してならない。そして、貝殻はもともと内部に砕石6より多くの空隙を有している。これら貝殻の特性に注目し、破砕貝殻7を対策杭2の充填物とするとの発想を得た。 As mentioned above, the countermeasure pile 2 for liquefaction countermeasures used in the conventional gravel drain construction method is a countermeasure pile 2 containing crushed stone 6. However, the present inventors focused on seashells that exist in large quantities in Japan, which is an island nation. When shells are crushed, most of them become flat and flat. It never becomes block-shaped. The shell originally has more voids inside than the crushed stone 6. By paying attention to the characteristics of these shells, we came up with the idea of using the crushed shells 7 as the filling material for the countermeasure piles 2.

排水性能の良好性が求められる液状化防止対策用の対策杭2には、空隙が多く排水能力の高い貝殻が適していると考え、かつこの貝殻を重機などでローラーして破砕し、所定の粒径となった破砕貝殻7で構成した対策杭2を用いるものとしったのである。重機で破砕すれば図27に示す様な粒径加積曲線(粒度分布)の破砕貝殻7が簡単に生成できる。破砕貝殻7入り対策杭2として有効性が発揮できる粒径の破砕貝殻7を容易に取得できるのである。 We believe that shells with many voids and high drainage capacity are suitable for the countermeasure pile 2 for liquefaction prevention measures that require good drainage performance, and we crush the shells with a roller using heavy equipment and crush them into the specified size. A countermeasure pile 2 made of crushed shells 7 having a grain size is used. By crushing with heavy equipment, crushed shells 7 having a particle size accumulation curve (particle size distribution) as shown in FIG. 27 can be easily produced. It is possible to easily obtain crushed seashells 7 having a particle size that is effective as the pile 2 for preventing crushed seashells 7 from entering.

前記の工程により大量の所定粒径からなる破砕貝殻7を得た後、液状化防止対策を行うべき地域、すなわち液状化層5の地盤の地域に複数の破砕貝殻7入り対策杭2を構築する作業に入る。
対策杭2を埋設して構築する装置としては、いわゆるサンドコンパクションパイルのような図28に示す掘削装置12を使用するとよい。
After obtaining a large amount of crushed seashells 7 having a predetermined particle size through the above process, a plurality of piles 2 containing crushed seashells 7 are constructed in the area where liquefaction prevention measures should be taken, that is, in the area of the ground of the liquefaction layer 5. Get to work.
As a device for burying and constructing the countermeasure pile 2, it is preferable to use an excavation device 12 shown in FIG. 28, such as a so-called sand compaction pile.

該掘削装置12には、切削部材として円筒状をなす掘削具10が設けられている。そして、この掘削具10にはその上端側に破砕貝殻導入口11が設けられ、該破砕貝殻導入口11から適切な粒径の破砕貝殻7が前記掘削具10の中空部内に導入できる構成になっている。 The excavation device 12 is provided with a cylindrical excavation tool 10 as a cutting member. This excavating tool 10 is provided with a crushed shell inlet 11 on its upper end side, and is configured such that crushed seashells 7 of an appropriate particle size can be introduced into the hollow part of the excavating tool 10 from the crushed shell inlet 11. ing.

さらに、該掘削具10の下端には破砕貝殻送出用の開口13が設けられており、前記中空部内に収納された破砕貝殻7がこの開口13から地中内に送出出来る構成になっている。 Further, an opening 13 for sending out crushed shells is provided at the lower end of the digging tool 10, and the crushed shells 7 stored in the hollow portion can be sent out into the ground through this opening 13.

