JP2024002692A - secondary battery - Google Patents

secondary battery Download PDF

Info

Publication number
JP2024002692A
JP2024002692A JP2022102046A JP2022102046A JP2024002692A JP 2024002692 A JP2024002692 A JP 2024002692A JP 2022102046 A JP2022102046 A JP 2022102046A JP 2022102046 A JP2022102046 A JP 2022102046A JP 2024002692 A JP2024002692 A JP 2024002692A
Authority
JP
Japan
Prior art keywords
sealing member
exterior body
opening
secondary battery
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022102046A
Other languages
Japanese (ja)
Inventor
守伯 尾崎
Morinori Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2022102046A priority Critical patent/JP2024002692A/en
Publication of JP2024002692A publication Critical patent/JP2024002692A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new battery structure from the viewpoint of battery sealing and terminal installation.
SOLUTION: A secondary battery is provided which is composed of an electrode assembly and an exterior body that stores the electrode assembly. In such a secondary battery, an electrode terminal 200 provided on an exterior body opening 150 of an exterior body 100 includes a sealing member 300 for sealing the exterior body. A main surface of the sealing member located on the inside of the exterior body is smaller than the exterior body opening. The sealing member that seals the exterior body opening is a deformable member that can be deformed by pressing force.
SELECTED DRAWING: Figure 3
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は二次電池に関する。特に、本発明は、正極、負極およびセパレータを含む電極構成層から成る電極組立体を備えた二次電池に関する。 The present invention relates to secondary batteries. In particular, the present invention relates to a secondary battery equipped with an electrode assembly consisting of electrode constituent layers including a positive electrode, a negative electrode, and a separator.

二次電池は、いわゆる蓄電池ゆえ充電および放電の繰り返しが可能であり、様々な用途に用いられている。例えば、携帯電話、スマートフォンおよびノートパソコンなどのモバイル機器に二次電池が用いられている。 Secondary batteries are so-called storage batteries, so they can be repeatedly charged and discharged, and are used for various purposes. For example, secondary batteries are used in mobile devices such as mobile phones, smartphones, and notebook computers.

特許第2748539号公報Patent No. 2748539 特開2005-190688号公報Japanese Patent Application Publication No. 2005-190688 特開2019-87477号公報JP 2019-87477 Publication 特許第4605823号公報Patent No. 4605823 特許第5551781号公報Patent No. 5551781 特開平9-167605号公報Japanese Patent Application Publication No. 9-167605 特開2018-85178号公報JP2018-85178A

二次電池は、充放電に寄与するイオン移動のための媒体として液体の電解質が一般に使用されている。つまり、いわゆる電解液が二次電池に用いられている。そのような二次電池においては、電解液の漏出防止や電池内で発生したガスの漏出防止のために電池を密閉しておく必要がある。 Secondary batteries generally use a liquid electrolyte as a medium for ion movement that contributes to charging and discharging. In other words, so-called electrolytes are used in secondary batteries. In such a secondary battery, it is necessary to seal the battery in order to prevent leakage of electrolyte and gas generated within the battery.

一方、二次電池は、その使用のために外部との電気接続に供する外部端子を設ける必要がある。 On the other hand, in order to use a secondary battery, it is necessary to provide an external terminal for electrical connection with the outside.

本願発明者は、電池の密閉化と外部端子の設置との双方を満たすことができる電池構造について開発の余地が依然ないかを鋭意検討した。その結果、電池の密閉化および外部端子の設置との双方を満たす電池構造には依然開発の余地が残されていることを見出した。 The inventors of the present application have conducted extensive studies to see if there is still room for the development of a battery structure that can satisfy both the requirements of hermetically sealed batteries and the provision of external terminals. As a result, it was found that there is still room for development of a battery structure that satisfies both the hermetic sealing of the battery and the installation of external terminals.

本発明は上記課題に鑑みて為されたものである。即ち、本発明の主たる目的は、電池密閉化および端子設置の観点から新たな電池構造を提供することである。 The present invention has been made in view of the above problems. That is, the main object of the present invention is to provide a new battery structure from the viewpoint of battery sealing and terminal installation.

本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された二次電池の発明に至った。 The inventors of the present application attempted to solve the above-mentioned problems by tackling the problem in a new direction rather than by extending the conventional technology. As a result, a secondary battery was invented that achieved the above main objective.

本発明に係る二次電池は、電極組立体、および、前記電極組立体を収納する外装体を有して成り、
前記外装体の外装体開口に設けられた電極端子が、前記外装体の密閉化のための密閉部材を含み、
前記外装体の内側に位置する前記密閉部材の主面は前記外装体開口よりも小さくなっており、前記外装体開口を塞ぐ前記密閉部材が、押圧力に起因して変形できる可変形部材となっている。
A secondary battery according to the present invention includes an electrode assembly and an exterior body housing the electrode assembly,
an electrode terminal provided in an opening of the exterior body includes a sealing member for sealing the exterior body;
The main surface of the sealing member located inside the exterior body is smaller than the exterior body opening, and the sealing member that closes the exterior body opening is a deformable member that can be deformed due to a pressing force. ing.

本発明に係る二次電池では、電池の密閉化と外部端子設置との双方が関連する電池構成が従前に見られない構成となっているところ、安全機能が好適に奏される。より具体的には、セル内圧が異常上昇した場合、電極端子とは異なる別個の部材を成す密閉部材が、その形状変化に起因して外装体内部のガスの解放を可能とする。これにより、意図しない電池爆発などより重大な事故を未然に防ぐことができる。 In the secondary battery according to the present invention, the safety function is suitably performed because the battery configuration in which both the battery sealing and the external terminal installation are involved is an unprecedented configuration. More specifically, when the internal pressure of the cell increases abnormally, the sealing member, which is a separate member different from the electrode terminal, changes its shape and allows the gas inside the exterior body to be released. This can prevent more serious accidents such as unintentional battery explosions.

図1は、電極構成層を模式的に示した断面図である(図1(A):平面積層構造、図1(B):巻回構造)。FIG. 1 is a cross-sectional view schematically showing electrode constituent layers (FIG. 1(A): plane layered structure, FIG. 1(B): wound structure). 図2は、本発明の一実施形態に係る二次電池の模式図である(図2(A):断面図、図2(B):半分割斜視図)FIG. 2 is a schematic diagram of a secondary battery according to an embodiment of the present invention (FIG. 2(A): sectional view, FIG. 2(B): half-divided perspective view). 図3は、本発明の一実施形態に係る二次電池の外装体開口が関連する構成を示す模式図である。FIG. 3 is a schematic diagram showing a configuration related to the opening of the outer case of a secondary battery according to an embodiment of the present invention. 図4は、本発明の一実施形態に係る二次電池において密閉部材と外装体開口との関係を示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing the relationship between the sealing member and the opening of the outer case in a secondary battery according to an embodiment of the present invention. 図5は、本発明の一実施形態に係る二次電池を構成する代表的要素を示す模式図である。FIG. 5 is a schematic diagram showing typical elements constituting a secondary battery according to an embodiment of the present invention. 図6は、密閉部材を示す模式斜視図および断面図である。FIG. 6 is a schematic perspective view and a sectional view showing the sealing member. 図7は、本発明の一実施形態に係る二次電池の外装体開口が関連する構成を示す模式図である。FIG. 7 is a schematic diagram showing a configuration related to the opening of the outer case of a secondary battery according to an embodiment of the present invention. 図8は、本発明の一実施形態に係る二次電池において外装体開口縁部の封止を説明するための模式的断面図である。FIG. 8 is a schematic cross-sectional view for explaining the sealing of the opening edge of the outer case in the secondary battery according to an embodiment of the present invention. 図9は、本発明の一実施形態に係る二次電池の安全機能を説明するための模式図である。FIG. 9 is a schematic diagram for explaining the safety function of a secondary battery according to an embodiment of the present invention. 図10は、本発明の一実施形態に係る二次電池の安全機能を説明するための模式図である。FIG. 10 is a schematic diagram for explaining the safety function of a secondary battery according to an embodiment of the present invention. 図11は、セル内圧の異常上昇時の密閉部材の変形を説明するための模式的斜視断面図である。FIG. 11 is a schematic perspective sectional view for explaining the deformation of the sealing member when the cell internal pressure abnormally increases. 図12は、外装体開口縁部の鋭利縁を説明するための模式的斜視断面図である。FIG. 12 is a schematic perspective sectional view for explaining the sharp edge of the opening edge of the exterior body. 図13は、設置時の密閉部材の変形を説明するための模式的斜視断面図である。FIG. 13 is a schematic perspective sectional view for explaining the deformation of the sealing member during installation. 図14は、導電部材の接続手法を例示説明するための模式図である(図14(A):抵抗溶接、図14(B):超音波溶接、図14(C):レーザ溶接)。FIG. 14 is a schematic diagram for illustrating a method of connecting conductive members (FIG. 14(A): resistance welding, FIG. 14(B): ultrasonic welding, FIG. 14(C): laser welding). 図15は、パンチング処理を説明するための模式図である。FIG. 15 is a schematic diagram for explaining punching processing. 図16は、「セル内圧作用に鑑みた密閉解除機構」および「干渉作用による密閉解除機構」を説明するための模式的平面図である。FIG. 16 is a schematic plan view for explaining the "unsealing mechanism based on cell internal pressure action" and the "unsealing mechanism based on interference action." 図17は、本発明の一実施形態に係る二次電池の外観を示す模式的斜視図である。FIG. 17 is a schematic perspective view showing the appearance of a secondary battery according to an embodiment of the present invention. 図18は、本発明の変更態様として二次電池の外観を示す模式的斜視図である。FIG. 18 is a schematic perspective view showing the appearance of a secondary battery as a modified embodiment of the present invention. 図19は、本発明の変更態様として外側により大きく延在する第2絶縁部材を示す模式図である。FIG. 19 is a schematic diagram showing a second insulating member extending more outwardly as a modified embodiment of the present invention.

以下では、本発明の一実施形態に係る二次電池をより詳細に説明する。必要に応じて図面を参照して説明を行うものの、図面における各種の要素は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観および/または寸法比などは実物と異なり得る。 Below, a secondary battery according to one embodiment of the present invention will be described in more detail. Although explanations will be given with reference to drawings as necessary, various elements in the drawings are merely shown schematically and illustratively for understanding the present invention, and the appearance and/or dimensional ratio etc. may differ from the actual thing. It can be different.

本明細書で直接的または間接的に説明される「断面視」は、二次電池を構成する電極組立体または電極構成層の積層方向に沿って二次電池を切り取った仮想的な断面に基づいている。本明細書で直接的または間接的に説明される“厚み”の方向は、二次電池を構成する電極材の積層方向や巻回積層構造の巻回軸に沿う方向などに基づいている。例えばボタン型またはコイン型などの「板状に厚みを有する二次電池」でいえば、“厚み”の方向は、かかる二次電池の板厚方向に相当し得る。本明細書で用いる「平面視」または「平面視形状」とは、当該板厚方向または電池主面の法線方向・垂線方向に沿って対象物を上側または下側からみた場合の見取図に基づいている。 A "cross-sectional view" described directly or indirectly in this specification is based on a hypothetical cross section of the secondary battery cut along the stacking direction of the electrode assembly or electrode constituent layers that constitute the secondary battery. ing. The direction of "thickness" described directly or indirectly in this specification is based on the lamination direction of the electrode materials constituting the secondary battery, the direction along the winding axis of the wound laminated structure, and the like. For example, in the case of a "thick plate-shaped secondary battery" such as a button type or coin type, the direction of "thickness" may correspond to the plate thickness direction of such a secondary battery. As used herein, "plan view" or "plan view shape" is based on a sketch when the object is viewed from above or below along the thickness direction or the normal/perpendicular direction to the main surface of the battery. ing.

本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材もしくは部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。 The "vertical direction" and "horizontal direction" used directly or indirectly in this specification correspond to the vertical direction and the horizontal direction in the drawings, respectively. Unless otherwise specified, the same reference numerals or symbols indicate the same members or parts or the same meanings. In a preferred embodiment, the vertically downward direction (that is, the direction in which gravity acts) corresponds to the "downward direction," and the opposite direction corresponds to the "upward direction."

本明細書で言及する各種の数値範囲は、特段の説明が付されない限り、下限および上限の数値そのものも含むことを意図している。なお、“およそ”および“程度”といった用語は、数パーセント、例えば±10%の変動又は違いを含み得ることを意味する。 The various numerical ranges mentioned herein are intended to include the lower and upper numerical limits themselves, unless expressly stated otherwise. It should be noted that the terms "approximately" and "degree" mean that they may include variations or differences of several percentages, for example ±10%.

[二次電池の基本構成]
本明細書でいう「二次電池」は、充電・放電の繰り返しが可能な電池のことを指している。従って、本発明に係る二次電池は、その名称に過度に拘泥されるものでなく、例えば蓄電デバイスなども対象に含まれ得る。
[Basic configuration of secondary battery]
The term "secondary battery" used herein refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery according to the present invention is not excessively limited by its name, and may also include, for example, an electricity storage device.

本発明に係る二次電池は、正極、負極及びセパレータを含む電極構成層が積層した電極組立体を有して成る。図1(A)および1(B)には電極組立体10を例示している。図示されるように、正極1と負極2とはセパレータ3を介して積み重なって電極構成層5を成しており、かかる電極構成層5が少なくとも1つ以上積層して電極組立体10が構成されている。図1(A)では、電極構成層5が巻回されずに平面状に積層した平面積層構造を有している。一方、図1(B)では、電極構成層5が巻回状に巻かれた巻回積層構造を有している。つまり、図1(B)では、正極1、負極2および正極1と負極2との間に配置されたセパレータ3を含む電極構成層5がロール状に巻回した巻回構造を有している。二次電池ではこのような電極組立体が電解質(例えば非水電解質)と共に外装体に封入されている。なお、電極組立体の構造は必ずしも平面積層構造または巻回構造に限定されない。例えば、電極組立体は、正極、セパレータおよび負極を長いフィルム上に積層してから折りたたんだ、いわゆるスタック・アンド・フォールディング型構造を有していてもよい。 The secondary battery according to the present invention includes an electrode assembly in which electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated. An electrode assembly 10 is illustrated in FIGS. 1(A) and 1(B). As shown in the figure, a positive electrode 1 and a negative electrode 2 are stacked with a separator 3 in between to form an electrode constituent layer 5, and an electrode assembly 10 is constructed by stacking at least one such electrode constituent layer 5. ing. In FIG. 1A, the electrode constituent layer 5 has a planar layered structure in which it is not wound but is stacked in a planar manner. On the other hand, in FIG. 1(B), the electrode constituent layer 5 has a wound laminated structure wound in a spiral shape. That is, in FIG. 1(B), the electrode constituent layer 5 including the positive electrode 1, the negative electrode 2, and the separator 3 disposed between the positive electrode 1 and the negative electrode 2 has a wound structure in which it is wound in a roll shape. . In a secondary battery, such an electrode assembly is enclosed in an outer case together with an electrolyte (for example, a non-aqueous electrolyte). Note that the structure of the electrode assembly is not necessarily limited to a flat layered structure or a wound structure. For example, the electrode assembly may have a so-called stack-and-fold structure in which a positive electrode, a separator, and a negative electrode are stacked on a long film and then folded.

正極は、少なくとも正極材層および正極集電体から構成されている。正極では正極集電体の少なくとも片面に正極材層が設けられている。正極材層には電極活物質として正極活物質が含まれている。例えば、電極組立体における複数の正極は、それぞれ、正極集電体の両面に正極材層が設けられているものでよいし、あるいは、正極集電体の片面にのみ正極材層が設けられているものでもよい。 The positive electrode is composed of at least a positive electrode material layer and a positive electrode current collector. In the positive electrode, a positive electrode material layer is provided on at least one side of the positive electrode current collector. The positive electrode material layer contains a positive electrode active material as an electrode active material. For example, the plurality of positive electrodes in the electrode assembly may each have a positive electrode material layer provided on both sides of a positive electrode current collector, or may have a positive electrode material layer provided only on one side of the positive electrode current collector. It may be something that exists.

負極は、少なくとも負極材層および負極集電体から構成されている。負極では負極集電体の少なくとも片面に負極材層が設けられている。負極材層には電極活物質として負極活物質が含まれている。例えば、電極組立体における複数の負極は、それぞれ、負極集電体の両面に負極材層が設けられているものでよいし、あるいは、負極集電体の片面にのみ負極材層が設けられているものでもよい。 The negative electrode is composed of at least a negative electrode material layer and a negative electrode current collector. In the negative electrode, a negative electrode material layer is provided on at least one side of the negative electrode current collector. The negative electrode material layer contains a negative electrode active material as an electrode active material. For example, the plurality of negative electrodes in the electrode assembly may each have a negative electrode material layer provided on both sides of a negative electrode current collector, or may have a negative electrode material layer provided only on one side of the negative electrode current collector. It may be something that exists.

正極および負極に含まれる電極活物質、即ち、正極活物質および負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層に含まれる正極活物質」および「負極材層に含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極と負極との間で移動して電子の受け渡しが行われて充放電がなされる。正極材層および負極材層は特にリチウムイオンを吸蔵放出可能な層であってよい。つまり、本発明に係る二次電池は、非水電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる非水電解質二次電池となっていてよい。充放電にリチウムイオンが関与する場合、本発明に係る二次電池は、いわゆる“リチウムイオン電池”に相当し、正極および負極としてリチウムイオンを吸蔵放出可能な層を有する。 The electrode active materials contained in the positive and negative electrodes, that is, the positive and negative electrode active materials, are substances that are directly involved in the transfer of electrons in secondary batteries, and are the main materials of the positive and negative electrodes that are responsible for charging and discharging, that is, battery reactions. be. More specifically, ions are brought into the electrolyte due to "the positive electrode active material contained in the positive electrode material layer" and "the negative electrode active material contained in the negative electrode material layer", and these ions are brought into contact between the positive electrode and the negative electrode. The battery moves and exchanges electrons to perform charging and discharging. The positive electrode material layer and the negative electrode material layer may be layers capable of intercalating and deintercalating lithium ions. That is, the secondary battery according to the present invention may be a non-aqueous electrolyte secondary battery in which lithium ions move between the positive electrode and the negative electrode via the non-aqueous electrolyte to charge and discharge the battery. When lithium ions are involved in charging and discharging, the secondary battery according to the present invention corresponds to a so-called "lithium ion battery" and has layers capable of inserting and extracting lithium ions as a positive electrode and a negative electrode.

正極材層の正極活物質は例えば粒状体から構成されるところ、粒子同士のより十分な接触と形状保持のためにバインダーが正極材層に含まれていてよい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層に含まれていてもよい。同様にして、負極材層の負極活物質は例えば粒状体から構成されるところ、粒子同士のより十分な接触と形状保持のためにバインダーが含まれていてよく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層に含まれていてもよい。このように、複数の成分が含有される形態ゆえ、正極材層および負極材層はそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。 The positive electrode active material of the positive electrode material layer is composed of, for example, granules, and a binder may be included in the positive electrode material layer for more sufficient contact between the particles and shape retention. Furthermore, a conductive additive may be included in the positive electrode material layer in order to facilitate the transmission of electrons that promote battery reactions. Similarly, when the negative electrode active material of the negative electrode material layer is composed of, for example, granules, a binder may be included for more sufficient contact between the particles and shape retention, and for the transfer of electrons that promote battery reactions. A conductive additive may be included in the negative electrode material layer to facilitate this. As described above, since a plurality of components are contained, the positive electrode material layer and the negative electrode material layer can also be referred to as a "positive electrode composite material layer" and a "negative electrode composite material layer," respectively.

正極活物質は、リチウムイオンの吸蔵放出に資する物質であってよい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であってよい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であってよい。つまり、本発明に係る二次電池の正極材層においては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。 The positive electrode active material may be a material that contributes to intercalation and desorption of lithium ions. From this point of view, the positive electrode active material may be, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material may be a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer of the secondary battery according to the present invention, such a lithium transition metal composite oxide is preferably contained as a positive electrode active material. For example, the positive electrode active material may be lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, or a material in which some of the transition metals thereof are replaced with another metal. Although such positive electrode active materials may be contained as a single species, they may be contained in a combination of two or more types.

正極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体およびポリテトラフルオロエチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。 The binder that can be contained in the positive electrode material layer is not particularly limited, but includes polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and polytetrafluoroethylene. At least one selected from the group consisting of: The conductive additive that can be included in the positive electrode material layer is not particularly limited, but includes carbon black such as thermal black, furnace black, channel black, Ketjen black, and acetylene black, graphite, carbon nanotubes, and vapor phase growth. Examples include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives.

正極材層の厚み寸法は、特に制限されるわけではないが、1μm以上300μm以下であってよく、例えば5μm以上200μm以下である。正極材層の厚み寸法は二次電池内部での厚みであり、任意の10箇所における測定値の平均値を採用してよい。 The thickness of the positive electrode material layer is not particularly limited, but may be 1 μm or more and 300 μm or less, for example, 5 μm or more and 200 μm or less. The thickness dimension of the positive electrode material layer is the thickness inside the secondary battery, and the average value of the measured values at arbitrary 10 points may be adopted.

負極活物質は、リチウムイオンの吸蔵放出に資する物質であってよい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、および/または、リチウム合金などであってよい。 The negative electrode active material may be a material that contributes to intercalation and desorption of lithium ions. From this point of view, the negative electrode active material may be, for example, various carbon materials, oxides, and/or lithium alloys.

負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛および/もしくは人造黒鉛)、ハードカーボン、ソフトカーボン、ならびに/またはダイヤモンド状炭素などを挙げることができる。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。 Various carbon materials for the negative electrode active material include graphite (natural graphite and/or artificial graphite), hard carbon, soft carbon, and/or diamond-like carbon. Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like. The lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium, such as Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, It may be a binary, ternary or higher alloy of metal such as La and lithium.

負極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。負極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。 The binder contained in the negative electrode material layer is not particularly limited, but at least one selected from the group consisting of styrene-butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. can be mentioned. The conductive additives that can be included in the negative electrode material layer are not particularly limited, but include carbon blacks such as thermal black, furnace black, channel black, Ketjen black and acetylene black, graphite, carbon nanotubes, and vapor phase growth. Examples include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives. Note that the negative electrode material layer may contain a component resulting from a thickener component (for example, carboxymethyl cellulose) used during battery manufacture.

負極材層の厚み寸法は、特に制限されるわけではないが、1μm以上300μm以下であってよく、例えば5μm以上200μm以下である。負極材層の厚み寸法は二次電池内部での厚みであり、任意の10箇所における測定値の平均値を採用してよい。 Although the thickness dimension of the negative electrode material layer is not particularly limited, it may be 1 μm or more and 300 μm or less, for example, 5 μm or more and 200 μm or less. The thickness dimension of the negative electrode material layer is the thickness inside the secondary battery, and the average value of the measured values at arbitrary 10 points may be adopted.

正極および負極に用いられる正極集電体および負極集電体は、電池反応に起因して電極活物質で発生した電子を集めたり供給したりするのに資する部材である。このような電極集電体は、シート状の金属部材であってよい。また、電極集電体は、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。正極に用いられる正極集電体は、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔であってよい。一方、負極に用いられる負極集電体は、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。 A positive electrode current collector and a negative electrode current collector used in a positive electrode and a negative electrode are members that contribute to collecting and supplying electrons generated in an electrode active material due to a battery reaction. Such an electrode current collector may be a sheet-like metal member. Further, the electrode current collector may have a porous or perforated form. For example, the current collector may be metal foil, punched metal, mesh, expanded metal, or the like. The positive electrode current collector used in the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel, etc., and may be, for example, an aluminum foil. On the other hand, the negative electrode current collector used in the negative electrode is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel, etc., and may be a copper foil, for example.

正極集電体および負極集電体の各厚み寸法は、特に制限されるわけではないが、1μm以上100μm以下であってよく、例えば10μm以上70μm以下である。正極集電体および負極集電体の厚み寸法は二次電池内部での厚みであり、任意の10箇所における測定値の平均値を採用してよい。 Although the thickness dimensions of the positive electrode current collector and the negative electrode current collector are not particularly limited, they may be 1 μm or more and 100 μm or less, for example, 10 μm or more and 70 μm or less. The thickness dimension of the positive electrode current collector and the negative electrode current collector is the thickness inside the secondary battery, and the average value of the measured values at arbitrary 10 points may be adopted.

