JP2023537450A - 熱管理部材、電池及び電気利用装置 - Google Patents

熱管理部材、電池及び電気利用装置 Download PDF

Info

Publication number
JP2023537450A
JP2023537450A JP2022568604A JP2022568604A JP2023537450A JP 2023537450 A JP2023537450 A JP 2023537450A JP 2022568604 A JP2022568604 A JP 2022568604A JP 2022568604 A JP2022568604 A JP 2022568604A JP 2023537450 A JP2023537450 A JP 2023537450A
Authority
JP
Japan
Prior art keywords
heat exchange
heat
edge
channel
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022568604A
Other languages
English (en)
Inventor
李翔
王寿▲龍▼
肖挺
黄小▲騰▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Contemporary Amperex Technology Co Ltd
Original Assignee
Contemporary Amperex Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Contemporary Amperex Technology Co Ltd filed Critical Contemporary Amperex Technology Co Ltd
Publication of JP2023537450A publication Critical patent/JP2023537450A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Secondary Cells (AREA)
  • Aviation & Aerospace Engineering (AREA)

Abstract

Figure 2023537450000001
本願に係る実施例は、熱管理部材、電池及び電気利用装置を提供する。熱管理部材は、熱管理部材の一側に位置する複数の外側電池ユニットと提携して温度調節を行うための複数の第1熱交換表面を含む1組の第1熱交換表面であって、各第1熱交換表面が1つの外側電池ユニットと提携して温度調節を行うためのものである1組の第1熱交換表面と、熱管理部材の他方側に位置する複数の中間電池ユニットと提携して温度調節を行うための複数の第2エッジ熱交換表面を含む1組の第2エッジ熱交換表面であって、各第2エッジ熱交換表面が1つの中間電池ユニットと提携して温度調節を行うためのものである1組の第2エッジ熱交換表面と、を含み、各第1熱交換表面の熱交換面積が第1熱交換面積S1であり、各第2エッジ熱交換表面の熱交換面積が第2熱交換面積S2であり、第1熱交換面積S1が第2熱交換面積S2よりも大きい。本願によれば、電池空間適応性を強化させることができる。
【選択図】図7

Description

本願に係る実施例は、電池分野に関し、より具体的には、熱管理部材、電池及び電気利用装置に関するものである。
動力電池は、電気自動車の中核部材の一つであり、電気化学反応がその充放電基礎であるので、電池の安全性、性能及び寿命は温度に密接に関わっている。電気自動車技術の急速な発展に伴い、動力電池の比エネルギー、充放電速度及び使用寿命に対する要求が高くなる傾向があるため、電池熱管理もますます重要になってきている。
電気自動車の電池パックは多量の電池ユニットが直並列方式で並べられて多層アレイとなっていて、電池ユニット間の温度差が一致しない電池状態を誘起して、電池パックの全体的な性能に影響を与えるため、解決策を講ずって電池ユニット間の最大温度差を低下させることが必要になった。熱管理部材を用いて電池ユニットを冷却する場合があり、熱管理部材は一般に流動可能な熱交換流体を内部に収容する中空の板状構造であり、熱交換流体によって電池ユニットを冷却する。電池ユニットは多層に並べられ、各層の電池ユニットの一側が1枚の液体冷却板の一側と提携して熱交換を行い、又は、各層の電池ユニットの両側にそれぞれ1枚の液体冷却板を設置することで、複数の熱管理部材と多層の電池とを組み合わせて電池にすることを実現し、全体的な体積が大きくなり、このような場合に、異なる使用状況の要求を満たすように電池の空間適応性をいかに向上させるは、電池技術において早急に解決しようとする技術的問題である。
本願に係る実施例は、電池の空間適応性を改善できる、熱管理部材、電池、電気利用装置、製造方法及び装置を提供した。
本願の第1局面によれば、1組の第1熱交換表面と1組の第2エッジ熱交換表面を含む熱管理部材を提供した。その中、1組の第1熱交換表面は、熱管理部材の一側に位置する複数の外側電池ユニットと提携して温度調節を行うための複数の第1熱交換表面を含み、各第1熱交換表面が1つの外側電池ユニットと提携して温度調節を行うためのものであり、1組の第2エッジ熱交換表面は、熱管理部材の他方側に位置する複数の中間電池ユニットと提携して温度調節を行うための複数の第2エッジ熱交換表面を含み、各第2エッジ熱交換表面が1つの中間電池ユニットと提携して温度調節を行うためのものであり、その中、各第1熱交換表面の熱交換面積が第1熱交換面積S1であり、各第2エッジ熱交換表面の熱交換面積が第2熱交換面積S2であり、第1熱交換面積S1が第2熱交換面積S2よりも大きい。
当該実施例において、熱管理部材は、2組の異なる熱交換面積の熱交換表面を有し、電池ユニットに柔軟的に組み合わせて使用でき、1層の中間電池ユニットの両側に2つの熱管理部材を設置することで、1層の中間電池ユニット中の各中間電池ユニットが2つの熱管理部材の2つの小さい熱交換面積の第2エッジ熱交換表面と熱交換するが、1層の外側電池ユニット中の各外側電池ユニットが1つの熱管理部材の1つの大きい熱交換面積の第1熱交換表面と熱交換でき、中間電池ユニットと外側電池ユニットに基本的同じ熱交換効果を達成させることを実現した。本実施例の熱管理部材は、奇数層の電池ユニットを備えた電池と偶数層の電池ユニットを備えた電池の均一熱交換要求を満たすことができ、より柔軟的に電池の厚さを調節できるので、電池の空間適応性を強化させ、電池モジュール化の柔軟性を改善することができる。
一部の実施例において、熱管理部材内に熱交換流体の移動経路を提供するための第1熱交換流路が形成され、熱管理部材は、対向するように設置され、それらの間に第1熱交換流路が形成された第1側板と第2側板を含み、1組の第1熱交換表面が第1側板に形成され、熱交換流体が第1熱交換表面を介して外側電池ユニットに対して温度調節を行い、1組の第2エッジ熱交換表面が第2側板に形成され、熱交換流体が更に第2エッジ熱交換表面を介して中間電池ユニットに対して温度調節を行う。
当該実施例において、2組の異なる熱交換面積の熱交換表面がそれぞれ第1側板と第2側板に形成され、第1側板と第2側板との間に熱交換流体の移動経路を提供するための第1熱交換流路が形成されていることで、熱交換流体が第1熱交換表面と第2エッジ熱交換表面を介して電池ユニットと熱交換でき、熱交換流体の循環流動によって、電池ユニットの持続的な温度調節を実現することができる。
一部の実施例において、第1側板には、複数の外側電池ユニットと提携する部位に複数の第1熱交換表面が形成された第1側流路が形成され、第2側板には、複数の中間電池ユニットと提携する部位に複数の第2エッジ熱交換表面が形成された第2側流路が形成され、第1側流路と第2側流路とが提携して第1熱交換流路を形成している。