破砕貝殻7を地中内に送出して破砕貝殻7入り対策杭2を構築する工程は図28に示すとおりであり、掘削具10を地中内に貫入していくと共に、破砕貝殻7を前記開口13から地中内に送出する。その際の掘削具10における下端の移動軌跡は図28に示すとおりである。尚、地中内に送出した破砕貝殻7は所定の締め固め度に締め固めることが必要である。従って、所定の締め固め度にするため、破砕貝殻7の地中内送出時に振動などを与え、締め固めすることとなる。尚、破砕貝殻7の締め固め度は、破砕貝殻7の相対密度(Dr)で示すことが出来る。そして、ここで要求される破砕貝殻7の相対密度(Dr)としては、60%乃至80%との数値である。 The process of sending the crushed shells 7 underground and constructing the pile 2 to prevent the crushed shells 7 from entering is as shown in FIG. It is sent underground through the opening 13. The locus of movement of the lower end of the excavating tool 10 at that time is as shown in FIG. The crushed shells 7 sent into the ground must be compacted to a predetermined degree of compaction. Therefore, in order to achieve a predetermined degree of compaction, the crushed shells 7 are compacted by applying vibrations or the like when being sent underground. The degree of compaction of the crushed shell 7 can be expressed by the relative density (Dr) of the crushed shell 7. The relative density (Dr) of the crushed shell 7 required here is a numerical value of 60% to 80%.

そして、対策杭2を構成する破砕貝殻7は、内部に多くの空隙を有し、かつ破砕された状態で所定粒径の平板状扁平形状をなしている。よって、前記の振動などを与えると対策杭2の外周面方向の箇所では前記破砕貝殻7が対策杭2の垂直方向の面と平行方向に位置するよう縦方向に立って配置されることとなる。よって、かかる破砕貝殻7の配置状態により、液状化層5からの砂の侵入がより防止されるものとなる。 The crushed seashells 7 constituting the countermeasure pile 2 have many voids inside and are in a flat plate-like shape with a predetermined grain size in the crushed state. Therefore, when the above-mentioned vibration etc. are applied, the crushed shells 7 are arranged vertically in the direction of the outer circumferential surface of the countermeasure pile 2 so as to be located in a direction parallel to the vertical surface of the countermeasure pile 2. . Therefore, the arrangement of the crushed shells 7 further prevents sand from entering from the liquefied layer 5.

尚、対策杭2の軸芯方向周辺では多くの平板状扁平形状をなす破砕貝殻7が水平方向に積み重なる重層状態になっており、このような配置状態の破砕貝殻7入り対策杭2内であれば前記対策杭2の外周面方向の箇所で縦方向に立って配置される破砕貝殻7と相まって外の液状化層6からの砂の侵入を確実に防ぐことが出来るのである。 In addition, around the axial direction of the countermeasure pile 2, many crushed seashells 7 having a flat plate-like shape are piled up horizontally in a layered state. In combination with the crushed shells 7 vertically arranged in the direction of the outer circumferential surface of the countermeasure pile 2, it is possible to reliably prevent sand from entering from the liquefaction layer 6 outside.

従来の砕石6入り対策杭2は、砕石6のすべての形状が決して平板状扁平形状になっているわけではない。ほとんどの砕石形状はブロック形状となっている。 In the conventional countermeasure pile 2 containing crushed stones 6, not all of the crushed stones 6 have a flat flat shape. Most crushed stone shapes are block-shaped.

しかしながら、貝殻は破砕すれば、すべての破砕貝殻7がほぼ自動的に平板状扁平形状になる。よって、この平板状扁平形状の破砕貝殻7を対策杭2の杭材とすれば、貝殻の内部に砕石よりも多くの空隙を有していることも相まって砕石入り対策杭2より砂の侵入を防止でき、これにより対策杭2における排水性能の低下を抑制できることとなるのである。 However, if the seashells are crushed, all the crushed seashells 7 will almost automatically become flat and flat. Therefore, if this flat-shaped crushed seashell 7 is used as the pile material for the countermeasure pile 2, the intrusion of sand will be better than the countermeasure pile 2 containing crushed stone, combined with the fact that the shell has more voids inside than the crushed stone. This makes it possible to prevent the deterioration of the drainage performance of the countermeasure pile 2.