正極および負極に用いられるセパレータは、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータは、正極と負極と間の電子的接触を防止しつつイオンを通過させる部材であるといえる。例えば、セパレータは多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータとして用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータは、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータの表面が無機粒子コート層および/または接着層等により覆われていてもよい。セパレータの表面が接着性を有していてもよい。なお、本発明において、セパレータは、その名称によって特に拘泥されるべきでなく、同様の機能を有する固体電解質、ゲル状電解質、および/または絶縁性の無機粒子などであってもよい。 The separator used for the positive and negative electrodes is a member provided from the viewpoint of preventing short circuits due to contact between the positive and negative electrodes and retaining electrolyte. In other words, the separator can be said to be a member that allows ions to pass through while preventing electronic contact between the positive electrode and the negative electrode. For example, a separator is a porous or microporous insulating member that has a membrane shape due to its small thickness. By way of example only, a microporous membrane made of polyolefin may be used as the separator. In this regard, the microporous membrane used as the separator may contain, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin. Furthermore, the separator may be a laminate composed of a "microporous membrane made of PE" and a "microporous membrane made of PP." The surface of the separator may be covered with an inorganic particle coating layer and/or an adhesive layer. The surface of the separator may have adhesive properties. In the present invention, the separator is not particularly limited by its name, and may be a solid electrolyte, a gel electrolyte, and/or insulating inorganic particles having similar functions.

セパレータの厚み寸法は、特に制限されるわけではないが、1μm以上100μm以下であってよく、例えば2μm以上20μm以下である。セパレータの厚み寸法は二次電池内部での厚み(特に正極と負極との間での厚み)であり、任意の10箇所における測定値の平均値を採用してよい。 The thickness of the separator is not particularly limited, but may be 1 μm or more and 100 μm or less, for example, 2 μm or more and 20 μm or less. The thickness dimension of the separator is the thickness inside the secondary battery (particularly the thickness between the positive electrode and the negative electrode), and the average value of the measured values at any 10 points may be adopted.

本発明の二次電池では、正極、負極およびセパレータを含む電極構成層から成る電極組立体が電解質と共に外装体に封入されていてよい。電解質は有機電解質および有機溶媒などを含む“非水系”の電解質であってよく、または水を含む“水系”の電解質であってもよい。正極および負極がリチウムイオンを吸蔵放出可能な層を有する場合、二次電池は“非水系”の電解質を含むことが好ましい。すなわち、電解質が非水電解質となっていることが好ましい。電解質では電極(正極および/または負極)から放出された金属イオンが存在することになり、それゆえ、電解質は電池反応における金属イオンの移動を助力し得る。なお、電解質は液体状またはゲル状などの形態を有していてよい。 In the secondary battery of the present invention, an electrode assembly consisting of electrode constituent layers including a positive electrode, a negative electrode, and a separator may be enclosed in an exterior body together with an electrolyte. The electrolyte may be a "non-aqueous" electrolyte that includes an organic electrolyte and an organic solvent, or it may be an "aqueous" electrolyte that includes water. When the positive electrode and the negative electrode have a layer capable of intercalating and deintercalating lithium ions, the secondary battery preferably includes a "non-aqueous" electrolyte. That is, it is preferable that the electrolyte is a non-aqueous electrolyte. In the electrolyte there will be metal ions released from the electrodes (positive and/or negative), and therefore the electrolyte can assist in the movement of metal ions in battery reactions. Note that the electrolyte may have a liquid or gel form.

非水電解質は、溶媒と溶質とを含む電解質である。溶媒は有機溶媒であってよい。具体的な非水電解質の有機溶媒としては、少なくともカーボネートを含んで成るものであってよい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。あくまでも例示にすぎないが、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられてよく、例えばエチレンカーボネートとジエチルカーボネートとの混合物を用いてよい。また、具体的な非水電解質の溶質としては、例えば、LiPFおよび/またはLiBFなどのLi塩が用いられてよい。 A non-aqueous electrolyte is an electrolyte containing a solvent and a solute. The solvent may be an organic solvent. A specific organic solvent for the non-aqueous electrolyte may contain at least carbonate. Such carbonates may be cyclic carbonates and/or linear carbonates. Although not particularly limited, examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to. Examples of chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), and dipropyl carbonate (DPC). By way of example only, a combination of cyclic carbonates and chain carbonates may be used as the non-aqueous electrolyte, for example a mixture of ethylene carbonate and diethyl carbonate may be used. Moreover, as a specific solute of the non-aqueous electrolyte, for example, Li salt such as LiPF 6 and/or LiBF 4 may be used.

二次電池の外装体は、正極、負極およびセパレータを含む電極構成層が積層した電極組立体を包み込む部材である。後述するが、外装体は、非ラミネート構成を有する金属外装体であってよい。 The exterior body of a secondary battery is a member that encloses an electrode assembly in which electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated. As will be described later, the exterior body may be a metal exterior body having a non-laminated structure.

[本発明の二次電池の特徴]
本発明の二次電池は、電極組立体を包み込む外装体に設けられる周辺部材に関して特徴を有している。特に、二次電池の外装体開口が関連する密閉構造および外部端子構造の点で特徴を有している。
[Characteristics of the secondary battery of the present invention]
The secondary battery of the present invention has features regarding the peripheral member provided in the exterior body that encloses the electrode assembly. In particular, it is characterized by a sealed structure and an external terminal structure related to the opening of the outer case of the secondary battery.

本発明の二次電池では、電池の密閉化と外部端子設置との双方が関連する電池構成が従前に見られないものとなっている。電極組立体を包み込む外装体には、その開口部に電極端子が設けられている。かかる二次電池の電極端子(正極端子または負極端子)は、外装体の開口部を介して電極組立体と電気的に接続されている。本発明では、この電極端子が、外装体の密閉化のための密閉部材を付加的に備えている。つまり、密閉部材は、電極端子とは異なる別個の部材を成している。本発明では外装体開口を塞ぐ密閉部材は、押圧力に起因して変形できる可変形部材となっているところ、外装体の内側に位置する密閉部材の主面が外装体開口よりも小さくなっている。 The secondary battery of the present invention has a battery configuration that has never been seen before in which both the battery is sealed and the external terminals are provided. An electrode terminal is provided in the opening of the exterior body that encloses the electrode assembly. The electrode terminal (positive electrode terminal or negative electrode terminal) of such a secondary battery is electrically connected to the electrode assembly through the opening of the exterior body. In the present invention, this electrode terminal is additionally provided with a sealing member for sealing the exterior body. That is, the sealing member constitutes a separate member different from the electrode terminal. In the present invention, the sealing member that closes the opening of the exterior body is a deformable member that can be deformed due to pressing force, and the main surface of the sealing member located inside the exterior body is smaller than the opening of the exterior body. There is.

図2(A)および2(B)には、本発明の一実施形態に係る二次電池1000を断面視および半分割斜視図で示していると共に、図3および図4には、外装体100の開口部(以下では「外装体開口150」とも称する)の周囲における二次電池1000の構成を断面視で示している。また、図5は、本発明の理解を促進すべく、本発明の二次電池の特徴が関連する要素について個々に分けて示している。図3~図5に示されるように、二次電池の外装体100は、外部端子のための開口部として外装体開口150を有する。つまり、本発明の二次電池1000では、外装体開口150に近位して電極端子200が配置されている。電極端子200は、外部機器との接続に供する出力端子に相当する。かかる電極端子200は、全体として平板状の形態を有していてよい。本発明の二次電池では、このような電極端子200に密閉部材300が付加的に設けられている。より具体的には、電極端子200と組み合わされた密閉部材300が外装体100の外装体開口部150を封じている。 2(A) and 2(B) show a cross-sectional view and a half-divided perspective view of a secondary battery 1000 according to an embodiment of the present invention, and FIGS. 3 and 4 show an exterior body 1000. The configuration of the secondary battery 1000 around the opening (hereinafter also referred to as "exterior body opening 150") is shown in a cross-sectional view. Furthermore, in order to facilitate understanding of the present invention, FIG. 5 separately shows elements related to the characteristics of the secondary battery of the present invention. As shown in FIGS. 3 to 5, the outer case 100 of the secondary battery has an outer case opening 150 as an opening for an external terminal. That is, in the secondary battery 1000 of the present invention, the electrode terminal 200 is disposed proximate to the exterior body opening 150. The electrode terminal 200 corresponds to an output terminal for connection with external equipment. The electrode terminal 200 may have a flat plate shape as a whole. In the secondary battery of the present invention, a sealing member 300 is additionally provided on such an electrode terminal 200. More specifically, the sealing member 300 combined with the electrode terminal 200 seals the exterior body opening 150 of the exterior body 100.

密閉部材300は、電極端子200とは別個の部材として、専ら密閉化に資する部材である。よって、密閉部材300によって外装体開口150が封じられており、二次電池において電解液の漏出が防止されると共に、外装体内で発生したガスの漏出が防止される。また、本発明では、外装体開口を塞ぐ密閉部材は、押圧力により形状変化できる可変形部材となっており、外装体の内側に位置する密閉部材の主面のサイズが外装体開口(平面視開口サイズ)よりも小さくなっている。よって、外装体の内部の圧力(すなわち、「セル内圧」)が異常上昇するなどによって密閉部材に押圧力がもたらされる場合、密閉部材が変形して内部ガスを解放することができ、意図しない電池爆発などより重大な事故を未然に防ぐことができる。つまり、電極端子とは異なる別個の可変形部材を成している密閉部材によって、より安全な電池がもたらされている。 The sealing member 300 is a member separate from the electrode terminal 200 and is a member that exclusively contributes to sealing. Therefore, the exterior body opening 150 is sealed by the sealing member 300, and leakage of the electrolyte in the secondary battery is prevented, as well as leakage of gas generated within the exterior body is prevented. Furthermore, in the present invention, the sealing member that closes the opening of the exterior body is a deformable member whose shape can be changed by pressing force, and the size of the main surface of the sealing member located inside the exterior body corresponds to the opening of the exterior body (in plan view). opening size). Therefore, if a pressing force is applied to the sealing member due to an abnormal increase in the pressure inside the outer casing (i.e., "cell internal pressure"), the sealing member may deform and release internal gas, causing unintended battery damage. This can prevent more serious accidents such as explosions. Thus, a safer battery is provided by the sealing member being a separate deformable member different from the electrode terminals.

図4には、外装体100の外装体開口150と密閉部材300との関係をより理解できるように示している。密閉部材300は、その軸方向に外装体開口150を跨ぐように延在している。図4に示されるように、密閉部材300において少なくとも外装体100の電池内側に位置する主面335B(以下では「内側主面」とも称する)が外装体開口150よりも小さくなっている。つまり、外装体開口150の開口寸法をLとし、密閉部材の内側主面335Bの幅寸法をLとすると、L < Lとなっている。密閉部材の内側主面335Bの面積が外装体開口150の開口面積よりも小さいともいえる。ここでいう「外装体の内側」とは、広義には、外装体の内部領域を指しており、狭義には、外装体開口を有する外装体部分よりも電池内側または電池内部側(特に、電池主面の法線方向または垂線方向に相当する二次電池の軸方向における内側又は内部側)のことを指している。端的にいえば、外装体開口を塞いでいる密閉部材おいて電極組立体により近位する側が“内側”に相当する。 FIG. 4 shows the relationship between the exterior body opening 150 of the exterior body 100 and the sealing member 300 for better understanding. The sealing member 300 extends in the axial direction so as to straddle the exterior body opening 150. As shown in FIG. 4, in the sealing member 300, at least a main surface 335B (hereinafter also referred to as an "inner main surface") located inside the battery of the exterior body 100 is smaller than the exterior body opening 150. That is, when the opening dimension of the exterior body opening 150 is L O and the width dimension of the inner main surface 335B of the sealing member is L W , L W < L O. It can also be said that the area of the inner main surface 335B of the sealing member is smaller than the opening area of the exterior body opening 150. In a broad sense, "inside the exterior" refers to the internal area of the exterior, and in a narrow sense, it refers to the inside of the battery or the inside of the battery (in particular, the inside of the battery) from the exterior body part that has the exterior opening. refers to the inside or inside side in the axial direction of the secondary battery, which corresponds to the normal direction or perpendicular direction to the main surface. Simply put, the side of the sealing member that closes the opening of the exterior body that is closer to the electrode assembly corresponds to the "inside".

密閉部材300は、電極端子とは異なる別個の部材を成すところ、図6に示されるように、幅寸法よりも高さ寸法が大きい軸長胴部350を備えていることが好ましい。つまり、密閉部材300の胴部が長尺状に延びた形態となっていることが好ましい。ここでいう「高さ寸法」は、二次電池の軸方向(例えば電池主面の法線方向または垂線方向)における密閉部材(特にその胴部)の寸法を指しており、「幅寸法」は、その高さ寸法と直交する方向の寸法、すなわち、二次電池の軸方向(例えば電池主面の法線方向または垂線方向)と直交する方向の密閉部材(特にその胴部)の寸法を指している。このような密閉部材は、外装体開口を好適に塞ぎつつも、セル内圧の異常上昇時に密閉部材の軸方向に変形し易く、より好適な安全機構に資する。 The sealing member 300 is a separate member different from the electrode terminal, and as shown in FIG. 6, it is preferable that the sealing member 300 includes an axially long body portion 350 whose height is larger than its width. In other words, it is preferable that the body of the sealing member 300 has an elongated shape. The "height dimension" here refers to the dimension of the sealing member (particularly its body) in the axial direction of the secondary battery (for example, the normal or perpendicular direction to the main surface of the battery), and the "width dimension" , refers to the dimension of the sealing member (especially its body) in the direction perpendicular to its height, that is, the dimension of the sealing member (especially its body) in the direction perpendicular to the axial direction of the secondary battery (e.g., the normal direction or perpendicular direction to the main surface of the battery). ing. Although such a sealing member suitably closes the opening of the exterior body, it is easily deformed in the axial direction of the sealing member when the cell internal pressure rises abnormally, contributing to a more suitable safety mechanism.

密閉部材300は、あくまでも電極端子200と異なる別個の部材に相当し、電極端子200は外部機器との接続に供する出力端子に相当する。つまり、密閉部材300および電極端子200はそれぞれ異なる機能を供するように外装体100に設けられており、密閉部材300が専ら電池の密閉化のための部材として外装体開口150に配置されつつも電極端子200が外部出力端子として外装体開口150に配置されている。外装体開口が関係する二次電池の構成としては、外装体開口に電極端子が出力端子として設けられ、実質的にその出力端子を直接的に利用して外装体開口を塞ぐ構成が考えられるものの、本発明では、そのような構成とはなっておらず、電池密閉化および端子設置の点で新たな電池構成となっている。 The sealing member 300 corresponds to a separate member different from the electrode terminal 200, and the electrode terminal 200 corresponds to an output terminal for connection with an external device. In other words, the sealing member 300 and the electrode terminals 200 are provided in the exterior body 100 to provide different functions, and while the sealing member 300 is disposed in the exterior body opening 150 as a member exclusively for sealing the battery, the electrode terminals 200 A terminal 200 is arranged in the exterior body opening 150 as an external output terminal. As for the configuration of a secondary battery that involves an opening in the exterior body, it is conceivable that an electrode terminal is provided in the opening in the exterior body as an output terminal, and the output terminal is substantially directly used to close the opening in the exterior body. However, the present invention does not have such a configuration, but has a new battery configuration in terms of battery sealing and terminal installation.

本発明の二次電池において、密閉部材300は形状変化できる部材である。上述したように、密閉部材300は、押圧力により変形できる可変形部材となっている。ここでいう「押圧力により変形できる」とは、所定の押圧力がかけられた際に密閉部材が好ましくは破損せずその形状を変えることができることをいう。このような押圧力は、例えば、外装体内部が異常昇圧した際のセル内圧に起因するものであってよい。 In the secondary battery of the present invention, the sealing member 300 is a member whose shape can be changed. As described above, the sealing member 300 is a deformable member that can be deformed by pressing force. The term "deformable by a pressing force" as used herein means that the sealing member is preferably able to change its shape without being damaged when a predetermined pressing force is applied. Such a pressing force may be caused, for example, by the cell internal pressure when the pressure inside the exterior body is abnormally increased.

本発明の二次電池において、密閉部材の胴部は、上述したように、幅寸法よりも高さ寸法が大きい軸長となっている。つまり、密閉部材の軸方向における胴部寸法がその軸方向と直交する方向の胴部寸法よりも大きくなっている。密閉部材において胴部寸法のアスペクト比が1よりも大きいといえる。図6に示される密閉部材300の中実胴部の断面視でいえば、幅寸法(W)に対する高さ寸法(H)の比となるアスペクト比(H/W)が1よりも大きい値となっている。かかるアスペクト比の上限値は、特に制限されるわけではないが、例えば4、3、または2程度であってよい。つまり、密閉部材の胴部のアスペクト比は、好ましくは1より大きく4以下程度、例えば1より大きく3以下程度、または、例えば1より大きく2以下程度であってよい。図示される態様から分かるように、密閉部材およびその胴部の平面視形状が円形となる場合、「幅寸法(W)」は軸長部材の径寸法に相当し、「高さ寸法(H)」は軸長部材の軸方向寸法に相当する。 In the secondary battery of the present invention, the body of the sealing member has an axial length that is larger in height than in width, as described above. That is, the body size of the sealing member in the axial direction is larger than the body size in the direction perpendicular to the axial direction. It can be said that the aspect ratio of the body size of the sealing member is greater than 1. In a cross-sectional view of the solid body of the sealing member 300 shown in FIG. 6, the aspect ratio (H/W), which is the ratio of the height (H) to the width (W), is larger than 1. It has become. The upper limit of the aspect ratio is not particularly limited, but may be, for example, about 4, 3, or 2. That is, the aspect ratio of the body of the sealing member is preferably about 1 to 4 or less, for example, about 1 to 3 or less, or, for example, about 1 to 2 or less. As can be seen from the illustrated embodiment, when the sealing member and its body have a circular shape in plan view, the "width dimension (W)" corresponds to the diameter dimension of the axially long member, and the "height dimension (H)" ” corresponds to the axial dimension of the long shaft member.

密閉部材300の軸長胴部350は、図6に示されるようにピラー形状となっていてよい。例えば、密閉部材の中実の胴部の断面視形状は矩形となっていてよい。軸長胴部350の幅寸法が実質的に高さ方向に一定となっている態様を典型例として挙げることができるが、必ずしもそれに限定されない。つまり、ピラー形状の軸長胴部350の幅寸法は軸方向に非一定となっていてもよい。ピラー形状の軸長胴部を備える密閉部材は、好ましくは、セル内圧の上昇時における安全機構にも好適に資する。 The axially long body 350 of the sealing member 300 may have a pillar shape as shown in FIG. 6 . For example, the solid body of the sealing member may have a rectangular cross-sectional shape. A typical example may be an aspect in which the width dimension of the axially long trunk portion 350 is substantially constant in the height direction, but the present invention is not necessarily limited thereto. That is, the width dimension of the pillar-shaped axially long body portion 350 may be non-uniform in the axial direction. The sealing member with the pillar-shaped axially long body preferably also serves as a safety mechanism when the internal pressure of the cell increases.

ある好適な態様において、密閉部材は鍔状部を有しており、上記「密閉部材の主面」が鍔状部に設けられている。つまり、外装体の内側に位置する「密閉部材の主面」は、密閉部材の鍔状部の主面に相当するものであってよい。図4に示す態様でいえば、密閉部材300は、軸長胴部350の一方の端側および他方の端側にて対の鍔状部335,365を有するところ、相対的に電池内側に位置する鍔状部335の主面335B(即ち、密閉部材にて底面を成すように軸長胴部に対して遠位側の鍔主面)が密閉部材の主面とみなされ得る。このような態様では、外装体の内側に位置する密閉部材の鍔状部(以下においては「内側鍔状部」とも称す)が外装体開口よりも小さくなっていてよい。つまり、密閉部材が内側鍔状部および外側鍔状部を有する場合、少なくとも内側鍔状部の幅寸法または面積(鍔状部の主面が有する面積または密閉部材の軸方向に直交する方向に沿った鍔状部の断面積)が外装体開口の幅寸法または面積(開口によってもたらされる外装体中空領域における平面視開口面積)よりも小さくなっている。 In a preferred embodiment, the sealing member has a flange-like portion, and the above-mentioned “principal surface of the sealing member” is provided on the flange-like portion. In other words, the "main surface of the sealing member" located inside the exterior body may correspond to the main surface of the brim-shaped portion of the sealing member. In the embodiment shown in FIG. 4, the sealing member 300 has a pair of flanges 335 and 365 at one end and the other end of the axially long body 350, which are located relatively inside the battery. The main surface 335B of the collar 335 (ie, the main surface of the collar distal to the axially elongated body so as to form the bottom surface of the sealing member) can be considered as the main surface of the sealing member. In such an aspect, the flange-like part of the sealing member located inside the exterior body (hereinafter also referred to as "inner flange-like part") may be smaller than the exterior body opening. In other words, when the sealing member has an inner flange and an outer flange, at least the width dimension or area of the inner flange (the area of the main surface of the flange or the area along the direction perpendicular to the axial direction of the sealing member) The cross-sectional area of the flange-shaped portion) is smaller than the width or area of the opening of the exterior body (the area of the opening in a plan view in the hollow region of the exterior body provided by the opening).

上述したように、密閉部材は軸長胴部および鍔状部を備えていることが好ましい。より具体的には、密閉部材は互いに対向する一方の端(例えば底側または底面側における端)と他方の端(例えば頂側または頂面側における端)を有する軸長胴部を備えていてよく、かかる“一方の端”および“他方の端”のそれぞれに鍔状部が設けられていてよい。この場合、一方の端側に設けられた鍔状部が非一定な幅寸法を有することが好ましい。特に、密閉部材では、内側鍔状部における幅寸法が非一定となっていることが好ましい。 As mentioned above, the sealing member preferably includes an axially elongated body and a collar. More specifically, the sealing member includes an axially elongated body having one end (e.g., a bottom side or an end on the bottom side) and another end (e.g., a top side or an end on the top side) opposite each other. Often, a flange-like portion may be provided at each of the "one end" and the "other end". In this case, it is preferable that the flange-shaped portion provided on one end side has a non-uniform width dimension. In particular, in the sealing member, it is preferable that the width dimension of the inner brim portion is non-uniform.

図3に示されるように、電池にて相対的に内側に位置する軸長胴部350の端が“一方の端”330に相当し、電池にて相対的に外側に位置する軸長胴部350の端が“他方の端”360に相当していてよい。本発明では、当該軸長胴部350の一方の端330に一体的に設けられた鍔状部335の幅寸法が非一定となっていることが好ましい。つまり、図示されるように、密閉部材300の軸長胴部350は、二次電池1000にて相対的に外側となる端360’(以下では「外端」とも称する)および二次電池1000にて相対的に内側となる端330’(以下では「内端」とも称する)を有し、そのうち内端330’に設けられた鍔状部335の幅寸法が非一定となっていることが好ましい。例えば、内端側の鍔状部(即ち、内側鍔状部)の幅寸法がステップ的に又は漸次的に非一定となっていてよい。図3および図6に示される態様では、軸長胴部350の内端330’に相当する“一方の端”330に設けられた鍔状部335は、その幅寸法が密閉部材の底面から頂面に向かう方向に漸次減少している。このような形態を有する密閉部材は、電池密閉化に好適に資すると共に、好ましくは、セル内圧の上昇時における安全機構にも資する。 As shown in FIG. 3, the end of the axially long trunk 350 located relatively inside the battery corresponds to "one end" 330, and the axially long trunk 350 located relatively outside the battery. The end of 350 may correspond to the "other end" 360. In the present invention, it is preferable that the width dimension of the brim portion 335 integrally provided at one end 330 of the axially long body portion 350 is non-uniform. That is, as illustrated, the axially long body 350 of the sealing member 300 is connected to an end 360' (hereinafter also referred to as an "outer end") that is relatively outer in the secondary battery 1000 and to the secondary battery 1000. It is preferable that the inner end 330' (hereinafter also referred to as an "inner end") be relatively inner than the inner end 330', and that the width dimension of the flange-shaped part 335 provided at the inner end 330' is non-uniform. . For example, the width dimension of the inner end side flange-like portion (namely, the inner flange-like portion) may be non-uniform in a stepwise or gradual manner. In the embodiments shown in FIGS. 3 and 6, the flange portion 335 provided at “one end” 330 corresponding to the inner end 330′ of the axially long body portion 350 has a width dimension that extends from the bottom surface of the sealing member to the top. It gradually decreases in the direction toward the surface. A sealing member having such a configuration not only contributes suitably to sealing the battery, but also preferably serves as a safety mechanism when the internal pressure of the cell increases.

