JP2024000619A - Oscillatory wave driving device - Google Patents

Oscillatory wave driving device Download PDF

Info

Publication number
JP2024000619A
JP2024000619A JP2022099391A JP2022099391A JP2024000619A JP 2024000619 A JP2024000619 A JP 2024000619A JP 2022099391 A JP2022099391 A JP 2022099391A JP 2022099391 A JP2022099391 A JP 2022099391A JP 2024000619 A JP2024000619 A JP 2024000619A
Authority
JP
Japan
Prior art keywords
holding member
drive device
vibration wave
viscoelastic
wave drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022099391A
Other languages
Japanese (ja)
Inventor
耕平 唐澤
Kohei Karasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2022099391A priority Critical patent/JP2024000619A/en
Publication of JP2024000619A publication Critical patent/JP2024000619A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oscillatory wave driving device capable of suppressing the generation of abnormal noise.
SOLUTION: The oscillatory wave driving device is for moving a transducer whose oscillation is excited by an electrical-mechanical energy conversion element and a friction member that is in contact with the transducer at a contact surface relatively in a first direction. The oscillatory wave driving device has: a holding member for holding the transducer; a pressurizing member for pressurizing the transducer in a second direction orthogonal to the contact surface; a support member for supporting the holding member displaceable in the second direction while limiting displacement in the first direction; and a viscoelastic member arranged between the holding member and the support member in the second direction.
SELECTED DRAWING: Figure 3
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、振動波駆動装置に関する。 The present invention relates to a vibration wave drive device.

圧電素子の圧電効果による変形を駆動源とする摩擦駆動型の振動波駆動装置(超音波モータ)を駆動する場合、圧電素子が接着されている振動子が振動する。振動子は摩擦部材と摩擦接触するため、振動子には圧電素子の振動以外に摩擦接触により引き起こされる振動が伝達される。この振動が振動子を保持する保持部材まで伝達されると、保持部材の振動により異音が発生し、静粛性が保たれなくなる。特許文献1には、保持部材の加圧方向への振動を抑制するために、加圧方向から見て保持部材、保持部材保持枠、及び加圧部材の複数の部材に重ならない位置に配置されると共に、複数の部材に接触する振動減衰部材を有する構成が開示されている。特許文献2には、保持部材の加圧方向に直交する方向の振動を抑制するために、保持部材と保持部材保持枠の加圧方向に直交する方向の面の間に振動減衰部材を設ける構成が開示されている。 When driving a friction-driven vibration wave drive device (ultrasonic motor) whose drive source is deformation due to the piezoelectric effect of a piezoelectric element, a vibrator to which the piezoelectric element is bonded vibrates. Since the vibrator makes frictional contact with the friction member, vibrations caused by the frictional contact are transmitted to the vibrator in addition to the vibrations of the piezoelectric element. When this vibration is transmitted to the holding member that holds the vibrator, the vibration of the holding member generates abnormal noise, making it impossible to maintain quietness. Patent Document 1 discloses that in order to suppress vibration of the holding member in the pressing direction, the holding member, the holding member holding frame, and the pressing member are arranged at positions that do not overlap with the plurality of members when viewed from the pressing direction. A configuration is disclosed that includes a vibration damping member that contacts a plurality of members. Patent Document 2 discloses a configuration in which a vibration damping member is provided between a holding member and a surface of a holding member holding frame in a direction perpendicular to the pressing direction in order to suppress vibration in a direction perpendicular to the pressing direction of the holding member. is disclosed.

特開2021―2967号公報JP 2021-2967 Publication 特開2019―126220号公報JP2019-126220A

しかしながら、特許文献1の構成では、撓み方向の減衰力だけで減衰を行うので、振動抑制効果は低く異音が発生する恐れがある。また、特許文献2の構成では、主に異音を発生させるモードである加圧方向へ振動するモードに対しての減衰効果は低く、異音が発生する恐れがある。 However, in the configuration of Patent Document 1, damping is performed only by the damping force in the bending direction, so the vibration suppression effect is low and there is a risk that abnormal noise may occur. Further, in the configuration of Patent Document 2, the damping effect against a mode that vibrates in the pressurizing direction, which is a mode that mainly generates abnormal noise, is low, and there is a possibility that abnormal noise may be generated.

本発明は、異音の発生を抑制可能な振動波駆動装置を提供することを目的とする。 An object of the present invention is to provide a vibration wave drive device that can suppress the generation of abnormal noise.

本発明の一側面としての振動波駆動装置は、電気-機械エネルギ変換素子により振動が励起される振動子と該振動子と接触面で接触する摩擦部材とを第1方向へ相対移動させる振動波駆動装置であって、振動子を保持する保持部材と、振動子を接触面に直交する第2方向へ加圧する加圧部材と、保持部材を、第1方向における変位を制限しつつ第2方向において変位可能に支持する支持部材と、第2方向において保持部材と支持部材との間に配置される粘弾性部材とを有することを特徴とする。 A vibration wave drive device as one aspect of the present invention provides a vibration wave drive device that uses vibration waves to relatively move a vibrator whose vibration is excited by an electro-mechanical energy conversion element and a friction member that contacts the vibrator at a contact surface in a first direction. The drive device includes a holding member that holds the vibrator, a pressure member that presses the vibrator in a second direction perpendicular to the contact surface, and a pressurizing member that presses the vibrator in a second direction while limiting displacement in the first direction. The device is characterized in that it has a support member displaceably supported in the second direction, and a viscoelastic member disposed between the holding member and the support member in the second direction.

本発明によれば、異音の発生を抑制可能な振動波駆動装置を提供することができる。 According to the present invention, it is possible to provide a vibration wave drive device that can suppress the generation of abnormal noise.

