JP2023550878A - 術中リアルタイム腫瘍組織識別装置および方法 - Google Patents

術中リアルタイム腫瘍組織識別装置および方法 Download PDF

Info

Publication number
JP2023550878A
JP2023550878A JP2023522564A JP2023522564A JP2023550878A JP 2023550878 A JP2023550878 A JP 2023550878A JP 2023522564 A JP2023522564 A JP 2023522564A JP 2023522564 A JP2023522564 A JP 2023522564A JP 2023550878 A JP2023550878 A JP 2023550878A
Authority
JP
Japan
Prior art keywords
electrodes
voltage
joint
tissue
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023522564A
Other languages
English (en)
Inventor
ティモシー コンスタンディノウ
ジネンドラ エカナヤケ
ヤン リウ
スティーヴン ウォン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ip2ipo Innovations Ltd
Original Assignee
Imperial College Innovations Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial College Innovations Ltd filed Critical Imperial College Innovations Ltd
Publication of JP2023550878A publication Critical patent/JP2023550878A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0538Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/4064Evaluating the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0042Surgical instruments, devices or methods, e.g. tourniquets with special provisions for gripping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/05Surgical care
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0406Constructional details of apparatus specially shaped apparatus housings
    • A61B2560/0418Pen-shaped housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0431Portable apparatus, e.g. comprising a handle or case
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • A61B5/067Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe using accelerometers or gyroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6885Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Signal Processing (AREA)
  • Physiology (AREA)
  • Neurology (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Neurosurgery (AREA)
  • Psychology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

術中リアルタイム腫瘍組織識別装置および方法リアルタイムで腫瘍組織と非腫瘍組織とを識別するための装置であって、細長い本体と、前記細長い本体の遠位端に取り付けられた少なくとも4つの刺激電極をと有するハンドヘルドの生体インピーダンスプローブであって、前記電極は、使用時に組織の領域に保持されるように配置されているものと、刺激電流を発生させるように構成された電流源と、電圧センサと、前記電流源、前記電圧センサおよび前記刺激電極の間に結合され、複数のスイッチング構成の間で変更可能に切り替えられるように構成されたマルチプレクサであって、各スイッチング構成において、前記電極のうち第1の2つの電極が前記電流源に接続され、前記電極のうち第2の2つの前記電極が前記電圧センサに接続され、前記第1の2つの電極を構成する前記電極と前記第2の2つの電極を構成する前記電極は、一のスイッチング構成から次のスイッチング構成へと変化するものと、プロセッサ制御回路であって、前記マルチプレクサの前記スイッチング構成を制御し、前記電流源による前記刺激電流の生成と、各スイッチング構成の前記第1の2つの電極への前記刺激電流の印加とを制御し、使用時に、前記刺激電流が前記第1の2つの電極間の前記組織を通過するようにし、前記電圧センサによって、使用中の前記組織を横切る各スイッチング構成の前記第2の2つの電極間の前記電圧の前記測定を制御し、各スイッチング構成における前記印加電流と前記測定された電圧に基づいて、各スイッチング構成における前記組織の相対インピーダンスの尺度を決定し、インピーダンス測定値を出力データとしてデータ分析装置に供給し、前記インピーダンス測定値に基づいて、組織のリアルタイムの識別を実行することを可能にするものと、を備える装置。細長い本体と、前記細長い本体に枢動可能に結合された調節可能なハンドル部材とを備えるハンドヘルドの外科用ツールも提供される。【選択図】図1a