別の切り口でいえば、密閉部材において内側鍔状部の側面がテーパ面となっていてよい。これは、図6に示されるように、軸長胴部350の一方の端330に一体的に設けられた鍔状部335、および、軸長胴部350の他方の端360に一体的に設けられた鍔状部365につき、相対的に電池内側に位置する一方の端330の鍔状部335がテーパ面335Aを有してよいことを意味している。二次電池の軸方向(例えば電池主面の法線方向または垂線方向)に沿って切り取った断面視において、軸長胴部350の一方の端330に位置する鍔状部335はその輪郭がテーパ輪郭335A’を含んでいてよいといえる。図6に示されるように、軸長胴部350の一方の端330に設けられた内側鍔状部335は、当該一方の端330から他方の端360に向かう方向にて幅寸法が漸次減少していてよい。換言すれば、二次電池において内側鍔状部335の幅寸法が、密閉部材の底面から頂面に向かう方向に漸次的に減じられていてよい。図示される態様から分かるように、密閉部材の内側鍔状部335のボディの周面がテーパ面335Aを成していてよい。密閉部材300において、内側鍔状部335がテーパ面335Aとして斜面または傾斜面を有していてよいといえる(図3参照)。また1つの例示となるが、図3および図6に示されるように、テーパ面に起因する内側鍔状部335の幅寸法の漸次的な変化は実質的に一定となっていてよい。内側鍔状部にてテーパ面を有する密閉部材は、電池密閉化に好適に資すると共に、好ましくは、後述するセル内圧の上昇時における安全機構にも資する。 From another perspective, the side surface of the inner brim portion of the sealing member may be a tapered surface. As shown in FIG. 6, this includes a flange 335 integrally provided at one end 330 of the axially long body 350 and a flange 335 integrally provided at the other end 360 of the axially long body 350. This means that the collar 335 at one end 330 located relatively inside the battery may have a tapered surface 335A. In a cross-sectional view taken along the axial direction of the secondary battery (for example, the normal or perpendicular direction to the main surface of the battery), the flange-shaped portion 335 located at one end 330 of the axially long body portion 350 has a tapered outline. It can be said that the contour 335A' may be included. As shown in FIG. 6, the width dimension of the inner collar portion 335 provided at one end 330 of the axially long body portion 350 gradually decreases in the direction from the one end 330 to the other end 360. It's okay to stay. In other words, in the secondary battery, the width of the inner brim portion 335 may be gradually reduced in the direction from the bottom surface to the top surface of the sealing member. As can be seen from the illustrated embodiment, the circumferential surface of the body of the inner collar portion 335 of the sealing member may form a tapered surface 335A. In the sealing member 300, the inner brim portion 335 may have an inclined surface or an inclined surface as the tapered surface 335A (see FIG. 3). As another example, as shown in FIGS. 3 and 6, the gradual change in the width dimension of the inner collar portion 335 due to the tapered surface may be substantially constant. The sealing member having a tapered surface at the inner flange-like portion not only contributes suitably to sealing the battery, but also preferably contributes to a safety mechanism when the internal pressure of the cell increases, which will be described later.

上述した密閉部材の特異な形状の一例として、密閉部材の断面視(すなわち、二次電池の軸方向に沿って切り取った断面視)は、H形状を横倒したような形状を好ましくは有している。つまり、図2または図6に示される断面視を90°回転させて捉えた場合、密閉部材300の輪郭形状が全体として概ねH形状を成していてよい。つまり、密閉部材のおよそ軸中央部分が、当該軸方向に直交する方向にて相対的に窪んだ形状、好ましくは大きく窪んだ形状(例えば、密閉部材の幅寸法が半分以下へと減じられるように窪んだ形状)となっている。このような形状の密閉部材から分かるように、本発明の二次電池は、密閉部材の軸長胴部の周囲に中空領域を有していてよい。つまり、密閉部材の胴部周囲の電池領域として空洞部が設けられていてよい。かかる中空領域が設けられていると、セル内圧の異常上昇時における密閉部材の変形がより好適なものとなり得る。より具体的には、かかる密閉部材の変形は座屈変形に相当し得るところ、そのような幅寸法が増す変形のためのスペースが“中空領域”により好適に確保できる。また、中空領域は、安全機構にて密閉状態が解除された際に内部ガスが流れる流路スペースとしても好適に寄与し得る。 As an example of the unique shape of the sealing member described above, the cross-sectional view of the sealing member (i.e., the cross-sectional view cut along the axial direction of the secondary battery) preferably has a shape like an H-shape turned sideways. There is. That is, when the cross-sectional view shown in FIG. 2 or 6 is rotated by 90 degrees, the outline shape of the sealing member 300 may have an approximately H-shape as a whole. In other words, approximately the center of the axis of the sealing member has a relatively recessed shape in a direction perpendicular to the axial direction, preferably a large recessed shape (for example, the width of the sealing member is reduced to less than half). It has a concave shape. As can be seen from the sealing member having such a shape, the secondary battery of the present invention may have a hollow region around the axially long body portion of the sealing member. That is, a cavity may be provided as a battery area around the body of the sealing member. If such a hollow region is provided, the deformation of the sealing member at the time of an abnormal increase in the cell internal pressure can be made more suitable. More specifically, such deformation of the sealing member may correspond to buckling deformation, and the "hollow region" can appropriately secure a space for such deformation that increases the width dimension. Further, the hollow region can suitably serve as a flow path space through which internal gas flows when the sealed state is released by the safety mechanism.

密閉部材において、軸長胴部は軸方向または縦方向に長い形状を有するので、当該軸長胴部は鍔状部材の厚みよりも大きい高さ寸法を有し得る。つまり、図6に示されるように、軸長胴部350の一方の端330に一体的に設けられた鍔状部335の厚み寸法(即ち、軸方向における鍔寸法)および/または軸長胴部350の他方の端360に一体的に設けられた鍔状部365の厚み寸法(即ち、軸方向における鍔寸法)よりも大きい軸方向の高さ寸法を当該軸長胴部350が有していてよい。このような特異的な形状によって二次電池の密閉化を好適に図り易くなると共に、後述する安全機能が好適に奏され易くなる。 In the sealing member, since the axially elongated body has an elongated shape in the axial direction or the longitudinal direction, the axially elongated body may have a height dimension larger than the thickness of the collar member. That is, as shown in FIG. 6, the thickness dimension of the flange 335 integrally provided at one end 330 of the axially long trunk 350 (i.e., the flange dimension in the axial direction) and/or the axially long trunk 350 The axially long body part 350 has a height dimension in the axial direction that is larger than the thickness dimension of the flanged part 365 (i.e., the flanged dimension in the axial direction) that is integrally provided at the other end 360 of the body part 350. good. Such a unique shape makes it easier to seal the secondary battery properly, and also makes it easier to perform the safety function described later.

本発明で用いられる密閉部材300は、例えば“中実”ゆえ、その内部に中空部を有していない。つまり、密閉部材の断面視輪郭の内側領域は全て密閉部材の材質で占められていてよい。密閉部材の材質は、金属であってよい。つまり、密閉部材が金属部材であってよい。金属製であって、電池の密閉化に資するのであれば、その金属材質の種類に特に制限はない。なお、密閉部材の形状変形をより重視する場合、密閉部材は易変形性の金属材から構成されていることが好ましく、例えばアルミ合金および/または軟鋼を含んで成っていてよい。なお、密閉部材には軸長胴部の一方の端側および他方の端側に鍔状部が好ましくは設けられているが、軸長胴部と鍔状部とは互いに同じ材質であってよい。また、密閉部材において、軸長胴部と鍔状部とは互いに一体化していてよい。つまり、軸長胴部と鍔状部とを備えた密閉部材が一体化物として単一パーツを成していてよい。 The sealing member 300 used in the present invention is, for example, “solid” and therefore does not have a hollow portion inside. That is, the inner region of the cross-sectional profile of the sealing member may be entirely occupied by the material of the sealing member. The material of the sealing member may be metal. That is, the sealing member may be a metal member. There is no particular restriction on the type of metal material, as long as it is made of metal and contributes to sealing the battery. Note that when more emphasis is placed on the shape deformation of the sealing member, the sealing member is preferably made of an easily deformable metal material, and may include, for example, an aluminum alloy and/or mild steel. Note that the sealing member is preferably provided with a flanged portion at one end and the other end of the axially long body, but the axially long body and the flanged portion may be made of the same material. . Further, in the sealing member, the axially long body portion and the brim portion may be integrated with each other. That is, the sealing member including the axially long body and the flange may form a single part as an integral body.

本発明の二次電池において、電極端子は電極組立体に電気的に接続されている。電極組立体から延在する導電部材が電極端子に直接的に接続されていてよく、あるいは、導電部材が電極端子に間接的に接続されていてもよい。ある好適な態様では、密閉部材を介して電極端子と電極組立体とが互いに電気的に接続されている。例えば、図7に示されるように、電極組立体から延在する導電部材400(例えば、いわゆる“タブ”)が密閉部材300を介して電極端子200に電気的と接続されている。より具体的には、電極組立体から延在する導電部材400が密閉部材300に接続されていると共に、密閉部材300が電極端子200にも接続されていてよい。 In the secondary battery of the present invention, the electrode terminal is electrically connected to the electrode assembly. A conductive member extending from the electrode assembly may be directly connected to the electrode terminal, or a conductive member may be indirectly connected to the electrode terminal. In a preferred embodiment, the electrode terminal and the electrode assembly are electrically connected to each other via a sealing member. For example, as shown in FIG. 7, a conductive member 400 (eg, a so-called "tab") extending from the electrode assembly is electrically connected to the electrode terminal 200 via a sealing member 300. More specifically, a conductive member 400 extending from the electrode assembly is connected to the sealing member 300, and the sealing member 300 may also be connected to the electrode terminal 200.

図7に示されるように、密閉部材300の底面に相当する内側主面335Bと導電部材400の上面410とが互い接合されることによって、密閉部材300と導電部材400とが互いに電気的に接続されていてよい。例えば、溶接によって密閉部材300と導電部材400とが接合されていてよい。密閉部材300において内側主面335Bは好ましくはフラット面を有している。図6に示される密閉部材300では、軸長胴部350の一方の端330に設けられた鍔状部335はその主面(端的にいえば、密閉部材300で底面を成す内側主面335B)としてフラット面を好ましくは有している。したがって、密閉部材300のフラット面を介して密閉部材300と導電部材400とは互いに好適に接続することができる。例えば、密閉部材300のフラットな内側主面335Bと導電部材400の上面410とは互い溶接されていてよい。 As shown in FIG. 7, the inner main surface 335B corresponding to the bottom surface of the sealing member 300 and the upper surface 410 of the conductive member 400 are joined to each other, so that the sealing member 300 and the conductive member 400 are electrically connected to each other. It's good that it has been done. For example, the sealing member 300 and the conductive member 400 may be joined by welding. In the sealing member 300, the inner main surface 335B preferably has a flat surface. In the sealing member 300 shown in FIG. 6, the flange-like portion 335 provided at one end 330 of the axially long body portion 350 is on its main surface (in short, the inner main surface 335B forming the bottom surface of the sealing member 300). It preferably has a flat surface. Therefore, the sealing member 300 and the conductive member 400 can be suitably connected to each other via the flat surface of the sealing member 300. For example, the flat inner main surface 335B of the sealing member 300 and the upper surface 410 of the conductive member 400 may be welded together.

図7に示されるように、電極端子200と密閉部材300とは、電極端子200にて端子開口220を形成する端子開口縁部225を介して互いに接続されていてよい。具体的には、電極端子200には、外装体開口150と重なる開口部であって、密閉部材300が配置される開口部として端子開口220が設けられているが、かかる端子開口220を形成する端子開口縁部225が密閉部材300と接続されていてよい。例えば、端子開口縁部225が、密閉部材300にて軸長胴部350の外端側の鍔状部365と接続されていてよい(図7参照)。つまり、電極端子200の端子開口縁部225が、二次電池において外側鍔状部365と接続されていてよい。図7に示されるように、端子開口220を形成している端子開口縁225が、電極端子200と外装体100との間で延在する絶縁部材500を超えるように密閉部材300に向かって延在し、外側鍔状部365の側面および/または下面にまで至るようになっていてよい(“絶縁部材”については後述する)。特に図7においては、鍔状部365の側面の窪みまたは段差部分366(断面視でみてステップ状を成す部分)に端子開口縁225が相補的に接するような形態で端子開口縁部225と外側鍔状部365とが互いに接続されている。 As shown in FIG. 7, the electrode terminal 200 and the sealing member 300 may be connected to each other via a terminal opening edge 225 that forms a terminal opening 220 at the electrode terminal 200. Specifically, the electrode terminal 200 is provided with a terminal opening 220 that overlaps with the exterior body opening 150 and in which the sealing member 300 is disposed. The terminal opening edge 225 may be connected to the sealing member 300. For example, the terminal opening edge 225 may be connected to a flange-like portion 365 on the outer end side of the axially long body portion 350 at the sealing member 300 (see FIG. 7). In other words, the terminal opening edge 225 of the electrode terminal 200 may be connected to the outer collar portion 365 in the secondary battery. As shown in FIG. 7, the terminal opening edge 225 forming the terminal opening 220 extends toward the sealing member 300 so as to exceed the insulating member 500 extending between the electrode terminal 200 and the exterior body 100. It may extend to the side surface and/or bottom surface of the outer brim portion 365 (the "insulating member" will be described later). In particular, in FIG. 7, the terminal opening edge 225 and the outer side are arranged so that the terminal opening edge 225 is in complementary contact with the recess or stepped portion 366 (a step-shaped portion when viewed in cross section) on the side surface of the flange-shaped portion 365. The flanged portions 365 are connected to each other.

ある好適な態様において、電極端子は外装体開口と重なる端子開口を有し、当該端子開口に位置付けられた密閉部材が外装体開口を塞いでいる。これは、電極端子が外装体の外装体開口と重なるように位置付けられる端子開口を有し、密閉部材が端子開口を介して外装体開口を塞ぐように設けられていることを意味している。つまり、電極端子は、その端子開口が外装体開口と重なるように配置されていると共に、その端子開口に収まるように配置された密閉部材が外装体開口を塞ぐようになっている。図2~図5に示される形態でいえば、端子開口220と外装体開口150とが互いに同心となるように又は同心円を成すように電極端子200が外装体100に配置され、それにより共通化された開口部に対して密閉部材300が配置されている。図3に示される形態から特に分かるように、端子開口220の内部に位置付けられた密閉部材300は、外装体開口150を成す外装体開口縁155のレベル(特に外装体開口縁155のエッジ155a)を超えるまで軸方向に延在しており、密閉部材300が外装体開口150の“穴”を好適に塞いでいる。ある好適な態様では、密閉部材300において軸長胴部350の一方の端330(すなわち、内端330’)側に設けられた内側鍔状部335が外装体開口150の“穴”をより直接的に塞いでいる。このように、外部出力端子として設けられた電極端子とは別部材として端子開口に配置された密閉部材は、電池密閉化に好適に資する。 In a preferred embodiment, the electrode terminal has a terminal opening that overlaps with the opening of the exterior body, and a sealing member positioned at the terminal opening closes the opening of the exterior body. This means that the electrode terminal has a terminal opening positioned so as to overlap the opening of the exterior body of the exterior body, and the sealing member is provided so as to close the exterior body opening via the terminal opening. That is, the electrode terminal is arranged so that its terminal opening overlaps with the opening of the exterior body, and the sealing member arranged to fit in the terminal opening closes the opening of the exterior body. In the embodiments shown in FIGS. 2 to 5, the electrode terminals 200 are arranged in the exterior body 100 so that the terminal opening 220 and the exterior body opening 150 are concentric with each other or form concentric circles, thereby making it common. A sealing member 300 is placed over the opening. As can be seen in particular from the form shown in FIG. 3, the sealing member 300 positioned inside the terminal opening 220 is at the level of the exterior body opening edge 155 forming the exterior body opening 150 (particularly at the edge 155a of the exterior body opening edge 155). , and the sealing member 300 suitably closes the "hole" of the housing opening 150. In a preferred embodiment, an inner brim portion 335 provided on one end 330 (i.e., inner end 330') side of the elongated body portion 350 in the sealing member 300 connects the “hole” of the exterior body opening 150 more directly. It's blocking the target. In this way, the sealing member disposed in the terminal opening as a separate member from the electrode terminal provided as an external output terminal suitably contributes to sealing the battery.

本発明の二次電池において、電極端子は、外部機器との接続に供する出力端子である。電極端子200は、例えば平板形態を有している(図5参照)。換言すれば、電極端子は平板状部材であってよい。平板状の電極端子は、例えば金属円板であってよい。平板状ゆえ、電極端子は、その厚みが実質的に一定となっていてよい。電極端子200は、電気導電性を有する限り、その材質に特に制限はない。二次電池の端子材料として一般に用いられている金属材から電極端子が構成されていてもよい。例えば、電極端子は、SUS、アルミニウム、ニッケルおよび銅から成る群から選択される少なくとも1種の金属を含んで成っていてよい。電極端子の平面視形状も特に制限はなく、円形であってよく、あるいは四角形などを含む多角形であってもよい。なお、電極端子の材質は、外装体よりも相対的に剛性が高いものであってもよい。 In the secondary battery of the present invention, the electrode terminal is an output terminal for connection with external equipment. The electrode terminal 200 has, for example, a flat plate shape (see FIG. 5). In other words, the electrode terminal may be a flat member. The flat electrode terminal may be, for example, a metal disk. Since the electrode terminal has a flat plate shape, the thickness of the electrode terminal may be substantially constant. The material of the electrode terminal 200 is not particularly limited as long as it has electrical conductivity. The electrode terminal may be made of a metal material that is generally used as a terminal material for secondary batteries. For example, the electrode terminal may include at least one metal selected from the group consisting of SUS, aluminum, nickel, and copper. The shape of the electrode terminal in plan view is not particularly limited, and may be circular or polygonal including quadrangles. Note that the material of the electrode terminal may be relatively more rigid than the exterior body.

本発明の二次電池では、電極端子と外装体との間に絶縁部材が設けられてよい。絶縁部材の設置によって好適な電池設計が可能となる。つまり、電極端子と外装体との間に絶縁部材が設けられることで、それらの間で電気的な断絶が好適に図られ、電極端子と外装体との間で電極極性を互いに異ならせることが可能となる。図3に示される態様では、電極端子200と外装体100との間で電池の幅方向に延在する絶縁部材500が設けられている。かかる場合、電池の外周縁に相当する外装体の周縁領域130からの面方向内側へと延在するように絶縁部材500が設けられてよい(図3参照)。 In the secondary battery of the present invention, an insulating member may be provided between the electrode terminal and the exterior body. Providing an insulating member enables a suitable battery design. In other words, by providing an insulating member between the electrode terminal and the exterior body, electrical disconnection can be appropriately achieved between them, and it is possible to make the electrode polarities different between the electrode terminal and the exterior body. It becomes possible. In the embodiment shown in FIG. 3, an insulating member 500 extending in the width direction of the battery is provided between the electrode terminal 200 and the exterior body 100. In such a case, the insulating member 500 may be provided so as to extend inward in the plane direction from the peripheral edge region 130 of the exterior body corresponding to the outer peripheral edge of the battery (see FIG. 3).

また、本発明の二次電池では、外装体開口を形成する外装体開口縁部と密閉部材との間に絶縁部材が設けられている。つまり、外装体開口に配置される密閉部材(特にその側面)と外装体開口縁部との間に介在するように絶縁部材が設けられてよい。これにより、外装体の内側に位置する主面が外装体開口よりも小さい密閉部材でありつつも、その密閉部材が外装体開口をより好適に塞ぐことができる。図3に示される態様では、外装体開口150に配置される密閉部材300の鍔状部(特に内側鍔状部335)と外装体開口縁部155との間に絶縁部材500が設けられている。図示されるように、好ましくは密閉部材300の内側鍔状部335の側面と外装体開口縁部155の側面との間に少なくとも介在するように絶縁部材500が設けられていてよい。 Further, in the secondary battery of the present invention, an insulating member is provided between the outer casing opening edge forming the outer casing opening and the sealing member. That is, the insulating member may be provided to be interposed between the sealing member (particularly the side surface thereof) disposed in the opening of the exterior body and the edge of the opening of the exterior body. Thereby, even though the main surface located inside the exterior body is a sealing member that is smaller than the exterior body opening, the sealing member can more suitably close the exterior body opening. In the embodiment shown in FIG. 3, an insulating member 500 is provided between the flange-like part (particularly the inner flange-like part 335) of the sealing member 300 disposed in the exterior body opening 150 and the exterior body opening edge 155. . As shown in the figure, an insulating member 500 may preferably be provided so as to be interposed at least between the side surface of the inner brim portion 335 of the sealing member 300 and the side surface of the exterior opening edge 155.

ある好適な態様において、絶縁部材は、第1絶縁部材と第2絶縁部材とから構成されていてよい。例えば、本発明の二次電池は、電極端子と外装体との間に設けられる第1絶縁部材と、外装体開口を形成する外装体開口縁部と密閉部材との間に設けられる第2絶縁部材とから構成される絶縁部材を備えていてよい。図3および図7には、第1絶縁部材520が、相対的に面方向外側(電池幅方向において外側)に位置付けられて電極端子200と外装体100との間にて延在する一方、第2絶縁部材540が、相対的に面方向内側(電池幅方向において内側)に位置付けられて外装体開口縁部155と密閉部材300との間に設けられている形態が示されている。図示されるように、絶縁部材として第1絶縁部材520と第2絶縁部材540とは互いに隣接していてよく、好ましくは互いに接していてよい(例えば、断面視にて第1絶縁部材520の内側側面と、第2絶縁部材540の外側側面とが少なくとも部分的に接していてよい)。 In a preferred embodiment, the insulating member may include a first insulating member and a second insulating member. For example, the secondary battery of the present invention has a first insulating member provided between the electrode terminal and the exterior body, and a second insulating member provided between the exterior body opening edge forming the exterior body opening and the sealing member. An insulating member may be provided. 3 and 7, the first insulating member 520 is positioned relatively outward in the plane direction (outward in the cell width direction) and extends between the electrode terminal 200 and the exterior body 100, while the first insulating member 520 is A configuration is shown in which the second insulating member 540 is located relatively inside in the plane direction (inside in the battery width direction) and is provided between the exterior body opening edge 155 and the sealing member 300. As illustrated, the first insulating member 520 and the second insulating member 540 as insulating members may be adjacent to each other, preferably in contact with each other (for example, inside the first insulating member 520 in cross-sectional view). (The side surface and the outer side surface of the second insulating member 540 may be at least partially in contact with each other.)