当該実施例において、第1側板と第2側板にそれぞれ側流路が形成され、側流路にそれぞれ第1熱交換表面と第2エッジ熱交換表面が形成され、第1側流路と第2側流路が組み合わせられて第1熱交換流路を形成していることで、第1熱交換表面と第2エッジ熱交換表面は、共通の第1熱交換流路内の熱交換流体との熱交換を実現でき、そして熱交換面積を異なるように設置することによって、第1熱交換表面が第2エッジ熱交換表面よりも優れた熱交換効果を有することを実現した。
一部の実施例において、第1側流路は、1つであり、1つの外側電池ユニットと提携する部位に1つの第1熱交換表面が形成され、第1熱交換面積S1が第1熱交換表面の表面積であり、第2側流路は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第2側部分流路を含み、各第2側部分流路における1つの中間電池ユニットと提携する部分に第2エッジ熱交換部分表面が形成され、各第2エッジ熱交換表面が複数の第2エッジ熱交換部分表面を含み、第2熱交換面積S2が複数の第2エッジ熱交換部分表面の表面積の和である。
当該実施例において、第1側流路は1つであり、第2側流路は複数の第2側部分流路に分けられており、第2熱交換面積が複数の第2側部分流路の第2エッジ熱交換部分表面の表面積の和である。第2エッジ熱交換部分表面の表面積と数量を調節することによって、第2熱交換面積が第1熱交換面積より小さいことを実現できるだけでなく、第2熱交換面積S2と第1熱交換面積S1との間の比例関係を精確に調節でき、実際の要求に応じて組み合わせて第2熱交換面積S2と第1熱交換面積S1との間の比例を適切にし、より正確な熱交換制御を実現し、熱交換の均一性を改善することができる。
一部の実施例において、第1側流路と複数の第2側部分流路は互いに連通して熱交換流路を形成している。
当該実施例において、第1側流路と複数の第2側部分流路を互いに連通するように設置することによって、熱交換流路内の熱交換流体が同時に第1側板と第2側板と熱交換でき、熱交換流路の設計が簡素化され、熱管理部材の製造が容易になる。
一部の実施例において、各第1熱交換表面は第1熱交換幅W1を有し、各第2エッジ熱交換表面は第2熱交換幅W2を有し、第1熱交換幅W1が第2熱交換幅W2よりも大きく、第1熱交換幅W1が第1熱交換表面の幅であり、第2熱交換幅W2が複数の第2エッジ熱交換部分表面の幅の和であり、第2熱交換幅W2と第1熱交換幅W1の割合が0.1-0.9の間にある。
当該実施例において、第1熱交換表面の第1熱交換幅W1と第2エッジ熱交換表面の第2熱交換幅W2の割合を調節することによって、第1熱交換面積S1と第2熱交換面積S2の比例調節を実現し、その中、第2エッジ熱交換表面の第2熱交換幅W2の調節は第2エッジ熱交換部分表面の幅と数量を調節することによって実現され、第1熱交換幅W1と第2熱交換幅W2の割合の制御によって、第1熱交換面積S1と第2熱交換面積S2の比例調節を簡単に実現できる。
一部の実施例において、第1側流路は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第1側部分流路を含み、各第1側部分流路における1つの外側電池ユニットと提携する部分に第1熱交換部分表面が形成され、各第1熱交換表面は複数の第1熱交換部分表面を含み、第1熱交換面積S1が複数の第1熱交換部分表面の表面積の和であり、第2側流路は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第2側部分流路を含み、各第2側部分流路における1つの中間電池ユニットと提携する部分に第2エッジ熱交換部分表面が形成され、各第2エッジ熱交換表面が複数の第2エッジ熱交換部分表面を含み、第2熱交換面積S2が複数の第2エッジ熱交換部分表面の表面積の和である。
当該実施例において、第1側流路は複数の第1側部分流路に分けられ、第1熱交換面積が複数の第1熱交換部分表面の表面積の和であり、第2側流路は複数の第2側部分流路に分けられ、第2熱交換面積が複数の第2側部分流路の第2エッジ熱交換部分表面の表面積の和である。第1熱交換部分表面と第2エッジ熱交換部分表面の表面積と数量を調節することによって、第2熱交換面積S2が第1熱交換面積S1より小さいことを実現できるだけでなく、第2熱交換面積S2と第1熱交換面積S1との間の比例関係を精確に調節でき、実際の要求に応じて組み合わせて第2熱交換面積S2と第1熱交換面積S1との間の比例を適切にし、より正確な熱交換制御を実現した。
一部の実施例において、第1熱交換流路は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数のサブ流路を含み、各サブ流路は、少なくとも1つの第1側部分流路と少なくとも1つの第2側部分流路を含み、1つのサブ流路を構成した第1側部分流路と第2側部分流路は互いに連通している。
当該実施例において、一部の第1側部分流路と複数の第2側部分流路を互いに連通するように設置することによって、第1熱交換流路が複数のサブ流路に分けられ、各サブ流路内の熱交換流体が同時に第1側板と第2側板と熱交換でき、第1熱交換流路の設計が簡素化され、熱管理部材の製造が容易になる。
一部の実施例において、各第1熱交換表面は第1熱交換幅W1を有し、各第2エッジ熱交換表面は第2熱交換幅W2を有し、第1熱交換幅W1が第2熱交換幅W2よりも大きく、第1熱交換幅W1が複数の第1熱交換部分表面の幅の和であり、第2熱交換幅W2が複数の第2エッジ熱交換部分表面の幅の和であり、第2熱交換幅W2と第1熱交換幅W1の割合が0.1-0.9の間にある。
当該実施例において、第1熱交換表面の第1熱交換幅W1と第2エッジ熱交換表面の第2熱交換幅W2の割合を調節することによって、第1熱交換面積と第2熱交換面積の比例調節を実現する。その中、第1熱交換表面の第1熱交換幅W1の調節は第1熱交換部分表面の幅と数量を調節することによって実現され、第2エッジ熱交換表面の第2熱交換幅W2の調節は第2エッジ熱交換部分表面の幅と数量を調節することによって実現される。第1熱交換幅W1と第2熱交換幅W2の割合制御によって第1熱交換面積S1と第2熱交換面積S2の比例調節を簡単に実現できる。
一部の実施例において、更に、第1側流路及び/又は第2側流路に設置され、第1側流路及び/又は第2側流路を流れる熱交換流体に乱流を発生させることに用いられる第1乱流部を含む。
当該実施例において、第1側流路及び/又は第2側流路に第1乱流部を設置することによって、第1側流路及び/又は第2側流路を流れる熱交換流体を乱流させて、熱交換流体温度を均一にして、電池ユニットの温度調節をより均一にすることができる。
一部の実施例において、第1乱流部が第1側流路における外側電池ユニットと提携しない部位に設置され、及び/又は、第1乱流部が第2側流路における中間電池ユニットと提携しない部位に設置される。
当該実施例において、第1乱流部を電池ユニットと提携する部位に設置すれば、第1乱流部は第1熱交換表面及び/又は第2エッジ熱交換表面の表面積を占める可能性があり、更に熱交換効果に影響を及ぼす。第1乱流部を電池ユニットと提携しない部位に設置することで、第1乱流部は第1熱交換面積S1と第2熱交換面積S2に影響を及ぼすことがなく、下流の第1熱交換表面及び/又は第2エッジ熱交換表面で乱流を形成することができ、熱交換流体温度分布をより均一にし、熱交換係数を向上させ、熱交換流体と電池ユニットの間の熱交換を増強させ、熱交換効率を向上させた。
一部の実施例において、第2熱交換面積S2と第1熱交換面積S1の割合は0.1-0.9の間にある。
当該実施例において、第2熱交換面積S2と第1熱交換面積S1の割合が0.1-0.9の間にあるが、熱管理部材両側の電池ユニットの異なる熱交換性能要求に応じて、第2熱交換面積S2と第1熱交換面積S1の割合変化を調整し、更に異なる電池ユニットの熱交換性能要求を満たすことができる。
一部の実施例において、各第1熱交換表面が熱管理部材の幅方向に沿って配置され、1組の第1熱交換表面が熱管理部材の長さ方向に沿って並べられ、また、各第2エッジ熱交換表面が熱管理部材の幅方向に沿って配置され、1組の第2エッジ熱交換表面が熱管理部材の長さ方向に沿って並べられる。