実施例1の振動波駆動装置の斜視図である。1 is a perspective view of a vibration wave drive device of Example 1. FIG. 実施例1の振動波駆動装置の駆動力取り出し部の断面図である。FIG. 3 is a cross-sectional view of a driving force extraction section of the vibration wave drive device according to the first embodiment. 実施例1の振動波駆動装置の分解斜視図である。1 is an exploded perspective view of the vibration wave drive device of Example 1. FIG. 実施例1の振動波駆動装置のX軸方向の断面図である。1 is a cross-sectional view in the X-axis direction of the vibration wave drive device of Example 1. FIG. 実施例1の保持部材、保持部材保持枠、及び粘弾性部材の説明図である。FIG. 3 is an explanatory diagram of a holding member, a holding member holding frame, and a viscoelastic member in Example 1. FIG. 実施例1の保持部材と保持部材保持枠の斜視図である。FIG. 3 is a perspective view of a holding member and a holding member holding frame of Example 1. FIG. 実施例1の振動波駆動装置をY軸の正の方向から見た図である。FIG. 3 is a diagram of the vibration wave drive device of Example 1 viewed from the positive direction of the Y-axis. 実施例2の保部材、保持部材保持枠、及び粘弾性部材の説明図である。FIG. 7 is an explanatory diagram of a retaining member, a retaining member holding frame, and a viscoelastic member in Example 2; 実施例2の保持部材と保持部材保持枠の斜視図である。FIG. 7 is a perspective view of a holding member and a holding member holding frame of Example 2; 実施例2の保持部材と保持部材保持枠に設けられた凸部の斜視図である。FIG. 7 is a perspective view of a holding member and a convex portion provided on a holding member holding frame of Example 2; 実施例3の保持部材、保持部材保持枠、及び粘弾性部材の説明図である。FIG. 7 is an explanatory diagram of a holding member, a holding member holding frame, and a viscoelastic member in Example 3; 実施例3の保持部材と保持部材保持枠の斜視図である。FIG. 7 is a perspective view of a holding member and a holding member holding frame of Example 3; 実施例4の保持部材、保持部材保持枠、及び粘弾性部材の説明図である。FIG. 7 is an explanatory diagram of a holding member, a holding member holding frame, and a viscoelastic member in Example 4. 実施例4の保持部材と保持部材保持枠の斜視図である。FIG. 7 is a perspective view of a holding member and a holding member holding frame of Example 4;

以下、本発明の実施例について、図面を参照しながら詳細に説明する。各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same reference numerals are given to the same members, and duplicate explanations will be omitted.

各実施例の振動波駆動装置は、例えばレンズ交換式のデジタル一眼レフカメラ、デジタルスチルカメラ、デジタルビデオカメラ、レンズ交換式のデジタルビデオカメラ等に好適なものである。 The vibration wave drive device of each embodiment is suitable for, for example, a digital single-lens reflex camera with interchangeable lenses, a digital still camera, a digital video camera, a digital video camera with interchangeable lenses, and the like.

各実施例では、振動子及び摩擦部材の相対的な移動方向をX軸方向(駆動方向、第1方向)、X軸に直交し、振動子を摩擦部材に対して加圧する方向(加圧方向)をY軸方向(第2方向)、X軸方向及びY軸方向に直交する方向をZ軸方向とする。Y軸方向は、摩擦部材の振動子との接触面に直交する。また、各軸において矢印方向を正の方向、矢印方向と反対方向を負の方向とする。各実施例では、加圧方向はY軸の正の方向である。なお、各実施例の座標系は説明の便宜上のものであって、本発明はこれに限定されない。 In each example, the direction of relative movement of the vibrator and the friction member is the X-axis direction (drive direction, first direction), the direction perpendicular to the X-axis, and the direction in which the vibrator is pressed against the friction member (pressing direction). ) is the Y-axis direction (second direction), and the direction perpendicular to the X-axis direction and the Y-axis direction is the Z-axis direction. The Y-axis direction is perpendicular to the contact surface of the friction member with the vibrator. Further, in each axis, the direction of the arrow is defined as a positive direction, and the direction opposite to the direction of the arrow is defined as a negative direction. In each example, the pressing direction is the positive direction of the Y axis. Note that the coordinate system in each embodiment is for convenience of explanation, and the present invention is not limited thereto.

図1乃至図4はそれぞれ、本実施例の振動波駆動装置100の斜視図、駆動力取り出し部の断面図、分解斜視図、及びX軸方向の断面図である。 1 to 4 are a perspective view, a sectional view of a driving force extraction section, an exploded perspective view, and a sectional view in the X-axis direction of the vibration wave drive device 100 of this embodiment, respectively.

振動波駆動装置100は、直動タイプのリニアアクチュエータで、X軸方向への駆動力を発生させる。図2に示される突起形状の駆動力取り出し部16aには、被駆動部17に設けられた連結用溝部17aが図示しないばねにより付勢された状態で連結されている。振動波駆動装置100は、被駆動部17をX軸方向へ移動させることができる。 The vibration wave drive device 100 is a direct-acting type linear actuator that generates a driving force in the X-axis direction. A connecting groove portion 17a provided in the driven portion 17 is connected to the protrusion-shaped driving force extraction portion 16a shown in FIG. 2 in a state where it is biased by a spring (not shown). The vibration wave driving device 100 can move the driven portion 17 in the X-axis direction.

まず、振動波駆動装置100が駆動力を発生させるメカニズムについて説明する。図3に示されるように、振動波駆動装置100は、接着剤等により互いに固着された圧電素子(電気-機械エネルギ変換素子)1及びボスプレート2から構成され、圧電素子1により振動が励起される振動子3を有する。フレキシブル基板12は、異方性導電ペースト等で機械的及び電気的に圧電素子1に接続される。圧電素子1には、2つの分割された電極が設けられている。2つの電極にそれぞれ時間的な位相差π/2を持つ2相の高周波電圧を印加することで、図4に示されるボスプレート2の突起部2aには楕円運動が発生する。この際、圧電素子1に印加する高周波電圧の周波数や位相差を変えることで、楕円の回転方向や楕円比を適宜変化させることができる。このため、振動子3は、加圧プレート8からの加圧力により、ベース部材13に固定された摩擦部材14に摩擦接触し楕円運動を行うことで、摩擦部材14に対して相対的に移動する駆動力を発生させる。すなわち、振動子3は、摩擦部材14に対して、X軸方向へ相対移動する。 First, the mechanism by which the vibration wave drive device 100 generates the driving force will be explained. As shown in FIG. 3, the vibration wave drive device 100 is composed of a piezoelectric element (electrical-mechanical energy conversion element) 1 and a boss plate 2, which are fixed to each other with an adhesive or the like, and vibrations are excited by the piezoelectric element 1. It has a vibrator 3. The flexible substrate 12 is mechanically and electrically connected to the piezoelectric element 1 using an anisotropic conductive paste or the like. The piezoelectric element 1 is provided with two divided electrodes. By applying two-phase high-frequency voltages having a temporal phase difference of π/2 to the two electrodes, an elliptical motion is generated in the protrusion 2a of the boss plate 2 shown in FIG. 4. At this time, by changing the frequency and phase difference of the high-frequency voltage applied to the piezoelectric element 1, the rotation direction and ellipse ratio of the ellipse can be changed as appropriate. Therefore, the vibrator 3 moves relative to the friction member 14 by frictionally contacting the friction member 14 fixed to the base member 13 and performing an elliptical motion due to the pressing force from the pressure plate 8. Generate driving force. That is, the vibrator 3 moves relative to the friction member 14 in the X-axis direction.