好ましくは、絶縁部材の第2絶縁部材540を介して外装体開口縁部155と密閉部材300とが互いに圧接されている(図7参照)。つまり、本発明の二次電池において、軸長胴部350を備える密閉部材300は、外装体開口150に緊密に嵌るように設けられることで外装体開口縁部155上の絶縁部材500に対して好適な押圧力を与えており、ひいては、より好適な密閉化がもたらされている。ここでいう「圧接」とは、単に接しているというよりも、むしろ圧力および/または圧縮力などが加えられた状態で緊密に接している態様を指している。例えば、第2絶縁部材540を介して外装体開口縁部155が密閉部材300から圧力を受けている状態で又は密閉部材300に抗するような抗力を伴って当該第2絶縁部材540を介して密閉部材300に緊密に隣接している。同様に、第2絶縁部材540を介して密閉部材300も外装体開口縁部155から圧力を受けている状態で又は外装体開口縁部155に抗するような抗力を伴って当該第2絶縁部材540を介して外装体開口縁部155に緊密に隣接している。そのように外装体開口縁部155と密閉部材300とが絶縁部材500を介して圧接されている態様は、密閉部材300(好ましくはその鍔状部335)が絶縁部材500と圧接されていると共に、外装体開口縁部155もまた絶縁部材500と圧接されているともいえる。特に、密閉部材300(好ましくはその内側鍔状部335)が第2絶縁部材540と圧接されていると共に、外装体開口縁部155もまた第2絶縁部材540と圧接されている。絶縁部材500が後述する樹脂部材等となっている場合、そのような圧接に起因して、絶縁部材500が圧縮された状態になっている。特に、密閉部材を押圧して外装体開口縁部上の絶縁部材(好ましくは第2絶縁部材540)に密閉部材を嵌め込むように設ける場合、密閉部材にて軸長部材350の内側鍔状部335と接する絶縁部材500(好ましくは第2絶縁部材540)が、内側鍔状部335の側壁面に関する“幅寸法の非一定”および/または“テーパ面”に起因してより好適に圧縮されることになり(好ましくは、より多方向から圧縮されることになり)、密閉化がより安定なものとなり得る。 Preferably, the exterior body opening edge 155 and the sealing member 300 are pressed against each other via the second insulating member 540 (see FIG. 7). That is, in the secondary battery of the present invention, the sealing member 300 including the axially long body portion 350 is provided so as to tightly fit into the outer case opening 150, so that the sealing member 300 is provided with respect to the insulating member 500 on the outer case opening edge 155. A suitable pressing force is applied, and as a result, more suitable sealing is achieved. The term "press contact" used herein refers to a state in which the parts are in close contact with each other under pressure and/or compressive force, rather than simply in contact with each other. For example, when the exterior body opening edge 155 is under pressure from the sealing member 300 via the second insulating member 540 or with a drag force against the sealing member 300, Closely adjacent to sealing member 300 . Similarly, the sealing member 300 also receives pressure from the opening edge 155 of the exterior body through the second insulating member 540, or the second insulation member 540 and closely adjacent the outer body opening edge 155 . In this embodiment, the opening edge 155 of the exterior body and the sealing member 300 are in pressure contact with each other via the insulating member 500. It can also be said that the opening edge 155 of the exterior body is also pressed into contact with the insulating member 500. In particular, the sealing member 300 (preferably the inner flange-like portion 335 thereof) is in pressure contact with the second insulating member 540, and the exterior body opening edge 155 is also in pressure contact with the second insulating member 540. When the insulating member 500 is made of a resin member, which will be described later, the insulating member 500 is in a compressed state due to such pressure contact. In particular, when the sealing member is pressed and fitted into the insulating member (preferably the second insulating member 540) on the opening edge of the exterior body, the sealing member is attached to the inner flange-shaped portion of the shaft member 350. The insulating member 500 (preferably the second insulating member 540) in contact with the inner brim portion 335 is more preferably compressed due to the “non-constant width” and/or “tapered surface” of the side wall surface of the inner brim portion 335. (Preferably, it is compressed from more directions), and the sealing can be made more stable.

本明細書において「絶縁部材」は、少なくとも外装体と電極端子および/または密閉部材との間に介在し、それらの間の“絶縁”に寄与する部材のことを意味している。絶縁部材は、“絶縁性”を呈すのであればその材質の種類につき特に制限はない。二次電池の絶縁材として一般に用いられる材料(即ち、二次電池にて絶縁材料として一般に用いられる材料、好ましくは二次電池の絶縁材料として封止用に一般に用いられる材料)から絶縁部材が形成されていてもよい。 In this specification, the term "insulating member" refers to a member that is interposed between at least the exterior body and the electrode terminal and/or the sealing member and contributes to "insulation" between them. There are no particular restrictions on the type of material of the insulating member as long as it exhibits "insulating properties." The insulating member is formed from a material commonly used as an insulating material for secondary batteries (i.e., a material commonly used as an insulating material in secondary batteries, preferably a material commonly used for sealing as an insulating material for secondary batteries). may have been done.

ある好適な態様において、絶縁部材500は樹脂材から構成されている。つまり、絶縁部材500が樹脂部材となっていてよい。例えば、第1絶縁部材520および第2絶縁部材540の少なくとも一方が樹脂部材となっていてよい。好ましくは、第1絶縁部材520および第2絶縁部材540の双方が、それぞれ樹脂部材となっている。絶縁部材500に用いられる樹脂材は、熱可塑性樹脂、熱硬化性樹脂、および/またはエンジニアプラスチックなどの種類に属するものであってよい。絶縁部材の樹脂材についてより具体的に例示すれば、フッ素系樹脂のPFA樹脂が信頼性および/または成形性の点で好ましいが、これに限定されない。熱可塑性樹脂としてPE樹脂および/またはPP樹脂などのポリオレフィンが絶縁部材に含まれていてよく、エンジニアプラスチックとしてPBT樹脂、PPS樹脂および/またはLCP樹脂が絶縁部材に含まれていてよく、あるいは、熱硬化性樹脂としてフェノール樹脂および/またはエポキシ樹脂等が絶縁部材に含まれていてよい。なお、絶縁部材は、外装体開口と密閉部材との間の“封止”にも資する部材ゆえ、絶縁部材を「封止絶縁部材」、「封止部材」または「封止樹脂部材」などと称すこともできる。同様にして、第1絶縁部材は、相対的に幅方向外側に位置付けられ得ることから「外側封止絶縁部材」、「外側封止部材」または「外側封止樹脂部材」と称すことができ、第2絶縁部材は相対的に幅方向内側に位置付けられ得ることから「内側封止絶縁部材」、「内側封止部材」または「内側封止樹脂部材」と称すことができる。 In a preferred embodiment, the insulating member 500 is made of a resin material. That is, the insulating member 500 may be a resin member. For example, at least one of the first insulating member 520 and the second insulating member 540 may be a resin member. Preferably, both the first insulating member 520 and the second insulating member 540 are each made of a resin member. The resin material used for the insulating member 500 may belong to types such as thermoplastic resins, thermosetting resins, and/or engineered plastics. To give a more specific example of the resin material of the insulating member, PFA resin, which is a fluororesin, is preferable in terms of reliability and/or moldability, but is not limited thereto. As a thermoplastic resin, polyolefin such as PE resin and/or PP resin may be included in the insulating member, and as an engineering plastic, PBT resin, PPS resin and/or LCP resin may be included in the insulating member. The insulating member may contain a phenol resin and/or an epoxy resin as the curable resin. Since the insulating member also contributes to "sealing" between the opening of the exterior body and the sealing member, the insulating member is also referred to as a "sealing insulating member," "sealing member," or "sealing resin member." It can also be called. Similarly, the first insulating member can be referred to as an "outer sealing insulating member", "outer sealing member", or "outer sealing resin member" because it can be positioned relatively outward in the width direction, Since the second insulating member can be positioned relatively inward in the width direction, it can be referred to as an "inner sealing insulating member," "inner sealing member," or "inner sealing resin member."

外装体開口縁部と密閉部材との間に介在する絶縁部材は、電池密閉化に関連してより好適な形態を有していてよい。具体的には、図8に示されるように、第2絶縁部材540が外装体開口縁部155のエッジ155a上にまで及ぶように延在していてよい。好ましくは、外装体開口縁部155と密閉部材300(好ましくはその鍔状部335)とで挟持されるように設けられた第2絶縁部材540は、外装体開口縁部155のエッジ155aを超える又は跨ぐように延在していてよい。図8に示される態様では、第2絶縁部材540が外装体開口縁部155のエッジ155aを跨ぐように突出部545(特に、径方向外側に突出する突出部545)を有している。外装体開口縁部155のエッジ155aを超える又は跨ぐ第2絶縁部材540では、シール領域がより増すことになり、より好適な密閉化がなされ得る。 The insulating member interposed between the opening edge of the exterior body and the sealing member may have a more suitable form in relation to battery sealing. Specifically, as shown in FIG. 8, the second insulating member 540 may extend over the edge 155a of the opening edge 155 of the exterior body. Preferably, the second insulating member 540 provided so as to be sandwiched between the opening edge 155 of the exterior body and the sealing member 300 (preferably the brim portion 335 thereof) extends beyond the edge 155a of the opening edge 155 of the exterior body. Or it may extend to straddle it. In the embodiment shown in FIG. 8, the second insulating member 540 has a protrusion 545 (particularly a protrusion 545 that protrudes radially outward) so as to straddle the edge 155a of the opening edge 155 of the exterior body. In the second insulating member 540 that extends over or straddles the edge 155a of the opening edge 155 of the exterior body, the sealing area increases, and more suitable sealing can be achieved.

例えば、外装体開口縁部はバーリング端であってよい。つまり、図8に示すような、外装体開口150を囲むように立設または肉厚化する外装体開口縁部155は、バーリング加工によって設けることができる。外装体開口縁部155のエッジ155aを超える又は跨ぐ第2絶縁部材540は、そのようなバーリング端を電気絶縁することになり、導電部材400と外装体100との電気接触をより好適に防止できる。また、第2絶縁部材540が外装体開口縁部155のエッジ155aを超える又は跨ぐことで、第2絶縁部材540と外装体100とがより好適に一体化する。 For example, the exterior body opening edge may be a burred edge. That is, as shown in FIG. 8, the exterior body opening edge 155 that is erected or thickened so as to surround the exterior body opening 150 can be provided by burring. The second insulating member 540 that extends over or straddles the edge 155a of the opening edge 155 of the exterior body electrically insulates such a burring end, and can more preferably prevent electrical contact between the conductive member 400 and the exterior body 100. . Moreover, the second insulating member 540 and the exterior body 100 are more suitably integrated by the second insulating member 540 exceeding or straddling the edge 155a of the opening edge 155 of the exterior body.

本発明の二次電池は、好ましくは、より安全な電池として供される。例えば、外装体の内圧が上昇する異常事態が発生した場合、意図しない電池爆発などより重大な事故を未然に防ぐべく、二次電池が密閉化解除の機構を好ましくは有している。つまり、過充電又は内部短絡等で電池内部の異常発熱で生じたガスによって外装体内部の圧力(本明細書では「セル内圧」とも称する)が上昇して電池が爆発する破裂現象を防止するために、かかるセル内圧が過度に上昇した時にガスを開放する機構を二次電池が備えていることが好ましい。この点、本発明の二次電池は、セル内圧が過度に上昇した際、好ましくは密閉部材がその密閉状態を解除できるようになっている。 The secondary battery of the present invention is preferably provided as a safer battery. For example, if an abnormal situation occurs in which the internal pressure of the exterior body increases, the secondary battery preferably has a mechanism for releasing the seal in order to prevent a more serious accident such as an unintentional battery explosion. In other words, this is to prevent the battery from exploding due to an increase in the pressure inside the outer casing (also referred to as "cell internal pressure" in this specification) due to gas generated by abnormal heat generation inside the battery due to overcharging or internal short circuit, etc. Furthermore, it is preferable that the secondary battery is provided with a mechanism that releases gas when the cell internal pressure rises excessively. In this regard, the secondary battery of the present invention is preferably configured so that the sealing member can release its sealed state when the cell internal pressure increases excessively.

本発明では、密閉部材は、二次電池の上昇したセル内圧に起因して形状変化できる可変形部材となっている。つまり、セル内圧が過度に上昇した際、その圧力を受けて電池の密閉状態を解除すべく密閉部材が変形できる。例えば図9に示すように、二次電池の上昇したセル内圧Pから受ける外力によって、外装体開口150に嵌合している密閉部材300がその形状を変え、それにより外装体開口150の気密性が破られる(図9には、気密性が破られて外部へと抜ける内部ガスの流れFが例示されている)。この点、本発明の二次電池1000では、外装体100の内側に位置する密閉部材300の主面335Bは外装体開口150よりも小さくなっており(図4参照)、密閉部材に押圧力が加えられた際に密閉部材の形状変形が外装体により阻害されないようになっている。また、密閉部材300が特に軸長胴部350に起因してその高さ方向に変形し易くなっている。具体的には、上昇したセル内圧に起因して高さ方向の寸法が減じられるように密閉部材300は変形し易く、それゆえ、可変形部材として密閉部材300が供されている。密閉部材300の変形に伴い外装体開口150に関する気密性が好ましくは破られるので、セル内圧が過度に上昇した際に密閉部材はその密閉状態を好適に解除できるといえる。このように、本発明の二次電池では、好ましくは密閉部材の特異的な形状に起因して、電池の密閉化に寄与した密閉部材がセル内圧の異常上昇時に変形し易くなっており、所望の安全機能が好適にもたらされている。 In the present invention, the sealing member is a deformable member that can change shape due to the increased cell internal pressure of the secondary battery. That is, when the internal pressure of the cell increases excessively, the sealing member can deform in response to the pressure to release the sealed state of the battery. For example, as shown in FIG. 9, the external force received from the increased cell internal pressure P of the secondary battery changes the shape of the sealing member 300 fitted into the exterior opening 150, thereby improving the airtightness of the exterior opening 150. is broken (FIG. 9 shows an example of the flow F of the internal gas that breaks the airtightness and escapes to the outside). In this regard, in the secondary battery 1000 of the present invention, the main surface 335B of the sealing member 300 located inside the exterior body 100 is smaller than the exterior body opening 150 (see FIG. 4), so that a pressing force is applied to the sealing member. The shape deformation of the sealing member is not inhibited by the exterior body when the sealing member is applied. Further, the sealing member 300 is easily deformed in its height direction, especially due to the axially long body portion 350. Specifically, the sealing member 300 is easily deformed such that the height dimension is reduced due to the increased cell internal pressure, and therefore the sealing member 300 is provided as a deformable member. Since the airtightness of the exterior body opening 150 is preferably broken as the sealing member 300 deforms, it can be said that the sealing member can preferably release its sealed state when the cell internal pressure increases excessively. As described above, in the secondary battery of the present invention, preferably due to the unique shape of the sealing member, the sealing member that contributes to sealing the battery is likely to deform when the cell internal pressure abnormally increases, and the desired Safety features are advantageously provided.

ある好適な態様では、絶縁部材500を介して外装体開口縁部155と密閉部材300とが互いに圧接されているので、セル内圧Pが過度に上昇した際、その圧接状態が解除されるように密閉部材300が変形する(図10参照)。例えば、密閉部材が内圧Pを受けて座屈するように密閉部材300が変形でき、二次電池の意図しない破裂などより重大な事故を未然に防ぐことができる。好ましくは、圧接状態を解除すべく密閉部材300が変形するに際しては、導電部材400との接続が切れることになり(図10参照)、電力供給が好適に絶たれるので、以降の過充電などが防止され易い。つまり、内圧解放時における電気的に非所望な事象についても未然防止を図ることができる。 In a preferred embodiment, the opening edge 155 of the exterior body and the sealing member 300 are pressed against each other via the insulating member 500, so that when the cell internal pressure P increases excessively, the pressed state is released. The sealing member 300 is deformed (see FIG. 10). For example, the sealing member 300 can be deformed so that the sealing member buckles under the internal pressure P, thereby preventing a more serious accident such as an unintended explosion of the secondary battery. Preferably, when the sealing member 300 deforms to release the press-contact state, the connection with the conductive member 400 is cut (see FIG. 10), and the power supply is suitably cut off, thereby preventing subsequent overcharging. Easy to prevent. In other words, it is possible to prevent undesired electrical events when the internal pressure is released.

ある好適な態様では、密閉部材は軸長胴部の変形に基づいている。つまり、二次電池の上昇したセル内圧から受ける外力によって軸長胴部350が変形してよく、それにより密閉部材300はその形状を変えることができる。かかる場合、密閉部材300の軸長胴部350は、上昇したセル内圧に起因して軸長方向の寸法を減じるように変形してよい。図11には、軸長胴部350の変形により密閉部材300の高さ寸法が減じられる変形態様が例示されている。例えば、外装体開口縁部155と密閉部材300(好ましくはその鍔状部335)とが絶縁部材500(好ましくは第2絶縁部材540)を介して互いに圧接されているところ、セル内圧が過度に上昇した際には軸長胴部350の変形に基づいて当該圧接状態が解除されるように密閉部材300が変形してよい(図10参照)。 In one preferred embodiment, the sealing member is based on a deformation of the axial length body. That is, the axially elongated body portion 350 may be deformed by the external force received from the increased cell internal pressure of the secondary battery, thereby allowing the sealing member 300 to change its shape. In such a case, the axially elongated body 350 of the sealing member 300 may deform to reduce its axial dimension due to the increased cell internal pressure. FIG. 11 illustrates a modification in which the height of the sealing member 300 is reduced by deforming the axially long body 350. For example, when the exterior opening edge 155 and the sealing member 300 (preferably the brim portion 335 thereof) are pressed against each other via the insulating member 500 (preferably the second insulating member 540), the cell internal pressure may be excessively high. When raised, the sealing member 300 may be deformed based on the deformation of the axially long body portion 350 so that the press-contact state is released (see FIG. 10).

好ましくは、圧接状態の解除をもたらす密閉部材の変形に際しては、絶縁部材の破断または切断がなされる。例えば、外装体開口縁部と密閉部材との間に設けられた絶縁部材が破断または切断に付されてよい。特に、密閉部材は、二次電池の上昇したセル内圧に起因して、第2絶縁部材に破断をもたらすように変形してよい。ある好適な態様では、電極端子は外装体開口と重なる端子開口を有し、端子開口に位置付けられて外装体開口を塞いでいる密閉部材は、二次電池の上昇したセル内圧に起因して、外装体開口を形成する外装体開口縁部に設けられた絶縁部材の破断を引き起こすように変形する。このような絶縁部材の破断・切断によって、外装体開口における気密性がより好適に破られることになり、より安全な電池がもたらされ得る。 Preferably, when the sealing member is deformed to release the press-contact state, the insulating member is broken or cut. For example, an insulating member provided between the opening edge of the exterior body and the sealing member may be subjected to rupture or cutting. In particular, the sealing member may deform to cause rupture in the second insulating member due to increased cell internal pressure of the secondary battery. In a preferred embodiment, the electrode terminal has a terminal opening that overlaps with the opening of the exterior body, and the sealing member that is positioned in the terminal opening and blocks the opening of the exterior body, due to the increased cell internal pressure of the secondary battery, The deformation occurs so as to cause breakage of the insulating member provided at the edge of the exterior body opening that forms the exterior body opening. By breaking and cutting the insulating member in this manner, the airtightness at the opening of the exterior body is more appropriately broken, and a safer battery can be provided.

より具体的には、セル内圧が過度に上昇した際、外装体の内側に位置する密閉部材300の内側主面335B(好ましくは、密閉部材300の底面を成す内側主面335B)は当該セル内圧Pを受けることになる(図9および図10参照)。かかる内圧Pを受けた密閉部材300には、その変形応力に伴って外側(図面における上側)へと移動する力が働くが、密閉部材300との密接に起因して外装体開口縁部155上の絶縁部材500もまた外側(図面における上側)に向かって移動する力が働く。よって、外装体開口縁部155(特にそのエッジ155a)を跨ぐように設けられている絶縁部材500は、そのエッジ155aから剪断力を受けることになり、最終的に絶縁部材500にその破断をもたらす作用が生じる。このような安全機構において、一方の端側(特に、二次電池において内端側)に設けられた内側鍔状部の“幅寸法の非一定”および/または“テーパ面”は、より好適な破断に寄与する。具体的には、非一定な幅寸法および/またはテーパ面を有する内側鍔状部335は、セル内圧の異常上昇時の絶縁部材500に対して外向きに働く力をより効果的に供するように作用する。特に、密閉部材の鍔状部335が“幅寸法の非一定”および/または“テーパ面”に基づく側壁面を有すると共に、第2絶縁部材540が当該側壁面と相補的に合わさる内側面を有すると、セル内圧の異常上昇時の変形に伴って外側へと移動しようとする密閉部材300の鍔状部335は、かかる相補的な内側面を介して第2絶縁部材540に外向きの応力をより効果的に伝えることができる。よって、第2絶縁部材540は、外装体開口縁部155のエッジ155aから剪断力をより効果的に受けることになり、最終的に第2絶縁部材540がより容易に破断される(図9および図10参照)。つまり、密閉部材の鍔状部の“幅寸法の非一定”および/または“テーパ面”は、外装体開口の気密性をより効果的に破ることに寄与し、セル内圧の異常上昇時のより好適な内部ガス解放に資する。 More specifically, when the cell internal pressure increases excessively, the inner main surface 335B of the sealing member 300 located inside the exterior body (preferably the inner main surface 335B forming the bottom surface of the sealing member 300) P (see FIGS. 9 and 10). The sealing member 300 that has received the internal pressure P is subjected to a force that moves outward (towards the top in the drawing) due to its deformation stress. A force is also applied to the insulating member 500 to move it outward (towards the top in the drawing). Therefore, the insulating member 500 provided so as to straddle the exterior opening edge 155 (particularly the edge 155a thereof) receives a shearing force from the edge 155a, which ultimately causes the insulating member 500 to break. Action occurs. In such a safety mechanism, it is more preferable to have a "non-uniform width dimension" and/or a "tapered surface" of the inner flange provided on one end (especially on the inner end of a secondary battery). Contributes to rupture. Specifically, the inner brim portion 335 having a non-uniform width dimension and/or a tapered surface is configured to more effectively apply an outward force to the insulating member 500 when the cell internal pressure abnormally increases. act. In particular, the brim portion 335 of the sealing member has a side wall surface based on "non-uniform width dimension" and/or a "tapered surface," and the second insulating member 540 has an inner surface complementary to the side wall surface. Then, the brim portion 335 of the sealing member 300, which tends to move outward due to the deformation caused by the abnormal rise in cell internal pressure, applies outward stress to the second insulating member 540 via the complementary inner surface. You can communicate more effectively. Therefore, the second insulating member 540 receives the shearing force more effectively from the edge 155a of the opening edge 155 of the exterior body, and finally the second insulating member 540 is more easily broken (see FIGS. 9 and 9). (See Figure 10). In other words, the "non-uniform width dimension" and/or "tapered surface" of the brim of the sealing member contributes to more effectively breaking the airtightness of the opening of the exterior body, and is more effective when the cell internal pressure rises abnormally. Contributes to suitable internal gas release.

ある好適な態様において、外装体開口を形成している外装体開口縁部は鋭利縁を有している。つまり、外装体開口150を囲むように立設または肉厚化する壁部分の先端が鋭利な形状を有している。図12には、外装体開口縁部155が示されており、そのエッジ155aは下方に向かって尖った鋭利縁を成している。図示される形態から分かるように、本発明でいう「鋭利縁」とは、広義には、外装体開口縁部の最先端が尖った形状を含むことを意味しており、例えば、断面視において外装体開口縁部(特にその最先端)が、丸まった輪郭というよりもむしろ、角張った輪郭を有することを意味している。このような外装体開口縁部の鋭利縁は、セル内圧が異常上昇した際の内部ガス解放に好適に資する。つまり、外装体開口縁部が鋭利縁を有すると、セル内圧の異常上昇時に外装体開口縁部のエッジ155aから絶縁部材500が受ける剪断力はより効果的なものとなり、絶縁部材500の破断が更に生じ易くなる(図9および図10参照)。つまり、外装体開口縁部の鋭利縁によって絶縁部材の破断・切断が効果的になされ、外装体開口の気密性がより効果的に破られるので、セル内圧の異常上昇時の内部ガス解放が好適なものとなる。 In a preferred embodiment, the outer casing opening edge forming the outer casing opening has a sharp edge. In other words, the tip of the wall portion that is erected or thickened so as to surround the exterior body opening 150 has a sharp shape. FIG. 12 shows an opening edge 155 of the exterior body, the edge 155a of which is a sharp edge pointing downward. As can be seen from the illustrated form, the term "sharp edge" as used in the present invention, in a broad sense, includes a shape in which the leading edge of the opening edge of the exterior body is sharp, for example, in a cross-sectional view. This means that the edges of the housing opening (particularly their leading edges) have an angular rather than a rounded contour. Such a sharp edge of the opening edge of the exterior body suitably contributes to releasing internal gas when the internal pressure of the cell increases abnormally. In other words, when the opening edge of the exterior body has a sharp edge, the shearing force that the insulating member 500 receives from the edge 155a of the opening edge of the exterior body becomes more effective when the cell internal pressure rises abnormally, and the breakage of the insulating member 500 is prevented. It becomes even more likely to occur (see FIGS. 9 and 10). In other words, the insulating member is effectively broken and cut by the sharp edge of the opening edge of the exterior body, and the airtightness of the exterior body opening is more effectively broken, making it suitable for releasing internal gas when the internal cell pressure rises abnormally. Become something.