当該実施例において、第1熱交換表面と第2エッジ熱交換表面を熱管理部材の幅方向に沿って配置することで、外側電池ユニットと中間電池ユニットを長さ方向が熱管理部材の幅方向と一致するように熱管理部材の第1側板と第2側板に配置した。1組の第1熱交換表面と1組の第2エッジ熱交換表面を共に熱管理部材の長さ方向に沿って並べることで、熱管理部材の長さ方向に複数列の外側電池ユニットと中間電池ユニットを配置でき、1つの熱管理部材による複数の外側電池ユニットと複数の中間電池ユニットの熱交換を実現した。
第2局面によれば、少なくとも3層の電池ユニットと温度調節システムを含む電池を提供した。その中、少なくとも3層の電池ユニットは、2層の外側電池ユニット及び2層の外側電池ユニットの間に位置する少なくとも1層の中間電池ユニットを含み、各層の外側電池ユニットと各層の中間電池ユニットがいずれも複数の電池ユニットを含み、温度調節システムは、外側電池ユニット及び中間電池ユニットと熱交換することに用いられ、2組の第1熱交換表面と複数組の第2熱交換表面を含み、各組の第1熱交換表面が複数の第1熱交換表面を含み、各組の第2熱交換表面が複数の第2熱交換表面を含み、第1熱交換表面と第2熱交換表面が温度調節システム内部の熱交換流体と熱交換でき、そのうち、温度調節システムは、各層の外側電池ユニットの1組の側面が1組の第1熱交換表面と提携して温度調節を行い、各外側電池ユニットの1つの側面が1つの第1熱交換表面と提携して温度調節を行い、各第1熱交換表面が第1熱交換面積S1を有し、各層の中間電池ユニットが2組の第2熱交換表面の間に設置され、各層の中間電池ユニットの反対側となる2組の側面がそれぞれ隣接する1組の第2熱交換表面と提携して温度調節を行い、各中間電池ユニットの反対側となる2つの側面がそれぞれ隣接する1つの第2熱交換表面と提携して温度調節を行い、第1熱交換面積S1が第2熱交換表面の熱交換面積よりも大きいように配置される。
当該実施例において、温度調節システムは、2組の第1熱交換表面と複数組の第2熱交換表面を含み、2層の外側電池ユニットと少なくとも1層の中間電池ユニットと熱交換し、その中、各層の外側電池ユニットの1つの側面が1組の第1熱交換表面と熱交換し、即ち、各外側電池ユニットと温度調節システムが第1熱交換面積S1を介して熱交換し、各層の中間電池ユニットの反対側となる2つの側面がそれぞれ隣接する1組の第2熱交換表面と熱交換し、即ち、各中間電池ユニットと温度調節システムが2つの第2熱交換表面の熱交換面積を介して熱交換する。更に奇数層の電池ユニットを備える電池と偶数層の電池ユニットを備える電池の構築を実現でき、電池の層数と厚さをより自由に設計でき、より望ましい空間適応性を有するようになった。なお、第1熱交換面積が第2熱交換表面の熱交換面積よりも大きいので、中間電池ユニットと外側電池ユニットの冷却効果の自由調節を実現できる。第1熱交換面積と第2熱交換表面の熱交換面積の割合を変えることによって、外側電池ユニットと中間電池ユニットに近接した冷却効果を持たせて、電池ユニット間の温度差を低下させて、電池状態を一致させて、電池の全体的な性能を向上させることができる。
一部の実施例において、第2熱交換表面の熱交換面積と第1熱交換面積S1の割合は0.1-0.9の間にある。当該実施例において、2つの第2熱交換表面の熱交換面積と1つの第1熱交換面積の割合が0.2-1.8の間にあることで、中間電池ユニットと外側電池ユニットの冷却面積を0.2-1.8の間に自由に調節できる。
一部の実施例において、電池ユニットは、3層であり、2層の外側電池ユニットと1層の中間電池ユニットを含み、温度調節システムは、内部に熱交換流体の移動経路を提供するための第1熱交換流路が形成された2つのエッジ熱管理部材であって、それぞれ反対に設置された第1側板と第2側板を含み、第1側板に1組の第1熱交換表面が形成された2つのエッジ熱管理部材を含み、複数組の第2熱交換表面が2組の第2エッジ熱交換表面を含み、各組の第2エッジ熱交換表面が複数の第2エッジ熱交換表面を含み、2つのエッジ熱管理部材の第2側板にそれぞれ1組の第2エッジ熱交換表面が形成され、各第2エッジ熱交換表面が第2熱交換面積S2を有し、2つのエッジ熱管理部材の2つの第2側板が隣接し、且つ2つの第1側板が反対側であり、2つのエッジ熱管理部材の第1側板にそれぞれ1層の外側電池ユニットが設けられ、各外側電池ユニットの1つの側面が対応する1つの第1熱交換表面と提携し、2つのエッジ熱管理部材の間に1層の中間電池ユニットが設けられ、各中間電池ユニットの2つの反対側となる側面がそれぞれ2つのエッジ熱管理部材の1つの第2エッジ熱交換表面と提携する。
当該実施例において、温度調節システムは2つのエッジ熱管理部材を含み、各エッジ熱管理部材の第1側板に1組の第1熱交換表面が形成され、複数組の第2熱交換表面が2組の第2エッジ熱交換表面を含み、2つのエッジ熱管理部材の第2側板にそれぞれ1組の第2エッジ熱交換表面が形成される。2層の外側電池ユニットがそれぞれ2つのエッジ熱管理部材の1組の第1熱交換表面と提携し、1層の中間電池ユニットが2つのエッジ熱管理部材の間に配置され、各中間電池ユニットの2つの反対側となる側面がそれぞれ2つのエッジ熱管理部材の1つの第2エッジ熱交換表面と提携する。2つのエッジ熱管理部材によって3層の電池ユニットの熱交換が実現され、奇数層の電池ユニットの配置を実現すると共に、熱管理部材の数量を低減し、構造がよりコンパクトになり、厚さ全体が少なくなり、より望ましい空間適応性を有するようになった。
一部の実施例において、第2熱交換面積S2と第1熱交換面積S1の割合は0.1-0.9の間にある。当該実施例において、2つの第2熱交換面積2S2と1つの第1熱交換面積S1の割合が0.2-1.8の間にあることで、中間電池ユニットと外側電池ユニットの冷却面積を0.2-1.8の間に自由に調節できる。
一部の実施例において、電池ユニットは、4層以上であり、2層の外側電池ユニットと少なくとも2層の中間電池ユニットを含み、温度調節システムは、それぞれエッジ熱管理部材を含む2つのエッジ熱管理部材を含み、エッジ熱管理部材内に熱交換流体の移動経路を提供するための第1熱交換流路が形成され、エッジ熱管理部材は反対に設置された第1側板と第2側板を含み、第1側板に1組の第1熱交換表面が形成され、複数組の第2熱交換表面が2組の第2エッジ熱交換表面を含み、各組の第2エッジ熱交換表面が複数の第2エッジ熱交換表面を含み、2つのエッジ熱管理部材の第2側板にそれぞれ1組の第2エッジ熱交換表面が形成され、各第2エッジ熱交換表面が第2熱交換面積S2を有し、温度調節システムは、それぞれ中間熱管理部材を含む少なくとも1つの中間熱管理部材を更に含み、中間熱管理部材内に熱交換流体の移動経路を提供するためのものともなる第2熱交換流路が形成され、各中間熱管理部材は反対側に位置する2つの第3側板を含み、複数組の第2熱交換表面が更に複数組の第2中間熱交換表面を含み、その中、各第3側板にそれぞれ1組の第2中間熱交換表面が形成され、各組の第2中間熱交換表面が複数の第2中間熱交換表面を含み、各第2中間熱交換表面が第3熱交換面積S3を有し、第1熱交換面積S1が第3熱交換面積S3よりも大きく、中間熱管理部材の個数としては電池ユニットの層数から3を差し引いたものであり、その中、少なくとも1つの中間熱管理部材が2つのエッジ熱管理部材の間に設置され、2つのエッジ熱管理部材の2つの第2側板がそれぞれ1つの中間熱管理部材の1つの第3側板に隣接し、2つのエッジ熱管理部材の2つの第1側板が反対側であり、2つのエッジ熱管理部材の第1側板にそれぞれ1層の外側電池ユニットが設けられ、各外側電池ユニットが対応する第1側板の1つの第1熱交換表面と提携し、その中、各エッジ熱管理部材と隣接する1つの中間熱管理部材との間に1層の中間電池ユニットが設けられ、エッジ熱管理部材と提携する1層の中間電池ユニットにおいて、各中間電池ユニットの1つの側面がエッジ熱管理部材の第2側面の1つの第2エッジ熱交換表面と提携し、各中間電池ユニットのもう1つの側面が1つの中間熱管理部材の第3側板の1つの第2中間熱交換表面と提携し、及び/又は隣接する2つずつの中間熱管理部材の間に更に1層の中間電池ユニットが設けられ、両側がいずれも中間熱管理部材と提携する1層の中間電池ユニットにおいて、各中間電池ユニットの2つの側面がそれぞれ2つの中間熱管理部材の対向した第3側板の1つの第2中間熱交換表面と提携する。