なお、掘削具の外周面に螺旋状をなす掘削刃を設け、貫入しながら回転させることにより地中を円柱状に掘削し、所定の地中深さまで掘削した後、この掘削した孔に掘削具10を引き抜きながら破砕貝殻7を落とし込むことによって敷き詰めていく工法でもかまわない。しかるにこの落とし込みの際に振動を与えることにより、敷き詰める破砕貝殻7を所定の締め固め度、換言すれば所定の数値からなる相対密度(Dr)のものにすることが出来る。ここでも、充填された破砕貝殻7の最適な相対密度(Dr)としては、60%乃至80%が好ましいものである。 In addition, a spiral digging blade is provided on the outer circumferential surface of the drilling tool, and by rotating it while penetrating, it excavates underground in a cylindrical shape, and after excavating to a predetermined underground depth, the drilling tool is inserted into the excavated hole. It is also possible to use a construction method in which crushed shells 7 are dropped while pulling out shells 10 to spread the shells. However, by applying vibration during this dropping, the crushed shells 7 to be spread can be made to have a predetermined compaction degree, in other words, a relative density (Dr) consisting of a predetermined numerical value. Here again, the optimal relative density (Dr) of the filled crushed shells 7 is preferably 60% to 80%.

前記破砕貝殻7入り対策杭2の構築は液状化防止対策を行うべき液状化層5の地盤において、例えば碁盤の目を形成する縦横線の交差部上に分散配置させ、もって散点状に埋設構築される。 The construction of the piles 2 to prevent crushed shells 7 is carried out by dispersing them, for example, at the intersections of vertical and horizontal lines forming a grid in the ground of the liquefaction layer 5 where liquefaction prevention measures are to be taken, and burying them in a scattered manner. Constructed.

そして、液状化層5に埋設した破砕貝殻7入り対策杭2の上端開口面は、前記地盤表面に露出するが、その露出した上端開口面上には破砕貝殻7が敷き詰められて塞がれるものとなる。いわゆるシェルマット9の形成である。破砕貝殻7で構成されたシェルマット9が形成されることにより、破砕貝殻7入り対策杭2内を通過して上昇した過剰間隙水について極めてスムーズに水平方向に排水することが出来る。すなわち所定箇所の地表面上に排水できるものとなる。ここで、本発明のシェルマット9は前述のように破砕貝殻7で形成され、かつ従来のように砕石6によって平面マット状に形成されるのではなく、図示するように格子マット状に構成してある。
このように構成することにより、より速く、スムーズな水平排水が達成できるものとなる。
The upper end opening surface of the pile 2 for preventing crushed seashells 7 buried in the liquefaction layer 5 is exposed to the ground surface, but the exposed upper end opening surface is covered with crushed seashells 7 and covered. becomes. This is the formation of a so-called shell mat 9. By forming the shell mat 9 composed of the crushed shells 7, excess pore water that has passed through the inside of the pile 2 for preventing crushed shells 7 and has risen can be drained horizontally very smoothly. In other words, water can be drained onto the ground surface at a predetermined location. Here, the shell mat 9 of the present invention is formed of crushed shells 7 as described above, and is not formed into a planar mat shape of crushed stones 6 as in the conventional case, but is structured into a lattice mat shape as shown in the figure. There is.
With this configuration, faster and smoother horizontal drainage can be achieved.

尚、再度破砕貝殻7を使用しての対策杭2の構築につき述べると、掘削孔の外周面と液状化層5の地盤との境界面に前記破砕貝殻7が境界面と平行方向になるように立てた状態にすべく破砕貝殻7に振動を与えて放出し、締め固める。また対策杭2の軸芯方向近傍では破砕貝殻7が前記境界面と直交するようにして積み重ねられる様放出し、締め固めるのである。 In addition, referring again to the construction of the countermeasure pile 2 using the crushed shells 7, the crushed shells 7 are placed on the interface between the outer peripheral surface of the excavation hole and the ground of the liquefaction layer 5 so that the crushed shells 7 are parallel to the interface. The crushed seashells 7 are vibrated and released so as to stand upright, and are compacted. Further, near the axial direction of the countermeasure pile 2, the crushed shells 7 are released and compacted so as to be piled up perpendicular to the boundary surface.