Description

新規性喪失の例外適用申請有り
本発明は、腫瘍組織と正常(非腫瘍)組織とを識別するための、術中リアルタイム腫瘍組織識別装置、および関連する方法に関する。特に、脳腫瘍の識別に適用されるが、決してそのような用途に限定されるものではなく、代わりに、ヒト(または潜在的に動物)の身体の他の部分における腫瘍組織と正常組織との間の識別に使用することができる。
ヒト(または潜在的に動物)の身体における癌の効果的な診断および治療のために、腫瘍の正しい識別、および腫瘍組織と正常(非腫瘍)組織との間の正確な識別が非常に重要である。以下の説明は、主に神経外科手術(すなわち神経腫瘍学)中の脳腫瘍の判定に関するものであるが、本開示は、ヒト(または動物)の身体の他の部分における腫瘍組織の識別にも適用可能である。
特に脳腫瘍に関しては、その管理におけるいくつかの進歩にもかかわらず、腫瘍は(神経膠腫のように)高い死亡率と罹患率を伴うか、または(脳下垂体腫瘍のように)手術後の正常な生理機能の障害により重大な問題を呈する。外科的切除は、外因性および内因性脳腫瘍に対して頻繁に用いられる治療法であり、その主な目的は、切除標本に最も悪性の組織を含めること、最大限の切除、および機能的な脳組織の除去を避けるかまたは最小限に抑えることである[1]。
最大限の穏やかで正確な切除を行い、必要な脳機能を温存することは、外科的治癒をもたらす最良の手段である。この点で、肉眼で見える腫瘍の90%以上を切除する肉眼的全摘出(GTR)は、転帰(無増悪生存期間、全生存期間)および生活の質の改善に直接的に関連している。さらに、最大限の外科的切除(すなわち、造影MRI画像で確認される腫瘍の「増強」成分から2cmまでの微小な腫瘍浸潤を考慮し、意図した切除縁を超えて組織を取り除くこと)は、さらに予後の改善と関連している。しかし、これは必要不可欠な認知機能や恒常性維持機能の維持とのバランスが必要である。実際に、手術によって獲得された機能障害は、予後不良に直結している。したがって、神経腫瘍外科における腫瘍の最大切除に対応する課題は、正常な機能を持つ組織を保存することである。腫瘍は、手術中の目視だけでは明確に区別できない場合があり、腫瘍は微小な細胞量でも正常組織に浸潤し、正常組織を「モザイク」状に巻き込んでいくため、これが難しい場合がある。さらに、腫瘍に侵された脳組織にはまだ機能が残っている可能性があることも考慮しなければならない。したがって、正常な脳組織と異常な脳組織の境界を特定し、確立することは、脳腫瘍の切除手術の重要な目標である。
腫瘍の特定は、術前に高解像度MRIなどの神経画像を使用し、術中の解剖学的「GPS」の一種である机上の「ニューロナビゲーション」と統合することで部分的に達成することができる。しかし、これらのアプローチの限界は、「巨視的」であるということである。さらに、これらの画像は通常、術前または術中に取得されるため、腫瘍の摘出や脳の「ずれ」の結果、外科的切除の際に脳の解剖学的構造がリアルタイムに変化する影響を受けやすい。
したがって、現在、神経腫瘍学の分野では、正常な脳組織と異常な脳組織とを机上で「リアルタイム」に区別するための簡単で実用的かつ堅牢な手段に対する未解決の要求が存在する。より詳細には、このようなリアルタイムの術中技術は、切除および生検の両方の処置中に、外科的マージンの検出(すなわち、健康な脳組織と腫瘍の区別)を可能にするものでなければならない。このような技術は、脳神経外科治療の質を向上させ、腫瘍の識別を最適化し、健康な脳組織への過剰な損傷を低減する可能性がある[2]。これにより、脳腫瘍の再発に伴う死亡率や、癌の再発に伴う患者や医療機関の経済的・生活の質的負担を軽減することができる。脳腫瘍組織と正常組織のリアルタイムな区別により、(a)正常または概ね正常な脳組織の除去を避けることによる脳機能の維持と、(b)異常な脳組織の除去の精度と正確さの向上とを容易にし、それにより脳腫瘍のGTRを容易にする。
外科的切除の際にリアルタイムで視覚化する技術は、重要な研究の焦点となっている。現在のアプローチには、ハイパースペクトル画像、共焦点顕微鏡、術中超音波ガイド下手術(USS)、および術中ラマン分光法が含まれている。後の2つは現在、正式に臨床使用されている技術である。術中超音波ガイド下手術(USS)は広く利用されているが、いまだに利用者に依存し、解釈の難しさもある。特に、肉眼により組織の異常以外を識別する必要がある場合には、このようなことが起こり得る。術中ラマン分光法は、最近、腫瘍細胞を高解像度で顕微鏡的に識別できるとして、臨床試験の一環として脳神経外科の手術室に導入された[3]。
生体インピーダンスは、組織の生物学的構造によるインピーダンスの違いから、異なるタイプの組織の生理状態を評価する最も有望な手段の1つである。生体インピーダンス法は、生体組織への電流の印加と同時に、その組織から発生する電流の流れに対する抵抗値の測定を含む。肝臓、前立腺、乳房、舌などの健常組織と癌組織の生体インピーダンスには、in-vivoとex-vivoの両方の測定[5]-[6]において有意な差があることが、これまでに報告されている[4]。しかし、既存の生体インピーダンス装置は、主に実験室ベースの卓上機器の形態であるため、外科医が手術中に正常な脳組織と異常な脳組織(すなわち、脳腫瘍組織)とを区別できるようにする目的で、術中にリアルタイムで生体インピーダンスを特徴付けるにはあまり適していない。
したがって、外科医が手術中に正常な脳組織と異常な脳組織とを区別できるように、リアルタイムで術中の生体インピーダンスに基づく情報を提供するために外科医が便利に使用でき、それによって上記の問題の少なくともいくつかに対処できる、分かりやすく効果的な生体インピーダンス特性評価装置が必要である。本開示によって対処される他の問題は、以下の説明および添付の図面から明らかになるであろう。
ハンドヘルドの手術器具の分野で取り組まれている関連する課題は、頻繁に使用されるハンドグリップを強化するための手術用ハンドルの最適化である。芸術的または外科的な目的で直線的なペンのような器具を持つとき、3つの主要な手の位置がある。これらには、(1)手の最初の3本の指で道具を囲む「ペンシル」グリップ、(2)道具の一端を主に最初の2本の指で軽く持つ「ペインターズ」グリップ、および(3)人差し指を伸ばして安定させる「オーバーハンド拡張」グリップがある。これらのグリップは、それぞれ他のグリップと比較して、精度、動きの自由度および安定性において特定の改善をもたらす。様々な分野で長年これらの異なるグリップが使用されているにもかかわらず、特定のグリップを容易かつ強固にするために位置を変えることができる単一の専用ツールハンドルは存在しない。
本発明の第1の側面によれば、添付の特許請求の範囲の請求項1に定義されるように、リアルタイムで腫瘍組織と非腫瘍組織とを識別するための装置が提供される。
本発明は、腫瘍切除のための脳外科手術の術中ワークフローで使用されている既存の術中臨床ツールを利用した、リアルタイムの腫瘍組織同定を目的としている。術中の皮質の直接刺激は、覚醒中および睡眠中の脳手術において、機能的活性を有する脳組織を識別するために使用される。本発明は、この原理を発展させ、脳腫瘍組織と正常な脳組織とのリアルタイムな鑑別を目的とした生体インピーダンスの応用を可能にするハンドヘルドのプローブ装置を提供する。
より詳細には、リアルタイムで腫瘍組織と非腫瘍組織とを識別するための装置が提供され、前記装置は、
細長い本体と、前記細長い本体の遠位端に取り付けられた少なくとも4つの刺激電極をと有するハンドヘルドの生体インピーダンスプローブであって、前記電極は、使用時に組織の領域に保持されるように配置されているものと、
刺激電流を発生させるように構成された電流源と、
電圧センサと、
前記電流源、前記電圧センサおよび前記刺激電極の間に結合され、複数のスイッチング構成の間で変更可能に切り替えられるように構成されたマルチプレクサであって、各スイッチング構成において、前記電極のうち第1の2つの電極が前記電流源に接続され、前記電極のうち第2の2つの前記電極が前記電圧センサに接続され、前記第1の2つの電極を構成する前記電極と前記第2の2つの電極を構成する前記電極は、一のスイッチング構成から次のスイッチング構成へと変化するものと、
プロセッサ制御回路であって、
前記マルチプレクサの前記スイッチング構成を制御し、
前記電流源による前記刺激電流の生成と、各スイッチング構成の前記第1の2つの電極への前記刺激電流の印加とを制御し、使用時に、前記刺激電流が前記第1の2つの電極間の前記組織を通過するようにし、
前記電圧センサによって、使用中の前記組織を横切る各スイッチング構成の前記第2の2つの電極間の前記電圧の前記測定を制御し、
各スイッチング構成における前記印加電流と測定された前記電圧に基づいて、各スイッチング構成における前記組織の相対インピーダンスの尺度を決定し、
インピーダンス測定値を出力データとしてデータ分析装置に供給し、前記インピーダンス測定値に基づいて、組織のリアルタイムの識別を実行することを可能にするものと、
を備える。
「刺激電流」という用語は、広義に解釈されるべきで、AC波形や潜在的にDC信号を包含し、実際には任意の電流であってもよい。
生体インピーダンスプローブがハンドヘルドで細長い本体を有することにより、プローブが外科医(または考えられるのはロボットアーム)により便利に使用されて、術中の生体インピーダンスに基づく情報を、好ましくは問題の組織領域の外科医の視界を妨げないような方法で提供することができる。また、少なくとも4つの刺激電極を有すると共に、前述のマルチプレクサの構成と動作態様により、インピーダンス測定を迅速かつ高い精度で行うことができる。
特定の実施形態では、前記電流源は電圧制御電流源であり、前記プロセッサ制御回路は、電圧波形を生成し、前記電圧波形を前記電流源に供給するように構成された電圧波形発生器をさらに備える。前記電流源は、前記電圧波形からDCオフセットを除去し、前記電圧波形を前記刺激電流に変換するように構成されたハイパスフィルタをさらに備えてもよい。前記電圧制御電流源の前記入力が差動または双極である場合、このようなハイパスフィルタは必要でなくてもよい。
また、前記電流源を直接駆動するための電流波形を発生させるために、電流波形発生器を用いてもよい。
前記電圧波形発生器または前記電流波形発生器は、前記電圧波形または前記電流波形が生成される所定の刺激波形を受信するように構成されたデジタル-アナログ変換器を備えてもよい。
あるいは、前記電圧波形発生器または前記電流波形発生器は、前記電圧波形または前記電流波形が生成される所定の刺激波形を受信するように構成された直接デジタル合成モジュールを備えてもよい。
前記刺激波形は、プロセッサ制御回路に記憶されてもよい。
好ましくは、前記電圧波形または前記電流波形は、複数の異なる周波数が混在しており、それにより、高速フーリエ変換処理(または他の適切な技術)を用いて、異なる周波数における前記組織インピーダンスを迅速に抽出することができる。これにより、周波数掃引を採用するような標準的なチャープ技術と比較して、インピーダンス測定時間が大幅に短縮され、測定精度も向上する。好ましくは、前記電圧波形または前記電流波形は、複数の異なる周波数のそれぞれにおいて、実質的に等しい振幅を有する。
好ましくは、前記電圧センサは、計装アンプ、または差動アンプのようなアンプを備える。
好ましくは、前記プロセッサ制御回路は、前記アンプから電圧信号を受信してサンプリングし、それによってデジタル電圧データを生成するように構成されたアナログ/デジタル変換器をさらに備える。
前記電圧波形が複数の異なる周波数の混合を含む実施形態の場合、前記プロセッサ制御回路は、前記アナログ/デジタル変換器から前記デジタル電圧データを受信し、時間領域データを周波数領域データに変換し、それによって前記刺激波形の各周波数に対する前記電圧データの瞬時の振幅を抽出するように構成された高速フーリエ変換プロセッサをさらに備えてもよい。
前記マルチプレクサは、複数のスイッチング構成の各々を周期的に切り替えるように構成されてもよい。
前記プロセッサ制御回路は、マイクロコントローラを備えてもよい。
特定の実施形態では、前記電圧制御電流源および/または前記アンプは、プローブ内のフロントエンドプリント回路基板または集積回路に設けられている。
前記デジタル-アナログ変換器および/または前記アナログ-デジタル変換器は、マイクロコントローラユニット(MCU)プラットフォーム上に設けられてもよい。
前記データ分析装置は、パーソナルコンピュータ(PC)、またはタブレットコンピュータやスマートフォンなどの他の適切なデバイスを備えてもよい。