当該実施例において、電池ユニットは4層の以上であり、2層の外側電池ユニットと少なくとも2層の中間電池ユニットを含む。温度調節システムは2つの第1熱管理部材と少なくとも1つの第2熱管理部材を含み、第2熱管理部材の2つの第3側板にそれぞれ1組の第2中間熱交換表面が形成され、第2中間熱交換表面も第2熱交換表面に属し、第2中間熱交換表面が第3熱交換面積S3を有し、第3熱交換面積S3も第1熱交換面積S1より小さい。このようにして、第1熱管理部材の第1熱交換表面は外側電池ユニットに対して片側冷却を行うことに用いられ、第1熱管理部材に隣接する1層の中間電池ユニットはエッジ熱管理部材の第2側面の第2エッジ熱交換表面及び1つの中間熱管理部材の第3側板の第2中間熱交換表面と熱交換する。残りの層の中間電池ユニットの2つの側面は両側の2つの中間熱管理部材の反対側となる第3側板の第2中間熱交換表面と提携して熱交換する。このようにして、任意層数の中間電池ユニット+2層の外側電池ユニットといった電池配置構造を実現でき、熱管理部材の数量が電池ユニットの層数より1層少なく、熱管理部材の数量を低減させ、構造がよりコンパクトになり、厚さ全体が少なくなり、より望ましい空間適応性を有するようになった。
一部の実施例において、第3熱交換面積S3と第1熱交換面積S1の割合は0.1-0.9の間にあり、及び/又は第2熱交換面積S2と第3熱交換面積S3の和と第1熱交換面積S1の割合は0.2-1.8の間にある。
当該実施例において、2つの第2熱交換面積S2と第1熱交換面積S1の割合2S2/S1が0.2-1.8の間にあり、及び/又は第2熱交換面積S2と第3熱交換面積S3の和と第1熱交換面積S1の割合が0.2-1.8の間にあることで、温度調節システムと1つの中間電池ユニットとが熱交換する合計熱交換面積と温度調節システムと1つの外側電池ユニットとが熱交換する熱交換面積の割合を0.2-1.8の間に変化させることができ、当該比例変化を調節することによって外側電池ユニットと中間電池ユニットに近接した冷却効果を持たせて、電池ユニット間の温度差を低下させて、電池状態を一致させて、電池の全体的な性能を向上させることができる。
一部の実施例において、エッジ熱管理部材の第1側板には、1層の外側電池ユニットと提携する部位に複数の第1熱交換表面が形成された第1側流路が形成され、エッジ熱管理部材の第2側板には、1層の中間電池ユニットと提携する部位に複数の第2エッジ熱交換表面が形成された第2側流路が形成され、第1側流路と第2側流路が組み合わせられて第1熱交換流路を形成している。
当該実施例において、エッジ熱管理部材の第1側板と第2側板にそれぞれ側流路が形成され、側流路に第1熱交換表面と第2エッジ熱交換表面が形成され、第1側流路と第2側流路が組み合わせられて第1熱交換流路を形成していることで、第1熱交換表面と第2エッジ熱交換表面は、共通の第1熱交換流路内の熱交換流体との熱交換を実現でき、そして熱交換面積を異なるように設置することによって、第1熱交換表面が第2エッジ熱交換表面よりも優れた熱交換効果を有することを実現した。
一部の実施例において、第1側流路は、1つであり、1つの外側電池ユニットと提携する部位に1つの第1熱交換表面が形成され、第1熱交換面積S1が第1熱交換表面の表面積であり、第2側流路は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第2側部分流路を含み、各第2側部分流路における1つの中間電池ユニットと提携する部分に第2エッジ熱交換部分表面が形成され、1つの第2エッジ熱交換表面が1つの中間電池ユニットと提携する複数の第2エッジ熱交換部分表面を含み、第2熱交換面積S2が複数の第2エッジ熱交換部分表面の表面積の和である。
当該実施例において、第1側流路は1つであり、第2側流路は複数の第2側部分流路に分けられ、第2熱交換面積が複数の第2側部分流路の第2エッジ熱交換部分表面の表面積の和であり、第2エッジ熱交換部分表面の表面積と数量を調節することによって、第2熱交換面積が第1熱交換面積より小さいことを実現できるだけでなく、第2熱交換面積と第1熱交換面積との間の比例関係を精確に調節でき、実際の要求に応じて組み合わせて第2熱交換面積と第1熱交換面積との間の比例を適切にし、より正確な熱交換制御を実現した。
一部の実施例において、第1側流路と複数の第2側部分流路は互いに連通して第1熱交換流路を形成している。
当該実施例において、第1側流路と複数の第2側部分流路を互いに連通するように設置することによって、第1熱交換流路内の熱交換流体が同時に第1側板と第2側板と熱交換でき、第1熱交換流路の設計が簡素化され、エッジ熱管理部材の製造が容易になる。
一部の実施例において、第1側流路は、それぞれの1つの外側電池ユニットと提携する部分に第1熱交換部分表面が形成された複数の第1側部分流路を含み、1つの第1熱交換表面が1つの外側電池ユニットと提携する複数の第1熱交換部分表面を含み、第1熱交換面積S1が複数の第1熱交換部分表面の表面積の和であり、第2側流路は、間隔をおいて設置された複数の第2側部分流路を含み、各第2側部分流路における1つの中間電池ユニットと提携する部分に第2エッジ熱交換部分表面が形成され、1つの第2エッジ熱交換表面が1つの中間電池ユニットと提携する複数の第2エッジ熱交換部分表面を含み、第2熱交換面積S2が複数の第2エッジ熱交換部分表面の表面積の和である。
一部の実施例において、各第1熱交換表面は第1熱交換幅W1を有し、各第2エッジ熱交換表面は第2熱交換幅W2を有し、第1熱交換幅W1が第2熱交換幅W2よりも大きく、第1熱交換幅W1が第1側流路における1つの外側電池ユニットと提携する部位の幅であり、第2熱交換幅W2が複数の第2エッジ熱交換部分表面の幅の和であり、第2熱交換幅W2と第1熱交換幅W1の割合が0.1-0.9の間にある。
当該実施例において、第1熱交換表面の第1熱交換幅W1と第2エッジ熱交換表面の第2熱交換幅W2の割合を調節することによって、第1熱交換面積と第2熱交換面積の比例を実現し、その中、第2熱交換幅W2の調節は第2エッジ熱交換部分表面の幅と数量を調節することによって実現され、第1熱交換幅W1と第2熱交換幅W2の割合の制御によって、第1熱交換面積S1と第2熱交換面積S2の比例調節を簡単に実現できる。
一部の実施例において、第1側流路は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第1側部分流路を含み、各第1側部分流路における1つの外側電池ユニットと提携する部分に第1熱交換部分表面が形成され、各第1熱交換表面が1つの外側電池ユニットと提携する複数の第1熱交換部分表面を含み、第1熱交換面積S1が複数の第1熱交換部分表面の表面積の和であり、第2側流路は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第2側部分流路を含み、各第2側部分流路における1つの中間電池ユニットと提携する部分に第2エッジ熱交換部分表面が形成され、各第2エッジ熱交換表面が1つの中間電池ユニットと提携する複数の第2エッジ熱交換部分表面を含み、第2熱交換面積S2が複数の第2エッジ熱交換部分表面の表面積の和である。
当該実施例において、第1側流路は複数の第1側部分流路に分けられ、第1熱交換面積S1が複数の第1熱交換部分表面の表面積の和であり、第2側流路は複数の第2側部分流路に分けられ、第2熱交換面積S2が複数の第2側部分流路の第2エッジ熱交換部分表面の表面積の和である。第1熱交換部分表面と第2エッジ熱交換部分表面の表面積と数量を調節することによって、第2熱交換面積S2が第1熱交換面積S1より小さいことを実現できるだけでなく、第2熱交換面積S2と第1熱交換面積S1との間の比例関係を精確に調節でき、実際の要求に応じて組み合わせて第2熱交換面積S2と第1熱交換面積S1との間の比例を適切にし、より正確な熱交換制御を実現した。