上述したように、絶縁部材500が第1絶縁部材520および第2絶縁部材540から構成される場合、第2絶縁部材540が外装体開口縁部155(特にそのエッジ155a)を跨ぐように設けられていてよい。よって、セル内圧の異常上昇時における絶縁部材の破断は、好ましくは第2絶縁部材540にて生じる。つまり、外装体開口縁部155と密閉部材300との間に設けられ、外装体開口縁部155のエッジ155aを跨ぐように設けられている第2絶縁部材540は、セル内圧の異常上昇時に外側(図面における上側)に向かって移動しようとする密閉部材300に起因して外装体開口縁部155のエッジ155aから剪断力を受けることになり、最終的には第2絶縁部材540に破断が生じる。このような絶縁部材の破断は、セル内圧の異常上昇時の密閉部材300の動きに伴って絶縁部材が外装体開口縁部155のエッジ155aから受ける剪断力に好ましくは基づいている。よって、かかる剪断力を効率的に絶縁部材の破断に供する点をより重視すれば、外装体開口縁部155のエッジ155aが尖って鋭利縁を成していることが好ましい。ここで、本発明においては外装体開口縁部155のエッジ155aが仮に尖っていなくても、上記剪断力によって絶縁部材の破断が生じ得るので、外装体開口縁部155の鋭利縁は絶縁部材の破断促進に資する要素といえる。つまり、本発明の二次電池では、外装体開口縁部の鋭利縁によって絶縁部材(好ましくは第2絶縁部材)の破断または切断が助力され、それによって、セル内圧の異常上昇時に内部ガス解放がより確実になされ得る。 As described above, when the insulating member 500 is composed of the first insulating member 520 and the second insulating member 540, the second insulating member 540 is provided so as to straddle the exterior opening edge 155 (particularly the edge 155a thereof). It's okay to stay. Therefore, breakage of the insulating member when the cell internal pressure abnormally increases preferably occurs at the second insulating member 540. In other words, the second insulating member 540, which is provided between the exterior body opening edge 155 and the sealing member 300 and is provided so as to straddle the edge 155a of the exterior body opening edge 155, is removed from the outside when the cell internal pressure is abnormally increased. Due to the sealing member 300 trying to move toward the upper side in the drawing, it receives a shearing force from the edge 155a of the opening edge 155 of the exterior body, and eventually the second insulating member 540 breaks. . Such breakage of the insulating member is preferably based on the shearing force that the insulating member receives from the edge 155a of the opening edge 155 of the exterior body as the sealing member 300 moves when the cell internal pressure abnormally increases. Therefore, if more emphasis is placed on using such shearing force to efficiently rupture the insulating member, it is preferable that the edge 155a of the opening edge 155 of the exterior body has a sharp edge. Here, in the present invention, even if the edge 155a of the opening edge 155 of the exterior body is not sharp, the insulating member may break due to the shearing force. This can be said to be an element that contributes to promoting rupture. In other words, in the secondary battery of the present invention, the sharp edges of the opening edge of the outer case assist in breaking or cutting the insulating member (preferably the second insulating member), thereby preventing internal gas release when the cell internal pressure abnormally increases. can be done more reliably.

外装体開口縁部155に設けられた鋭利縁は、図8および図12に示す形態からも分かるように、好ましくは“切り刃”の形態を有している。つまり、外装体開口縁部155のエッジ155aは、セル内圧が過度に上昇する内圧異常時に絶縁部材(例えば、第2絶縁部材540)の切断をより容易に引き起こすべく切り刃状になっている。このような切り刃の形態については、必ずしも刃先が同一高さである必要はなく、多少の凹凸を伴う刃状であったとしても縁部の先端が尖っている限り、内圧異常時の絶縁部材の切断・破断に資する。外装体開口縁部の鋭利縁は、その鋭利な度合いによって内部ガス解放圧を調整できる。例えば、鋭利縁の断面視輪郭において縁部分が成す角度をより小さくすれば(例えばその鋭角をより小さくすれば)内部ガス解放圧を低くできる一方、かかる角度を大きくすれば(例えば、その鋭角をより大きくするか、あるいは、鈍角にすると)内部ガス解放圧を高くできる。 The sharp edge provided on the opening edge 155 of the exterior body preferably has a "cutting edge" shape, as can be seen from the shapes shown in FIGS. 8 and 12. In other words, the edge 155a of the opening edge 155 of the exterior body has a cutting edge shape to more easily cause the insulating member (for example, the second insulating member 540) to be cut in the event of an abnormal internal pressure in which the internal cell pressure increases excessively. Regarding the shape of this type of cutting blade, the cutting edge does not necessarily have to be at the same height, and even if the blade shape has some unevenness, as long as the tip of the edge is sharp, it can be used as an insulating member in case of abnormal internal pressure. Contributes to cutting and breaking. The internal gas release pressure can be adjusted depending on the degree of sharpness of the sharp edge of the opening edge of the exterior body. For example, in the cross-sectional profile of a sharp edge, the internal gas release pressure can be lowered by making the angle between the edges smaller (e.g., by making the acute angle smaller), whereas by making the angle larger (e.g., by making the acute angle smaller), the internal gas release pressure can be lowered. If the angle is made larger or obtuse angle), the internal gas release pressure can be increased.

内部ガス解放圧は、絶縁部材の厚さによっても調整できる。特に、第2絶縁部材の厚さ、より具体的には、第2絶縁部材540にて外装体開口縁部155のエッジ155aを跨いでいる部分の厚さ(以下では「第2絶縁部材の跨ぎ部分厚さ」とも称す)の大小によって内部ガス解放圧を調整できる。内部ガス解放圧を低くしたい場合、第2絶縁部材の跨ぎ部分厚さをより小さくすればよく、逆に内部ガス解放圧を高くしたい場合には第2絶縁部材の跨ぎ部分厚さをより大きくすればよい。本発明において、内圧異常時の内部ガス解放は、絶縁部材(特に第2絶縁部材)が完全に破断または切断されることを必ずしも要せず、絶縁部材(特に第2絶縁部材)に亀裂が生じれば内部ガスの排出は可能となり、異常時のセル内圧の低減は可能である。 The internal gas release pressure can also be adjusted by adjusting the thickness of the insulating member. In particular, the thickness of the second insulating member, more specifically, the thickness of the portion of the second insulating member 540 that straddles the edge 155a of the opening edge 155 of the exterior body (hereinafter referred to as "straddling of the second insulating member"). The internal gas release pressure can be adjusted by adjusting the size of the partial thickness (also referred to as "partial thickness"). If you want to lower the internal gas release pressure, you just need to make the thickness of the straddling part of the second insulating member smaller, and conversely, if you want to increase the internal gas release pressure, you can make the thickness of the straddling part of the second insulating member larger. Bye. In the present invention, the release of internal gas when the internal pressure is abnormal does not necessarily require that the insulating member (especially the second insulating member) be completely broken or cut, but rather that the insulating member (especially the second insulating member) may be cracked. If so, the internal gas can be discharged, and the internal pressure of the cell can be reduced in the event of an abnormality.

本発明の二次電池では、電極端子および密閉部材は、外装体に対して設けられている。ここで、本明細書でいう「外装体」とは、正極、負極およびセパレータを含む電極構成層が積層した電極組立体を収納または包み込むための部材を意味している。例えば、外装体は、非ラミネート構成を有する金属外装体であってよい。これは、外装体が金属シート/融着層/保護層から成るようなラミネート部材などとなっていないことを意味している。本発明における外装体が、いわゆるラミネートフィルムから成るパウチに相当するソフトケース型電池の外装体とは異なっていてよいといえる。非ラミネート構成を有する金属外装体は、金属単一部材から成る構成を好ましくは有する。例えば、かかる金属外装体は、ステンレス(SUS)および/またはアルミニウムなどの金属から成る単一部材であってよい。ここでいう「金属単一部材」とは、広義には、外装体がいわゆるラミネート構成を有さないことを意味しており、狭義には、外装体が実質的に金属のみから成る部材となることを意味している。したがって、実質的に金属のみから成る部材となるのであれば、金属外装体の表面に適当な表面処理がなされていてもよい。例えば、そのような金属外装体をその厚み方向に切断した切断面においては、表面処理などが為されている部分を除き、単一の金属層を確認できる。なお、本明細書における「ステンレス」は、例えば「JIS G 0203 鉄鋼用語」に規定されているステンレス鋼のことを指しており、クロムまたはクロムとニッケルとを含有する合金鋼であってよい。ある好適な態様では、外装体は、缶形態を有していてよい(かかる場合、本明細書では「外装缶」とも称す)。 In the secondary battery of the present invention, the electrode terminal and the sealing member are provided to the exterior body. Here, the term "exterior body" as used herein refers to a member for housing or enveloping an electrode assembly in which electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated. For example, the sheath may be a metal sheath having a non-laminated configuration. This means that the exterior body is not a laminate member consisting of a metal sheet/fusion layer/protective layer. It can be said that the exterior body in the present invention may be different from the exterior body of a soft case type battery, which corresponds to a pouch made of a so-called laminate film. A metal sheath having a non-laminated construction preferably has a construction consisting of a single piece of metal. For example, such a metal exterior body may be a single member made of metal such as stainless steel (SUS) and/or aluminum. In a broad sense, the term "single metal member" here means that the exterior body does not have a so-called laminate structure, and in a narrow sense, the exterior body is a member that consists essentially only of metal. It means that. Therefore, as long as the member is made essentially only of metal, the surface of the metal sheath may be subjected to an appropriate surface treatment. For example, in a cut surface obtained by cutting such a metal exterior body in its thickness direction, a single metal layer can be observed except for areas where surface treatment has been performed. Note that "stainless steel" in this specification refers to, for example, stainless steel defined in "JIS G 0203 Steel Terminology", and may be chromium or an alloy steel containing chromium and nickel. In a preferred embodiment, the outer package may have the form of a can (in such a case, it is also referred to herein as an "outer can").

本発明の二次電池では、外装体が主として2パーツから構成されていてよい。例えば、外装体が、金属部材の第1金属外装体および第2金属外装体と2パーツから構成されていてよい。非ラミネート構成を有する外装体の場合、第1金属外装体および第2金属外装体の各々が金属単一部材となっていてよい。本発明において、外装体は、比較的薄い厚さを有していてよい。例えば、第1金属外装体および第2金属外装体の各々は、その厚さ寸法が50μm以上200μm未満であってよく、例えば、50μm以上190μm以下、50μm以上180μm以下、あるいは、50μm以上170μm以下などであってよい。 In the secondary battery of the present invention, the exterior body may be mainly composed of two parts. For example, the exterior body may be composed of two parts: a first metal exterior body and a second metal exterior body, which are metal members. In the case of an exterior body having a non-laminated structure, each of the first metal exterior body and the second metal exterior body may be a single metal member. In the present invention, the exterior body may have a relatively thin thickness. For example, each of the first metal exterior body and the second metal exterior body may have a thickness dimension of 50 μm or more and less than 200 μm, for example, 50 μm or more and 190 μm or less, 50 μm or more and 180 μm or less, or 50 μm or more and 170 μm or less. It may be.

第1金属外装体および第2金属外装体と2パーツから構成される外装体では、第1金属外装体および第2金属外装体の一方に上述の“外装体開口”が設けられていてよい。つまり、第1金属外装体および第2金属外装体のいずれか一方に開口部が設けられており、その開口部を有する一方のサブ外装体に対して電極端子および密閉部材が設けられてよい。なお、金属部材の第1金属外装体と第2金属外装体とは、レーザ溶接により互いに組み合わせて外装体としてよく、あるいは、かしめ加工により互いに組み合わせて外装体としてもよい。 In an exterior body made up of two parts, a first metal exterior body and a second metal exterior body, the above-mentioned “exterior body opening” may be provided in one of the first metal exterior body and the second metal exterior body. That is, either one of the first metal exterior body and the second metal exterior body may be provided with an opening, and the electrode terminal and the sealing member may be provided to one of the sub-exterior bodies having the opening. Note that the first metal sheath and the second metal sheath of the metal member may be combined with each other by laser welding to form a sheath, or may be combined with each other by caulking to form a sheath.

第1金属外装体および第2金属外装体の一方がカップ状部材であり、第1金属外装体および第2金属外装体の他方が蓋状部材であってよい。かかる場合、例えば、蓋状部材の周縁部分を外側から溶接処理またはかしめ加工することで金属外装体同士を繋ぎ合わせてよく、それにより、比較的簡易な封入が可能となり得る。「カップ状部材」とは、胴部に相当する側壁または側面部とそれに連続する主面部(典型的な態様では、例えば底部)とを有して成り、内側に中空部が形成されるような部材を意味している。また、「蓋状部材」とは、カップ状部材に対して蓋をするように組み合わされる部材(好ましくは、カップ状部材の側壁に接してカップ状部材の内側中空部をその外部から遮断するように設けられる部材)を意味している。蓋状部材は、例えば面方向(特に、カップ状部材の側壁の立設状に延在する方向に対して直交する方向)に延在する単一部材(典型的には平板状の部材)であってよく、特にカップ状部材の側壁に接するように設けられる部材であってよい。 One of the first metal exterior body and the second metal exterior body may be a cup-shaped member, and the other of the first metal exterior body and the second metal exterior body may be a lid-shaped member. In such a case, for example, the metal exterior bodies may be joined together by welding or caulking the peripheral portion of the lid-like member from the outside, which may enable relatively simple encapsulation. A "cup-shaped member" has a side wall or side part corresponding to a body part and a main surface part (typically, for example, a bottom part) that is continuous with the side wall or side part, and has a hollow part formed inside. It means a member. In addition, the term "lid-like member" refers to a member that is assembled to cover the cup-like member (preferably, a member that is combined to cover the cup-like member (preferably, a member that is in contact with the side wall of the cup-like member to block the inner hollow part of the cup-like member from the outside). means a member installed in the The lid-like member is, for example, a single member (typically a flat member) extending in the planar direction (particularly in a direction perpendicular to the direction in which the side wall of the cup-like member extends in an upright manner). In particular, it may be a member provided so as to be in contact with the side wall of the cup-shaped member.

かかる場合、蓋状部材に上述の“外装体開口”が設けられてよい。つまり、外装体がカップ状部材100Aおよび蓋状部材100Bから構成されており、蓋状部材100Bが外装体開口150を有していてよい(図5参照)。蓋状部材が外装体開口を備える場合、当該蓋状部材に対して電極端子および密閉部材が設けられる。かかる場合、蓋状部材上に電極端子よび密閉部材を設けた組合せ体を一旦得ることができ、比較的簡易に二次電池を製造できる。 In such a case, the above-mentioned "exterior body opening" may be provided in the lid-like member. That is, the exterior body is composed of the cup-shaped member 100A and the lid-shaped member 100B, and the lid-shaped member 100B may have the exterior body opening 150 (see FIG. 5). When the lid-like member includes an exterior body opening, an electrode terminal and a sealing member are provided to the lid-like member. In such a case, a combination body in which an electrode terminal and a sealing member are provided on a lid-like member can be obtained once, and a secondary battery can be manufactured relatively easily.

[本発明の二次電池の製造方法]
本発明の二次電池は、正極、負極及びセパレータを含む電極構成層が積層した電極組立体を外装体に封入することを通じて得ることができる。
[Method for manufacturing a secondary battery of the present invention]
The secondary battery of the present invention can be obtained by enclosing an electrode assembly in which electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated in an exterior body.

電極組立体は、常套的な手法で作製してよく、それを外装体内に配置することを通じて二次電池を得ることができる。例えば、外装体が上述のカップ状部材および蓋状部材から構成される場合、カップ状部材の内側に電極組立体を仕込むと共に蓋状部材でカップ状部材の開口端を閉じる工程を通じて二次電池を得ることができる。 The electrode assembly may be manufactured by a conventional method, and a secondary battery can be obtained by placing the electrode assembly within the outer case. For example, when the exterior body is composed of the above-mentioned cup-shaped member and lid-shaped member, the secondary battery is installed through the step of placing the electrode assembly inside the cup-shaped member and closing the open end of the cup-shaped member with the lid-shaped member. Obtainable.

例えば、外装体の蓋状部材に対して電極端子および密閉部材を設けるに際しては、端子開口と外装体開口とが互いに重なるように電極端子と蓋状部材とを組み合わせつつ密閉部材を設けてよい。電極端子と蓋状部材との間には絶縁部材を介在させて組み合わせることが好ましい。密閉部材は、端子開口を介して外装体開口を閉じることになるように組合わせ体に含めることができる。密閉部材は、その底側部分が外装体開口の開口サイズよりも小さい主面サイズを有する。好ましくは、密閉部材300は、軸長部材350の一方の端330に設けられた内側鍔状部335(図6参照)が外装体開口の開口サイズよりも小さい主面サイズ(より好ましくは、密閉部材の底側主面サイズ)を有し得る。密閉部材の設置に際しては外装体開口縁部と密閉部材とが互いに圧接されるように絶縁部材を介在させてよく、それにより好適な封止がもたらされる。 For example, when providing the electrode terminal and the sealing member to the lid-like member of the exterior body, the sealing member may be provided while combining the electrode terminal and the lid-like member so that the terminal opening and the exterior body opening overlap each other. It is preferable that an insulating member be interposed between the electrode terminal and the lid-like member. A sealing member can be included in the combination to close the housing opening through the terminal opening. The bottom portion of the sealing member has a main surface size smaller than the opening size of the exterior body opening. Preferably, the sealing member 300 has a main surface size smaller than the opening size of the exterior body opening (more preferably, a sealing (size of the bottom main surface of the member). When installing the sealing member, an insulating member may be interposed so that the opening edge of the exterior body and the sealing member are pressed against each other, thereby providing a suitable seal.

密閉部材自体は、常套の金属加工法によって得ることができる。例えば、転造加工を通じて密閉部材を得ることができる。密閉部材は、外装体開口への設置に際して形状を維持する部材であってもよいが、形状変化を伴う部材として用いてもよい。例えば、密閉部材を外装体開口に設置するに際しては外側から密閉部材に対して外力を加えて密閉部材の鍔状部を変形させてもよい。例えば、軸長部材350の他方の端360に設けられた鍔状部365(即ち、外側鍔状部365)を変形させてよい。図13には、変形前の外側鍔状部365を、密閉部材の設置に際して外力(特に密閉部材の軸方向に沿って密閉部材の内部側に向かって作用する外力)により変形させる形態が示されている。このように外側鍔状部を変形させることで、当該鍔状部と端子開口縁部とを互いに緊密に接合させ易くできる。つまり、鍔状部(特に外側鍔状部365)の変形を通じて密閉部材と電極端子とを互いに好適に接続することができる(これについては、以下でも詳述する)。図13に示す形態から分かるように、密閉部材300は、変形に付される前の段階において既に幅寸法よりも高さ寸法が大きい軸長胴部350を備えていてよい。 The sealing member itself can be obtained by conventional metal working methods. For example, the sealing member can be obtained through a rolling process. The sealing member may be a member that maintains its shape when installed in the opening of the exterior body, but it may also be used as a member that changes shape. For example, when installing the sealing member in the opening of the exterior body, an external force may be applied to the sealing member from the outside to deform the brim portion of the sealing member. For example, the flange 365 (ie, the outer flange 365) provided at the other end 360 of the elongated shaft member 350 may be deformed. FIG. 13 shows a form in which the undeformed outer brim portion 365 is deformed by an external force (particularly an external force acting toward the inside of the sealing member along the axial direction of the sealing member) when installing the sealing member. ing. By deforming the outer flanged portion in this manner, the flanged portion and the terminal opening edge can be easily joined tightly to each other. In other words, the sealing member and the electrode terminal can be suitably connected to each other through deformation of the flange-shaped portion (particularly the outer flange-shaped portion 365) (this will be described in detail below). As can be seen from the form shown in FIG. 13, the sealing member 300 may include an axially long body portion 350 whose height dimension is already larger than its width dimension before it is subjected to deformation.

密閉部材がその変形に伴って外装体開口に設けられる場合、密閉部材と電極端子との電気接続をより好適に行うことができる。より具体的には、密閉部材の設置に際して、密閉部材を外側から外力を付与することを通じて密閉部材300を端子開口縁部225に好適に接続させてよい。特に、軸長部材350の他方の端360に設けられた鍔状部365(即ち、外側鍔状部365)と電極端子200の端子開口縁部225とが互いに接する状態(より具体的には外側鍔状部の下面と端子開口縁部225のエッジとが互いに接する状態)で当該鍔状部に押圧力を加えることで、端子開口縁部225を少なくとも部分的に覆うように外側鍔状部335を変形させつつ端子開口縁部225に接合できる(図7参照)。つまり、押圧作用を受けた鍔状部が端子開口縁部により緊密に接合することになり、密閉部材と電極端子とのより好適な電気接続がもたらされ得る。このような接合についていえば、図7および図13に示されるように、端子開口縁部225との接合に起因して、外側鍔状部365はその外周部に段差部分366(即ち、段差形状)を好ましくは有することになる。 When the sealing member is provided in the opening of the exterior body as the sealing member is deformed, the electrical connection between the sealing member and the electrode terminal can be made more suitably. More specifically, when installing the sealing member, the sealing member 300 may be suitably connected to the terminal opening edge 225 by applying an external force to the sealing member from the outside. In particular, the state in which the flanged portion 365 provided at the other end 360 of the elongated shaft member 350 (that is, the outer flanged portion 365) and the terminal opening edge 225 of the electrode terminal 200 are in contact with each other (more specifically, the outer flanged portion 365) By applying a pressing force to the collar (with the lower surface of the collar and the edge of the terminal opening edge 225 in contact with each other), the outer collar 335 is configured to at least partially cover the terminal opening edge 225. It can be joined to the terminal opening edge 225 while deforming it (see FIG. 7). In other words, the flanged portion subjected to the pressing action is more closely joined to the terminal opening edge, and a more suitable electrical connection between the sealing member and the electrode terminal can be achieved. Regarding such a connection, as shown in FIG. 7 and FIG. ).