特定の実施形態では、前記電極は球状または半球状であってもよく、および/またはばねにより付勢されていてもよい。あるいは、前記電極は、例えば、針状または尖った形状であってもよい。
特定の実施形態では、前記細長い本体の前記遠位端は、前記電極が取り付けられる伸縮シャフトを備えてもよい。このような配置は、脳へのプローブの鼻内アクセスを可能にし、または容易にする。
前記プローブは、前記細長い本体の近位端にある調節可能なハンドル部材をさらに備えてもよい。より詳細には、前記ハンドル部材は、前記細長い本体に枢動可能に結合されてもよい。これにより、例えば、伸ばした人差し指で安定させた「オーバーハンド」グリップ(ハンドルを「角度付き」の設定で掌に保持)または「ペンシル」グリップのいずれかで、前記プローブを外科医の手でより安定的に保持することが有利に可能になる。
特定の実施形態では、前記ハンドル部材は、前記ハンドル部材上または内部に取り付けられた第1のジョイントと、前記細長い本体上または内部に取り付けられた第2のジョイントと、前記第1のジョイントから前記第2のジョイントに延び、前記第1のジョイントおよび前記第2のジョイントの少なくとも一方を調節可能な範囲で通過する連結ロッドとを備えるリンク機構によって前記細長い本体に枢動および収納可能に結合され、前記第1ジョイントと前記第2ジョイントの少なくとも一方は、3次元的な回転を可能にするボールアンドソケットジョイントを備える。例えば、前記第2のジョイントはボールアンドソケットジョイントを備えてもよく、前記ロッドは前記第2のジョイントを通って調節可能な範囲まで延びてもよい。代替的に、または追加的に、前記第1のジョイントはボールアンドソケットジョイントを備えてもよく、前記ロッドは前記第1のジョイントを通って調節可能な範囲まで延びてもよい。
好ましくは、前記または各ボールアンドソケットジョイントにおいて、前記それぞれのボール部の前記表面および/または前記それぞれのソケットの前記表面は、前記ソケットに対する前記ボール部の回転位置を、ユーザによって設定された位置に保持するように適合されている。
ある実施形態では、前記プローブは、前記細長い本体に取り付けられた、前記プロセッサ制御回路を作動させるように操作可能な操作ボタンをさらに備えてもよい。
前記プローブは、前記器具をさらに安定させるべく、使用時にユーザの指先を受け入れるために、前記細長い本体上に窪みをさらに備えてもよい。
ある実施形態では、前記プローブは、外科医による前記プローブの邪魔にならない操作を容易にするために、ワイヤレスであってもよい。
ある実施形態では、前記プローブは、使用中の前記電極と前記組織との間の前記接触圧力を測定するための圧力センサをさらに備えてもよい。
ある実施形態では、前記プローブは、使用中の前記組織の前記血中酸素濃度を測定するために、前記細長い本体の前記遠位端に、血中酸素センサをさらに備えてもよい。
ある実施形態では、前記プローブは、前記プローブの傾斜角度を感知する加速度計または慣性センサをさらに備えてもよい。
本発明の第2の側面によれば、細長い本体と、前記細長い本体に枢動可能に結合された調節可能なハンドル部材とを備えるハンドヘルドの外科用ツールが提供される。調整可能なハンドル部材の用途は、決して本発明の生体インピーダンスプローブに限定されるものではなく、前記調整可能なハンドル部材の前記原理は、より安定的な保持が望まれる細長い本体を有する他の外科用具にも適用可能である。前記調節可能なハンドル部材の任意の特徴は、本発明の第1の態様に関連して上記で概説した通りである。
本発明の第3の側面によれば、本発明の第1の側面に係る装置を用いて、腫瘍組織と非腫瘍組織とをリアルタイムで識別する方法が提供される。
以下、本発明の実施形態を、例示のみを目的として、図面を参照しながら説明する。
図1aおよび図1bは、調整可能な(枢動および収納可能な)ハンドル部材、細長いシャフト状の本体、および複数の刺激電極を有する刺激端部(任意に伸縮可能である)を有するハンドヘルドの生体インピーダンス測定プローブを示す側面図である。 図2aは、生体インピーダンス測定プローブの別の側面図である。 図2bは、図2aの領域Aの拡大図であり、刺激端部と4つの刺激電極をクローズアップした図である。 図3a、図3bおよび図3cは、それぞれ、生体インピーダンス測定プローブの上面図、側面図および端面図である。 図4aは、操作ボタンとフィンガーグリップの窪みを含む生体インピーダンスプローブの別の側面図である。 図4bは、図4aの領域Aの拡大図であり、操作ボタンとフィンガーグリップの窪みをクローズアップした図である。 図5aおよび図5bは、ハンドル部材を生体インピーダンス測定プローブの細長い本体に枢動可能かつ収納可能に結合するためのリンク機構を、収納状態および伸長状態のそれぞれにおいて示す断面図である。 図6a~図6dは、図5aおよび図5bのリンク機構を様々な構成で示す別の断面図である。 図7は、図5aおよび図5bの調整可能なハンドルおよび枢動リンク機構の変形例を示す図である。 図8は、枢動リンク機構によって、図7のハンドルが調整可能に設定され得る角度位置を示す図である。 図9a、図9bおよび図9cは、枢動リンク機構によって、図7のハンドルが調整可能に設定され得る、さらなる可能な位置を示す; 図10は、上記生体インピーダンス測定プローブと共に使用する、または組み込むための生体インピーダンス特性評価システムの例を示すブロック図である。 図11は、図10のシステムのフロントエンドアナログ回路図であって、生体インピーダンス測定プローブの刺激電極が接続される電圧制御電流源、電圧バッファ、計装アンプおよびマルチプレクサを含むものの例を示す図である。 図12は、4つの刺激電極を有する生体インピーダンス測定プローブに関して、4つの異なる電極構成を循環させる電極切り替えシーケンスを示す図である。 図13は、図12の電極切り替えシーケンスの変形例であって、やはり4つの刺激電極を有する生体インピーダンス測定プローブに関して、6つの異なる電極構成を循環させることを示す図である。 図14は、4つの電極による計測を採用した前述のプローブの構成を、より多くの電極に拡張できる例を示す図である。 図15は、一連の電極構成を循環させる際に、選択された一対の刺激電極に電流を供給するためのマルチプレクサ切り替え配置を模式的に示す図である。 図16は、電圧波形とそれに対応するFFT周波数特性出力を示し、電圧波形が複数の周波数を含むことを示す図である。 図17は、生体インピーダンス特性評価システムおよび測定プローブの動作に関するフロー図である。 図18aは、生体インピーダンス特性評価システムの実装例の0.2Ωから500Ωまでの直線性特性を示す図である。 図18bは、サンプリング周波数192kサンプル/秒で行った25Ωのディスクリート抵抗に対する生体インピーダンス特性評価システムのノイズ解析を示す図である。 図19は、生理食塩水で囲まれた金属の領域に関して、(a)Agilent E4980A Precision LCR meter、および(b)本発明の実施例による生体インピーダンス特性評価システムと測定プローブ(説明した実施例1による)を用いて行った、再構成インピーダンスマッピングを示す図である。 図20は、4つの測定された電圧波形(説明した実施例2による)を示す図である。 図21は、図20の各波形に対応するFFT周波数特性を示す図である。 図22は、生体インピーダンスが低い組織領域に対して生体インピーダンスが高い生体組織領域を検出する様子を示す図である。 図23は、4つの測定された電圧波形(説明した実施例3による)を示す図である。 図24は、図23の各波形に対応するFFT周波数特性を示す図である。 図25は、生体インピーダンスが低い組織領域に対して、生体インピーダンスが高い生体組織領域を検出する様子を示す図である。 図26は、(a)リブアイステーキの一片(生物学的サンプルとして機能する)、および(b)本発明の上述の実施例(説明した実施例4による)を用いて実行した、リブアイステーキの一片にわたる異なる組織タイプ(脂肪対筋繊維)の再構成インピーダンスマッピングを示す図である。 図中、同様の要素については、全体を通して同様の符号で示されている。
本実施形態は、本発明を実施するための出願人に知られた最良の方法である。しかし、これらは、これを達成することができる唯一の方法ではない。
本開示は、生体インピーダンス測定を用いて、腫瘍組織と非腫瘍組織とをリアルタイムで識別する装置を提供する。
より詳細には、脳腫瘍の生体組織の電気的特性を測定することで、正常な脳組織と異常な脳組織の違いを確認することができる。さらに、インピーダンス測定により、浸潤性の低い腫瘍組織と浸潤性の高い腫瘍組織の鑑別が可能となることが期待される。これらの生体インピーダンス特性を術中に評価することで、サージカルマージンに関する臨床的な情報をリアルタイムで確立することができる[7]。
生体インピーダンスプローブ-物理的構造
まず、図1a、1b、2a、2b、3a、3b、3c、4aおよび4bを参照すると、本装置は、細長い本体14と、細長い本体14の遠位端に取り付けられた少なくとも4つの刺激電極20a~20dと、任意で、調節可能なハンドル部材12(図5a~9cを参照して以下に詳細に記載される)を有するハンドヘルド生体インピーダンスプローブ10とを備える。様々な実施形態において、電極20a~20dは、比較的長い(例えば、ピン状、針状または尖った)または比較的短い(例えば、スタブ状)ものであってもよく、球状または半球状の形状であってよい。使用時には、腫瘍組織と正常(非腫瘍)組織とを識別する目的で、電極20a~20dの先端を、腫瘍の存在について調査すべき組織の領域に対して保持する。任意ではあるが、有利には、電極20a~20dは、試験される組織との接触を緩和し、組織に押し込む程度を減少させるように、ばねにより付勢されることがある。
図示の実施形態では、刺激電極20a~20dは、本体14の遠位端にある円筒形スリーブ16から伸長可能で、その中に収納可能な、任意の伸縮シャフト18の端部に取り付けられている。円筒形スリーブ16から突出する伸縮シャフト18の長さは、所望の症例に特異的または外科医に特異的な長さを作り出すために、長くしたり短くしたりして固定することができ、それによって、ユーザが最適化した適用を容易にすることができる。当業者が理解するように、伸縮シャフト18の突出長を調整しロック(またはロック解除)するための調整機構を設けてもよい。プローブ10の伸縮端は、脳への鼻内からのアクセスを可能にし、または容易にし、このために、プローブ全体は、より細長い構造であってもよい。
任意の調整可能なハンドル12は、詰め物や柔軟な材料を組み込むか、またはそれらから作られることができ、外科医の掌に置かれ、プローブ10の「角度のついたグリップ」を作成することができる。あるいは、調整可能なハンドル12は、手の第1の指の間の皮膜にあるスペース上に配置することができ、それによって、プローブ10の「ペンシルグリップ」を作り出すことができる。いずれの場合も、これは、外科医がプローブ10のより大きな制御と精密な把持を実現するのに役立つ。
より詳細には、調整可能なハンドル12は、細長い本体14から角度をつけて、ユーザの掌にフィットするように折り曲げることができ、ユーザの指は、器具の背面の周囲を包囲するようなグリップを形成する。本体14に対するハンドル12の角度は、「角度のついた」グリップとしての特定の有用性を生み出す。あるいは、ハンドル12を持ち上げて、本体14と一直線になるようにロックすることで、「ペンシル」グリップを可能にすることもできる。
細長い本体14には、術者の人差し指で操作するための操作ボタン24(図4bに拡大して示す)が、指の窪み26の近傍に取り付けられている。ボタン24を押すとプローブ10が動作し、ボタン24を離すとプローブの動作が停止する。
細長い本体14には、操作ボタン24の両側に、両側の指の窪み26が設けられていて、特に「角度のついたグリップ」位置(鼻内使用に特有の有用性が期待される)にあるときに、器具をさらに安定させることができるようになっている。
細長いハンドヘルドプローブ10の全体的なデザインは、薄型で軽量であるため、繊細な微細な外科的処置または低侵襲脳手術(例えば、顕微鏡ベースの、鼻内または内視鏡手術)における使用に適しており、異常脳組織と正常脳組織のリアルタイム「先読み」識別を外科医に提供することができる。
調整可能なハンドル
上述のように、プローブ10は、プローブ10を外科医の手でより安定的に保持できるようにするために、調節可能なハンドル部材12を備えることができる。現在の好ましい実施形態においては、ハンドル部材12は、リンク機構によってプローブの細長い本体14に枢動可能かつ収納可能に結合される。