一部の実施例において、各第1熱交換表面は第1熱交換幅W1を有し、各第2エッジ熱交換表面は第2熱交換幅W2を有し、第1熱交換幅W1が第2熱交換幅W2よりも大きく、第1熱交換幅W1が複数の第1熱交換部分表面の幅の和であり、第2熱交換幅W2が複数の第2エッジ熱交換部分表面の幅の和であり、第2熱交換幅W2と第1熱交換幅W1の割合が0.1-0.9の間にある。
当該実施例において、第1熱交換表面の第1熱交換幅W1と第2エッジ熱交換表面の第2熱交換幅W2の割合を調節することによって、第1熱交換面積S1と第2熱交換面積S2の比例を実現する。その中、第1熱交換表面の第1熱交換幅W1の調節は第1熱交換部分表面の幅と数量を調節することによって実現され、第2エッジ熱交換表面の第2熱交換幅W2の調節は第2エッジ熱交換部分表面の幅と数量を調節することによって実現される。第1熱交換幅W1と第2熱交換幅W2の割合の制御によって、第1熱交換面積S1と第2熱交換面積S2の比例調節を簡単に実現できる。
一部の実施例において、第1熱交換流路は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第1サブ流路を含み、各第1サブ流路は、少なくとも1つの第1側部分流路と少なくとも1つの第2側部分流路を含み、1つの第1サブ流路を構成した第1側部分流路と第2側部分流路は互いに連通している。
当該実施例において、第1側部分流路と複数の第2側部分流路を互いに連通するように設置することによって、第1熱交換流路がそれぞれの内部の熱交換流体が同時に第1側板と第2側板と熱交換できる複数のサブ流路に分けられて、第1熱交換流路の設計が簡素化され、熱管理部材の製造が容易になる。
一部の実施例において、エッジ熱管理部材は、更に、第1側流路及び/又は第2側流路に設置され、第1側流路及び/又は第2側流路を流れる熱交換流体に乱流を発生させることに用いられる第1乱流部を含む。
当該実施例において、第1側流路及び/又は第2側流路に第1乱流部を設置することによって、第1側流路及び/又は第2側流路を流れる熱交換流体を乱流させて、熱交換流体の熱交換効果を向上させることができる。
一部の実施例において、第1乱流部が第1側流路における外側電池ユニットと提携しない部位に設置され、及び/又は、第1乱流部が第2側流路における中間電池ユニットと提携しない部位に設置される。
当該実施例において、第1乱流部を電池ユニットと提携する部位に設置すれば、第1乱流部は第1熱交換表面及び/又は第2エッジ熱交換表面の表面積を占める可能性があり、更に熱交換効果に影響を及ぼす。第1乱流部を電池ユニットと提携しない部位に設置することで、第1乱流部は第1熱交換面積S1と第2熱交換面積S2に影響を及ぼすことがなく、下流の第1熱交換表面及び/又は第2エッジ熱交換表面で乱流を形成することができ、熱交換流体温度分布をより均一にし、熱交換係数を向上させ、熱交換流体と電池ユニットの間の熱交換を増強させ、熱交換効率を向上させた。
一部の実施例において、各第1熱交換表面がエッジ熱管理部材の幅方向に沿って分布され、各組の第1熱交換表面がエッジ熱管理部材の長さ方向に沿って並べられ、また、各第2エッジ熱交換表面がエッジ熱管理部材の幅方向に沿って分布され、1組の第2エッジ熱交換表面が第1熱管理部材の長さ方向に沿って並べられる。
当該実施例において、第1熱交換表面と第2エッジ熱交換表面をエッジ熱管理部材の幅方向に沿って分布することで、外側電池ユニットと中間電池ユニットを長さ方向がエッジ熱管理部材の幅方向と一致するようにエッジ熱管理部材の第1側板と第2側板に配置した。1組の第1熱交換表面と1組の第2エッジ熱交換表面を共にエッジ熱管理部材の長さ方向に沿って並べることで、エッジ熱管理部材の長さ方向に複数列の外側電池ユニットと中間電池ユニットを配置でき、1つのエッジ熱管理部材による複数の外側電池ユニットと複数の中間電池ユニットの熱交換を実現した。
一部の実施例において、中間熱管理部材の各第3側板には、それぞれの1層の中間電池ユニットと提携する部位に1組の第2中間熱交換表面が形成された第3側流路が形成され、2つの対向した第3側板の第3側流路が組み合わせられて第2熱交換流路を形成している。
当該実施例において、中間熱管理部材の2つの第3側板にそれぞれ第3側流路が形成され、両側の第3側流路が組み合わせられて第2熱交換流路を形成していることで、2つの第2中間熱交換表面が共通の第2熱交換流路内の熱交換流体との熱交換を実現できる。
一部の実施例において、第3側流路は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第3側部分流路を含み、各第3側部分流路における1つの中間電池ユニットと提携する部分に1つの第2中間熱交換部分表面が形成され、各第2中間熱交換表面が1つの中間電池ユニットと提携する複数の第2中間熱交換部分表面を含み、第3熱交換面積S3が複数の第2中間熱交換部分表面の表面積の和である。
当該実施例において、第3側流路は複数の第3側部分流路に分けられ、第3熱交換面積S3が複数の第3側部分流路の第2中間熱交換部分表面の表面積の和である。第2中間熱交換部分表面の表面積と数量を調節することによって、第3熱交換面積S3が第1熱交換面積S1より小さいことを実現できるだけでなく、第3熱交換面積S3と第1熱交換面積S1及び第3熱交換面積S3と第2熱交換面積S2の間の比例関係を精確に調節でき、実際の要求に応じて組み合わせて第2熱交換面積S2と第3熱交換面積S3の和と第1熱交換面積S1との間の比例、及び2つの第3熱交換面積S3と第1熱交換面積S1との間の比例を適切にし、より正確な熱交換制御を実現した。
一部の実施例において、第3熱管理部材は、更に、第3側流路に設置され、第3側流路を流れる熱交換流体に乱流を発生させることに用いられる第2乱流部を含む。
当該実施例において、第3側流路に第2乱流部を設置することによって、第3側流路を流れる熱交換流体を乱流させて、熱交換流体の熱交換効果を向上させることができる。
一部の実施例において、第2乱流部が第3側流路における中間電池ユニットと提携しない部位に設置される。
当該実施例において、第2乱流部を中間電池ユニットと提携する部位に設置すれば、第2乱流部は第2中間熱交換表面の表面積を占める可能性があり、更に熱交換効果に影響を及ぼす。第2乱流部を中間電池ユニットと提携しない部位に設置することで、第2乱流部は第3熱交換面積S3に影響を及ぼすことがなく、下流の第2中間熱交換表面で乱流を形成することができ、熱交換効果を向上させた。
一部の実施例において、各第2中間熱交換表面が中間熱管理部材の幅方向に沿って配置され、1組の第2中間熱交換表面が中間熱管理部材の長さ方向に沿って並べられる。
当該実施例において、第2中間熱交換表面を中間熱管理部材の幅方向に沿って配置することで、中間電池ユニットを長さ方向が中間熱管理部材の幅方向と一致するように中間熱管理部材の第3側板に配置した。1組の第2中間熱交換表面を中間熱管理部材の長さ方向に沿って並べることで、中間熱管理部材の長さ方向に複数列の中間電池ユニットを配置でき、1つの中間熱管理部材が両側で2層の中間電池ユニットと熱交換することを実現した。
第3局面によれば、第2局面の電池を含む電気利用装置を提供した。
本願により提供された熱管理部材、電池及びそれに関連する電気利用装置は、奇数層の電池ユニットを備えた電池と偶数層の電池ユニットを備えた電池の均一熱交換要求を満たすことができ、より柔軟的に電池の厚さを調節でき、電池の空間適応性を強化させることができる。
ここで説明される添付図面は、本願に対する更なる理解を提供して本願の一部を構成するためのものであり、本願に係る模式的な実施例及びその説明は、本願を解釈するためのものであり、本願を不適切に限定するためのものでない。添付図面は、以下のようなものである。