このように充填すれば、たとえ液状化が発生するような地震があっても、前記境界面に立てた状態にした破砕貝殻7が前記液状化層5からの砂の侵入をさらに強固に防止でき、また、破砕貝殻7が前記境界面と直交するようにして積み重ねて締め固めした軸芯方向近傍も、前記重層状態に積み重ねられた破砕貝殻7が液状化層5からの砂の侵入をさらに強固に防止できるものとなる。 By filling in this way, even if there is an earthquake that causes liquefaction, the crushed shells 7 standing on the boundary surface can further firmly prevent sand from entering from the liquefaction layer 5. Also, near the axial direction where the crushed shells 7 are stacked and compacted perpendicular to the boundary surface, the crushed shells 7 stacked in layers further prevent sand from entering from the liquefied layer 5. This can be prevented.

しかして、液状化層5に構築された複数個の破砕貝殻7入り対策杭2によって、液状化が発生するような地震時に過剰間隙水が前記対策杭2内に流入し、破砕貝殻7で構成されたシェルマット9を介して所望された地表箇所に排出される。そのため液状化層5では、過剰間隙水圧比の上昇が抑えられ、液状化が防止されるものとなる。 Therefore, due to the countermeasure pile 2 containing a plurality of crushed shells 7 built in the liquefaction layer 5, excess pore water flows into the countermeasure pile 2 during an earthquake that causes liquefaction, and The shell mat 9 is discharged to a desired location on the ground surface. Therefore, in the liquefaction layer 5, an increase in the excess pore water pressure ratio is suppressed, and liquefaction is prevented.

尚、地震時に液状化層5の過剰間隙水が対策杭2内に排水されると、液状化層5が凝縮することがあって地盤沈下を発生させる可能性も指摘されるが、該液状化層5の上方に舗装路や地盤改良層を形成しておけば、多少の地盤沈下が発生したとしても大幅な地盤沈下の発生は防止出来るものと考えられる。
In addition, it has been pointed out that if excess pore water in the liquefaction layer 5 is drained into the countermeasure pile 2 during an earthquake, the liquefaction layer 5 may condense and cause ground subsidence. If a paved road or a ground improvement layer is formed above layer 5, it is thought that even if some ground subsidence occurs, significant ground subsidence can be prevented from occurring.

本発明は液状化対策工法としてのドレーン工法だけではなく、他の液状化対策工法、例えばコンパクション工法などにも活用されるものである。
The present invention is applicable not only to the drain construction method as a liquefaction countermeasure construction method, but also to other liquefaction countermeasure construction methods such as the compaction construction method.

1 振動装置
2 対策杭
3 土槽
4 間隙水圧計
5 液状化層
6 砕石
7 破砕貝殻
9 シェルマット
10 掘削具
11 破砕貝殻導入口
12 掘削装置
13 開口
1 Vibration device 2 Countermeasure pile 3 Soil tank 4 Pore water pressure gauge 5 Liquefaction layer 6 Crushed stone 7 Crushed shells 9 Shell mat 10 Excavation tool 11 Crushed shell inlet 12 Drilling device 13 Opening

Claims (8)