図5aおよび図5bは、ハンドル部材12をプローブ10の細長い本体14に枢動可能かつ収納可能に結合するためのリンク機構を、それぞれ収納状態および伸長状態で示す断面図である。
リンク機構は、ハンドル部材12上または内部に取り付けられた第1のジョイント(22a、22b)と、細長い本体14上または内部に取り付けられた第2のジョイント(22c、22d)と、第1のジョイントから第2のジョイントに延びる連結ロッド22とを備える。図示された実施形態では、第1のジョイントは、ロッド22の第1の端部に設けられたボール22aと、ボール22aが位置するハンドル12内のソケット22bとを備えるボールアンドソケットジョイントである。同様に、第2のジョイントは、ロッド22の第2の端部に設けられたボール22cと、ボール22cが位置する本体14のソケット22dとからなるボールアンドソケットジョイントである。第1および第2のジョイントの少なくとも一方(図示の場合、第2のジョイント)は、回転可能である。
各ボールアンドソケットジョイントにおいて、ボール部分とそれに対するそれぞれのソケットとの間の表面特性は、好ましくは、ソケットに対するボールの回転位置をユーザが望むように「固定」することができるものである。例えば、凹/凸またはその他の戻り止め機構を、ボールの外表面および/またはソケットの内表面に組み込むことができる。あるいは、ボールアンドソケットジョイントは、ボールとソケットの間に、ぴったりとした/きつい摩擦ベースの密着、または他の種類の粘着性のあるインターフェースを採用してもよい。
本体14に対するハンドル12の伸縮を可能にするために、ロッド22は、第1および第2のジョイントの少なくとも一方(図示の場合、第2のジョイントであって第1のジョイントではない)を調節可能な範囲に通過する。したがって、本体14内には、収容状態にあるときにロッド22を収容するためのチャネル28が設けられる。ロッド22の第1の端部は、第1のジョイントのボール22aに固定的に取り付けられ、一方、ロッド22の第2の端部は、第2のジョイントのボール22cに非固定的に(例えば、摺動可能に)結合される。
ロッド22の第2の端部には、最大伸長時に、ボール22cに取り付けられた把持/拘束カラー22fと係合し、ロッド22がボール22cから分離することを防止する把持領域22eが設けられている。
図6a~図6dは、様々な構成における、図5aおよび図5bのリンク機構のさらなる断面を示している。より詳細には、図6aは、ロッド22が本体14内のチャネル28に収容された状態で、ハンドル12が完全に収容され、本体14の近くにある状態を示す。図6bは、ハンドル12が、本体14から離れるように、直線的に完全に伸長した状態を示している。図6cは、ソケット22d内のボール22cの一方向への回転によって、細長いハンドル12が一方に角度を付けられた状態を示し、図6dは、ソケット22d内のボール22cの反対方向への回転によって、延長ハンドル12がもう一方に角度を付けられた状態を示す図である。
図7は、生体インピーダンス測定プローブの調整可能なハンドルと枢動リンク機構の変形例を示す図である。この変形例では、2つのボールアンドソケットジョイントにおいて、ボール22aおよび22cの両方が、それぞれのソケット22bおよび22d(後者は図では見えない)に対して回転可能である。連結ロッド22は、同様に伸縮可能であってもよい。
図8は、図7のハンドル12が、枢動リンク機構によって、ソケット22b内のボール22aの回転によって調整可能に設定され得る可能な角度位置を示す図である。両頭の湾曲した矢印は、図示された2つの角度位置の間のハンドル12の角度調節を表している。
図9a、9bおよび9cは、図7のハンドルが枢動リンク機構によって、調節可能に設定され得る可能な伸長位置および収縮位置を示している。より詳細には、図9bは、本体14に対して伸長した位置にあるハンドル12を示し、一方、図9cは、本体14に対して収縮した位置にあるハンドル12を示す。図9aは、伸長位置と収縮位置の両方を互いに重ねて示している。
調整可能なハンドル部材12の適用は、決して本発明の生体インピーダンスプローブ10に限定されるものではなく、図5a~図9cの調整可能なハンドル部材12の原理は、ニードルドライバーやメス刃など、より安定した保持が望まれる細長い本体を有する他の外科用ツールにも適用できることが理解されるであろう。
バイオインピーダンス特性評価システムのエレクトロニクス
我々は、術中インピーダンスプロービングシステムに必要な要件を特定した。このコンセプトを証明するために、PCBベースのシステム例を設計し、オンボードの電流源生成器と電圧増幅回路を実装した。4つの電極20a~20dによる4極インピーダンスプローブを使用し、多重正弦波電流波形を用いたI-V(電流-電圧)測定により、電極対のインピーダンス測定を行った結果、インピーダンスの特性が明らかになった。測定結果は、マイクロコントローラとホストPCプラットフォームで処理され、インピーダンス値を特定し、テストサンプルのインピーダンスマップを再構築した。これらの結果は、市販のAgilent E4980A Precision LCR測定器と比較され、性能のベンチマークとした。
まず、図10を参照し、一般的な意味で、本装置は、(その遠位端に少なくとも4つの刺激電極20a~20dを有する上述のようなプローブ10に加えて)、刺激電流を生成するように構成された電流源37と、電圧センサ(例えば計装アンプ)36と、電流源37、前記電圧センサ36および前記刺激電極20a~20dの間に結合され、図12および13を参照して以下に説明するような複数のスイッチング構成の間で変更可能に(好ましくは周期的に)切り替えるように構成されたマルチプレクサ39と、を備える。
各スイッチング構成において、電極のうち第1の2つの電極は電流源37に接続され、電極のうち第2の2つの電極は電圧センサ36に接続され、第1の2つの電極を構成する電極と第2の2つの電極を構成する電極は、あるスイッチング構成から次のスイッチング構成に急速に変化する。
プロセッサ制御回路であって、
(マルチプレクサへの制御信号の印加により)マルチプレクサ39のスイッチング構成を制御し、
前記電流源37による前記刺激電流の生成と、各スイッチング構成の前記第1の2つの電極への前記刺激電流の印加とを制御し、使用時に、前記刺激電流が前記第1の2つの電極間の前記組織を通過するようにし、
前記電圧センサによって、使用中の前記組織を横切る各スイッチング構成の前記第2の2つの電極間の前記電圧の前記測定を制御し、
各スイッチング構成における前記印加電流と前記測定された電圧に基づいて、各スイッチング構成における前記組織の相対インピーダンスの尺度を決定し、
インピーダンス測定値を出力データとしてデータ分析装置に供給し、前記インピーダンス測定値に基づいて、組織のリアルタイムの識別を実行することを可能にするように構成されるものも提供される。
組織細胞のインピーダンスは、細胞プロセスや脳組織についてよく研究されている[8]。しかし、脳腫瘍のインピーダンスの分布は決定的なものではない。最近の研究では、平均的なインピーダンスの髄膜腫、低悪性度グリオーマおよび高悪性度グリオーマは、それぞれ530Ω-cm、160Ω-cmおよび498Ω-cmであるとされている[8]。したがって、我々は、目標インピーダンスの範囲は、理想的には100Ω-cmから600Ω-cmをカバーする必要があると判断した。
この4電極測定方式は、分極の影響を受けない(分極の影響を受ける2電極方式とは異なる)ため、採用されている。安全上の理由から、電極20a~20dを駆動する刺激電流は、当然に適切な医療機器の規制を遵守する必要があり、通常10μA未満である。正常な脳組織とがん組織のインピーダンスを考慮すると、使用する刺激電流や電極の間隔にもよるが、検出電極で受ける電圧レベルは通常、数ミリボルトの範囲である。
リアルタイムの術中インピーダンス特性評価を可能にするためには、処理時間を最小化する必要がある。したがって、制御電子機器(例えば、マイクロコントローラユニット(MCU)31)は、オンボードのアナログ/デジタル変換器32が使用される場合にはアナログ信号を変換し、高速フーリエ変換(FFT)または包絡線検出を使用して周波数領域の信号を抽出する能力を有することが望ましい。乾燥を避けるために生理食塩水を頻繁に脳の皮質に注ぐ必要があるため、異なる測定構成を切り替えて、迅速な測定時間および各構成にわたって記録される一貫した測定値を確保するべく、アナログマルチプレクサ39を使用することが好ましい。
システム構成
より詳細に、本実施例のエレクトロニクスシステムのブロック図を図10に示す。これは、4つの主要な部分を備えて構成されている。
1)多目的なインピーダンス特性評価構成を行うことができる多極電極20a~20dを備えたコンパクトなハンドヘルドプローブ(上述のプローブ10)。
2)プローブ10内に組み込まれていてもよいし、プローブ10(具体的にはその電極20a~20d)が接続される別のインターフェースユニットに設けられてもよい、フロントエンドプリント回路基板35(または集積回路)。この実施例では、フロントエンド基板35は、刺激電流を生成する電圧制御電流源37と、電圧信号を感知する計装アンプ36と、電流源37と計装アンプ36を電極間で切り替えるためのマルチプレクサアレイ39を含む。図示のように、ダイレクトデジタルシンセシス(DDS)モジュール38も設けてもよい。また、マイクロコントローラユニット(MCU)31における処理負担を軽減するために、単体のADCまたはDACを追加してもよい。しかし、後述するように、他の実施形態では、電流源は、電流波形発生器(例えば電流DAC)によって駆動され、電極20a~20dを駆動するための刺激電流を直接生成してもよい。
3)スタンドアロン波形発生器やADCを制御し、データの前処理を行うためのMCUプラットフォーム31。これもプローブ10内に組み込むか、プローブ10(具体的にはその電極20a~20d)が接続される別のインターフェースユニットに設けられてもよい。この実施例では、MCUプラットフォーム31は電圧波形を生成し、電圧波形を電圧制御電流源37に供給するように構成されたデジタル-アナログ変換器(DAC)33と、計装アンプ36から電圧信号を受信してサンプリングし、それによってデジタル電圧データを生成するように構成されたアナログ-デジタル変換器(ADC)32を含む。また、MCUプラットフォームは、DDSモジュール38とインターフェースするための汎用入出力(GPIO)、シリアル周辺インターフェース(SPI)およびクロック(CLK)を備えるモジュール34を含む。
4)視覚的表示のためにデータを再構成するバックエンドホストコンピュータ30(または、タブレットコンピュータやスマートフォンなどの他の処理/視覚化装置、ただし、これらに限定されない)。代替実施形態では、これは視覚化を提供する必要はなく、代わりにインジケータ(例えば、可聴通知)を提供するだけでもよい。
あらかじめ設定された刺激波形をMCU31に記憶させ、DAC33またはダイレクトデジタルシンセシス(DDS)波形発生器38に送り、電圧波形を発生させる。そして、生成された電圧波形は、必要なスルーレートと帯域幅を有する電流源に変換される。この差動電流は、マルチプレクサ39によってプローブ10内のターゲット電極対に導かれる。プローブ10の他の一対の電極は、組織のインピーダンスによって誘発される電圧を感知するように設定される。この電圧信号は、計装アンプ36によって増幅され、ADC32によってデジタルドメインに変換される。そして、注目する各周波数のインピーダンス測定値を得るため、測定された波形をFFTで処理する。異なる接続形態(例えば、図12または図13に示すような接続形態)毎のインピーダンス測定値を互いに比較し、4つの電極内にマージンが存在するか、どの電極の組がマージンに最も近いかを特定する。この実装例では、各構成で4096点のデータに対して、全体の処理時間は73ミリ秒未満になっている。
回路構成
図11は、電圧制御電流源37、電圧バッファ40、計装アンプ36およびマルチプレクサ39を備えるフロントエンドアナログ回路の例を示す回路図である。
図示の例では、電圧制御電流源37において、パッシブ1次ハイパスフィルタ(R1、C1)が設けられ、生成波形のDCオフセットを除去する。バッファ付き差動アンプおよび積分器は、入力電圧に関して抵抗Raを横切る電圧を固定する。これにより、IopからIonに流れる電流が適宜発生する。この戻り電流は、電圧バッファ40のオペアンプによってシンクまたはソースされ、低インピーダンス電流経路を提供し、バイアス電圧の調整を可能にする。