次に、加圧プレート8から振動子3に加圧力を伝達する構造について説明する。加圧力は、加圧プレート8、引っ張りコイルバネ7、フェルト5、伝達部材6、及びムーブプレート16により発生する。引っ張りコイルバネ7は、引き伸ばされた状態で第1端がムーブプレート16、第2端が加圧プレート8に接続され、縮む方向へ加圧力を発生する。発生した加圧力は、フェルト5と伝達部材6を介して振動子3に作用する。 Next, a structure for transmitting the pressurizing force from the pressurizing plate 8 to the vibrator 3 will be explained. The pressing force is generated by the pressing plate 8, the tension coil spring 7, the felt 5, the transmission member 6, and the move plate 16. In the stretched state, the tension coil spring 7 has a first end connected to the move plate 16 and a second end connected to the pressure plate 8, and generates a pressure force in the direction of contraction. The generated pressing force acts on the vibrator 3 via the felt 5 and the transmission member 6.

次に、振動子3、振動子3を保持する保持部材4、及び保持部材保持枠(支持部材)11の連結について説明する。図3及び図4に示されるように、ボスプレート2には、X軸方向へ離間した2つの穴部2bが形成されている。保持部材4は、2つの穴部2bに挿入される固定用のピン4aを備える。ピン4aは、穴部2bに挿入された後、接着剤等によって固定される。保持部材保持枠11は、ビス20によりムーブプレート16に連結されると共に、保持部材4に係合する。保持部材保持枠11は、保持部材4を、X軸方向における変位を制限しつつY軸方向において変位可能に支持する。 Next, the connection of the vibrator 3, the holding member 4 that holds the vibrator 3, and the holding member holding frame (supporting member) 11 will be explained. As shown in FIGS. 3 and 4, the boss plate 2 is formed with two holes 2b spaced apart in the X-axis direction. The holding member 4 includes fixing pins 4a inserted into the two holes 2b. After the pin 4a is inserted into the hole 2b, it is fixed with an adhesive or the like. The holding member holding frame 11 is connected to the move plate 16 by screws 20 and engages with the holding member 4. The holding member holding frame 11 supports the holding member 4 so that it can be displaced in the Y-axis direction while limiting displacement in the X-axis direction.

保持部材4のX軸方向の各端部では、ローラー部材9を挟んで内側には保持部材4、外側には保持部材保持枠11が配置されている。板バネ10は、接着等により保持部材保持枠11に固定され、ローラー部材9を介して、保持部材4をX軸方向へ付勢する。これにより、ローラー部材9は、保持部材4をX軸方向へ弾性付勢する。すなわち、保持部材4は、ローラー部材9を介して保持部材保持枠11に付勢される。保持部材4は、保持部材保持枠11に対してX軸方向へ付勢されるだけでなく、ローラー部材9の転動によってY軸方向へ移動可能である。このような構成により、保持部材4は保持部材保持枠11に対してY軸方向への移動の自由度と、Z軸周りに傾く自由度を有する。 At each end of the holding member 4 in the X-axis direction, the holding member 4 is placed on the inside with the roller member 9 in between, and the holding member holding frame 11 is placed on the outside. The plate spring 10 is fixed to the holding member holding frame 11 by adhesive or the like, and urges the holding member 4 in the X-axis direction via the roller member 9. Thereby, the roller member 9 elastically urges the holding member 4 in the X-axis direction. That is, the holding member 4 is urged against the holding member holding frame 11 via the roller member 9. The holding member 4 is not only urged in the X-axis direction with respect to the holding member holding frame 11, but also movable in the Y-axis direction by rolling of the roller member 9. With this configuration, the holding member 4 has a degree of freedom of movement in the Y-axis direction and a degree of freedom of tilting around the Z-axis with respect to the holding member holding frame 11.

以上の構成により、保持部材4と保持部材保持枠11は、駆動方向であるX軸方向にはガタの発生がなく、Y軸方向にはローラー部材9の転動作用により摺動抵抗がほとんど発生しない連結を実現することができる。 With the above configuration, the holding member 4 and the holding member holding frame 11 have no play in the X-axis direction, which is the driving direction, and almost no sliding resistance occurs in the Y-axis direction due to the rolling action of the roller member 9. It is possible to realize connections that do not require

保持部材4では、Y軸方向の摺動抵抗がほとんど発生しないため、他の部材からの振動等の理由で励振が起こると、例えば図4に示される矢印方向のZ軸周りの振動等の不要振動が起こりやすい。そこで、本実施例では、Y軸方向において保持部材4と保持部材保持枠11との間にゴム材やゲル材等の粘弾性部材19を配置する。これにより、保持部材保持枠11と粘弾性部材19がダンパーの役割を果たし、保持部材4の不要振動を抑制することができる。 In the holding member 4, almost no sliding resistance occurs in the Y-axis direction, so if excitation occurs due to vibrations from other members, for example, vibrations around the Z-axis in the direction of the arrow shown in FIG. 4 are unnecessary. Vibration is likely to occur. Therefore, in this embodiment, a viscoelastic member 19 such as a rubber material or a gel material is arranged between the holding member 4 and the holding member holding frame 11 in the Y-axis direction. Thereby, the holding member holding frame 11 and the viscoelastic member 19 play the role of a damper, and unnecessary vibrations of the holding member 4 can be suppressed.

以下、粘弾性部材19の配置箇所とその効果について説明する。 Hereinafter, the arrangement location of the viscoelastic member 19 and its effects will be explained.