密閉部材を外装体開口に設置するに際しては、密閉部材をその軸方向(高さ方向)に圧縮する方向に押圧しつつ設けてよいが、そのような設置に際して軸長部材350の一方の端330に設けられた鍔状部335(すなわち、内側鍔状部335)の“幅寸法の非一定”および/または“テーパ面”は、より好適な電池密閉化に寄与し得る。具体的には、非一定な幅寸法および/またはテーパ面を備える内側鍔状部335は、密閉部材の押圧設置に際して、外装体開口縁部155上の絶縁部材500に対して好適な力を及ぼし得ることになり、密閉部材300と絶縁部材500(特に第2絶縁部材540)とが互いにより好適に圧接され得る(図7参照)。つまり、絶縁部材を介して外装体開口縁部と密閉部材とがより好適に圧接され易くなり、より好適な封止がもたらされ得る。絶縁部材が第1絶縁部材および第2絶縁部材から構成されている場合、第2絶縁部材を介して外装体開口縁部と密閉部材とがより好適に圧接され易くなる。特定の理論に拘束されるわけではないが、密閉部材(特にその内側鍔状部335)がテーパ面などの鍔勾配を有すると共に、第2絶縁部材が当該テーパ面と相補的に合わさる内側面を有すると、密閉部材の押圧設置に伴い第2絶縁部材の内側面には密閉部材(特にその内側鍔状部335)から受ける応力がより外側へと好適に働くことになると考えられる。つまり、第2絶縁部材に対しては、密閉部材のテーパ面の法線方向外側に向かう応力が生じ易くなり、第2絶縁部材を介して外装体開口縁部と密閉部材とがより好適に圧接または密接されることになるので、より好適な密閉化が実現され得る。あくまでも例示にすぎないが、密閉部材300の“テーパ面”および/または“幅寸法の非一定”に起因する鍔勾配(図7に示す角度α)は10°~45°程度であってよい。 When installing the sealing member in the opening of the exterior body, the sealing member may be pressed in a direction that compresses the sealing member in its axial direction (height direction). The "non-constant width dimension" and/or the "tapered surface" of the flange-shaped part 335 (namely, the inner flange-shaped part 335) provided in the inner flange-shaped part 335 can contribute to more suitable battery sealing. Specifically, the inner flanged portion 335 having a non-uniform width dimension and/or a tapered surface exerts a suitable force on the insulating member 500 on the exterior body opening edge 155 when the sealing member is pressed and installed. As a result, the sealing member 300 and the insulating member 500 (particularly the second insulating member 540) can be more preferably pressed against each other (see FIG. 7). In other words, the opening edge of the exterior body and the sealing member are more easily brought into pressure contact with each other through the insulating member, and more suitable sealing can be achieved. When the insulating member is constituted by the first insulating member and the second insulating member, the opening edge of the exterior body and the sealing member are more easily brought into pressure contact with each other through the second insulating member. Although not bound by any particular theory, it is possible that the sealing member (particularly the inner flange portion 335 thereof) has a flange slope such as a tapered surface, and the second insulating member has an inner surface that complementarily mates with the tapered surface. If so, it is thought that the stress received from the sealing member (particularly the inner brim portion 335 thereof) will work more preferably on the inner surface of the second insulating member toward the outside as the sealing member is press-installed. In other words, stress is likely to be generated in the second insulating member outward in the normal direction of the tapered surface of the sealing member, and the opening edge of the exterior body and the sealing member are more preferably pressed together through the second insulating member. Or, since they are closely connected, more suitable sealing can be achieved. Although this is just an example, the flange slope (angle α shown in FIG. 7) due to the "tapered surface" and/or "non-constant width dimension" of the sealing member 300 may be about 10° to 45°.

鍔状部の変形を通じた密閉部材の設置は、密閉部材の低背化につながる。つまり、密閉部材およびそれが関係する電池構成を低背設計にすることが可能となり(端的にいえば、かかる部分の容積を小さくすることができ)、電池容量の拡大設計の点で有利となる。また、そのような密閉部材の設置において、絶縁部材の厚みおよび/または外装体の厚さ(例えば、蓋状部材の板厚)の変動(例えば、~1mm程度)があっても確実に密閉化を図り易い。つまり、鍔状部の変形を通じた密閉部材の設置は、構成部品のばらつきに対応し易く、それゆえ量産性に優れ、歩留まりが向上し得る。 Installation of the sealing member through deformation of the brim portion leads to a reduction in the height of the sealing member. In other words, it is possible to design the sealing member and the battery structure related to it to be low-profile (in other words, the volume of such a part can be reduced), which is advantageous in terms of designing for expanding battery capacity. . In addition, when installing such a sealing member, even if there is a variation (for example, about 1 mm) in the thickness of the insulating member and/or the thickness of the exterior body (for example, the plate thickness of the lid-like member), it is possible to ensure sealing. Easy to plan. In other words, installation of the sealing member through deformation of the flange-like portion can easily accommodate variations in component parts, and therefore is excellent in mass productivity and can improve yield.

外装体開口が外装体の蓋状部材に設けられている場合に特にいえるが、電極組立体を外装体のカップ状部材に入れるに先立って電極端子と蓋状部材との一体化が可能となり、その一体化された蓋状部材の良品のみを外装体のカップ状部材との組合わせに用いることができ、その点でも歩留まりおよび/または良品率の向上を図り易い。 This is especially true when the exterior body opening is provided in the lid-like member of the exterior body, but it is possible to integrate the electrode terminal and the lid-like member before inserting the electrode assembly into the cup-shaped member of the exterior body, Only good products of the integrated lid-like member can be used in combination with the cup-like member of the exterior body, and in this respect as well, it is easy to improve the yield and/or the non-defective product rate.

なお、外装体に電極端子および密閉部材を設けるに際しては、電極端子を、密閉部材および絶縁部材と共に押圧処理してもよい。これにより、絶縁部材を介在させて電極端子および密閉部材と外装体(例えば蓋状部材)とをより好適に互いに一体化できる。 Note that when providing the electrode terminal and the sealing member on the exterior body, the electrode terminal may be pressed together with the sealing member and the insulating member. Thereby, the electrode terminal, the sealing member, and the exterior body (for example, the lid-like member) can be more preferably integrated with each other by interposing the insulating member.

本発明の二次電池の製造に用いられる密閉部材は、好ましくは底面(即ち、外装体の内側に位置する密閉部材300の主面335B)がフラット面となっているので、溶接処理し易い。つまり、フラット面として供された鍔状部335の主面は好適な接続処理に付し易い。より具体的には、図14に示すように、抵抗溶接(図14(A))、超音波溶接(図14(B))、および/または、レーザ溶接(図14(C))などを実施して、密閉部材300のフラット面と導電部材400(例えば“タブ”)とを比較的容易に接続できる。 The sealing member used for manufacturing the secondary battery of the present invention preferably has a flat bottom surface (that is, the main surface 335B of the sealing member 300 located inside the exterior body), so that it is easy to weld. In other words, the main surface of the brim portion 335, which is provided as a flat surface, can be easily subjected to a suitable connection process. More specifically, as shown in FIG. 14, resistance welding (FIG. 14(A)), ultrasonic welding (FIG. 14(B)), and/or laser welding (FIG. 14(C)) are performed. Thus, the flat surface of the sealing member 300 and the conductive member 400 (for example, a "tab") can be connected relatively easily.

なお、外装体開口縁部が鋭利縁は、鍛造によって形成できるものの、好ましくは剪断加工によっても得ることができる。具体的には、外装体開口縁部の鋭利縁は、パンチング処理時に設定するクリアランスをより大きくすることで得ることができる。図15に示すような外装体100に外装体開口を設けるパンチング処理800において、穴を開けるパンチ820とダイ840とのクリアランスCを通常の抜きクリアランスより大きくとり、その状態で外装体100(例えば、その蓋状部材100B)を抜き処理に付すと(即ち、パンチングに付すと)、外装体開口を形成しつつその開口を成す縁部を鋭利化できる。より大きくとった“クリアランス”に起因して、抜き方向にパンチから受ける剪断作用は外装体開口縁部のより内周方向(即ち、より径方向内側)で相対的に大きくなり、局所的に引きずられるように当該縁部が延びるからである。 Note that although the sharp edge of the opening edge of the exterior body can be formed by forging, it can also preferably be obtained by shearing. Specifically, the sharp edge of the opening edge of the exterior body can be obtained by increasing the clearance set during the punching process. In a punching process 800 for forming an opening in the exterior body 100 as shown in FIG. When the lid-like member 100B) is subjected to a punching process (that is, subjected to punching), an opening of the exterior body can be formed and the edge forming the opening can be sharpened. Due to the larger "clearance", the shearing action from the punch in the punching direction becomes relatively larger in the inner circumferential direction (i.e., more radially inward) of the opening edge of the exterior body, causing local drag. This is because the edge portion extends so as to

本発明は、種々の態様で具現化することができる。以下それについて説明する。 The present invention can be embodied in various aspects. This will be explained below.

(共通開口部の密閉解除)
かかる態様は、互いに同心状配置の端子開口および外装体開口から構成された共通開口部に設けられた密閉部材が、上記の密閉解除に資するものとなっている。具体的には、本発明の二次電池では、端子開口220と外装体開口150とが互いに同心状に又は同心円を成すように電極端子200が外装体100に配置されていてよく、そのように共通化された開口部に対して密閉部材300が配置されていてよい(図5参照)。かかる場合において、密閉部材は、上昇したセル内圧に起因して共通化された開口部において変形できる可変形部材となっている。
(Unsealing of common opening)
In this aspect, the sealing member provided in the common opening constituted by the terminal opening and the exterior body opening that are arranged concentrically with each other contributes to the above-mentioned release of the seal. Specifically, in the secondary battery of the present invention, the electrode terminal 200 may be arranged in the exterior body 100 such that the terminal opening 220 and the exterior body opening 150 are concentric with each other or form concentric circles. A sealing member 300 may be arranged for the common opening (see FIG. 5). In such a case, the sealing member is a deformable member that can be deformed in the common opening due to the increased cell internal pressure.

換言すれば、本態様に係る二次電池において、電極端子は、外装体開口と重なる端子開口を有するところ、その端子開口を介して外装体開口を塞ぐように設けられている密閉部材が、二次電池の上昇したセル内圧に起因して、外装体開口の気密状態を破るべく形状を変えることができる。このような共通開口部が関係する密閉化解除の機構では、外部出力端子として設けられる電極端子を介しつつも当該端子と別個の部材として好適に電池密閉化に資する密閉部材のみが異常昇圧時に変形する。よって、セル内圧が過度に上昇した際の予測可能性が高くなり、密閉部材の変形を前提としたより好適な電池設計が可能となる。つまり、セル内圧が過度に上昇した場合の外装体の開裂モードについて予測不能性をできるだけ回避し、本発明の二次電池をより安全な電池として供すことができる。 In other words, in the secondary battery according to the present embodiment, the electrode terminal has a terminal opening that overlaps with the opening of the exterior body, and the sealing member provided so as to close the opening of the exterior body through the terminal opening overlaps the opening of the exterior body. Due to the increased internal cell pressure of the secondary battery, the shape of the opening of the exterior body can be changed to break the airtight condition. In the unsealing mechanism that involves such a common opening, only the sealing member that contributes to battery sealing, which is separate from the electrode terminal provided as an external output terminal but is separate from the terminal, is deformed during abnormal pressure increase. do. Therefore, predictability when the cell internal pressure increases excessively becomes high, and a more suitable battery design based on the deformation of the sealing member becomes possible. In other words, the unpredictability of the rupture mode of the outer casing when the cell internal pressure increases excessively can be avoided as much as possible, and the secondary battery of the present invention can be provided as a safer battery.

(セル内圧作用に鑑みた密閉解除機構)
かかる態様は、セル内圧が過度に上昇した際に密閉解除がより好適に働く二次電池の構成に関する。特に、密閉部材と、それに接続される導電部材との関係でより好適に密閉解除が機能する。
(Seal release mechanism considering cell internal pressure effect)
This embodiment relates to a configuration of a secondary battery in which the sealing release works more appropriately when the cell internal pressure increases excessively. In particular, the sealing release functions more suitably depending on the relationship between the sealing member and the conductive member connected thereto.

具体的には、電極組立体と密閉部材とを互いに電気的に接続する導電部材は、密閉部材の主面の一部領域と接合のために密閉部材とオーバーラップしており、当該一部領域以外となる密閉部材の主面における非オーバーラップ領域は、導電部材の特異的な形状によりもたらされている。“非オーバーラップ領域”は、“オーバーラップ領域”と異なり、上昇したセル内圧の作用が導電部材を介さずに直接的に密閉部材に及ぶことになり、過度に上昇したセル内圧に起因する密閉部材の変形がより効果的に助力される。ここでいう「主面」は、外装体の内側に位置する密閉部材の主面を指している。よって、当該主面は、密閉部材において軸長胴部の内側端に設けられた鍔状部(すなわち、内側鍔状部)の主面に相当し、端的にいえば密閉部材の底面に相当する。 Specifically, the conductive member that electrically connects the electrode assembly and the sealing member to each other overlaps with the sealing member for bonding to a partial region of the main surface of the sealing member, and the conductive member electrically connects the electrode assembly and the sealing member to each other. The non-overlapping area on the main surface of the sealing member which is different from that of the first embodiment is caused by the specific shape of the electrically conductive member. The "non-overlapping region" is different from the "overlapping region" in that the action of the increased cell internal pressure is directly applied to the sealing member without going through the conductive member, and the sealing caused by the excessively increased cell internal pressure is Deformation of the member is more effectively assisted. The "principal surface" here refers to the main surface of the sealing member located inside the exterior body. Therefore, the main surface corresponds to the main surface of the flange-like part (i.e., the inner flange-like part) provided at the inner end of the axially long body in the sealing member, and to put it simply, it corresponds to the bottom surface of the sealing member. .

かかる態様において、導電部材と密閉部材との接合に供しない“非オーバーラップ領域”は、特に、導電部材に設けられた開口部によってもたらされていてよく、および/または、導電部材の幅寸法が相対的に小さくなった導電部材の幅狭形状によってもたらされていてよい。図16の例示態様に示されるように、導電部材400は、その先端領域に開口部として貫通孔440を有していてよい。かかる場合、導電部材400の先端領域が密閉部材300との接合のために密閉部材300上に配置されていたとしても、当該貫通孔440の箇所は、密閉部材300とオーバーラップすることはなく接合に供しない。図示する態様から分かるように、導電部材400と密閉部材300との接合箇所を電池内側から捉えると、そのような導電部材400の開口形状(即ち、貫通孔440)に起因して密閉部材300の底面(即ち、外装体の内側に位置する密閉部材の主面335B)が部分的に露出している。露出部には、上昇したセル内圧の作用が導電部材を介さず直接的に及ぶことになり、過度に上昇したセル内圧に起因した密閉部材の変形がより効果的に助力される。これは、導電部材が幅狭形状を有する場合であっても同様である。図16の例示態様に示されるように、導電部材400の例えば先端部分は、その幅寸法が他の部分と比べて相対的に減じられた幅狭箇所460を有している。よって、導電部材400の先端部分が密閉部材300との接合のために密閉部材300上に配置されたとしても、幅狭箇所460の周囲は、密閉部材300とオーバーラップすることはなく接合に供しない。つまり、かかる幅狭箇所460の周囲における密閉部材300の露出箇所もまた密閉部材に及ぼされる効果的な内圧作用に寄与する。図示する態様から分かるように、導電部材400と密閉部材300との接合箇所を電池内側から捉えると、そのような導電部材400の幅狭形状(即ち、幅狭箇所460)に起因して密閉部材300の底面(即ち、外装体の内側に位置する密閉部材の主面335B)が部分的に露出している。この露出部には、上昇したセル内圧の作用が導電部材を介さず直接的に及ぶことになり、過度に上昇したセル内圧に起因する密閉部材の変形がより効果的に助力される。本発明のある好適な態様に係る二次電池では、このように導電部材と密閉部材との特異的な接合形態によって、より好適に密閉解除が機能する。 In such an embodiment, the "non-overlapping area" which does not provide for the joining of the electrically conductive member and the sealing member may be provided, in particular, by an opening provided in the electrically conductive member and/or by a width dimension of the electrically conductive member. This may be caused by the narrow shape of the conductive member, which has a relatively small width. As shown in the exemplary embodiment of FIG. 16, the conductive member 400 may have a through hole 440 as an opening in its tip region. In such a case, even if the tip region of the conductive member 400 is placed on the sealing member 300 for joining with the sealing member 300, the portion of the through hole 440 will not overlap with the sealing member 300 and will not be joined. Do not serve. As can be seen from the illustrated embodiment, when the joint between the conductive member 400 and the sealing member 300 is viewed from inside the battery, the opening shape of the conductive member 400 (i.e., the through hole 440) causes the sealing member 300 to The bottom surface (that is, the main surface 335B of the sealing member located inside the exterior body) is partially exposed. The exposed portion is directly affected by the increased cell internal pressure without going through the conductive member, and the deformation of the sealing member caused by the excessively increased cell internal pressure is more effectively assisted. This is the same even when the conductive member has a narrow shape. As shown in the exemplary embodiment of FIG. 16, for example, the distal end portion of the conductive member 400 has a narrow portion 460 whose width dimension is relatively reduced compared to other portions. Therefore, even if the distal end portion of the conductive member 400 is placed on the sealing member 300 for bonding with the sealing member 300, the periphery of the narrow portion 460 does not overlap with the sealing member 300 and is not provided for bonding. do not. That is, the exposed portion of the sealing member 300 around the narrow portion 460 also contributes to the effective internal pressure action exerted on the sealing member. As can be seen from the illustrated embodiment, when the joint between the conductive member 400 and the sealing member 300 is viewed from inside the battery, the sealing member is damaged due to the narrow shape of the conductive member 400 (i.e., the narrow portion 460). The bottom surface of 300 (that is, the main surface 335B of the sealing member located inside the exterior body) is partially exposed. The effect of the increased cell internal pressure is directly applied to this exposed portion without going through the conductive member, and the deformation of the sealing member caused by the excessively increased cell internal pressure is more effectively assisted. In the secondary battery according to a preferred embodiment of the present invention, the seal release functions more suitably due to the unique bonding form between the conductive member and the sealing member.

(干渉作用による密閉解除機構)
かかる態様も、セル内圧が過度に上昇した際に密閉解除がより好適に働く二次電池の構成に関する。特に、密閉部材と、それに接続される導電部材との関係でより好適に密閉解除が機能する。
(Seal release mechanism by interference action)
This aspect also relates to a configuration of a secondary battery in which the sealing release works more appropriately when the cell internal pressure increases excessively. In particular, the sealing release functions more suitably depending on the relationship between the sealing member and the conductive member connected thereto.

具体的には、電極組立体と密閉部材とを互いに電気的に接続する導電部材は、外装体開口内に位置付けられている密閉部材を跨ぐように設けられている。図16の平面視でいえば、導電部材400の先端部分470は、導電部材400の延在方向(図面の“a方向”)において外装体開口内に位置付けられている密閉部材300の底面(即ち、外装体の内側に位置する密閉部材の主面335B)を跨ぐようになっている。また、図16の平面視で示されるように、導電部材400の先端部分470(特に図示する470’の箇所)が、導電部材400の幅方向(図面の“b方向”)において外装体開口内に位置付けられている密閉部材の底面(即ち、外装体の内側に位置する密閉部材の主面335B)を跨ぐようになっていてもよい。主面335Bは、密閉部材300において軸長部材の一方の端330に設けられた鍔状部335(すなわち、二次電池にて密閉部材の内側鍔状部335)の主面に相当するところ、導電部材は、外装体開口内に位置付けられている当該鍔状部335の主面を跨ぐようになっていてよい。このように密閉部材を跨ぐ導電部材に対して外力(特に電池内側から電池外側へと共通開口の軸方向の外力)が作用すると、当該導電部材は外装体開口縁部上の絶縁部材500(特に第2絶縁部材540)に当接するように干渉され得る。かかる干渉ゆえ、上昇したセル内圧の作用に起因して密閉部材が変形するに際しては、密閉部材と導電部材とが互いに離れる応力が働き易い。つまり、上昇したセル内圧作用に起因する密閉部材の変形応力に伴って内側鍔状部には電池外側に向かって動く力が働き、それに伴い、密閉部材に接続された導電部材も同様に外側に動く力が働くことになるが、導電部材は外装体開口縁部上の絶縁部材(特に第2絶縁部材)に干渉されるので、変形に起因して主面335Bがより外側に動こうとする密閉部材と、その動きが阻止される導電部材との間で互いの接合が解除される力が好適に生じ得る。よって、ある好ましい態様では、底面(即ち、外装体の内側に位置する密閉部材の主面)が外側に動くように変形する密閉部材は、導電部材と最終的に接合解除され、より安全な密閉解除がもたらされ得る。密閉部材と導電部材との接合解除は、密閉部材と導電部材との電気的断絶を意味するので、密閉解除後における偶発的なショートなど非所望な事象が回避され易くなる。 Specifically, a conductive member that electrically connects the electrode assembly and the sealing member to each other is provided so as to straddle the sealing member positioned within the opening of the exterior body. In plan view of FIG. 16, the tip portion 470 of the conductive member 400 is located at the bottom surface (i.e., , and straddles the main surface 335B) of the sealing member located inside the exterior body. Further, as shown in the plan view of FIG. 16, the tip portion 470 (particularly the location 470' shown in the figure) of the conductive member 400 is inside the opening of the exterior body in the width direction of the conductive member 400 (the "b direction" in the drawing). The main surface 335B of the sealing member located inside the exterior body (that is, the main surface 335B of the sealing member located inside the exterior body) may be straddled. The main surface 335B corresponds to the main surface of the flange-like part 335 provided at one end 330 of the axial member in the sealing member 300 (i.e., the inner flange-like part 335 of the sealing member in the secondary battery); The conductive member may be configured to straddle the main surface of the brim portion 335 positioned within the opening of the exterior body. When an external force (especially an external force in the axial direction of the common opening from the inside of the battery to the outside of the battery) acts on the conductive member that straddles the sealing member, the conductive member acts on the insulating member 500 (especially The second insulating member 540) may be interfered with. Due to such interference, when the sealing member is deformed due to the action of increased cell internal pressure, stress tends to occur that causes the sealing member and the conductive member to separate from each other. In other words, as a result of the deformation stress of the sealing member due to the increased internal pressure of the cell, a force is exerted on the inner brim portion that moves toward the outside of the battery, and as a result, the conductive member connected to the sealing member also moves outward. Although a moving force is applied, the conductive member is interfered with by the insulating member (especially the second insulating member) on the edge of the opening of the exterior body, so the main surface 335B tends to move further outward due to deformation. Advantageously, a force may be created that causes the sealing member and the electrically conductive member whose movement is to be prevented to release each other. Accordingly, in a preferred embodiment, the sealing member whose bottom surface (i.e., the main surface of the sealing member located inside the exterior body) is deformed so as to move outward is finally unbonded with the conductive member, resulting in a more secure seal. Release may result. Since the release of the bond between the sealing member and the conductive member means electrical disconnection between the sealing member and the conductive member, undesirable events such as accidental short circuits after the seal is released are easily avoided.

なお、導電部材と密閉部材とは、それらが互いにオーバーラップする領域の全てが接合されている必要はない。換言すれば、導電部材と密閉部材とが互いにオーバーラップする領域のうちの一部のみが接合されるように導電部材と密閉部材とが電気的に接続されていてよい。あくまでも例示にすぎないが、導電部材と密閉部材とがスポット的に接合された点接合部により互いに電気的に接続されていてよい。このような局所的な接合の場合、セル内圧の異常上昇時に変形する密閉部材は導電部材と接合解除され易くなる。かかる一部のみの接合の観点でいえば、例えば図16に示すような平面視において、導電部材と密閉部材とがスポット的に局所箇所Sでのみ互いに接合されている。 Note that the conductive member and the sealing member do not need to be joined together in all of their overlapping regions. In other words, the conductive member and the sealing member may be electrically connected such that only a part of the area where the conductive member and the sealing member overlap each other is joined. Although this is merely an example, the electrically conductive member and the sealing member may be electrically connected to each other by a spot joint. In the case of such local bonding, the sealing member, which deforms when the cell internal pressure abnormally increases, is likely to be disconnected from the conductive member. From the point of view of such partial joining, for example, in a plan view as shown in FIG. 16, the conductive member and the sealing member are joined to each other only at local locations S in a spot manner.

(平面視円形の二次電池)
かかる態様では、二次電池の全体的な平面視形状が円形となっている。つまり、二次電池1000は、その外形の点でボタン型またはコイン型となっている(例えば図2参照)。
(Secondary battery that is circular in plan view)
In this embodiment, the overall shape of the secondary battery in plan view is circular. In other words, the secondary battery 1000 has a button-shaped or coin-shaped external shape (for example, see FIG. 2).

二次電池の平面視形状が円形ということは、電極組立体を上側または下側から捉えた際の電極組立体、および/またはそれを内包する外装体の形状が円形であることを意味している。 The circular shape of a secondary battery in plan view means that the shape of the electrode assembly and/or the exterior body containing it is circular when viewed from above or below. There is.