地盤中に砕石で構成した液状化対策用の対策杭を打設する液状化対策工法で使用される対策杭であって、
前記対策杭は、砕石の代替材として破砕貝殻を使用して構築した、
ことを特徴とする液状化対策杭。
A countermeasure pile used in a liquefaction countermeasure construction method in which a countermeasure pile made of crushed stone is driven into the ground,
The countermeasure pile was constructed using crushed shells as an alternative material to crushed stone.
A liquefaction prevention pile characterized by:
前記破砕貝殻を使用しての構築は、相対密度(Dr)が60%乃至80%になるよう構築した、
ことを特徴とする請求項1記載の液状化対策杭。
The construction using the crushed shells was constructed so that the relative density (Dr) was 60% to 80%.
The liquefaction prevention pile according to claim 1, characterized in that:
前記破砕貝殻は、75mm以下の粒径で構成され平板扁平形状をなして構成された、
ことを特徴とする請求項1または請求項2記載の液状化対策杭。
The crushed seashell has a particle size of 75 mm or less and has a flat plate shape.
The liquefaction prevention pile according to claim 1 or claim 2, characterized in that:
液状化層からなる地盤に液状化防止対策用の対策杭を構築して施工する液状化対策工法であり、
貝殻を破砕した所定の粒度組成を有する平板扁平形状の破砕貝殻を生成し、
前記生成した破砕貝殻で構成した対策杭を杭構築装置で液状化層地盤中に構築してなり、
前記対策杭の構築は、液状化層地盤の地中に前記破砕貝殻を積み重ね状態にして送出し、送出した破砕貝殻の相対密度(Dr)を、60%乃至80%とした、
ことを特徴とする液状化防止対策用の対策杭を使用した液状化対策工法。
This is a liquefaction prevention construction method that involves building and constructing countermeasure piles to prevent liquefaction in the ground consisting of a liquefaction layer.
producing crushed seashells in the form of flat plates having a predetermined particle size composition by crushing seashells;
A countermeasure pile made of the generated crushed seashells is constructed in the liquefaction layer ground using a pile construction device,
The countermeasure pile was constructed by sending out the crushed shells in a stacked state in the ground of the liquefaction layer, and setting the relative density (Dr) of the sent out crushed shells to 60% to 80%.
A liquefaction prevention construction method using countermeasure piles for liquefaction prevention measures, which is characterized by the following.
液状化層からなる地盤に液状化防止対策用の対策杭を構築して施工する液状化対策工法であり、
貝殻を破砕した所定の粒度組成を有する平板扁平形状の破砕貝殻を生成し、
前記生成した破砕貝殻で構成した対策杭の杭構築装置での構築は、液状化層における地盤の対象領域に対して対策杭複数個を分散配置すべく埋設構築してなり、
前記地盤の地中に前記破砕貝殻を積み重ね状態で送出し、送出した破砕貝殻の相対密度(Dr)を、60%乃至80%とした、
ことを特徴とする液状化防止対策用の対策杭を使用した液状化対策工法。
This is a liquefaction prevention construction method that involves building and constructing countermeasure piles to prevent liquefaction in the ground consisting of a liquefaction layer.
producing crushed seashells in the form of flat plates having a predetermined particle size composition by crushing seashells;
The countermeasure piles made of the generated crushed seashells are constructed using a pile construction device by burying a plurality of countermeasure piles in a distributed manner in a target area of the ground in the liquefaction layer,
The crushed seashells were sent out in a stacked state into the ground, and the relative density (Dr) of the sent out crushed seashells was set to 60% to 80%.
A liquefaction prevention construction method using countermeasure piles for liquefaction prevention measures, which is characterized by the following.
液状化層からなる地盤に液状化防止対策用の対策杭を構築して施工する液状化対策工法であり、
貝殻を破砕した所定の粒度組成を有する平板扁平形状の破砕貝殻を生成し、
前記生成した破砕貝殻で構成した対策杭の杭構築装置での構築は、液状化層における地盤の対象領域に対して対策杭複数個を碁盤の目を形成する縦横線の交差部上に分散配置すべく埋設構築してなり、
前記地盤の地中に前記破砕貝殻を積み重ね状態で送出し、送出した破砕貝殻の相対密度(Dr)を、60%乃至80%とした、
ことを特徴とする液状化防止対策用の対策杭を使用した液状化対策工法。
This is a liquefaction prevention construction method that involves building and constructing countermeasure piles to prevent liquefaction in the ground consisting of a liquefaction layer.
producing crushed seashells in the form of flat plates having a predetermined particle size composition by crushing seashells;
The construction of countermeasure piles made of the generated crushed seashells using a pile construction device involves distributing a plurality of countermeasure piles on the intersections of vertical and horizontal lines forming a grid pattern for the target area of the ground in the liquefaction layer. It will be buried as much as possible,
The crushed seashells are sent out in a stacked state into the ground, and the relative density (Dr) of the sent out crushed seashells is set to 60% to 80%.
A liquefaction prevention construction method using countermeasure piles for liquefaction prevention measures, which is characterized by the following.
前記分散配置して埋設構築された対策杭の露出した上端開口には、前記上端開口が繋がるよう積み重ねられた破砕貝殻で塞がれたシェルマットが形成された、
ことを特徴とする請求項5または請求項6記載の液状化防止対策用の対策杭を使用した液状化対策工法。
Shell mats are formed in the exposed upper end openings of the countermeasure piles, which are buried and constructed in a dispersed manner, and are covered with crushed shells stacked so that the upper end openings are connected.
A liquefaction prevention construction method using the liquefaction prevention countermeasure pile according to claim 5 or claim 6.
前記地盤の地中に積み重ね状態での破砕貝殻の送出は、前記破砕貝殻が水平方向積み重ね状態に締め固めされる、
ことを特徴とする請求項5、請求項6または請求項7記載の液状化防止対策用の対策杭を使用した液状化対策工法。