図5(a)と図5(b)はそれぞれ、保持部材4、保持部材保持枠11、及び粘弾性部材19の分解斜視図とX軸の負の方向から見た図である。図6(a)と図6(b)はそれぞれ、保持部材4と保持部材保持枠11の斜視図である。保持部材4と保持部材保持枠11はそれぞれ、互いに対向する面(第1面、第3面)4bと面(第2面、第4面)11aを備える。粘弾性部材19は、面4b,11aの間に配置される。 FIGS. 5A and 5B are an exploded perspective view and a view from the negative direction of the X-axis of the holding member 4, the holding member holding frame 11, and the viscoelastic member 19, respectively. 6(a) and 6(b) are perspective views of the holding member 4 and the holding member holding frame 11, respectively. The holding member 4 and the holding member holding frame 11 each include a surface (first surface, third surface) 4b and a surface (second surface, fourth surface) 11a that face each other. Viscoelastic member 19 is arranged between surfaces 4b and 11a.

次に図7を参照して、保持部材4の振動抑制について説明する。図7は、本実施例の振動波駆動装置100をY軸の正の方向から見た図である。保持部材保持枠11は、ビス20でムーブプレート16に締結される。ムーブプレート16は、3つのボール部材18(転動部材)を介してボールベース15に係合する。ボールベース15は、ビス21でベース部材13に締結される。ベース部材13は、不図示のビスで鏡筒に締結される。ビス20で締結されるムーブプレート16が3つのボール部材18を介してボールベース15に係合するため、保持部材保持枠11はY軸方向とZ軸周りの回転方向の自由度を拘束される。 Next, vibration suppression of the holding member 4 will be explained with reference to FIG. FIG. 7 is a diagram of the vibration wave drive device 100 of this embodiment viewed from the positive direction of the Y-axis. The holding member holding frame 11 is fastened to the move plate 16 with screws 20. The move plate 16 engages with the ball base 15 via three ball members 18 (rolling members). The ball base 15 is fastened to the base member 13 with screws 21. The base member 13 is fastened to the lens barrel with screws (not shown). Since the move plate 16 fastened with the screws 20 engages with the ball base 15 via the three ball members 18, the degree of freedom of the holding member holding frame 11 is restricted in the Y-axis direction and the rotational direction around the Z-axis. .

上記構成により、保持部材4と保持部材保持枠11との間に粘弾性部材19を配置することで、保持部材4がY軸方向又はZ軸周りの回転方向へ変位しようとした場合、保持部材保持枠11と粘弾性部材19がダンパーの役割を果たす。これにより、保持部材4の振動を抑制することができる。 With the above configuration, by disposing the viscoelastic member 19 between the holding member 4 and the holding member holding frame 11, when the holding member 4 attempts to displace in the Y-axis direction or the rotational direction around the Z-axis, the holding member The holding frame 11 and the viscoelastic member 19 serve as a damper. Thereby, vibration of the holding member 4 can be suppressed.

特許文献1の構成では、Y軸方向から見た場合、振動減衰部材と他の部材との接触領域が重ならない。このような構成では、例えば図4に示されるZ軸周りの振動に対しては、振動減衰部材の配置箇所での撓みと、振動を抑制する力が小さいため減衰効果も小さく、効果的にZ軸周りの振動を抑制することが困難である。一方、本実施例では、粘弾性部材19は、図4と図5に示されるように、Y軸方向において向かい合うように形成された面4b,11aの間に配置される。すなわち、本実施例では、Y軸方向から見た場合、保持部材4と粘弾性部材19との当接箇所の少なくとも一部は、保持部材保持枠11と粘弾性部材19との当接箇所の少なくとも一部と重なる。面4b,11aの間は、X軸方向において、保持部材4のX軸方向の両端の位置と同じ位置であり、Z軸周りの振動変位が大きい位置である。これにより、Z軸周りの振動変位が大きい位置で加圧方向の減衰を作用させることができるため、効果的にZ軸周りの振動を抑制することができる。 In the configuration of Patent Document 1, the contact areas of the vibration damping member and other members do not overlap when viewed from the Y-axis direction. In such a configuration, for example, with respect to vibrations around the Z axis shown in FIG. It is difficult to suppress vibrations around the shaft. On the other hand, in this embodiment, the viscoelastic member 19 is arranged between the surfaces 4b and 11a that are formed to face each other in the Y-axis direction, as shown in FIGS. 4 and 5. That is, in this embodiment, when viewed from the Y-axis direction, at least a part of the contact point between the holding member 4 and the viscoelastic member 19 is the same as the contact point between the holding member holding frame 11 and the viscoelastic member 19. at least partially overlap. The space between the surfaces 4b and 11a is the same position in the X-axis direction as the positions of both ends of the holding member 4 in the X-axis direction, and is a position where vibrational displacement around the Z-axis is large. As a result, damping in the pressurizing direction can be applied at positions where vibrational displacement around the Z-axis is large, so that vibrations around the Z-axis can be effectively suppressed.

なお、振動子3にY軸方向の不要な力が多く加わると、加圧プレート8から振動子3に伝達される加圧を阻害しやすくなり、駆動特性の悪化や、圧電素子1とボスプレート2の接着剥がれ等の問題が起こる可能性がある。そこで、粘弾性部材19からのY軸方向の反力を低減するために、粘弾性部材19には硬度の低い材料を使用することが好ましい。例えば、粘弾性部材19として、ブチルゴム等を使用すればよい。 Note that if a large amount of unnecessary force in the Y-axis direction is applied to the vibrator 3, the pressure transmitted from the pressure plate 8 to the vibrator 3 is likely to be inhibited, resulting in deterioration of drive characteristics and damage to the piezoelectric element 1 and boss plate. Problems such as adhesive peeling described in No. 2 may occur. Therefore, in order to reduce the reaction force in the Y-axis direction from the viscoelastic member 19, it is preferable to use a material with low hardness for the viscoelastic member 19. For example, butyl rubber or the like may be used as the viscoelastic member 19.

本実施例の振動波駆動装置は、実施例1の振動波駆動装置100と基本的な構成は同じである。本実施例では、実施例1と異なる構成についてのみ説明し、同一の構成については説明を省略する。 The vibration wave drive device of this embodiment has the same basic configuration as the vibration wave drive device 100 of the first embodiment. In this embodiment, only the different configurations from the first embodiment will be explained, and the explanation of the same configurations will be omitted.