従来技術における一電池構造の模式図である。 従来技術の熱管理部材のA-A横断面の構造模式図である。 従来技術の電池ユニットと熱管理部材とが接触する熱交換部位の上面図である。 従来技術の電池ユニットと熱管理部材とが接触する熱交換部位のA-A断面の模式図である。 従来技術の2つの熱管理部材が共同で中間にある1層の電池ユニットと熱交換する場合の模式図である。 図5における中間にある1層の電池ユニットと熱管理部材とが接触する熱交換部位のB-B断面の模式図である。 本願の一部の実施例のエッジ熱管理部材の構造模式図である。 本願の一部の実施例のエッジ熱管理部材の両側にそれぞれ電池ユニットが配置された時の側面図である。 図8におけるエッジ熱管理部材と電池ユニットとが熱交換する熱交換表面のK部位の部分拡大模式図である。 本願の一部の実施例のエッジ熱管理部材の第1側板の部分拡大図である。 本願の一部の実施例のエッジ熱管理部材の第1側板の部分上面図である。 図11におけるエッジ熱管理部材の第1側板の1つの第1熱交換表面1部分区間の部分拡大模式図である。 本願の一実施例のエッジ熱管理部材の第2側板の部分拡大図である。 本願の一部の実施例のエッジ熱管理部材の第2側板の部分上面図である。 図14におけるエッジ熱管理部材の第2側板の1つの第2エッジ熱交換表面1部分区間の部分拡大模式図である。 図11に示すエッジ熱管理部材のC-Cに沿った断面模式図である。 図11に示すエッジ熱管理部材のD-Dに沿った断面模式図である。 図11に示す電池ユニットとエッジ熱管理部材の第2エッジ熱交換表面1部分区間とが熱交換する部位のC-C断面図である。 図11に示す電池ユニットとエッジ熱管理部材の第1熱交換表面1部分区間とが熱交換する部位のD-D断面図である。 本願の一実施例の3層の電池ユニット構造を備えた電池の模式図である。 図20におけるE-E部位の電池ユニットと熱管理部材の熱交換表面部分区間とが熱交換する部位の断面模式図である。 図20におけるF-F部位の電池ユニットと熱管理部材の熱交換表面部分区間とが熱交換する部位の断面模式図である。 本願の一実施例の電池の熱管理部材の組合構造の斜視模式図である。 図23の電池のY方向模式図である。 本願の一実施例の4層の電池ユニット構造を備えた電池の模式図である。 図25におけるG-G部位の電池ユニットと熱管理部材の熱交換表面部分区間とが熱交換する部位の断面模式図である。 本願の一実施例の中間熱管理部材の構造模式図である。 図27に示す中間熱管理部材のL-Lに沿った断面模式図である。 図27に示す中間熱管理部材の1つの第2中間熱交換表面1部分区間の模式図である。 本願の一実施例の5層の電池ユニット構造を備えた電池の模式図である。 図30におけるH-H部位の電池ユニットと熱管理部材の熱交換表面部分区間とが熱交換する部位の断面模式図である。 本願の一実施例の断面が四辺形の柱状電池ユニットを採用した電池の模式図である。 本願の一実施例の断面が六辺形の柱状電池ユニットを採用した電池の模式図である。 本願の別の実施例の電気利用装置の構造模式図である。
以下、本願に係る実施例の目的、技術手段及び利点を更に明らかにするために、本願に係る実施例における添付図面に基づいて、本願に係る実施例における技術手段を詳細に記述するが、もちろん、記述される実施例は、本願の全ての実施例ではなく、ただ一部の実施例である。当業者が本願における実施例に基づいて創造的な労働をしない限り得られた全ての他の実施例は、いずれも本願の保護範囲に属する。
本願に利用される全ての技術・科学用語は、別に定義しない限り、当業者が通常に理解する意味と同じであり、本願において出願の明細書に利用される用語は、本願を制限することなく、ただ具体的な実施例を記述するためのものであり、本願の明細書、請求の範囲及び上記添付図面に説明される「含む」、「有する」という用語及びこれらのいずれの変形は、排他的でない包含を含むという意味である。本願の明細書、請求の範囲及び上記添付図面における「第1の」、「第2の」という用語は、ただ異なる対象を区別するためのものであり、所定の順序又は主次関係を記述するためのものでない。
本願に「実施例」を言及する場合、実施例に基づいて記述された所定の特徴、構成又は特性が本願の少なくとも1つの実施例に含まれてもよいと意味する。明細書における各箇所に当該用語が現れる場合、必ず同じ実施例を指すこともなく、他の実施例と互いに排斥して独立又は候補の実施例でもない。本文に記述された実施例が他の実施例と結合してもよいことは、当業者に明確的・隠蔽的に理解される。
本願の記述において、「取付」、「繋がる」、「接続」、「固定」などという用語は、別に明確的に規定・限定しない限り、広義に理解されるべきであり、例えば、固定して接続されてもよいし、着脱可能に接続されてもよく、一体にしてもよいが、また、直接的に繋がってもよいし、中間のものを介して繋がってもよく、2つの素子内部の連通であってもよい。当業者は、具体的な状況に基づいて本願における上記用語の具体的な意味を理解することができる。
本願において、「及び/又は」という用語は、ただ関連対象の関連関係を記述するためのものであり、3つの関係が存在できると表し、例えば、A及び/又はBは、Aが単独して存在してもよいし、AとBが同時に存在してもよいし、Bが単独して存在してもよいという3つの場合を表す。なお、本文における「/」という符号は、一般的に、前後の関連対象が「又は」という関係を有することを表す。
本願において現れる「複数」は、2つ以上(2つを含む)を表し、同じ理由で、「複数組」とは2組以上(2組を含む)を表し、「複数枚」とは2枚以上(2枚を含む)を表す。
本願において、電池ユニットは、リチウムイオン二次電池、リチウムイオン一次電池、リチウム硫黄電池、ナトリウムリチウムイオン電池、ナトリウムイオン電池又はマグネシウムイオン電池等を含んでもよいが、本願に係る実施例で限定されることがない。電池ユニットは、円柱体、扁平体、直方体又は他の形状等であってもよいが、本願に係る実施例で限定されることもない。電池ユニットは、一般にパッケージング方式により、柱状電池ユニット、直方体方形電池ユニット及びパウチ型電池ユニットといった3種に分けられ、本願に係る実施例で限定されることもない。
本願の実施例に記載の電池は、もっと高い電圧と容量を提供するために1つ又は複数の電池ユニットを含む単一の物理的モジュールを表す。例えば、本願に記載の電池は、電池モジュール又は電池パック等を含んでもよい。電池は一般に1つ又は複数の電池ユニットをパッケージングするための筐体を含む。筐体は液体又は他の異物が電池ユニットの充電又は放電に影響を及ぼすことを回避できる。
電池技術の開発では、電池性能の向上に加えて、使用寿命と安全性の面の問題も軽視できない問題となっている。電池の使用寿命が予想していた期限に到達できなければ、電池のメンテナンスと使用のコストが非常に大きくなってしまう。電池の安全性の面の問題を確保できなければ、当該電池が利用不可能になってしまう。電池の欠点の一つとしては、性能が温度に大きく影響され、電池が所定の温度範囲内で動作する必要があることであり、温度が低過ぎても高過ぎても電池に回復不能の損害を与え、電池性能を弱くすることになり、ひどい時に電池内部短絡、ひいては熱暴走を引き起こして、深刻な事故に繋がる。従って、電池を適切な温度範囲内に確保することは、電池使用寿命を確保する必要条件である。
空気冷却と比べて、従来技術において液体冷却を採用した電池は構造がよりコンパクトであり、冷却効果がより優れる。図1~図4に示すように、円柱体電池ユニットで構成された電池ユニットを例とすると、電池ユニット10は、通常、上下の2枚の板が互いに完全に仕切られて電池10を有効に冷却できる大きい流路が形成された蛇状扁平管の冷却板20を用いて冷却する。