さらに説明すると、DDSモジュール38またはDAC33のいずれかにより電圧波形を生成するため、電圧は0VからDDS38またはDAC33の最大出力電圧までの範囲を持つことになる。(この時点で、図10に両方が図示されていても、電圧波形を生成するためにDDS38またはDAC33の一方のみが存在する場合があることに留意されたい。) そのため、RとCで形成されるハイパスフィルタを用いて、DCオフセット(波形の平均値)を除去することができる。残った信号は、電圧波形を電流波形に変換するために、さらに電圧制御電流源(VCCS)37に渡される。
図示の例では、マルチオペアンプトポロジーを使用して、各ステージの特定の領域に最適化されたオペアンプを利用することで、VCCS37の全体的な性能を向上させている。その結果、VCCSは、例えばHowland電流ポンプと比較して、より高い帯域幅の電流源となる。他のVCCSトポロジーも同様に動作する。電圧と電流の比率は、抵抗Rで設定する。図中のVCCS37の右側のアンプはユニティゲインアンプで、リーク電流をほぼゼロにしてプラス端子の電圧を出力するため、抵抗Rを通る電流はすべてマルチプレックス(MUX)39に入ることになる。図示のVCCS37の中央アンプは、抵抗Rを横切る電圧差分を出力する。図示のVCCS37の左アンプは、フィードバックループを完成させ、電圧から電流への変換に必要な電流を生成する。
すなわち、図示の例では、電流源37は、電圧制御電流源である。プロセッサ制御回路は、電圧波形を生成し、電圧波形を電圧制御電流源37に供給するように構成された電圧波形発生器を備える。電圧波形発生器は、電圧波形が生成される所定の刺激波形を受信するように構成されたデジタル-アナログ変換器33を備えてもよい。あるいは、電圧波形発生器は、電圧波形が生成される所定の刺激波形を受け取るように構成された直接デジタル合成モジュール38を備えてもよい。電圧制御電流源37は、電圧波形からDCオフセットを除去し、電圧波形をマルチプレクサ39を介して刺激電極に印加する刺激電流に変換するように構成されたハイパスフィルタを備える。
電圧バッファ40の増幅器は、Iopから注入された電流がシステムに戻るための低インピーダンス経路を提供し、励起波形(注入信号)上のDCオフセットをさらに低減するためにDC電圧を印加するオプションがある。同時に、このような増幅器は、バイアス電圧を追跡し、バイアス電圧を補償するために電流源を制御してもよい。
計装アンプ36は、アナログマルチプレクサ39によって、その目的のために設定された2つの検出電極間の電位差を、その時点で測定するために使用される。より詳細には、計装アンプ36は、VinとVipとの間の電圧差を増幅する。計装アンプ36は、市販のシングルパッケージICである必要はなく、等価な電圧増幅を行うためのアンプを組み合わせたり、アプリケーション固有のICを使用したりすることで形成することも可能である。
マルチプレクサ39は、電極の各瞬間的な構成を変更可能に定義し、その瞬間に選択された電極構成に従って、Iop、Ion、VinおよびVipを、指定された電極にリダイレクトする。
電極スイッチング構成
図12は、実施例として、アナログマルチプレクサ39によって順次構築される4つの4極電極スイッチング構成(A、B、CおよびD)を示す。我々の実用的な実装では、装置は22ミリ秒未満の時間枠で各構成におけるインピーダンスを測定し、実装されたアナログフロントエンド回路は、最大1MHzの帯域幅を有することができる。電極20a~20dは、プローブ10の遠位先端部において正方形状に配置されている。
電極スイッチング構成Aでは、電極20aから電極20bへ刺激電流Iを流し、電極20c、20d間で対応する電圧Vを測定する。
次に、電極スイッチング構成Bでは、電極20dから電極20aに刺激電流Iを流し、電極20b、20cの間で対応する電圧Vを測定する。
そして、電極スイッチング構成Cでは、電極20cから電極20dへ刺激電流Iを流し、電極20a、20b間で対応する電圧Vを測定する。
そして、電極スイッチング構成Dでは、電極20bから電極20cに刺激電流Iを流し、電極20dと電極20aの間で対応する電圧Vを測定する。
スイッチング構成A~Dのシーケンスは、マルチプレクサ39によって周期的に繰り返されてもよい。
図13は、上記のA~Dのスイッチング構成に、さらにEとFのスイッチング構成を加えることで、4電極を維持したまま、4電極測定の異なる構成の数を6に拡張する方法を示している。
電極スイッチング構成Eでは、電極20aから電極20cに刺激電流Iを流し、電極20bと電極20dの間で対応する電圧Vを測定する。
電極スイッチング構成Fでは、電極20bから電極20dに刺激電流Iを流し、電極20a、20cの間で対応する電圧Vが測定される。
スイッチング構成A~Fのシーケンスは、マルチプレクサ39によって周期的に繰り返されてもよい。
当業者であれば理解できるように、4つ以上の刺激電極を使用してもよい。これを説明するために、図14は、4電極測定を採用した前述のプローブ構成をより多くの電極に拡張できる方法の例((a)~(d))を提供する(図中の各円は、それぞれの電極を表す)。
より詳細には、初期の4極配置プローブからの理解を用いて、電極の数を増やすことができ、より洗練された電極配置を形成することができる。図14は、プローブの規模や複雑さを拡張することができる例を示している。12個の電極があれば、電極間に複数のテトラポーラ構成を形成することができ、測定の分解能を大幅に向上させることができる。同様の電極配置でマージン解析を行うことで、電極で覆われた領域をマージンがどのように通過しているかを推定することができる。
図15は、一連の電極構成を循環させる際に、選択された一対の刺激電極(この場合、「電極A」と「電極B」)に電流を供給するためのマルチプレクサスイッチング構成を模式的に示している。各電極は、マルチプレクサ39の操作により、以下の何れかにスイッチすることができる。
-「電流出力」-組織に刺激電流を供給するため
-「電流リターン」-組織から刺激電流を受け取るため
-「電圧-」と「電圧+」-対応する電圧がそれらの間で測定される電極
波形特性
有利には、現在の好ましい実施形態では、電圧制御電流源37に(すなわちDAC33またはDDS38によって)生成されて供給される電圧波形は、複数の異なる周波数の混合からなる。これを図16に図示する。上側のトレースは、例示的な電圧波形を示し、一方、下側のトレースは、対応するFFT周波数応答出力を示し、電圧波形が複数の周波数を含むことを示す。
上述のように、予め定義された電圧波形は、VCCS37によって刺激電流に変換される。図示の例では、波形は、192kHzの周波数でサンプリングされた1kHz、3kHz、5kHz、10kHz、16kHz、24kHz、32kHz、48kHz、60kHzおよび80kHzの異なる周波数で実質的に等しい振幅を有するように設計されている。正弦波波形の数とその周波数は決められていないが、測定可能な正弦波の最大周波数はサンプリング周波数の半分である必要がある(ナイキストサンプリング規準)。有利なことに、複数の周波数波形を使用することで、FFTを使用して複数の周波数のインピーダンスを迅速に抽出することができ、標準的なチャープ技術と比較して測定時間が大幅に短縮される。これは、標準的なチャープ技術では、周波数掃引を行う必要があるためである。しかし、本技術では複数の周波数を同時に使用するため、わずかな回数(例えば数回)の電極交換で、インピーダンスの結果を迅速に得ることができる。上記の周波数は、システムのダイナミックレンジを最大にするために波形の全体的な振幅を低く保ち、電子部品の要件を緩和するために低いスルーレートで選択されている。選択した周波数の範囲は、構成部品の制限により制限される場合がある。さらに、波形の全体的な振幅をさらに小さくするために、個々の正弦波波形の位相を変えることができる。
この実装例では、マイクロコントローラアーキテクチャによるリソースの制約から4096サンプルを使用したが、任意のサンプル数で動作させることができる。サンプル数が多ければ、計算されるインピーダンスの周波数分解能が向上し、サンプル数が少なければ、総測定時間が短縮される。測定期間中、あらかじめ定義された波形を複数回繰り返すことで、計算されたインピーダンスは波形の全体的な繰り返しを平均化したものとなり、結果として低ノイズ測定になる。
操作方法
図17は、上記の生体インピーダンス特性評価システムおよび測定プローブの動作を示すフロー図である。構成ステップは、以下の通りである。
ステップS1:マルチプレクサ39に制御信号を印加することにより、その時点の指定電極構成(例えば図12に示す構成A~Dのいずれか)に対するマルチプレクサ39のスイッチング構成を設定する。
ステップS2:DAC33またはDDS38を介して電圧波形を生成する。
ステップS3:電圧波形をハイパスフィルタに通してDCオフセットを除去し、電圧制御電流源37の刺激電流波形(励磁信号)に変換する。
ステップS4:電流注入用の電極と電流帰還路としての別の電極を用い、マルチプレクサを介して刺激電流波形(励磁信号)を組織に印加する。
ステップS5:計装アンプ36(または差動アンプ)を用いて、他の2つの電極間の電圧を測定する。
ステップS6:測定した電圧信号をADC32でサンプリングする。
ステップS7:すべてのスイッチング構成で測定が行われた場合、ステップS8に進み、そうでない場合、ステップS1からのプロセスを繰り返し、電極構成をシーケンスの次のものに再構成する(例えば、スイッチング構成のそれぞれで測定が少なくとも1回行われるまで、構成Aから構成B;またはBからC;またはCからD;またはDからAへスイッチングする)。
ステップS8:サンプリングされたデータのデータ型を浮動小数点(FFTを実行するためのデータ型)に変換し、FFT(高速フーリエ変換)を実行する。時間領域のデータを周波数領域に変換するために、任意の適切なアルゴリズムを使用することができ、または他の手段を、時間を通して周波数を横断する瞬間の大きさを抽出するために使用してもよい(例えば、ウェーブレット変換)。
ステップS9:適切なアルゴリズムを用いて(例えば、オームの法則、機械学習、ネットワークを適用)、各構成における組織の相対インピーダンスを計算する。
ステップS10とS11:PC30により行われるデータの処理と結果の解析。マージン解析、組織特定、生理状態推定などを行うため、ステップS9で生成されたデータに対して、外科医の要求に応じてアルゴリズムを適用する。
実験用デモンストレーション
実施例1-金属板を用いたテスト
3軸クランプを使用してプローブを試験領域上に保持し、本装置の実施例で生理食塩水試験セットアップを組み立てた。深さ1cmの生理食塩水を入れたガラス容器の中央に、1cm×1cmの金属片を置いた。2.54mm間隔の電極を使用して、6×6のインピーダンス測定のセットについて記録した。使用した電極は、金メッキが施された、バネにより付勢されたピンである。
実装されたデバイスは、公差0.5%の25Ω抵抗で校正された。デバイスの典型的な誤差は、1Ωの分解能で2%以下である。図18aは、0.2Ωから500Ωまでのインピーダンス値に関して、測定されたインピーダンスと実際のインピーダンスを比較したデバイスの直線性を示し、図18bは25Ωの抵抗器でのノイズ解析を示している。図18aから、異なる抵抗値における測定によって、このデバイスの直線性は0.1%であることが判明した。被測定インピーダンスが小さくなると、信号がノイズフロアに近づくため、誤差が大きくなる。
図19は、(a)市販のAgilent E4980A Precision LCRメーター、および(b)実装したデバイスをそれぞれ用いて、1cm×1cmの金属片を横切る、およびその周辺の再構築された抵抗マッピングである。暗い網掛けの低インピーダンス領域は、中央の金属50を示し、明るい網掛けの(比較的高インピーダンスな)生理食塩水52で囲まれている。Agilent E4980A LCRメーターと実装されたデバイスの両方が、金属の位置とマージンを検出することに成功した。
実施例2
図20は、図12に示した4つの電極スイッチング構成A~Dのそれぞれについて生体組織の領域から測定した4つの電圧波形(計装アンプ36で測定し、ADC32でサンプリングしたもの)を示し、図21は、それぞれについてのFFT周波数応答を示している。
図示されているように、左下の電極は20a、右下の電極は20b、右上の電極は20c、左上の電極は20dと表記される。図12と同様に、図20の構成Cでは、電極20cで電流が流され、電極20dを介して戻され、対応する電圧が電極20aおよび20bにわたり測定された。図20から、電極20aおよび20bを横断する構成Cの測定電圧が、他の構成と比較して最も高いことがわかる。