図8(a)と図8(b)はそれぞれ、保持部材42、保持部材保持枠(支持部材)112、及び粘弾性部材192の分解斜視図とXY平面の断面図の一部を示す図である。保持部材42と保持部材保持枠112はそれぞれ、互いに対向する面(第1面)42aと面(第2面)112aを備える。面42aは、保持部材42のX軸方向の両端に形成されている。粘弾性部材192は、面42a,112aの間に配置される。本実施例では、例えば、粘弾性部材19として、ブチルゴム等が使用される。 8(a) and 8(b) are diagrams showing a part of an exploded perspective view and a cross-sectional view of the XY plane of the holding member 42, the holding member holding frame (supporting member) 112, and the viscoelastic member 192, respectively. be. The holding member 42 and the holding member holding frame 112 each include a surface (first surface) 42a and a surface (second surface) 112a that face each other. The surfaces 42a are formed at both ends of the holding member 42 in the X-axis direction. Viscoelastic member 192 is disposed between surfaces 42a and 112a. In this embodiment, for example, butyl rubber or the like is used as the viscoelastic member 19.

図9(a)と図9(b)はそれぞれ、保持部材42と保持部材保持枠112の斜視図である。面42aには、先端が尖った形状の凸部(第1凸部)42bが設けられている。面112aには、先端が尖った形状の凸部(第2凸部)112bが設けられている。本実施例では、凸部42b,112bは、先端が円錐形状に形成される。凸部42b,112bは、粘弾性部材192に食い込むように設けられている。これにより、食い込んだ凸部112bと粘弾性部材192がダンパーの役割を果たし、保持部材42の振動を抑制する。また、凸部42bが粘弾性部材192に食い込んでいるため、Z軸周りの振動のようなY軸方向の振動減衰だけでなく、X軸方向への並進振動に対しても減衰効果が発揮される。 9(a) and 9(b) are perspective views of the holding member 42 and the holding member holding frame 112, respectively. A convex portion (first convex portion) 42b having a pointed tip is provided on the surface 42a. A convex portion (second convex portion) 112b having a pointed tip is provided on the surface 112a. In this embodiment, the convex portions 42b and 112b have conical tips. The protrusions 42b and 112b are provided so as to bite into the viscoelastic member 192. As a result, the wedged convex portion 112b and the viscoelastic member 192 play the role of a damper, suppressing vibrations of the holding member 42. Furthermore, since the convex portion 42b bites into the viscoelastic member 192, a damping effect is exerted not only on vibrations in the Y-axis direction, such as vibrations around the Z-axis, but also on translational vibrations in the X-axis direction. Ru.

本実施例では、保持部材42と保持部材保持枠112は、凸部42b,112bが粘弾性部材192に当接するように構成されている。このため、面接触よりも粘弾性部材192から受けるY軸方向の反力を小さくすることができ、振動子3への加圧力を阻害しにくい。 In this embodiment, the holding member 42 and the holding member holding frame 112 are configured such that the convex portions 42b, 112b abut against the viscoelastic member 192. Therefore, the reaction force in the Y-axis direction received from the viscoelastic member 192 can be made smaller than in surface contact, and the pressing force applied to the vibrator 3 is less likely to be inhibited.

凸部42bは、図9に示されるようにX軸方向において2つの位置に設けられている。各位置において、凸部42bは3個設けられている。凸部112bも同様である。図10に示されるように、凸部42b,112bは、Y軸方向から見た場合、重ならないように設けられている。これにより、部品公差で凸部42b,112bの食い込み量が変化したとしても、粘弾性部材192は変形部192aとして面方向(Y軸の正の方向及び負の方向)へ変形することができる。そのため、加圧力を分散し、反力を小さくすることができる。 The convex portions 42b are provided at two positions in the X-axis direction, as shown in FIG. Three protrusions 42b are provided at each position. The same applies to the convex portion 112b. As shown in FIG. 10, the convex portions 42b and 112b are provided so as not to overlap when viewed from the Y-axis direction. Thereby, even if the amount of bite of the convex portions 42b, 112b changes due to component tolerances, the viscoelastic member 192 can be deformed in the plane direction (the positive direction and the negative direction of the Y axis) as the deformable portion 192a. Therefore, the pressing force can be dispersed and the reaction force can be reduced.

本実施例の振動波駆動装置は、実施例1の振動波駆動装置100と基本的な構成は同じである。本実施例では、実施例1と異なる構成についてのみ説明し、同一の構成については説明を省略する。 The vibration wave drive device of this embodiment has the same basic configuration as the vibration wave drive device 100 of the first embodiment. In this embodiment, only the different configurations from the first embodiment will be explained, and the explanation of the same configurations will be omitted.

図11(a)と図11(b)はそれぞれ、保持部材43、保持部材保持枠(支持部材)113、及び粘弾性部材193の分解斜視図とXY平面の断面図の一部を示す図である。保持部材43と保持部材保持枠113はそれぞれ、互いに対向する面(第1面)43aと面(第2面)113aを備える。粘弾性部材193は、面43a,113aの間に配置される。本実施例では、例えば、粘弾性部材193として、ゲル等の流動性が高く、化学反応により硬化する物質(素材)が使用される。 11(a) and 11(b) are diagrams showing a part of an exploded perspective view and a cross-sectional view of the XY plane of the holding member 43, the holding member holding frame (supporting member) 113, and the viscoelastic member 193, respectively. be. The holding member 43 and the holding member holding frame 113 each include a surface (first surface) 43a and a surface (second surface) 113a that face each other. Viscoelastic member 193 is arranged between surfaces 43a and 113a. In this embodiment, for example, as the viscoelastic member 193, a substance (material) having high fluidity such as gel and hardening through a chemical reaction is used.