ここでいう「円形」とは、完全な円形(すなわち単に“円”または“真円”)であることに限らず、それから変更されつつも当業者の認識として“丸い形”に通常含まれ得る略円形状も含んでいる。例えば、円または真円のみならず、その円弧の曲率が局所的に異なるものであってよく、さらには例えば楕円などの円または真円から派生した形状であってもよい。典型的な例でいえば、このような平面視円形を有する電池は、いわゆるボタン型またはコイン型の電池に相当する。 The term "circular" here is not limited to a complete circle (i.e., simply a "circle" or a "perfect circle"), but may be normally included in a "round shape" as recognized by those skilled in the art, even though it may be modified. It also includes a substantially circular shape. For example, it may not only be a circle or a perfect circle, but also the curvature of its arc may be locally different, and it may also be a shape derived from a circle or a perfect circle, such as an ellipse. As a typical example, a battery having such a circular shape in plan view corresponds to a so-called button-shaped or coin-shaped battery.

平面視形状が円形となっている二次電池において、外装体開口の平面視形状が円形となっていたり、端子開口の平面視形状もまた円形となっていたりしてよい(ここでいう円形も二次電池の平面視形状に関して説明した円形と同義である)。かかる場合、本発明では、外装体の平面視輪郭(特に外縁を成す部分の輪郭)が円形状であると共に、電極端子および/または密閉部材の平面視輪郭(特に外縁を成す部分の輪郭)が円形状となっていてもよい。 In a secondary battery that has a circular shape in plan view, the shape of the opening of the exterior body in plan view may be circular, and the shape of the terminal opening in plan view may also be circular (the circular shape here may also be circular). (It is synonymous with the circular shape described regarding the plan view shape of the secondary battery). In such a case, in the present invention, the outline of the exterior body in plan view (especially the outline of the part forming the outer edge) is circular, and the outline of the electrode terminal and/or the sealing member in plan view (particularly the outline of the part forming the outer edge) is circular. It may be circular.

ある好適な態様では、ボタン型またはコイン型ゆえ、二次電池の軸方向(例えば電池主面の法線方向または垂線方向)の寸法が幅寸法(直径寸法)と比して小さくなっている。ただし、本発明の二次電池は、これに限らず、二次電池の軸方向(例えば電池主面の法線方向または垂線方向)の寸法が幅寸法(直径寸法)と同じかあるいは、それと比して大きくなっていてもよい。 In a preferred embodiment, since the secondary battery is button-shaped or coin-shaped, the dimension in the axial direction (for example, the normal direction or perpendicular direction to the main surface of the battery) is smaller than the width dimension (diameter dimension). However, the secondary battery of the present invention is not limited to this, and the dimension of the secondary battery in the axial direction (for example, the normal direction or perpendicular direction to the main surface of the battery) is the same as the width dimension (diameter dimension), or is comparable to the width dimension (diameter dimension). It may become larger.

(円盤形状の電極端子)
かかる態様では、電極端子の全体的な形状が円盤状となっている。端的にいえば、電極端子が金属円板となっており、上述のボタン型またはコイン型の電池により適した電極端子となっている。
(Disc-shaped electrode terminal)
In this embodiment, the overall shape of the electrode terminal is disc-shaped. To put it simply, the electrode terminal is a metal disc, making it more suitable for the above-mentioned button-type or coin-type batteries.

例えば、円盤状の電極端子200は、図5に示されるような形態を有していてよい。電極端子200は、その中心に端子開口220を有している。かかる端子開口220は、上述したように好ましくは外装体100の外装体開口150と整合または整列するように設けられるところ、かかる端子開口220を介して密閉部材300が外装体開口150を塞ぐようになっている。 For example, the disc-shaped electrode terminal 200 may have a shape as shown in FIG. The electrode terminal 200 has a terminal opening 220 at its center. As described above, the terminal opening 220 is preferably provided to align or align with the exterior body opening 150 of the exterior body 100, and the sealing member 300 closes the exterior body opening 150 through the terminal opening 220. It has become.

電極端子は、端子開口の他にガス抜け用開口を備えていてよい。例えば、図17に示すように、平面視において周方向に少なくとも1つのガス抜け用開口250を電極端子200が備えていてよい。かかるガス抜け用開口250は、上昇したセル内圧に起因して密閉部材が変形して外装体の密閉状態が解除された際に外装体内部のガスが通過できるための開口部に相当する。セル内で発生したガスが外装体内部から当該ガス抜け用開口250へとよりスムーズに至ることができるように、電極端子200ではガス抜け用開口250よりも幅方向内側となる内側領域240が相対的に隆起した形態となっていてよい。換言すれば、中央領域を含む内側領域240が、それよりも幅方向外側の周縁領域270よりも高いレベルに位置付けられた形態を電極端子200が有していてよい。相対的に高いレベルに位置付けられた内側領域240に起因して、電極端子と絶縁部材(特に第1絶縁部材)との間には隙間が好ましくはもたらされる。よって、この隙間を介して密閉解除時に外装体の内部ガスがガス抜け用開口250へと流れていくことができ、最終的に電池外部へと当該内部ガスが抜け易くなる。 The electrode terminal may include a gas vent opening in addition to the terminal opening. For example, as shown in FIG. 17, the electrode terminal 200 may include at least one gas release opening 250 in the circumferential direction when viewed from above. The gas release opening 250 corresponds to an opening through which gas inside the exterior body can pass when the sealing member is deformed due to the increased cell internal pressure and the sealed state of the exterior body is released. In the electrode terminal 200, the inner region 240, which is inside the gas vent opening 250 in the width direction, is opposite to the gas vent opening 250 so that the gas generated in the cell can reach the gas vent opening 250 from the inside of the exterior body more smoothly. It may have a raised shape. In other words, the electrode terminal 200 may have a configuration in which the inner region 240 including the central region is positioned at a higher level than the peripheral region 270 on the outer side in the width direction. Due to the inner region 240 located at a relatively high level, a gap is preferably provided between the electrode terminal and the insulating member (in particular the first insulating member). Therefore, the internal gas of the exterior body can flow to the gas release opening 250 through this gap when the seal is released, and the internal gas can eventually easily escape to the outside of the battery.

以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の態様が考えられることを当業者は容易に理解されよう。 Although the embodiments of the present invention have been described above, these are merely typical examples. Therefore, those skilled in the art will readily understand that the present invention is not limited thereto and that various embodiments are possible.

例えば、上記では、二次電池として、図2および図17に示すようなボタン型またはコイン型の二次電池について触れたが、本発明は必ずしもこれに限定されない。つまり、外装体はいわゆる円筒缶タイプの外装体に限定されず、それゆえ角缶または異形缶タイプの外装体であってもよい。 For example, in the above description, a button-shaped or coin-shaped secondary battery as shown in FIGS. 2 and 17 has been mentioned as a secondary battery, but the present invention is not necessarily limited to this. In other words, the exterior body is not limited to a so-called cylindrical can type exterior body, but may be a square can or irregularly shaped can type exterior body.

本発明の二次電池は、例えば、角型の二次電池であってもよい(例えば図18参照)。換言すれば、二次電池1000は、その平面視形状が、円形に限らず、正方形や矩形などの形状を有していてもよい。 The secondary battery of the present invention may be, for example, a square secondary battery (see, for example, FIG. 18). In other words, the shape of the secondary battery 1000 in plan view is not limited to a circle, but may be a square, a rectangle, or the like.

また、上記では、外装体がカップ状部材および蓋状部材から構成されている態様について触れたが、本発明は必ずしもこれに限定されない。例えば、外装体がカップ状部材同士から構成されていてもよい。つまり、第1金属外装体および第2金属外装体は、それぞれカップ状部材となっていてよい。換言すれば、外装体がカップ状部材の第1金属外装体と、同じくカップ状部材の第2金属外装体とから少なくとも構成されていてよい。この場合、カップ状部材の第1金属外装体と第2金属外装体とは、それらの側壁が互いに合わせるように組み合わされて外装体が構成されてよい。第1金属外装体および第2金属外装体のいずれか一方のカップ状部材に上述の“外装体開口”が設けられてよく、それゆえ、そのカップ状部材に対して電極端子および密閉部材が設けられてよい。更にいえば、外装体がカップ状部材および蓋状部材から構成される場合、蓋状部材に対して外装体開口が設けられることに言及したものの、本発明は必ずしもそれに限らない。カップ状部材の方に外装体開口が設けられてもよい。 Moreover, although the embodiment in which the exterior body is comprised of a cup-shaped member and a lid-shaped member has been described above, the present invention is not necessarily limited to this. For example, the exterior body may be composed of cup-shaped members. That is, the first metal exterior body and the second metal exterior body may each be a cup-shaped member. In other words, the exterior body may be composed of at least a first metal exterior body that is a cup-shaped member and a second metal exterior body that is also a cup-shaped member. In this case, the first metal exterior body and the second metal exterior body of the cup-shaped member may be combined so that their side walls are aligned with each other to form the exterior body. The cup-shaped member of either the first metal exterior body or the second metal exterior body may be provided with the above-mentioned “exterior body opening”, and therefore, the electrode terminal and the sealing member may be provided with respect to the cup-shaped member. It's okay to be rejected. Furthermore, although it has been mentioned that when the exterior body is composed of a cup-like member and a lid-like member, the exterior body opening is provided in the lid-like member, the present invention is not necessarily limited thereto. An exterior opening may be provided in the cup-shaped member.

また、上記では、密閉部材について軸長胴部の一方の端側および他方の端側の双方に鍔状部を有する態様について触れたが、本発明は必ずしもこれに限定されない。軸長胴部の一方の端側にのみ鍔状部が設けられていてよく、あるいは、軸長胴部の他方の端側にのみ鍔状部が設けられていてもよい。かかる場合、軸長胴部の一方の端側および他方の端側の少なくとも一方に鍔状部が設けられているといえる。なお、鍔状部に関する態様は、別の切り口からも表現することもできる。例えば、本発明の二次電池において、密閉部材は、軸長胴部が介在するように互いに対向する鍔状部(すなわち、一方の鍔部と他方の鍔部)を好ましくは備えているといえる。あるいは、本発明の二次電池において、密閉部材は、その端部分として鍔状部を好ましくは備え、より好ましくは互いに対向する鍔状部(すなわち、一方の鍔部と他方の鍔部)を備えているともいえる。 Moreover, although the embodiment in which the sealing member has a flange-like portion on both one end side and the other end side of the axially long body portion has been described above, the present invention is not necessarily limited to this. The flange-like portion may be provided only on one end side of the axially elongated body portion, or the flange-like portion may be provided only on the other end side of the axially elongated body portion. In such a case, it can be said that the flange-like portion is provided on at least one of one end side and the other end side of the axially long body portion. Note that the aspect regarding the flange-like portion can also be expressed from another perspective. For example, in the secondary battery of the present invention, it can be said that the sealing member preferably includes flange-shaped portions (i.e., one flange portion and the other flange portion) that face each other so that the axially long body portion is interposed therebetween. . Alternatively, in the secondary battery of the present invention, the sealing member preferably includes a flanged portion as an end portion thereof, and more preferably includes flanged portions facing each other (i.e., one flanged portion and the other flanged portion). It can be said that

また、上記では、絶縁部材が第1絶縁部材および第2絶縁部材から構成される場合、図7に示されるような形態を有する第2絶縁部材540について触れたが、本発明は必ずしもこれに限定されない。外装体開口縁部155のエッジ155aを超える第2絶縁部材540は、図19に示されるように更により外側にまで延在していてもよい。つまり、第2絶縁部材540は、その突出部545が電池幅方向のより外側に至るまで拡大された形状を有していてもよい。かかる場合、セル内圧の異常上昇時に変形する密閉部材が導電部材との接続を断った後に当該導電部材が外装体(例えば蓋状部材)と接触するといった事象を回避し易く、再導電に起因するショート等のリスクを減じ易くなる。また、このような電池幅方向により広範に延在する第2絶縁部材は、電極組立体が外装体(特に外装体開口を有する蓋状部材)への導電のリスクを防止するインシュレータの役目を果たし得るので、その点でもより安全な二次電池の実現に資する。 Furthermore, in the above description, when the insulating member is composed of a first insulating member and a second insulating member, the second insulating member 540 having the form shown in FIG. 7 has been mentioned, but the present invention is not necessarily limited to this. Not done. The second insulating member 540 that extends beyond the edge 155a of the opening edge 155 may extend further to the outside as shown in FIG. 19. That is, the second insulating member 540 may have a shape in which the protruding portion 545 is expanded to the outer side in the battery width direction. In such a case, it is easy to avoid an event in which the conductive member comes into contact with the exterior body (for example, a lid-like member) after the sealing member that deforms when the cell internal pressure abnormally increases breaks the connection with the conductive member. This makes it easier to reduce risks such as short circuits. Further, such a second insulating member extending more widely in the battery width direction serves as an insulator to prevent the electrode assembly from conducting electricity to the exterior body (particularly a lid-like member having an exterior body opening). This also contributes to the realization of safer secondary batteries.

また、上記では、外装体の内側に位置する密閉部材の主面(即ち、密閉部材の内側主面)が外装体開口よりも小さくなっている態様について説明したが、密閉部材の外側主面については必ずしもこれに限定されない。つまり、外装体の外側に位置する密閉部材の主面(即ち、外側主面)は外装体開口よりも小さくてもそうでなくてもよい。例えば、密閉部材の外側主面365A(図4参照)は、内側主面と同様、外装体開口よりも小さくてよく、あるいは、内側主面と異なって外装体開口よりも大きくてもよい。換言すれば、密閉部材が内側鍔状部および外側鍔状部を有する場合、外側鍔状部の幅寸法または面積は外装体開口の幅寸法または面積よりも小さくてよく、あるいは、外側鍔状部の幅寸法または面積は外装体開口の幅寸法または面積よりも大きくてもよい。なお、内側鍔状部および外側鍔状部の双方が外装体開口の幅寸法よりも小さい場合、密閉部材の全体が外装体開口よりも小さい幅寸法を有していてよく、密閉部材のどの箇所の幅寸法でも外装体開口の幅寸法より小さくなっていてよい。 Furthermore, in the above description, the main surface of the sealing member located inside the exterior body (i.e., the inner main surface of the sealing member) is smaller than the opening of the exterior body, but the outer main surface of the sealing member is not necessarily limited to this. That is, the main surface of the sealing member located on the outside of the exterior body (ie, the outer main surface) may or may not be smaller than the exterior body opening. For example, the outer major surface 365A (see FIG. 4) of the sealing member may be smaller than the exterior body opening, like the inner major surface, or may be larger than the exterior body opening, unlike the inner major surface. In other words, when the sealing member has an inner flange and an outer flange, the width or area of the outer flange may be smaller than the width or area of the exterior body opening; The width or area of the opening may be larger than the width or area of the opening of the exterior body. In addition, if both the inner flanged part and the outer flanged part are smaller than the width of the opening of the exterior body, the entire sealing member may have a width smaller than the opening of the exterior body, and any part of the sealing member The width dimension of the opening may be smaller than the width dimension of the opening of the exterior body.

上記で説明した本発明は、ある好適な一実施態様として、下記のうちの少なくとも1つの事項に相当し得ることを確認的に付言しておく。

・密閉部材(即ち、密閉化部材)は押圧により電池に設けることができるので、生産性が良く、加工コストを下げ易い。なお、押圧によって密閉部材を変形に付して電池に設けることもできる。
・導電部材(例えばタブ)の接合面をフラット面として供し易く、タブ接合が容易となり、品質が良くなる。
・導電部材(例えばタブ)の接合については、レーザ溶接、超音波溶接および/または抵抗溶接などのいずれの溶接法も採用できる。
・ガス抜き安全機能として設ける安全弁はセル内圧の異常上昇時に開裂し易いことが求められる一方、落下等の衝撃荷重が加わった際に簡単に開裂しないことも求められる。これにつき、本発明の密閉部材は金属製であるため多少の衝撃では影響を受けず、想定した異常内圧で安定してガス抜きが機能し得る。
・ガス抜き安全機能に関して、絶縁部材の鍔部の厚さによってセル内圧の異常上昇時の破断強度を決めることができる。好ましくは、第2絶縁部材の厚さ寸法(特に、その突出部に相当する鍔部分の厚さ寸法)を調整することで異常時の開裂圧を調整できる。第2絶縁部材は好ましくは樹脂部材であるので、金属破断に比べ破断力を小さくできる。つまり、より早く異常な内圧上昇に反応してガス抜きができるようになり、より安全な電池として供され易い。
・設置時に密閉部材が絶縁部材を圧迫できるので、封止性が高くなり得、そのような封止性を供しつつもセル内圧の異常上昇時に内圧低減できる安全機能を付加し易い。
・密閉部材の設置時の押圧には、例えばスピンカシメ機を利用してよいものの、プレスカシメ機を利用してもよい。
・溶接を用いる封止構造ではないので、その点で製造コストが安い。例えば超音波やレーザによる溶接で封止構造を得る必要がないので、コンタミやスパッタ飛散などの問題が生じ難い。また、封止のために抵抗溶接も使用しなくて済むので溶接時の異常放電によるトラブルも発生し難い。さらには、接着剤を用いた接合に基づく封止構造でもない。そのような接着剤を用いる接合は、接着剤塗布機器が別途で必要となり製造コストが上がってしまう。
・絶縁部材の形状自由度は大きい。外径方向に大きく延在する絶縁部材を用いれば、外装缶の外側の正極と負極との物理的な距離をより広げることができ、短絡の不都合が回避され易い。
・絶縁部材を大きくすることで、密閉部材と導通している電極端子も大きく(幅方向または径方向に大きく)できる。
・外装体として設けられる蓋状部材には特に細工を施す必要が無いか又はそのような細工が減じられる。つまり、外装体の蓋部材とカップ部材との接合はレーザ溶接でも、クリンプ加工でも良く、特段の制限はない。
・設置前の密閉部材は、量産可能な形状ゆえ、大量生産に適しており、低コスト化に寄与し得る。例えば、密閉部材を転造加工で容易に得ることができ、比較的安価で得ることができる。
・電池の上面のみで正極と負極との通電が可能となる。
・電極端子および絶縁部材(例えばガスケット)は、設計自由度が比較的高く、設置箇所に合わせて電極端子および/または絶縁部材の大きさを任意に変更できる。
・電極端子の材質は、密閉部材と必ずしも同一にする必要はなく、任意に選択できる(あくまでも例示であるが、電極端子の材質としてSUS材および/またはメッキSPP材を用いてもよい)。
・セル内圧の異常上昇時に密閉部材の座屈変形に伴って第2絶縁部材は切断され、密閉部材の内側端部の鍔状部と共に外側へと移動できる。移動しなかった第2絶縁部材の切断片の一部(特に、相対的に外側に位置する絶縁部材の切断片)はそのまま元の位置に残るので導電部材の移動を防ぐように好ましくは作用し、より確実に導電部材と密閉部材との電気的な再切断接続を防止できる。
・電池の耐熱性は、実質的に絶縁部材の耐熱性に依存し得、耐熱性の高い絶縁部材を使用すれば、電池の封止耐熱特性が向上し得る(例えば、絶縁部材にPPSのようなエンジニアリングプラスチックの熱可塑性樹脂、または熱硬化性樹脂を使用してもよい)。
・電極端子と外装体との間に絶縁部材が設けられるので、外装ケースに相当する外装体との電気絶縁をより確実に図ることができ、また、電極組立体との接触に起因する電気ショートの懸念が減じられるので、電気的により安全な設計とし易い。
・外装体開口内に密閉部材を収めることができる。つまり、電極端子からの密閉部材の出っ張りを抑えることができ、低背設計がなされ易い。また、そのように密閉部材を出っ張りなく外装体開口内に設けることができるので、落下等の衝撃荷重が電池に加わっても密閉部材への負荷はほとんど生じない。よって、落下衝撃等では絶縁部材の破断を引き起こすほどの剪断力は生じにくく、より安全な電池となり易い。
・外装体の厚み(例えば蓋状部材の板厚)は、およそ0.005mm以上2mm以下と密閉部材の高さ変更加工限界まで対応できる。
・セル内圧が過度に上昇した時に密閉部材が座屈するように変形するので、減圧後の導電部材と密閉部材との距離をより確実に取ることができる。つまり、ある好適な態様では、減圧がなされるに際して、導電部材と密閉部材との電気接続をより確実に断つことができ、後刻の電池姿勢に実質的に影響されず密閉部材と導電部材との非所望な再接続が防止され易い。
・密閉部材と導電部材との接合ポイントを密閉部材の中心に位置付け、その中心から等距離の位置で、外装体開口縁部上の絶縁部材(特に第2絶縁部材)で導電部材が支えられるようにすれば、セル内圧の異常上昇時に当該絶縁部材が導電部材に対して好適な抵抗となり、密閉部材が導電部材と所望に接合解除され易くなる。
・絶縁部材に電極端子が嵌る内周に横溝を設け、その横溝に電極端子の外周縁の一部を嵌めることを通じて絶縁部材と電極端子とを互いに固定化できる。かかる固定化のために、電極端子の外周出張り部を設け、その出張り部を配置できる切欠き部を絶縁部材に設けておけばよい。かかる場合、互いに干渉しない位置で電極端子の外周出張り部を絶縁部材の切欠き部に挿入し、次いで、電極端子と絶縁部材とを相対的に回転させ、絶縁部材の横溝に電極端子の出張り部を嵌めることで電極端子と絶縁部材とを比較的簡易に強固に組み合わせることができる。このような電極端子と絶縁部材との固定化は、回転嵌め込みによる組立てゆえ、生産性が比較的高い。また、異常発生時に分析のために電池を分解したい場合にそれが容易となる。さらに、接着剤を使用しない固定化ゆえ、分解時の破損の懸念が実質的にない。
It should be added for confirmation that the present invention described above can correspond to at least one of the following items as a certain preferred embodiment.