図2には従来技術の冷却板20のA-A断面の模式図が示され、冷却板20は内部に複数の流路201が形成され、上側表面と下側表面202に電池ユニットと熱交換する熱交換表面200が形成されている。各層の電池ユニット20は1つの側面が1つの冷却板の1つの側表面と接触して熱交換する。図3と図4には従来技術の冷却板20の熱交換表面200が電池ユニット20において電池ユニット20と接触する部位の模式図が示されている。図1~図4の電池において、1つの冷却板に2層の電池ユニットを組み合わせれば、電池における電池ユニットの層数が偶数層の方式でしか存在できなく、電池の厚さ設計が大きく制限され、空間適応性が劣ることが本願の発明者に発見された。奇数層の電池ユニットを実現したい場合に、1枚の冷却板の1つの側面に電池ユニットが搭載されないことになり、浪費の問題があった。又は、図5に示すような3層の電池ユニットの電池構造において、上側と下側に位置する電池ユニットは液体冷却板と熱交換する側面が1つだけあるが、中間層に位置する電池ユニットは上下の2つの側面がいずれも液体冷却板と熱交換するので、中間層電池ユニットの冷却効果は、図6の図B-Bに示すように(中間層電池ユニットと液体冷却板とが接触する熱交換面積が上側と下側の電池ユニットの2倍になる)、上側と下側の電池ユニット(図4参照)の冷却効果を遥かに超えるため、異なる層の電池ユニット同士に非常に大きい温度差が存在し、不一致の電池状態を招き、更に電池の全体的な性能に影響を及ぼす。従って、従来技術の冷却板20は奇数層の電池ユニットの冷却の実現に適用されない。
従来技術において、更に、各層の電池ユニットの両側のそれぞれに蛇状扁平管を採用した液体冷却板が設置され、任意層数の電池ユニットの構造を実現できるという別の電池構造(未図示)が存在する。しかし、このような方式において、最縁部の2つの液体冷却板の1つの側面に共に電池ユニットが搭載されず、浪費の問題が存在すると共に、液体冷却板の数量が電池ユニットの層数より多く、電池の全厚を増加させることが本願の発明者に発見された。
従来技術における電池に存在する上記問題及び他の潜在的問題を解決し、又は少なくとも部分的に解決するために、本願の発明者は、任意層数の電池ユニットの組合を実現でき、各層の電池ユニットを均一に冷却させると共に、空間を省き、厚さを低減させ、電池の空間適応性を向上させる熱管理部材及び電池を提案した。
本願に係る実施例に記載の技術手段はいずれも、例えば、携帯電話、携帯機器、ノートパソコン、電動バイク、電動玩具、電動工具、電動車、船舶及び宇宙機等、電池を利用する種々の装置に適用され、例えば、宇宙機は飛行機、ロケット、スペースシャトル及び宇宙飛行船等を含む。
図7~図17には本願の一部の実施例の熱管理部材の構造が示されている。
図1に示すように、本願の実施例に記載の熱管理部材は、熱交換流体を収容して複数の電池ユニットに対して温度調節を行うためのものである。ここの熱交換流体は液体又はガスであってもよく、温度調節は複数の電池ユニットを加熱又は冷却することである。電池ユニットを冷却又は降温させる場合に、当該熱管理部材は冷却熱交換流体を収容して複数の電池ユニットを降温させるためのものであり、この時に、熱管理部材は冷却部材、冷却システム又は冷却板等と呼んでもよく、収容される熱交換流体は冷却媒体又は冷却熱交換流体と呼んでもよく、より具体的には、熱交換流体又は冷却ガスと呼んでもよい。なお、熱管理部材は複数の電池ユニットを昇温させるように加熱するためのものとなってもよく、本願に係る実施例はこれを限定するものでない。選択可能に、熱交換流体はより望ましい温度調節効果を達成するために循環流動してもよい。選択可能に、熱交換流体は水、水とグリコールの混合液、空気又は冷媒等であってもよい。
本願の実施例に記載の熱管理部材の波形は、凹凸面を連結してなった、電池ユニットの表面と提携する電池ユニット収容用の表面形状である。ここで説明必要であるように、電池ユニットが円柱体、扁平体、直方体又は他の形状等であってもよいので、他の形状の電池ユニットの場合に、熱管理部材の波形は、電池ユニットの表面に適応するように、適応的に変化してもよい。その中、熱管理部材内の熱交換流体通路の断面形状も適応的に変化してもよい。
本願の実施例の熱管理ユニットは電池ユニットの表面と直接的に接触して温度調節を行うようにしてもよい。熱管理ユニットは熱伝導層を介して電池ユニット表面と間接的に接触して温度調節を行うように、熱管理ユニットと電池ユニットの表面の間に熱伝導層を配置してもよい。熱伝導層は優れた熱伝導性、絶縁性を有し、熱伝達と絶縁作用に寄与し、電池ユニット性能を確保した上でより望ましい熱交換を実現する。次に、熱伝導層は一般に一定の可撓性を有するので、電池ユニットと熱管理ユニットとの間の衝突を低減させることができる。熱伝導層としては弾性ゴム、熱伝導性グリース、熱伝導性シリカゲル等の材料を採用してもよい。
本願の実施例に記載の電池セルは、リチウムイオン二次電池、リチウムイオン一次電池、リチウム硫黄電池、ナトリウムリチウムイオン電池、ナトリウムイオン電池又はマグネシウムイオン電池等を含んでもよいが、本願に係る実施例で限定されることがない。電池セルは、円柱体、扁平体、直方体又は他の形状等であってもよいが、本願に係る実施例で限定されることもない。電池セルは、一般にパッケージング方式により、柱状電池ユニット、直方体方形電池ユニット及びパウチ型電池ユニットといった3種に分けられ、本願に係る実施例で限定されることもない。電池セルは、正極シート、負極シート及びセパレータで構成される電極素子と、電解液とを含む。電池セルは主に、金属イオンが正極シートと負極シートとの間を移動することにより働くものである。正極シートは、正極集電体と正極活物質層を含み、正極活物質層が正極集電体の表面に塗布され、正極活物質層が塗布されない集電体は、正極活物質層が塗布された集電体よりも突出し、正極タブとして機能する。リチウムイオン電池を例とすると、正極集電体の素材はアルミニウムであってもよく、正極活物質はコバルト酸リチウム、リン酸鉄リチウム、三元リチウム又はマンガン酸リチウム等であってもよい。負極シートは、負極集電体と負極活物質層を含み、負極活物質層が負極集電体の表面に塗布され、負極活物質層が塗布されない集電体は、負極活物質層が塗布された集電体よりも突出し、負極タブとして機能する。負極集電体の素材は銅であってもよく、負極活物質は炭素又はケイ素等であってもよい。溶断しないように大電流を通すために、複数の正極タブを利用して一緒に積層すると共に、複数の負極タブを利用して一緒に積層するようになる。セパレータの素材はPP又はPE等であってもよい。なお、電極素子は巻き回された構造であってもよいし、積み重ねられた構造であってもよく、本願に係る実施例はこれに制限されない。
本願の実施例に記載の電池ユニットは、電池が正常に使用される時に鉛直方向の同じ層に位置して並べられた複数の電池ユニットである。具体的には、同じ層の複数の電池ユニット11を熱管理部材の長さ方向Yに沿って並列に並べて設置してもよく、熱管理部材の幅方向Xにおいて1つの電池ユニットを配置してもよい。各電池ユニットは、1つの電池セルを含んでもよいし、同軸に配置された複数の電池セルを含んでもよい。1つの電池ユニットに属する複数の電池セル同士は、電気的に接続してもよく、例えば、直列接続又は並列接続してもよく、電気的に接続しなくてもよい。同軸に配置された複数の電池セルは1列に並べられ、その軸線方向が熱管理部材の幅方向Xと平行する。各層の電池ユニットの隣接した列の電池ユニットはバス部材によって直列接続又は並列接続してもよい。少なくとも2層の電池ユニットは、本願の実施例の電池が少なくとも鉛直方向に沿って積層して配置された上記の2層の電池ユニットを含むことを表し、即ち、2層よりも多い電池ユニットを含んでもよい。当然ながら、電池ユニットは熱管理部材の長さY方向又は幅方向Xに対して傾斜して配置されるなどのようになってもよく、本願はここで限定するものでない。
本願の実施例に記載の熱管理部材が波形であることは、熱管理部材が長さ方向Yに沿って、隣接する弧状外壁を繋ぎ合わせることで波形に形成されることを表し、波形を構成する凹凸面の大きさは隣接する列の電池ユニットの距離により限定され、波形の形状は電池ユニットの外表面形状により決まる。本願の実施例に記載の熱管理部材の弧状外壁は本願の手段を当業者に更に良好に理解させるためのものであり、当該弧状は任意の曲線又は直線を連続させ又は連続させないように組み合わせてなったものであってもよく、例えば楕円形、多角柱状等である。