図12(a)と図12(b)はそれぞれ、保持部材43と保持部材保持枠113の斜視図である。面43aは、保持部材43に設けられた凹部43bの底面である。粘弾性部材193は、凹部43bに配置される。面113aには、凸部113bが形成されている。本実施例では、凸部113bがY軸に対して斜め方向から粘弾性部材193に食い込む。Y軸に対して垂直に食い込むように構成した場合、粘弾性部材193からの反力によりY軸方向への振動に対する減衰効果は大きいが、X軸方向の振動に対しては凸部113bと粘弾性部材193の摩擦力による減衰しか働かないため、効果が小さい。本実施例では、Y軸に対して角度を持って粘弾性部材193に食い込むため、X軸方向の振動に対して粘弾性部材193からの反力が働き、減衰効果を大きくすることができる。これにより、食い込んだ凸部113bと粘弾性部材193がダンパーの役割を果たし、保持部材43の振動を抑制することができる。また、凸部113bがY軸に対して斜め方向から粘弾性部材193に食い込んでいるため、Z軸周りの振動のようなY軸方向の振動減衰だけでなく、X軸方向への並進振動に対しても減衰効果を発揮することができる。なお、保持部材43に凸部を設け、保持部材保持枠113に凹部を設けてもよい。 12(a) and 12(b) are perspective views of the holding member 43 and the holding member holding frame 113, respectively. The surface 43a is the bottom surface of the recess 43b provided in the holding member 43. The viscoelastic member 193 is arranged in the recess 43b. A convex portion 113b is formed on the surface 113a. In this embodiment, the convex portion 113b bites into the viscoelastic member 193 from an oblique direction with respect to the Y axis. When configured to bite perpendicularly to the Y-axis, the reaction force from the viscoelastic member 193 has a large damping effect against vibrations in the Y-axis direction; Since the only damping effect is due to the frictional force of the elastic member 193, the effect is small. In this embodiment, since it bites into the viscoelastic member 193 at an angle with respect to the Y-axis, a reaction force from the viscoelastic member 193 acts against vibrations in the X-axis direction, making it possible to increase the damping effect. Thereby, the biting convex portion 113b and the viscoelastic member 193 play the role of a damper, and vibration of the holding member 43 can be suppressed. Furthermore, since the convex portion 113b bites into the viscoelastic member 193 from an oblique direction with respect to the Y-axis, it not only damps vibrations in the Y-axis direction such as vibrations around the Z-axis, but also damps translational vibrations in the X-axis direction. It can also exert a damping effect against Note that the holding member 43 may be provided with a convex portion, and the holding member holding frame 113 may be provided with a recessed portion.

本実施例では、粘弾性部材193は、実施例1の振動波駆動装置100をモータ状態まで組み上げ、振動子3への加圧力が設定された後に外部から注入され、硬化する。これにより、凸部113bからの余分な加圧力が粘弾性部材193に作用しないため、粘弾性部材193からのY軸方向への反力が生じず、振動子3への加圧力を阻害しない。また、部品公差により寸法が変化したとしても、粘弾性部材193と凸部113bは安定してダンパーの役割を果たすので、保持部材43の振動を減衰させることができる。なお、組み立て後に粘弾性部材193を注入してもよいが、予め粘弾性部材193を注入し、組み立て後に硬化させてもよい。 In this example, the viscoelastic member 193 is injected from the outside after the vibration wave drive device 100 of Example 1 is assembled to the motor state and the pressure applied to the vibrator 3 is set, and then hardened. As a result, the extra pressure from the convex portion 113b does not act on the viscoelastic member 193, so no reaction force is generated in the Y-axis direction from the viscoelastic member 193, and the pressure applied to the vibrator 3 is not inhibited. Further, even if the dimensions change due to component tolerances, the viscoelastic member 193 and the convex portion 113b stably play the role of a damper, so that vibrations of the holding member 43 can be damped. Although the viscoelastic member 193 may be injected after assembly, the viscoelastic member 193 may be injected in advance and cured after assembly.

本実施例の振動波駆動装置は、実施例1の振動波駆動装置100と基本的な構成は同じである。本実施例では、実施例1と異なる構成についてのみ説明し、同一の構成については説明を省略する。 The vibration wave drive device of this embodiment has the same basic configuration as the vibration wave drive device 100 of the first embodiment. In this embodiment, only the different configurations from the first embodiment will be explained, and the explanation of the same configurations will be omitted.

粘弾性部材は、実施例1乃至3では保持部材の長手方向の端部に設けられるが、本実施例では保持部材の短手方向の端部に設けられる。 In Examples 1 to 3, the viscoelastic member is provided at the longitudinal end of the holding member, but in this embodiment, it is provided at the lateral end of the holding member.

図13(a)と図13(b)はそれぞれ、保持部材44、保持部材保持枠(支持部材)114、及び粘弾性部材194の分解斜視図とYZ平面の断面図である。保持部材44と保持部材保持枠114はそれぞれ、互いに対向する面(第1面)44aと面(第2面)114aを備える。粘弾性部材194は、面44a,114aの間に配置される。本実施例では、例えば、粘弾性部材194として、ブチルゴム等が使用される。 13(a) and 13(b) are an exploded perspective view and a cross-sectional view on the YZ plane of the holding member 44, the holding member holding frame (supporting member) 114, and the viscoelastic member 194, respectively. The holding member 44 and the holding member holding frame 114 each include a surface (first surface) 44a and a surface (second surface) 114a that face each other. Viscoelastic member 194 is disposed between surfaces 44a and 114a. In this embodiment, for example, butyl rubber or the like is used as the viscoelastic member 194.

図14(a)と図14(b)はそれぞれ、保持部材42と保持部材保持枠112の斜視図である。本実施例では、面44aは、保持部材44のX軸方向と平行な2辺上に設けられる。粘弾性部材194は、保持部材44のX軸方向と平行な2辺上に設けられる。これにより、保持部材保持枠114と粘弾性部材194がダンパーの役割を果たし、Y軸方向の振動だけでなく、X軸周りの回転振動モードに対しても強い減衰効果を発揮することができる。 14(a) and 14(b) are perspective views of the holding member 42 and the holding member holding frame 112, respectively. In this embodiment, the surfaces 44a are provided on two sides of the holding member 44 parallel to the X-axis direction. The viscoelastic members 194 are provided on two sides of the holding member 44 parallel to the X-axis direction. As a result, the holding member holding frame 114 and the viscoelastic member 194 play the role of a damper, and can exert a strong damping effect not only against vibrations in the Y-axis direction but also against rotational vibration modes around the X-axis.

また、面44a,114aを、実施例2や実施例3で示した形状にすることで粘弾性部材194からの反力の影響を抑えることができる。 Further, by forming the surfaces 44a and 114a in the shapes shown in the second embodiment and the third embodiment, the influence of the reaction force from the viscoelastic member 194 can be suppressed.