The sending of the crushed seashells in a stacked state in the ground is performed by compacting the crushed shells in a horizontally stacked state.
A liquefaction prevention construction method using the liquefaction prevention countermeasure pile according to claim 5, claim 6, or claim 7.

JP2022102493A 2022-06-27 2022-06-27 Countermeasure pile against liquefaction and countermeasure method against liquefaction using therewith Pending JP2024003388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022102493A JP2024003388A (en) 2022-06-27 2022-06-27 Countermeasure pile against liquefaction and countermeasure method against liquefaction using therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022102493A JP2024003388A (en) 2022-06-27 2022-06-27 Countermeasure pile against liquefaction and countermeasure method against liquefaction using therewith

Publications (1)

Publication Number Publication Date
JP2024003388A true JP2024003388A (en) 2024-01-15

Family

ID=89534085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022102493A Pending JP2024003388A (en) 2022-06-27 2022-06-27 Countermeasure pile against liquefaction and countermeasure method against liquefaction using therewith

Country Status (1)

Country Link
JP (1) JP2024003388A (en)

Similar Documents

Publication Publication Date Title
Sato et al. Influence of location of subsurface structures on development of underground cavities induced by internal erosion
US5800090A (en) Apparatus and method for liquefaction remediation of liquefiable soils
WO1997038172A1 (en) Apparatus and method for liquefaction remediation of liquefiable soils
Adalier Mitigation of earthquake induced liquefaction hazards
JP2013167144A (en) Foundation structure and construction method for foundation
Massarsch et al. Liquefaction induced by deep vertical vibratory compaction
JPS6248008B2 (en)
Sitharam et al. Geotechnical aspects and ground response studies in Bhuj earthquake, India
JP2024003388A (en) Countermeasure pile against liquefaction and countermeasure method against liquefaction using therewith
Hasheminezhad et al. Seismic performance assessment of wall-type gravel and rubber drains in liquefaction mitigation of sands
JP6308996B2 (en) Seawalls and methods for reinforcing or constructing seawalls
US11124937B1 (en) Rapid consolidation and compaction method for soil improvement of various layers of soils and intermediate geomaterials in a soil deposit
Massarsch et al. Liquefaction assessment by full-scale vibratory testing
James et al. An experimental set-up to investigate tailings liquefaction and control measures
JPH0138926B2 (en)
JP2023534788A (en) Rapid consolidation and compaction methods for soil improvement of various layers of intermediate geological material within soils and soil sediments
Ahmed et al. Behavior of Square Footing Erected on Gypseous Soil Treated by Ceramic Wastes
JP2013108299A (en) Soil improvement method for preventing liquefaction upon earthquake
Tumay et al. Metal versus nonwoven fiber fabric earth reinforcement in dry sands: a comparative statistical analysis of model tests
Neely et al. Densification of sand using a variable frequency vibratory probe
JP5863915B1 (en) Liquefaction countermeasure structure on site
Rollins et al. Liquefaction hazard mitigation by prefabricated vertical drains
JPS63304816A (en) Construction of crushed stone continuous underground wall
Shanmugam et al. Experimental Observations on In-Situ Ground Response During Sequential Installation of Stone Column Improvement in the Saturated Ground
Liong Investigation of Dynamic Compaction and Vibro-compaction to Mitigate Liquefaction: A Case Study

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20220706