次に、図20の構成Dにおいて、電極20bで電流が流され、電極20cを介して戻され、対応する電圧が電極20aおよび20dにわたり測定された。測定された電圧は、構成Cほどではないが、構成AおよびBで観察された電圧よりも高いことが分かる。
これらの電圧測定値は、電極20cが周囲と比較して生体インピーダンスが高い領域にあることを意味すると解釈できるが、生体インピーダンスが高い領域は、他の電極には及ばない。このような配置は図22にスケッチされていて、斜線部60(電極20cが位置する)が生体インピーダンスの高い組織(例えば異なる生理状態の組織)を表し、非斜線部62(電極20a、20b、20dが位置する)が生体インピーダンスの低い組織を表している。領域60は不規則的であってもよく、生体インピーダンスが1つの領域にわたって一定である必要はない。これは、この例では、電極20cの下の組織が他の電極の下の組織と異なり、その違いが他の電極のいずれにも及ばないことを示している。
実施例3
図23は、図12に示した4つの電極スイッチング構成A~Dのそれぞれについて実施例2とは異なる生体組織の領域から測定した4つの電圧波形(計装アンプ36で測定し、ADC32でサンプリングしたもの)を示し、図24は、それぞれについてのFFT周波数応答を示している。
図23から、構成AおよびCの電圧測定値は構成BおよびDの電圧測定値よりも高いことが分かる。これらの電圧測定値は、電極20aおよび20dがマージンの一方の側にあり、電極20bおよび20cがマージンの他方の側にあるように、プローブを横切る組織マージンがあることを意味していると解釈することができる。このような配置は図25にスケッチされていて、斜線部60(電極20aおよび2dが配置されている)は生体インピーダンスが高い組織(例えば、異なる生理状態の組織)を表し、非斜線部62(電極20bおよび2cが配置されている)は生体インピーダンスが低い組織を表している。
実施例4-リブアイステーキを用いたテスト
組織試料を横断するようにプローブを走査し、4つの電極構成のそれぞれを用いて各位置でインピーダンス測定を行うことで、本技術を用いて試料を横断する各位置のプローブ下の生体インピーダンスを算出し、インピーダンスマップを作成することができる。(各位置に単一の構成を使用するだけでもインピーダンスマップは得られるが、品質が悪くなり、一部の測定が飽和して誤った結果をもたらす可能性がある。)試料を挟んで、各位置にこのような4つの構成で測定することで、より優れたマクロスケールの頑健性と分解能を得ることができる。
これを説明するために、図26の画像(a)に示すように、実施例1で使用したものと同じ実用的な実施態様について、金属片をリブアイステーキの一部と置き換えたものが用いられた。図26の画像(b)は、本装置を用いて得られた再構成インピーダンスマップを示す。高インピーダンス領域(薄い陰影を有する)は、主にステーキ上の脂肪を表す。このマップは、この状態における脂肪と筋繊維のマージンを示す(筋繊維は濃い影で、比較的低いインピーダンスを有している)。このことから、本装置は生体インピーダンス測定により、異なる種類の組織を識別できることがわかる。
実験実証の結論
本研究では、リアルタイムの組織分析を行うための生体インピーダンス測定装置を実装することに成功した。多重正弦波形を使用することで、1kHzから80kHzまでのインピーダンスを1Ωの最小分解能で測定することができた。このシステムは、まず電子ダミーモデル(金属板)を用いて検証され、その後、生体サンプル(温度制御されたリブアイステーキの一部)を用いて検証された。その結果、最大誤差2%、直線性0.1%、および消費電力736.7mWを達成した。
設計された装置は、市販のAgilent E4980A Precision LCRメーターを使用して得られた測定結果と比較された。実装されたシステムは、相対インピーダンスにおいて同様の性能を達成し、本技術の実現可能性が再確認された。概念実証として、この設計が異なる生体インピーダンスに対して汎用性があることが示された。ゲインを調整し、波形を設定することで、本技術は様々な組織や様々なインピーダンス範囲の導電性溶液に使用することができる。
要約
術中に脳組織をリアルタイムで診断できるようにすることは、脳腫瘍の神経外科領域における重要な目標である。これにより、脳腫瘍の切除や生検などの主要な外科手術の精度、範囲および効果を大幅に向上させることができる。そのためには、正常な脳組織と腫瘍組織など、異なるタイプの組織を術中in situ、in-vivoで特性評価することができる小型のハンドヘルドツールが必要である。本研究では、脳腫瘍を検出するための携帯型インピーダンス特性評価システムの実現可能性と要件を検討した。例えば、正方形の4電極マイクロサージカルプローブを使用したPCBベースの機器に基づく新しいシステムを提案し、実装した。このシステムでは、デジタル-アナログ変換器で多重正弦波形を生成し、フローティング双方向電圧電流変換器で、複数の電極スイッチング構成のそれぞれにおいて、1対の電極に差動刺激電流を出力する。各電極スイッチング構成におけるもう1組の電極は、計装アンプをベースとしたセンシング回路に接続されている。記録されたデータはマイクロコントローラで前処理され、ホストコンピュータで解析される。このシステムを評価するために、まず、あらかじめ設定された抵抗値を感知するために、多くの異なる電極構成から4極インピーダンスを記録した。システム全体の消費電流は143mA、直線性は0.1%、ノイズレベルは15μV、および最大信号帯域幅は100kHzを達成した。続いて、リブアイステーキを含む組織における初期実験が行われた。電気インピーダンスマップ(EIM)とコンタープロットは、異なる組織領域のインピーダンス値を表すために再構築された。
そこで、生体組織に電流を流し、同時に生体組織から発生する電流の流れに対する抵抗、すなわち生体インピーダンスを測定する携帯型電気「腫瘍識別」プローブが開発された。この生体インピーダンスをリアルタイムで特性化することで、プローブは正常な脳組織と異常な脳組織(脳腫瘍組織など)を区別するための組織識別を可能にする。このプローブは、顕微鏡や内視鏡による脳外科手術に使用されるなど、低侵襲な脳外科手術ツールとして具現化されている。後者は、単一の鼻腔でありアクセスが制限されている場合でも、簡単に操作することができる、軽く、薄く、長い器具の使用を必要とするミニマルアクセス手術の典型である。
変形例と代替案
以上、詳細な実施形態およびいくつかの可能な代替案について説明した。当業者であれば理解できるように、上記の実施形態に対して、そこに具現化された発明の恩恵を受けつつ、多くの変形例およびさらなる代替案を作成することができる。
注目すべきことに、上記の実施形態において、電流源は、主に、電圧波形(電圧波形発生器によって生成される)によって駆動される、電圧制御電流源であると説明されている。しかしながら、代替的な実施形態では、電流源は、電流波形発生器によって駆動されるとともに、電流源は、電極を駆動するための刺激電流を直接生成してもよい。電流波形生成器は、例えば、電流波形が生成される所定の刺激波形を受信するように構成されたデジタル-アナログ変換器を備えてもよい。電圧波形の場合と同様に、このような電流波形は、複数の異なる周波数の混合を含み、複数の異なる周波数のそれぞれにおいて実質的に等しい振幅であってもよい。
任意に、上述のプローブ10は、外科医によるプローブの邪魔にならない操作を容易にするために、ワイヤレスであってもよい。しかし、代替的に、ケーブルによって制御および分析システムに接続されてもよい。
任意に、上述のプローブ10は、電極20a~20dと検査される組織との間の接触圧力を測定するための、圧力センサをさらに備えてもよい。接触圧はインピーダンス測定値に影響を与えることが分かっており、その結果、圧力センサを使用して得られた接触圧の測定値は、インピーダンス測定値を正規化するために使用され、それによってインピーダンス測定値の精度を向上させることができる。
任意に、上述のプローブ10は、細長い本体の遠位端に、検査される組織の血液酸素レベルを測定するための、血中酸素センサ(例えば、末梢酸素飽和度(SpO)を測定する光学センサ)をさらに備えてもよい。これは、血管が検査対象組織内またはその近傍に存在することを外科医に知らせるために使用することができる。従って、外科医は、例えば、該当する組織から腫瘍を切り取る前に、適切な措置を講じることができる。
任意に、上述のプローブ10は、プローブの傾斜角(すなわち、傾き)を感知するために加速度計または慣性センサを組み込むことができる。これは、例えば、患者に傷害を与える危険性があるほど、不注意にプローブの傾斜角度を変えた場合に、外科医に警告するために使用されてもよい。
参考文献
[1] DeAngelis, L.M., 2001. Brain tumors. New England Journal of Medicine, 344(2), pp.114-123.
[2] Khan, S., Mahara, A., Hyams, E.S., Schned, A. and Halter, R., 2015, March. Towards intraoperative surgical margin assessment and visualization using bioimpedance properties of the tissue. In Medical Imaging 2015: Computer-Aided Diagnosis (Vol. 9414, p. 94141C). International Society for Optics and Photonics.
[3] DePaoli D., Lemoine E., Ember K., Parent M., Prud‘homme M., Cantin L., Petrecca K., Leblond F., Cote DC., 2020. Rise of Raman Spectroscopy in neurosurgery: a review. Journal of Biomedical Optics,25(5).
[4] Morimoto, T., Kimura, S., Konishi, Y., Komaki, K., Uyama, T., Monden, Y., Kinouchi, D.Y. and Iritani, D.T., 1993. A study of the electrical bio-impedance of tumors. Journal of Investigative Surgery, 6(1), pp.25-32.
[5] Faes, T.J.C., Van der Meij, H.A., De Munck, J.C. and Heethaar, R.M., 1999. The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiological measurement, 20(4), p.R1.
[6] Chauveau, N., Hamzaoui, L., Rochaix, P., Rigaud, B., Voigt, J.J. and Morucci, J.P., 1999. Ex vivo discrimination between normal and pathological tissues in human breast surgical biopsies using bioimpedance spectroscopy. Annals of the New York Academy of Sciences, 873(1), pp.42-50.
[7] Hu, S., Kang, H., Baek, Y., El Fakhri, G., Kuang, A. and Choi, H.S., 2018. Real-time imaging of brain tumor for image-guided surgery. Advanced healthcare materials, 7(16), p.1800066.
[8] Latikka, J. and Eskola, H., 2019. The resistivity of human brain tumours in vivo. Annals of Biomedical Engineering, 47(3), pp.706-713.