本実施形態の開示は、以下の構成を含む。
(構成1)
電気-機械エネルギ変換素子により振動が励起される振動子と該振動子と接触面で接触する摩擦部材とを第1方向へ相対移動させる振動波駆動装置であって、
前記振動子を保持する保持部材と、
前記振動子を前記接触面に直交する第2方向へ加圧する加圧部材と、
前記保持部材を、前記第1方向と前記第2方向において拘束する支持部材と、
前記第2方向において前記保持部材と前記支持部材との間に配置される粘弾性部材とを有することを特徴とする振動波駆動装置。
(構成2)
前記保持部材と前記支持部材はそれぞれ、互いに対向する第1面と第2面を備え、
前記粘弾性部材は、前記第1面と前記第2面との間に配置されることを特徴とする構成1に記載の振動波駆動装置。
(構成3)
前記保持部材と前記支持部材はそれぞれ、互いに対向する第3面と第4面を備え、
前記粘弾性部材は、前記第3面と前記第4面との間に配置されることを特徴とする構成2に記載の振動波駆動装置。
(構成4)
前記第2の方向から見た場合、前記保持部材と前記粘弾性部材との当接箇所の少なくとも一部は、前記支持部材と前記粘弾性部材との当接箇所の少なくとも一部と重なることを特徴とする構成1乃至3の何れか一つの構成に記載の振動波駆動装置。
(構成5)
前記保持部材と前記支持部材の少なくとも一方は、前記粘弾性部材に食い込む凸部を備えることを特徴とする構成1乃至3の何れか一つの構成に記載の振動波駆動装置。
(構成6)
前記凸部は、先端が円錐形状に形成されることを特徴とする構成5に記載の振動波駆動装置。
(構成7)
前記保持部材は、前記粘弾性部材に食い込む第1凸部を備え、
前記支持部材は、前記粘弾性部材に食い込む第2凸部を備え、
前記第2方向から見た場合、前記第1凸部と前記第2凸部は重ならないことを特徴とする構成1乃至6の何れか一つの構成に記載の振動波駆動装置。
(構成8)
前記凸部は、前記第2方向に対して角度を持つように形成されることを特徴とする構成5又は6に記載の振動波駆動装置。
(構成9)
前記粘弾性部材は、前記保持部材の長手方向の端部に配置されることを特徴とする構成1乃至8の何れか一つの構成に記載の振動波駆動装置。
(構成10)
前記粘弾性部材は、前記保持部材の短手方向の端部に配置されることを特徴とする構成1乃至8の何れか一つの構成に記載の振動波駆動装置。
(構成11)
前記粘弾性部材は、ゴム材であることを特徴とする構成1乃至10の何れか一つの構成に記載の振動波駆動装置。
(構成12)
前記粘弾性部材は、ゲル材であることを特徴とする構成1乃至10の何れか一つの構成に記載の振動波駆動装置。
The disclosure of this embodiment includes the following configurations.
(Configuration 1)
A vibration wave drive device that relatively moves in a first direction a vibrator whose vibration is excited by an electro-mechanical energy conversion element and a friction member that contacts the vibrator at a contact surface,
a holding member that holds the vibrator;
a pressing member that presses the vibrator in a second direction perpendicular to the contact surface;
a support member that restrains the holding member in the first direction and the second direction;
A vibration wave drive device comprising: a viscoelastic member disposed between the holding member and the supporting member in the second direction.
(Configuration 2)
The holding member and the supporting member each include a first surface and a second surface facing each other,
The vibration wave drive device according to configuration 1, wherein the viscoelastic member is disposed between the first surface and the second surface.
(Configuration 3)
The holding member and the supporting member each include a third surface and a fourth surface facing each other,
The vibration wave drive device according to configuration 2, wherein the viscoelastic member is disposed between the third surface and the fourth surface.
(Configuration 4)
When viewed from the second direction, at least a portion of the contact point between the holding member and the viscoelastic member overlaps with at least a portion of the contact point between the support member and the viscoelastic member. A vibration wave drive device according to any one of features 1 to 3.
(Configuration 5)
4. The vibration wave drive device according to any one of configurations 1 to 3, wherein at least one of the holding member and the support member includes a convex portion that bites into the viscoelastic member.
(Configuration 6)
The vibration wave drive device according to configuration 5, wherein the convex portion has a conical tip.
(Configuration 7)
The holding member includes a first convex portion that bites into the viscoelastic member,
The support member includes a second convex portion that bites into the viscoelastic member,
7. The vibration wave drive device according to any one of configurations 1 to 6, wherein the first convex portion and the second convex portion do not overlap when viewed from the second direction.
(Configuration 8)
7. The vibration wave drive device according to configuration 5 or 6, wherein the convex portion is formed at an angle with respect to the second direction.
(Configuration 9)
9. The vibration wave drive device according to any one of configurations 1 to 8, wherein the viscoelastic member is disposed at a longitudinal end of the holding member.
(Configuration 10)
9. The vibration wave drive device according to any one of configurations 1 to 8, wherein the viscoelastic member is disposed at an end in the transverse direction of the holding member.
(Configuration 11)
11. The vibration wave drive device according to any one of configurations 1 to 10, wherein the viscoelastic member is a rubber material.
(Configuration 12)
11. The vibration wave drive device according to any one of configurations 1 to 10, wherein the viscoelastic member is a gel material.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 Although preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the invention.

1 圧電素子(電気-機械エネルギ変換素子)
3 振動子
4 保持部材
8 加圧プレート(加圧部材)
11 保持部材保持枠(支持部材)
14 摩擦部材
19 粘弾性部材
100 振動波駆動装置
1 Piezoelectric element (electrical-mechanical energy conversion element)
3 Vibrator 4 Holding member 8 Pressure plate (pressure member)
11 Holding member holding frame (supporting member)
14 Friction member 19 Viscoelastic member 100 Vibration wave drive device

Claims (12)