- Since the sealing member (that is, the sealing member) can be provided on the battery by pressing, productivity is good and processing costs can be easily reduced. Note that the sealing member may be deformed by pressing and then provided on the battery.
- The joint surface of the conductive member (for example, a tab) can be easily provided as a flat surface, making tab joining easier and improving quality.
- Any welding method such as laser welding, ultrasonic welding, and/or resistance welding can be used to join the conductive members (for example, tabs).
・The safety valve provided as a gas release safety function is required to be easily ruptured when the cell internal pressure rises abnormally, but it is also required that it not be easily ruptured when an impact load such as a fall is applied. In this regard, since the sealing member of the present invention is made of metal, it is not affected by some impact, and gas venting can function stably under assumed abnormal internal pressure.
- Regarding the degassing safety function, the breaking strength in the event of an abnormal rise in cell internal pressure can be determined by the thickness of the flange of the insulating member. Preferably, by adjusting the thickness of the second insulating member (particularly the thickness of the flange portion corresponding to the protrusion), the tearing pressure in an abnormal state can be adjusted. Since the second insulating member is preferably a resin member, the breaking force can be smaller than that of metal breaking. In other words, gas can be vented more quickly in response to an abnormal increase in internal pressure, making it easier to provide a safer battery.
- Since the sealing member can press the insulating member during installation, the sealing performance can be improved, and while providing such sealing performance, it is easy to add a safety function that can reduce the internal pressure when the cell internal pressure rises abnormally.
- For example, a spin crimping machine may be used to press the sealing member during installation, but a press crimping machine may also be used.
・Since the sealing structure does not require welding, manufacturing costs are low. For example, since there is no need to obtain a sealing structure by welding using ultrasonic waves or laser, problems such as contamination and spatter scattering are less likely to occur. Furthermore, since there is no need to use resistance welding for sealing, troubles due to abnormal discharge during welding are less likely to occur. Furthermore, it is not a sealing structure based on bonding using an adhesive. Bonding using such an adhesive requires a separate adhesive applicator, which increases manufacturing costs.
・The degree of freedom in the shape of the insulating member is large. By using an insulating member that extends largely in the outer diameter direction, the physical distance between the positive electrode and the negative electrode on the outside of the outer can can be further increased, making it easier to avoid short circuits.
- By increasing the size of the insulating member, the electrode terminal that is electrically connected to the sealing member can also be made larger (larger in the width direction or radial direction).
- There is no need for special work on the lid-like member provided as the exterior body, or such work is reduced. In other words, the lid member of the exterior body and the cup member may be joined by laser welding or crimping, and there are no particular limitations.
・Since the sealing member before installation has a shape that can be mass-produced, it is suitable for mass production and can contribute to cost reduction. For example, the sealing member can be easily obtained by rolling, and can be obtained at a relatively low cost.
・It is possible to conduct electricity between the positive and negative electrodes only on the top surface of the battery.
- The electrode terminal and the insulating member (for example, gasket) have a relatively high degree of freedom in design, and the size of the electrode terminal and/or the insulating member can be arbitrarily changed according to the installation location.
- The material of the electrode terminal does not necessarily have to be the same as that of the sealing member, and can be selected arbitrarily (although this is just an example, SUS material and/or plated SPP material may be used as the material of the electrode terminal).
- When the cell internal pressure rises abnormally, the second insulating member is cut off as the sealing member undergoes buckling deformation, and can move outward together with the flange-shaped portion at the inner end of the sealing member. Some of the cut pieces of the second insulating member that have not moved (particularly the cut pieces of the insulating member located on the relatively outer side) remain in their original positions, and therefore preferably act to prevent the conductive member from moving. Therefore, it is possible to more reliably prevent the electrically disconnected connection between the conductive member and the sealing member.
・The heat resistance of a battery substantially depends on the heat resistance of the insulating member, and if an insulating member with high heat resistance is used, the sealing heat resistance characteristics of the battery can be improved (for example, using an insulating member such as PPS) engineering plastics, thermoplastics, or thermosetting resins).
・Since an insulating member is provided between the electrode terminal and the exterior body, electrical insulation with the exterior body corresponding to the exterior case can be more reliably achieved, and electrical short-circuits caused by contact with the electrode assembly can be achieved. Since concerns about this are reduced, it is easier to create an electrically safer design.
- A sealing member can be placed inside the opening of the exterior body. That is, it is possible to suppress the protrusion of the sealing member from the electrode terminal, and it is easy to achieve a low-profile design. Furthermore, since the sealing member can be provided within the opening of the exterior body without any protrusion, even if an impact load such as a drop is applied to the battery, almost no load is applied to the sealing member. Therefore, a shearing force sufficient to cause breakage of the insulating member is unlikely to occur due to a drop impact, etc., and a safer battery is likely to be obtained.
- The thickness of the exterior body (for example, the plate thickness of the lid-like member) is approximately 0.005 mm or more and 2 mm or less, which can accommodate up to the processing limit for changing the height of the sealing member.
- Since the sealing member deforms to buckle when the cell internal pressure rises excessively, the distance between the conductive member and the sealing member after pressure reduction can be more reliably maintained. In other words, in a preferred embodiment, when the pressure is reduced, the electrical connection between the conductive member and the sealing member can be more reliably broken, and the electrical connection between the sealing member and the conductive member is substantially unaffected by the later battery position. Undesired reconnection is likely to be prevented.
・The joint point between the sealing member and the conductive member is located at the center of the sealing member, and the conductive member is supported by the insulating member (especially the second insulating member) on the opening edge of the exterior body at a position equidistant from the center. If this is done, the insulating member will provide suitable resistance to the conductive member when the cell internal pressure rises abnormally, and the sealing member will be easily released from the conductive member as desired.
- The insulating member and the electrode terminal can be fixed to each other by providing a lateral groove on the inner periphery of the insulating member into which the electrode terminal fits, and by fitting a part of the outer periphery of the electrode terminal into the lateral groove. For such immobilization, it is sufficient to provide an outer peripheral protrusion of the electrode terminal and provide a notch in the insulating member in which the protrusion can be placed. In such a case, insert the outer peripheral protrusion of the electrode terminal into the notch of the insulating member at a position where they do not interfere with each other, then rotate the electrode terminal and the insulating member relative to each other, and insert the protruding part of the electrode terminal into the horizontal groove of the insulating member. By fitting the tension part, the electrode terminal and the insulating member can be firmly combined relatively easily. The productivity of fixing the electrode terminal and the insulating member in this manner is relatively high because the assembly is performed by rotational fitting. Furthermore, it becomes easy to disassemble the battery for analysis when an abnormality occurs. Furthermore, since it is fixed without using an adhesive, there is virtually no fear of damage during disassembly.

本開示の二次電池の態様は、以下の通りである。
<1>電極組立体、および、前記電極組立体を収納する外装体を有して成り、
前記外装体の外装体開口に設けられた電極端子が、前記外装体の密閉化のための密閉部材を含み、前記外装体の内側に位置する前記密閉部材の主面は前記外装体開口よりも小さくなっており、前記外装体開口を塞ぐ前記密閉部材が、押圧力に起因して変形できる可変形部材となっている、二次電池。
<2>前記密閉部材が、幅寸法よりも高さ寸法が大きい軸長胴部を備える、<1>に記載の二次電池。
<3>前記密閉部材の前記変形が前記軸長胴部の変形に基づく、<1>または<2>に記載の二次電池。
<4>前記二次電池が前記密閉部材の前記軸長胴部の周囲に中空領域を有する、<2>または<3>に記載の二次電池。
<5>前記密閉部材を介して前記電極端子と前記電極組立体とが互いに電気的に接続されている、<1>~<4>のいずれか1つに記載の二次電池。
<6>前記密閉部材が鍔状部を有しており、前記密閉部材の前記主面が前記鍔状部に設けられている、<1>~<5>のいずれか1つに記載の二次電池。
<7>前記鍔状部の幅寸法が非一定である、<6>に記載の二次電池。
<8>前記鍔状部の側面がテーパ面を有する、<6>または<7>に記載の二次電池。
<9>前記電極端子は、前記外装体開口と重なる端子開口を有し、前記端子開口に位置付けられた前記密閉部材が前記外装体開口を塞いでいる、<1>~<8>のいずれか1つに記載の二次電池。
<10>前記押圧力が、前記二次電池の上昇したセル内圧によりもたらされる、<1>~<9>のいずれか1つに記載の二次電池。
<11>前記外装体開口を形成している外装体開口縁部が鋭利縁を有する、<1>~<10>のいずれか1つに記載の二次電池。
<12>前記外装体開口を形成する外装体開口縁部と前記密閉部材との間に絶縁部材が設けられている、<1>~<11>のいずれか1つに記載の二次電池。
<13>前記電極端子は前記外装体開口と重なる端子開口を有し、前記端子開口に位置付けられて前記外装体開口を塞いでいる前記密閉部材が、前記押圧力に起因して、前記外装体開口を形成する外装体開口縁部に設けられた絶縁部材の破断をもたらすように前記変形する、<1>~<12>のいずれか1つに記載の二次電池。
<14>前記外装体開口縁部が鋭利縁を有し、前記鋭利縁によって前記絶縁部材の前記破断が助力される、<12>または<12>に従属する<13>に記載の二次電池。
<15>前記電極端子と前記外装体との間に設けられる第1絶縁部材と、前記外装体開口を形成する外装体開口縁部と前記密閉部材との間に設けられる第2絶縁部材とから構成される絶縁部材を有して成り、
前記第2絶縁部材を介して前記外装体開口縁部と前記密閉部材とが互いに圧接されている、<1>~<14>のいずれか1つに記載の二次電池。
<16>前記密閉部材は、前記二次電池の上昇したセル内圧に起因して、前記第2絶縁部材に破断をもたらすように前記変形する、<15>に記載の二次電池。
<17>前記外装体がカップ状部材および蓋状部材から構成されており、前記蓋状部材が前記外装体開口を有する、<1>~<16>のいずれか1つに記載の二次電池。
<18>前記電極組立体と前記密閉部材とを互いに電気的に接続する導電部材は、前記外装体開口内に位置付けられている前記密閉部材を跨ぐようになっている、<1>~<17>のいずれか1つに記載の二次電池。
<19>前記電極組立体と前記密閉部材とを互いに電気的に接続する導電部材は、前記密閉部材の主面の一部領域との接合のために密閉部材とオーバーラップしており、
前記一部領域以外となる前記主面の非オーバーラップ領域は、前記導電部材に設けられた開口部および/または前記導電部材の幅寸法が相対的に小さくなった前記導電部材の幅狭部分によりもたらされている、<1>~<18>のいずれか1つに記載の二次電池。
<20>前記電極組立体の電極として、リチウムイオンを吸蔵放出可能な正極および負極が含まれる、<1>~<19>のいずれか1つに記載の二次電池。
Aspects of the secondary battery of the present disclosure are as follows.
<1> Comprising an electrode assembly and an exterior body housing the electrode assembly,
The electrode terminal provided in the exterior opening of the exterior body includes a sealing member for sealing the exterior body, and the main surface of the sealing member located inside the exterior body is larger than the exterior body opening. The secondary battery is small in size, and the sealing member that closes the opening of the exterior body is a deformable member that can be deformed due to a pressing force.
<2> The secondary battery according to <1>, wherein the sealing member includes an axially long body portion whose height is larger than its width.
<3> The secondary battery according to <1> or <2>, wherein the deformation of the sealing member is based on deformation of the axially long body.
<4> The secondary battery according to <2> or <3>, wherein the secondary battery has a hollow region around the axially long body portion of the sealing member.
<5> The secondary battery according to any one of <1> to <4>, wherein the electrode terminal and the electrode assembly are electrically connected to each other via the sealing member.
<6> The method according to any one of <1> to <5>, wherein the sealing member has a flange-like part, and the main surface of the sealing member is provided in the flange-like part. Next battery.
<7> The secondary battery according to <6>, wherein the width of the brim portion is non-uniform.
<8> The secondary battery according to <6> or <7>, wherein the side surface of the brim portion has a tapered surface.
<9> Any one of <1> to <8>, wherein the electrode terminal has a terminal opening that overlaps with the opening of the exterior body, and the sealing member positioned in the terminal opening closes the opening of the exterior body. The secondary battery described in item 1.
<10> The secondary battery according to any one of <1> to <9>, wherein the pressing force is caused by increased cell internal pressure of the secondary battery.
<11> The secondary battery according to any one of <1> to <10>, wherein the outer casing opening edge forming the outer casing opening has a sharp edge.
<12> The secondary battery according to any one of <1> to <11>, wherein an insulating member is provided between the exterior body opening edge forming the exterior body opening and the sealing member.
<13> The electrode terminal has a terminal opening that overlaps with the opening of the exterior body, and the sealing member positioned in the terminal opening and closing the opening of the exterior body closes the exterior body due to the pressing force. The secondary battery according to any one of <1> to <12>, wherein the deformation occurs so as to cause rupture of an insulating member provided at the edge of the opening of the exterior body that forms the opening.
<14> The secondary battery according to <12> or <13> subordinate to <12>, wherein the opening edge of the exterior body has a sharp edge, and the sharp edge assists in the breaking of the insulating member. .
<15> A first insulating member provided between the electrode terminal and the exterior body, and a second insulating member provided between the exterior body opening edge forming the exterior body opening and the sealing member. The insulating member is made up of
The secondary battery according to any one of <1> to <14>, wherein the opening edge of the exterior body and the sealing member are pressed against each other via the second insulating member.
<16> The secondary battery according to <15>, wherein the sealing member deforms so as to cause rupture to the second insulating member due to the increased cell internal pressure of the secondary battery.
<17> The secondary battery according to any one of <1> to <16>, wherein the exterior body includes a cup-shaped member and a lid-shaped member, and the lid-shaped member has the exterior body opening. .
<18> The conductive member that electrically connects the electrode assembly and the sealing member to each other is configured to straddle the sealing member positioned within the opening of the exterior body, <1> to <17 >The secondary battery according to any one of >.
<19> A conductive member that electrically connects the electrode assembly and the sealing member to each other overlaps the sealing member for bonding to a partial region of the main surface of the sealing member,
The non-overlapping region of the main surface other than the partial region is formed by an opening provided in the conductive member and/or a narrow portion of the conductive member where the width dimension of the conductive member is relatively small. The secondary battery according to any one of <1> to <18>, which is provided.
<20> The secondary battery according to any one of <1> to <19>, wherein the electrode of the electrode assembly includes a positive electrode and a negative electrode capable of inserting and extracting lithium ions.

本発明に係る二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の二次電池は、電気・電子機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、ウェアラブルデバイスなどや、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。 The secondary battery according to the present invention can be used in various fields where power storage is expected. Although this is just an example, the secondary battery of the present invention can be used in the electrical, information, and communication fields where electrical and electronic devices are used (e.g., mobile phones, smartphones, notebook computers, digital cameras, activity meters, arm computers, etc.). , electronic paper, wearable devices, RFID tags, card-type electronic money, small electronic devices such as smart watches, and mobile device fields), household and small industrial applications (e.g., power tools, golf carts, household/nursing care/industrial robots), large industrial applications (e.g., forklifts, elevators, harbor cranes), transportation systems (e.g., hybrid vehicles, electric vehicles, buses, trains, electric assist) Bicycles, electric motorcycles, etc.), power system applications (e.g., various power generation, road conditioners, smart grids, home-installed power storage systems, etc.), medical applications (medical equipment such as earphones and hearing aids), and pharmaceutical applications. (in the field of medication management systems, etc.), as well as in the IoT field, and space/deep sea applications (for example, in the fields of space probes, underwater research vessels, etc.).

1 正極
2 負極
5 電極構成層
10 電極組立体
100 外装体
100A カップ状部材
100B 蓋状部材
130 外装体の周縁領域
150 外装体開口
155 外装体開口縁
155a 外装体開口縁のエッジ
200 電極端子
200A 電極端子の外側主面
220 端子開口
225 端子開口縁
240 電極端子の内側領域
250 ガス抜け用開口
270 電極端子の周縁領域
300 密閉部材
330 一方の端部
335 一方の端部における鍔状部
335A 密閉部材のテーパ面
335A’ 密閉部材のテーパ輪郭
335B 密閉部材の内側主面(底面)/一方の端側の鍔状部の主面
350 軸長胴部
360 他方の端部
365 他方の端部における鍔状部
365A 密閉部材の外側主面(頂面)/他方の端側の鍔状部の主面
366 他方の端部における鍔状部の段差部分
400 導電部材
410 導電部材の上面
440 貫通孔
460 幅狭箇所
470 導電部材の先端部分
470’ 導電部材がその幅方向に外装体開口を跨いでいる部分
500 絶縁部材
520 第1絶縁部材(例えば外側絶縁部材)
540 第2絶縁部材(例えば内側絶縁部材)
545 第2絶縁部材に設けられた突出部
1000 二次電池
P セル内圧
外装体開口の平面視開口寸法
密閉部材の内側主面の幅寸法
1 Positive electrode 2 Negative electrode 5 Electrode constituent layer 10 Electrode assembly 100 Exterior body 100A Cup-shaped member 100B Lid-like member 130 Peripheral area of exterior body 150 Exterior body opening 155 Exterior body opening edge 155a Edge of exterior body opening edge 200 Electrode terminal 200A Electrode Outer main surface of the terminal 220 Terminal opening 225 Terminal opening edge 240 Inner region of the electrode terminal 250 Opening for gas release 270 Peripheral region of the electrode terminal 300 Sealing member 330 One end 335 Flange-shaped portion at one end 335A Sealing member Tapered surface 335A' Tapered contour of the sealing member 335B Inner main surface (bottom surface) of the sealing member/main surface of the flanged portion on one end side 350 Long shaft body portion 360 Other end portion 365 Flange portion at the other end 365A Outer main surface (top surface) of the sealing member/main surface of the flanged portion on the other end side 366 Stepped portion of the flanged portion at the other end 400 Conductive member 410 Top surface of the conductive member 440 Through hole 460 Narrow portion 470 Tip portion of the conductive member 470' Portion where the conductive member straddles the opening of the exterior body in the width direction 500 Insulating member 520 First insulating member (for example, outer insulating member)
540 Second insulating member (e.g. inner insulating member)
545 Projection provided on second insulating member 1000 Secondary battery P Cell internal pressure L O Opening dimension of exterior body opening in plan view L Width dimension of inner main surface of W sealing member

Claims (20)

電極組立体、および、前記電極組立体を収納する外装体を有して成り、
前記外装体の外装体開口に設けられた電極端子が、前記外装体の密閉化のための密閉部材を含み、
前記外装体の内側に位置する前記密閉部材の主面は前記外装体開口よりも小さくなっており、前記外装体開口を塞ぐ前記密閉部材が、押圧力に起因して変形できる可変形部材となっている、二次電池。
It comprises an electrode assembly and an exterior body housing the electrode assembly,
an electrode terminal provided in an opening of the exterior body includes a sealing member for sealing the exterior body;
The main surface of the sealing member located inside the exterior body is smaller than the exterior body opening, and the sealing member that closes the exterior body opening is a deformable member that can be deformed due to a pressing force. It is a secondary battery.
前記密閉部材が、幅寸法よりも高さ寸法が大きい軸長胴部を備える、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the sealing member includes an axially long body portion whose height is larger than its width. 前記密閉部材の前記変形が前記軸長胴部の変形に基づく、請求項2に記載の二次電池。 The secondary battery according to claim 2, wherein the deformation of the sealing member is based on deformation of the axially long body. 前記二次電池は、前記密閉部材の前記軸長胴部の周囲に中空領域を有する、請求項2に記載の二次電池。 The secondary battery according to claim 2, wherein the secondary battery has a hollow region around the axially long body portion of the sealing member. 前記密閉部材を介して前記電極端子と前記電極組立体とが互いに電気的に接続されている、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the electrode terminal and the electrode assembly are electrically connected to each other via the sealing member. 前記密閉部材が鍔状部を有しており、前記密閉部材の前記主面が前記鍔状部に設けられている、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the sealing member has a flange-shaped portion, and the main surface of the sealing member is provided on the flange-shaped portion. 前記鍔状部の幅寸法が非一定である、請求項6に記載の二次電池。 The secondary battery according to claim 6, wherein the width of the brim portion is non-uniform. 前記鍔状部の側面がテーパ面となっている、請求項6に記載の二次電池。 The secondary battery according to claim 6, wherein a side surface of the brim portion is a tapered surface. 前記電極端子は前記外装体開口と重なる端子開口を有し、前記端子開口に位置付けられた前記密閉部材が前記外装体開口を塞いでいる、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the electrode terminal has a terminal opening that overlaps with the opening of the outer case, and the sealing member positioned in the terminal opening closes the opening of the outer case. 前記押圧力が、前記二次電池の上昇したセル内圧によりもたらされる、請求項1~9のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 9, wherein the pressing force is caused by increased cell internal pressure of the secondary battery. 前記外装体開口を形成している外装体開口縁部が鋭利縁を有する、請求項1~9のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 9, wherein the outer case opening edge forming the outer case opening has a sharp edge. 前記外装体開口を形成する外装体開口縁部と前記密閉部材との間に絶縁部材が設けられている、請求項1に記載の二次電池。 2. The secondary battery according to claim 1, wherein an insulating member is provided between an edge of the exterior body opening that forms the exterior body opening and the sealing member. 前記電極端子は前記外装体開口と重なる端子開口を有し、前記端子開口に位置付けられて前記外装体開口を塞いでいる前記密閉部材が、前記押圧力に起因して、前記外装体開口を形成する外装体開口縁部に設けられた絶縁部材の破断を引き起こすように前記変形する、請求項1に記載の二次電池。 The electrode terminal has a terminal opening that overlaps with the exterior body opening, and the sealing member positioned in the terminal opening and closing the exterior body opening forms the exterior body opening due to the pressing force. The secondary battery according to claim 1, wherein the deformation occurs so as to cause breakage of an insulating member provided at an edge of an opening of the exterior body. 前記外装体開口縁部が鋭利縁を有し、前記鋭利縁によって前記絶縁部材の前記破断が助力される、請求項13に記載の二次電池。 The secondary battery according to claim 13, wherein the opening edge of the outer case has a sharp edge, and the sharp edge assists in the breaking of the insulating member. 前記電極端子と前記外装体との間に設けられる第1絶縁部材と、前記外装体開口を形成する外装体開口縁部と前記密閉部材との間に設けられる第2絶縁部材とから構成される絶縁部材を有して成り、
前記第2絶縁部材を介して前記外装体開口縁部と前記密閉部材とが互いに圧接されている、請求項1に記載の二次電池。
Consisting of a first insulating member provided between the electrode terminal and the exterior body, and a second insulating member provided between the exterior body opening edge forming the exterior body opening and the sealing member. It comprises an insulating member,
The secondary battery according to claim 1, wherein the opening edge of the exterior body and the sealing member are pressed against each other via the second insulating member.
前記密閉部材は、前記押圧力に起因して、前記第2絶縁部材に破断をもたらすように前記変形する、請求項15に記載の二次電池。 16. The secondary battery according to claim 15, wherein the sealing member deforms so as to cause breakage to the second insulating member due to the pressing force. 前記外装体がカップ状部材および蓋状部材から構成されており、前記蓋状部材が前記外装体開口を有する、請求項1~9のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 9, wherein the exterior body includes a cup-shaped member and a lid-shaped member, and the lid-shaped member has the exterior body opening. 前記電極組立体と前記密閉部材とを互いに電気的に接続する導電部材は、前記外装体開口内に位置付けられている前記密閉部材を跨ぐように設けられている、請求項1~9のいずれかに記載の二次電池。 Any one of claims 1 to 9, wherein a conductive member that electrically connects the electrode assembly and the sealing member to each other is provided so as to straddle the sealing member positioned within the opening of the exterior body. The secondary battery described in . 前記電極組立体と前記密閉部材とを互いに電気的に接続する導電部材は、前記密閉部材の前記主面の一部領域との接合のために前記密閉部材とオーバーラップしており、
前記一部領域以外となる前記主面の非オーバーラップ領域は、前記導電部材に設けられた開口部および/または前記導電部材の幅寸法が相対的に小さくなった前記導電部材の幅狭部分によりもたらされている、請求項1~9のいずれかに記載の二次電池。
A conductive member that electrically connects the electrode assembly and the sealing member to each other overlaps the sealing member for joining with a partial region of the main surface of the sealing member,
The non-overlapping region of the main surface other than the partial region is formed by an opening provided in the conductive member and/or a narrow portion of the conductive member where the width dimension of the conductive member is relatively small. A secondary battery according to any one of claims 1 to 9.
前記電極組立体の電極として、リチウムイオンを吸蔵放出可能な正極および負極が含まれる、請求項1~9のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 9, wherein the electrodes of the electrode assembly include a positive electrode and a negative electrode capable of intercalating and deintercalating lithium ions.
JP2022102046A 2022-06-24 2022-06-24 secondary battery Pending JP2024002692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022102046A JP2024002692A (en) 2022-06-24 2022-06-24 secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022102046A JP2024002692A (en) 2022-06-24 2022-06-24 secondary battery

Publications (1)

Publication Number Publication Date
JP2024002692A true JP2024002692A (en) 2024-01-11

Family

ID=89472845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022102046A Pending JP2024002692A (en) 2022-06-24 2022-06-24 secondary battery

Country Status (1)

Country Link
JP (1) JP2024002692A (en)

Similar Documents

Publication Publication Date Title
WO2013164897A1 (en) Hermetic secondary battery
WO2014119309A1 (en) Hermetic battery
JP7320758B2 (en) battery module
US20220311108A1 (en) Secondary battery
US11063328B2 (en) Secondary battery including insulating member with grooves
CN114730957A (en) Sealed battery
US20190363331A1 (en) Secondary battery
JP6878878B2 (en) Rechargeable battery manufacturing method and rechargeable battery
US20230246313A1 (en) Secondary battery
WO2019026526A1 (en) Cylindrical battery
US20230048086A1 (en) Secondary battery
US20230049098A1 (en) Secondary battery
WO2021140838A1 (en) Secondary battery
JP2024002692A (en) secondary battery
JP2024002700A (en) secondary battery
CN114982028A (en) Secondary battery and method for manufacturing same
JP2024011964A (en) secondary battery
JP7238873B2 (en) Secondary battery and manufacturing method thereof
JP7468635B2 (en) Secondary battery
WO2024048109A1 (en) Secondary battery
EP4145617A1 (en) Secondary battery
WO2024057711A1 (en) Secondary battery
JP2024003631A (en) secondary battery
KR20160046469A (en) Battery cell, and battery module
US20210336305A1 (en) Secondary battery and method for manufacturing the same