Claims (40)

  1. リアルタイムで腫瘍組織と非腫瘍組織とを識別するための装置であって、
    細長い本体と、前記細長い本体の遠位端に取り付けられた少なくとも4つの刺激電極をと有するハンドヘルドの生体インピーダンスプローブであって、前記電極は、使用時に組織の領域に保持されるように配置されているものと、
    刺激電流を発生させるように構成された電流源と、
    電圧センサと、
    前記電流源、前記電圧センサおよび前記刺激電極の間に結合され、複数のスイッチング構成の間で変更可能に切り替えられるように構成されたマルチプレクサであって、各スイッチング構成において、前記電極のうち第1の2つの電極が前記電流源に接続され、前記電極のうち第2の2つの前記電極が前記電圧センサに接続され、前記第1の2つの電極を構成する前記電極と前記第2の2つの電極を構成する前記電極は、一のスイッチング構成から次のスイッチング構成へと変化するものと、
    プロセッサ制御回路であって、
    前記マルチプレクサの前記スイッチング構成を制御し、
    前記電流源による前記刺激電流の生成と、各スイッチング構成の前記第1の2つの電極への前記刺激電流の印加とを制御し、使用時に、前記刺激電流が前記第1の2つの電極間の前記組織を通過するようにし、
    前記電圧センサによって、使用中の前記組織を横切る各スイッチング構成の前記第2の2つの電極間の電圧の測定を制御し、
    各スイッチング構成における前記印加電流と測定された前記電圧に基づいて、各スイッチング構成における前記組織の相対インピーダンスの尺度を決定し、
    インピーダンス測定値を出力データとしてデータ分析装置に供給し、前記インピーダンス測定値に基づいて、組織のリアルタイムの識別を実行することを可能にするものと、
    を備える装置。
  2. 前記電流源は電圧制御電流源であり、前記プロセッサ制御回路は、電圧波形を生成し、前記電圧波形を前記電流源に供給するように構成された電圧波形発生器をさらに備える請求項1に記載の装置。
  3. 前記電流源は、前記電圧波形からDCオフセットを除去し、前記電圧波形を前記刺激電流に変換するように構成されたハイパスフィルタをさらに備える請求項2に記載の装置。
  4. 前記電流源を直接駆動するための電流波形を発生させるために、電流波形発生器を更に備える請求項1に記載の装置。
  5. 前記電圧波形発生器または前記電流波形発生器は、前記電圧波形または前記電流波形が生成される所定の刺激波形を受信するように構成されたデジタル-アナログ変換器を備える請求項2乃至4の何れか1項に記載の装置。
  6. 前記電圧波形発生器または前記電流波形発生器は、前記電圧波形または前記電流波形が生成される所定の刺激波形を受信するように構成された直接デジタル合成モジュールを備える請求項2乃至4の何れか1項に記載の装置。
  7. 前記刺激波形は、プロセッサ制御回路に記憶される請求項5または請求項6に記載の装置。
  8. 前記電圧波形または前記電流波形は、複数の異なる周波数が混在している請求項2乃至7の何れか1項に記載の装置。
  9. 前記電圧波形または前記電流波形は、複数の異なる周波数のそれぞれにおいて、実質的に等しい振幅を有する請求項8に記載の装置。
  10. 前記電圧センサは、アンプを備える請求項1乃至9の何れか1項に記載の装置。
  11. 前記電圧センサは、計装アンプを備える請求項10に記載の装置。
  12. 前記電圧センサは、差動アンプを備える請求項10に記載の装置。
  13. 前記プロセッサ制御回路は、前記アンプから電圧信号を受信してサンプリングし、それによってデジタル電圧データを生成するように構成されたアナログ/デジタル変換器をさらに備える請求項10乃至12の何れか1項に記載の装置。
  14. 前記プロセッサ制御回路は、前記アナログ/デジタル変換器から前記デジタル電圧データを受信し、時間領域データを周波数領域データに変換し、それによって前記刺激波形の各周波数に対する前記電圧データの瞬時の振幅を抽出するように構成された高速フーリエ変換プロセッサをさらに備える請求項8に従属する請求項13に記載の装置。
  15. 前記マルチプレクサは、複数のスイッチング構成の各々を周期的に切り替えるように構成されている請求項1乃至14の何れか1項に記載の装置。
  16. 前記プロセッサ制御回路は、マイクロコントローラを備える請求項1乃至15の何れか1項に記載の装置。
  17. 前記電圧制御電流源および/または前記アンプは、プローブ内のフロントエンドプリント回路基板または集積回路に設けられている請求項2乃至15の何れか1項に記載の装置。
  18. 前記デジタル-アナログ変換器および/または前記アナログ-デジタル変換器は、マイクロコントローラユニットプラットフォーム上に設けられている請求項5乃至17の何れか1項に記載の装置。
  19. 前記データ分析装置は、パーソナルコンピュータ、タブレットコンピュータまたはスマートフォンを備える請求項1乃至18の何れか1項に記載の装置。
  20. 前記電極は、球状または半球状である請求項1乃至19の何れか1項に記載の装置。
  21. 前記電極は、ばねにより付勢されている請求項1乃至20の何れか1項に記載の装置。
  22. 前記細長い本体の前記遠位端は、前記電極が取り付けられる伸縮シャフトを備える請求項1乃至21の何れか1項に記載の装置。
  23. 前記プローブは、前記細長い本体の近位端にある調節可能なハンドル部材をさらに備える請求項1乃至22の何れか1項に記載の装置。
  24. 前記ハンドル部材は、前記細長い本体に枢動可能に結合されている請求項23に記載の装置。
  25. 前記ハンドル部材は、前記ハンドル部材上または内部に取り付けられた第1のジョイントと、前記細長い本体上または内部に取り付けられた第2のジョイントと、前記第1のジョイントから前記第2のジョイントに延び、前記第1のジョイントおよび前記第2のジョイントの少なくとも一方を調節可能な範囲で通過する連結ロッドとを含むリンク機構によって前記細長い本体に枢動および収納可能に結合され、前記第1ジョイントと前記第2ジョイントの少なくとも一方は、3次元的な回転を可能にするボールアンドソケットジョイントを備える請求項24に記載の装置。
  26. 前記第2のジョイントはボールアンドソケットジョイントを備え、前記ロッドは前記第2のジョイントを通って調節可能な範囲まで延びる請求項25に記載の装置。
  27. 前記第1のジョイントはボールアンドソケットジョイントを備え、前記ロッドは前記第1のジョイントを通って調節可能な範囲まで延びる請求項25または請求項26に記載の装置。
  28. 前記または各ボールアンドソケットジョイントにおいて、前記それぞれのボール部の前記表面および/または前記それぞれのソケットの前記表面は、前記ソケットに対する前記ボール部の回転位置を、ユーザによって設定された位置に保持するように適合されている請求項25乃至27の何れか1項に記載の装置。
  29. 前記プローブは、前記細長い本体に取り付けられた、前記プロセッサ制御回路を作動させるように操作可能な操作ボタンをさらに備える請求項1乃至28の何れか1項に記載の装置。
  30. 前記プローブは、使用時にユーザの指先を受け入れるために、前記細長い本体上に窪みをさらに備える請求項1乃至29の何れか1項に記載の装置。
  31. 前記プローブは、ワイヤレスである請求項1乃至30の何れか1項に記載の装置。
  32. 前記プローブは、使用中の前記電極と前記組織との間の前記接触圧力を測定するための圧力センサをさらに備える請求項1乃至31の何れか1項に記載の装置。
  33. 前記プローブは、使用中の前記組織の前記血中酸素濃度を測定するために、前記細長い本体の前記遠位端に、血中酸素センサをさらに備える請求項1乃至32の何れか1項に記載の装置。
  34. 前記プローブは、前記プローブの傾斜角度を感知する加速度計または慣性センサをさらに備える請求項1乃至33の何れか1項に記載の装置。
  35. 細長い本体と、前記細長い本体に枢動可能に結合された調節可能なハンドル部材とを備えるハンドヘルドの外科用ツール。
  36. 前記ハンドル部材は、前記ハンドル部材上または内部に取り付けられた第1のジョイントと、前記細長い本体上または内部に取り付けられた第2のジョイントと、前記第1のジョイントから前記第2のジョイントに延び、前記第1のジョイントおよび前記第2のジョイントの少なくとも一方を調節可能な範囲で通過する連結ロッドとを備えるリンク機構によって前記細長い本体に枢動および収納可能に結合され、前記第1ジョイントと前記第2ジョイントの少なくとも一方は、3次元的な回転を可能にするボールアンドソケットジョイントを備える請求項35に記載のツール。
  37. 前記第2のジョイントはボールアンドソケットジョイントを備え、前記ロッドは前記第2のジョイントを通って調節可能な範囲まで延びる請求項36に記載のツール。
  38. 前記第1のジョイントはボールアンドソケットジョイントを備え、前記ロッドは前記第1のジョイントを通って調節可能な範囲まで延びる請求項36または請求項37に記載のツール。
  39. 前記または各ボールアンドソケットジョイントにおいて、それぞれの前記ボール部の前記表面および/またはそれぞれの前記ソケットの前記表面は、前記ソケットに対する前記ボール部の回転位置を、ユーザによって設定された位置に保持するように適合されている請求項35乃至38の何れか1項に記載のツール。
  40. 請求項1乃至34の何れか1項に記載の装置を用いて、腫瘍組織と非腫瘍組織とをリアルタイムで識別する方法。
JP2023522564A 2020-10-13 2020-10-13 術中リアルタイム腫瘍組織識別装置および方法 Pending JP2023550878A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/GB2020/052550 WO2022079401A1 (en) 2020-10-13 2020-10-13 Apparatus and method for intraoperative real-time tumour tissue discrimination