電気-機械エネルギ変換素子により振動が励起される振動子と該振動子と接触面で接触する摩擦部材とを第1方向へ相対移動させる振動波駆動装置であって、
前記振動子を保持する保持部材と、
前記振動子を前記接触面に直交する第2方向へ加圧する加圧部材と、
前記保持部材を、前記第1方向における変位を制限しつつ前記第2方向において変位可能に支持する支持部材と、
前記第2方向において前記保持部材と前記支持部材との間に配置される粘弾性部材とを有することを特徴とする振動波駆動装置。
A vibration wave drive device that relatively moves in a first direction a vibrator whose vibration is excited by an electro-mechanical energy conversion element and a friction member that contacts the vibrator at a contact surface,
a holding member that holds the vibrator;
a pressing member that presses the vibrator in a second direction perpendicular to the contact surface;
a support member that supports the holding member so as to be movable in the second direction while limiting displacement in the first direction;
A vibration wave drive device comprising: a viscoelastic member disposed between the holding member and the supporting member in the second direction.
前記保持部材と前記支持部材はそれぞれ、互いに対向する第1面と第2面を備え、
前記粘弾性部材は、前記第1面と前記第2面との間に配置されることを特徴とする請求項1に記載の振動波駆動装置。
The holding member and the supporting member each include a first surface and a second surface facing each other,
The vibration wave drive device according to claim 1, wherein the viscoelastic member is arranged between the first surface and the second surface.
前記保持部材と前記支持部材はそれぞれ、互いに対向する第3面と第4面を備え、
前記粘弾性部材は、前記第3面と前記第4面との間に配置されることを特徴とする請求項2に記載の振動波駆動装置。
The holding member and the supporting member each include a third surface and a fourth surface facing each other,
The vibration wave drive device according to claim 2, wherein the viscoelastic member is arranged between the third surface and the fourth surface.
前記第2の方向から見た場合、前記保持部材と前記粘弾性部材との当接箇所の少なくとも一部は、前記支持部材と前記粘弾性部材との当接箇所の少なくとも一部と重なることを特徴とする請求項1又は2に記載の振動波駆動装置。 When viewed from the second direction, at least a portion of the contact point between the holding member and the viscoelastic member overlaps with at least a portion of the contact point between the support member and the viscoelastic member. The vibration wave drive device according to claim 1 or 2. 前記保持部材と前記支持部材の少なくとも一方は、前記粘弾性部材に食い込む凸部を備えることを特徴とする請求項1又は2に記載の振動波駆動装置。 The vibration wave drive device according to claim 1 or 2, wherein at least one of the holding member and the supporting member includes a convex portion that bites into the viscoelastic member. 前記凸部は、先端が円錐形状に形成されることを特徴とする請求項5に記載の振動波駆動装置。 The vibration wave drive device according to claim 5, wherein the convex portion has a conical tip. 前記保持部材は、前記粘弾性部材に食い込む第1凸部を備え、
前記支持部材は、前記粘弾性部材に食い込む第2凸部を備え、
前記第2方向から見た場合、前記第1凸部と前記第2凸部は重ならないことを特徴とする請求項1又は2に記載の振動波駆動装置。
The holding member includes a first convex portion that bites into the viscoelastic member,
The support member includes a second convex portion that bites into the viscoelastic member,
The vibration wave drive device according to claim 1 or 2, wherein the first convex portion and the second convex portion do not overlap when viewed from the second direction.
前記凸部は、前記第2方向に対して角度を持つように形成されることを特徴とする請求項5に記載の振動波駆動装置。 The vibration wave drive device according to claim 5, wherein the convex portion is formed at an angle with respect to the second direction. 前記粘弾性部材は、前記保持部材の長手方向の端部に配置されることを特徴とする請求項1又は2に記載の振動波駆動装置。 The vibration wave drive device according to claim 1 or 2, wherein the viscoelastic member is arranged at a longitudinal end of the holding member. 前記粘弾性部材は、前記保持部材の短手方向の端部に配置されることを特徴とする請求項1又は2に記載の振動波駆動装置。 The vibration wave drive device according to claim 1 or 2, wherein the viscoelastic member is arranged at an end in the transverse direction of the holding member. 前記粘弾性部材は、ゴム材であることを特徴とする請求項1又は2に記載の振動波駆動装置。 The vibration wave drive device according to claim 1 or 2, wherein the viscoelastic member is a rubber material. 前記粘弾性部材は、ゲル材であることを特徴とする請求項1又は2に記載の振動波駆動装置。 The vibration wave drive device according to claim 1 or 2, wherein the viscoelastic member is a gel material.
JP2022099391A 2022-06-21 2022-06-21 Oscillatory wave driving device Pending JP2024000619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022099391A JP2024000619A (en) 2022-06-21 2022-06-21 Oscillatory wave driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022099391A JP2024000619A (en) 2022-06-21 2022-06-21 Oscillatory wave driving device

Publications (1)

Publication Number Publication Date
JP2024000619A true JP2024000619A (en) 2024-01-09

Family

ID=89451776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022099391A Pending JP2024000619A (en) 2022-06-21 2022-06-21 Oscillatory wave driving device

Country Status (1)

Country Link
JP (1) JP2024000619A (en)

Similar Documents

Publication Publication Date Title
RU2671943C2 (en) Motor and including the motor electronic equipment
JP6271963B2 (en) Vibration type actuator
US10379313B2 (en) Vibration wave motor and lens driving apparatus
JP2007185056A (en) Exciting method of elastic vibration body, and vibration drive device
KR20130088063A (en) Ultrasonic motor
US10103650B2 (en) Driving device
JP5683643B2 (en) Linear ultrasonic motor and optical apparatus having the same
US11245343B2 (en) Vibration wave motor and driving device
US11621654B2 (en) Vibration-wave motor and apparatus using the same
US11336211B2 (en) Vibration wave motor and driving apparatus using vibration wave motor
JP2015065809A (en) Linear ultrasonic motor and optical device having the same
JP6269223B2 (en) Piezoelectric motor
JP2024000619A (en) Oscillatory wave driving device
US7990021B2 (en) Driving apparatus, and manufacturing method of the same
JP2012151924A (en) Vibrator retention mechanism, vibration motor and lens drive device
JP6929165B2 (en) Vibration wave motor and drive
JP2018174616A (en) Vibration wave motor, and imaging apparatus provided with vibration wave motor
JP2012165496A (en) Vibration motor and lens drive mechanism
WO2016002917A1 (en) Vibration-type actuator, lens barrel, image-capturing device, and automatic stage
JP2017195713A (en) Vibration wave motor and optical equipment equipped with the same
US20230299694A1 (en) Motor, driving apparatus, lens apparatus, and image pickup apparatus
JP2017060342A (en) Vibration wave motor
JP2020058175A (en) Vibration type actuator and device
JP2022114998A (en) Vibration wave driving device
JP2018101094A (en) Vibration type actuator, lens driving device, optical instrument, and electronic apparatus