Publications (1)

Publication Number Publication Date
JP2023550878A true JP2023550878A (ja) 2023-12-06

Family

ID=73401843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023522564A Pending JP2023550878A (ja) 2020-10-13 2020-10-13 術中リアルタイム腫瘍組織識別装置および方法

Country Status (4)

Country Link
US (1) US20230404423A1 (ja)
EP (1) EP4228504A1 (ja)
JP (1) JP2023550878A (ja)
WO (1) WO2022079401A1 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678552B2 (en) * 1994-10-24 2004-01-13 Transscan Medical Ltd. Tissue characterization based on impedance images and on impedance measurements
US8060195B2 (en) * 2003-05-02 2011-11-15 The Johns Hopkins University Devices, systems and methods for bioimpedance measurement of cervical tissue and methods for diagnosis and treatment of human cervix
EP2348987B1 (en) * 2008-11-28 2017-03-22 Impedimed Limited Impedance measurement process
US20180078301A1 (en) * 2016-09-16 2018-03-22 Invuity, Inc. Methods and apparatus for electrosurgical illumination
US20200253504A1 (en) * 2017-11-01 2020-08-13 Daniel Shen Systems and methods for tissue characterization

Also Published As

Publication number Publication date
EP4228504A1 (en) 2023-08-23
US20230404423A1 (en) 2023-12-21
WO2022079401A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
US11589766B2 (en) Hand-held device for electrical impedance myography
US20230126916A1 (en) Relatively constant sensor application pressure for electrical impedance myography
Sanchez et al. Electrical impedance myography and its applications in neuromuscular disorders
US9615766B2 (en) Impedance measurement process
Assenheimer et al. The T-SCANTM technology: electrical impedance as a diagnostic tool for breast cancer detection
US11246503B2 (en) Advanced electronic instrumentation for electrical impedance myography
CA3055157A1 (en) Method and apparatus for wide-band phase gradient signal acquisition
WO2009065006A2 (en) Determination of biosensor contact quality
EP4144294A1 (en) A catheter for cardiac and renal nerve sensing and mediation
Cheng et al. An electrical bioimpedance scanning system for subsurface tissue detection in robot assisted minimally invasive surgery
Sudharsan et al. An analysis of different biopotential electrodes used for electromyography
Pittella et al. Metrological characterization of a combined bio-impedance plethysmograph and spectrometer
Bosnjak et al. Performance assessment of dry electrodes for wearable long term cardiac rhythm monitoring: Skin-electrode impedance spectroscopy
Cheng et al. Robot assisted electrical impedance scanning for tissue bioimpedance spectroscopy measurement
JP2023550878A (ja) 術中リアルタイム腫瘍組織識別装置および方法
Wong et al. An impedance probing system for real-time intraoperative brain tumour tissue discrimination
US10321876B2 (en) Middle point zero reference
US20240268698A1 (en) Apparatus and method for surgical margin assessment using bioimpedance sensing array
US11844602B2 (en) Impedance-enriched electrophysiological measurements
US20200163583A1 (en) Compensating for artifacts while tracking an intrabody probe
Halter et al. Other Clinical Applications of EIT
KHOA WEI LONG Study of the Characteristics of Scalp Electroencephalography Sensing
백현재 Conductive Foam-surfaced Electrode for Capacitively-coupled EEG Measurement in Brain-Computer Interface

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20230508

Free format text: JAPANESE INTERMEDIATE CODE: A801

Effective date: 20230508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240830