本願の実施例に記載の温度調節システムとは、電池における電池ユニットに対して温度調節を行うためのシステムを指し、一般的には温度調節システムは車両熱管理システム又は電池熱管理システムの一部として、熱交換流体の循環流動によって電池ユニットに対して温度調節を行う。
一部の実施例において、図7~図17に示すように、本願に係る実施例の第1局面において、1組の第1熱交換表面310と1組の第2エッジ熱交換表面320を含む熱管理部材300を提供する。その中、1組の第1熱交換表面310は、熱管理部材300の一側に位置する複数の外側電池ユニット13と提携して温度調節を行うための複数の第1熱交換表面310を含み、各第1熱交換表面310が1つの外側電池ユニット13と提携して温度調節を行うためのものであり、1組の第2エッジ熱交換表面320は、熱管理部材300の他方側に位置する複数の中間電池ユニット14と提携して温度調節を行うための複数の第2エッジ熱交換表面320を含み、各第2エッジ熱交換表面320が1つの中間電池ユニット14と提携して温度調節を行うためのものであり、その中、各第1熱交換表面310の熱交換面積が第1熱交換面積S1であり、各第2エッジ熱交換表面320の熱交換面積が第2熱交換面積S2であり、第1熱交換面積S1が第2熱交換面積S2よりも大きい。
当該実施例において、熱管理部材300は、2組の異なる熱交換面積の熱交換表面310、320を有し、電池ユニット13、14に柔軟的に組み合わせて使用でき、1層の中間電池ユニット14の両側に2つの熱管理部材を設置することで、1層の中間電池ユニット14中の各中間電池ユニット14が2つの熱管理部材300の2つの小さい熱交換面積の第2エッジ熱交換表面320と熱交換するが、1層の外側電池ユニット13中の各外側電池ユニット13が1つの熱管理部材300の1つの大きい熱交換面積の第1熱交換表面310と熱交換でき、中間電池ユニット14と外側電池ユニット13に基本的同じ熱交換効果を達成させることを実現した。本実施例の熱管理部材300は、奇数層の電池ユニットを備えた電池と偶数層の電池ユニットを備えた電池の均一熱交換要求を満たすことができ、より柔軟的に電池の厚さを調節できるので、電池の空間適応性を強化させることができる。
一部の実施例において、熱管理部材300内に熱交換流体の移動経路を提供するための第1熱交換流路34が形成され、熱管理部材300は、対向するように設置され、それらの間に第1熱交換流路34が形成された第1側板31と第2側板32を含み、1組の第1熱交換表面310が第1側板31に形成され、熱交換流体が第1熱交換表面310を介して外側電池ユニット13に対して温度調節を行い、1組の第2エッジ熱交換表面320が第2側板32に形成され、熱交換流体が更に第2エッジ熱交換表面320を介して中間電池ユニット14に対して温度調節を行う。
上記の設置によれば、熱管理部材300の第1側板31に複数の第1熱交換表面310が設けられ、少なくとも1つの第1熱交換表面310が第1熱交換面積S1を有し、第2側板32に複数の第2エッジ熱交換表面320が設けられ、少なくとも1つの第2エッジ熱交換表面320が第2熱交換面積S2を有し、第1熱交換面積S1が第2熱交換面積S2よりも大きく、即ち、熱管理部材300の第1側板31と第2側板32における電池ユニットと熱交換する部位に異なる熱交換面積を有し、これによって、1層の中間電池ユニット14の両側に2つの熱管理部材300を設置することで、1層の中間電池ユニット14が2つの熱管理部材300の2つの小さい熱交換面積の第2エッジ熱交換表面320と熱交換するが、外側電池ユニット13が1つの熱管理部材300の1つの大きい熱交換面積の第1熱交換表面310と熱交換でき、中間電池ユニット14と外側電池ユニット13に基本的同じ熱交換効果を達成させることを実現できる。このようにして、本実施例の熱管理部材300は、異なる位置の電池ユニットに合わせて、1つの熱管理部材300の1つの第1熱交換表面310又は2つの熱管理部材の2つの第2エッジ熱交換表面320を1層の電池ユニットと熱交換させ、基本的同じ冷却効果を達成させることができ、このようにいずれか1層の電池ユニットの均一な熱交換を実現でき、優れた空間適応性を有し、異なる空間使用要求を満たすことができ。
一部の実施例において、第1側板31における複数の第1熱交換表面310の第1熱交換面積S1は互いに同じであっても、異なってもよく、第2側板32における複数の第2エッジ熱交換表面320の第2熱交換面積S2は互いに同じであっても、異なってもよい。第1側板31における複数の第1熱交換表面310の第1熱交換面積S1が互いに同じであり、且つ第2側板32における複数の第2エッジ熱交換表面320の第2熱交換面積S2が互いに同じである場合に、上記実施例に記載の第1熱交換面積S1が第2熱交換面積S2よりも大きいことは、具体的には、第1側板31における複数の第1熱交換表面310の第1熱交換面積S1がいずれも第2側板32における複数の第2エッジ熱交換表面320の第2熱交換面積S2よりも大きいことを指す。第1側板31における複数の第1熱交換表面310の第1熱交換面積S1が互いに異なり、又は、第2側板32における複数の第2エッジ熱交換表面320の第2熱交換面積S2が互いに異なる場合に、上記実施例に記載の第1熱交換面積S1が第2熱交換面積S2よりも大きいことは、具体的に、第1側板31における複数の第1熱交換表面310のうちの少なくとも1つの第1熱交換表面310の第1熱交換面積S1が第2側板32における複数の第2エッジ熱交換表面320のうちの少なくとも1つの第2エッジ熱交換表面の第2熱交換面積S2よりも大きく、又は、第1側板31における複数の第1熱交換表面310の第1熱交換面積S1の平均値が第2側板32における複数の第2エッジ熱交換表面320の第2熱交換面積S2の平均値よりも大きいことであってもよい。
具体的には、図7と図10における熱管理部材300を例とすると、熱管理部材300は長さ方向Yに沿って隣接する弧状外壁を繋ぎ合わせて波形に形成されたものである。1組の第1熱交換表面310が第1側板31の熱管理部材300の内部へ凹んだ弧状外壁部分に配置され、1組の第1熱交換表面310が長さ方向Yに沿って並べられ、各第1熱交換表面310が幅方向Xに沿って配置されている。1組の第2エッジ熱交換表面320が第2側板32の熱管理部材300の内部へ凹んだ弧状外壁部分に配置され、1組の第2エッジ熱交換表面320が長さ方向Yに沿って並べられ、各第2エッジ熱交換表面320が幅方向Xに沿って配置されている。
一部の実施例において、図7に示すように、本願に係る実施例の熱管理部材300は更に、いずれも熱管理部材300内の第1熱交換流路34と連通する第1流体入口36と第1流体出口37を含む。
一部の実施例において、図8、図9、図16及び図17に示すように、本願に係る実施例の熱管理部材300の第1側板31における複数の第1熱交換表面310が第1側板31における弧状外壁の一部に形成され、第2エッジ熱交換表面320が第2側板32における弧状外壁の一部に形成されている。
以下、熱交換表面の定義を説明し、第1熱交換表面310を例とし、本願に係る実施例における他の熱交換表面、例えば第2エッジ熱交換表面320の定義については第1熱交換表面310を参照できる。1つの外側電池ユニット13が第1側板31に対して直接接触する方式で熱伝導式熱交換を行う時に、1つの第1熱交換表面310は第1側板31と1つの外側電池ユニット13とが直接接触する部位である。1つの外側電池ユニット13と第1側板31との間に熱伝導層が配置されている時に、第1熱交換表面310は第1側板31と1つの外側電池ユニット13とが熱伝導層を介して間接的に接触して伝導式熱交換を行う部位である。第1熱交換表面310は1つの連続的表面であってもよいし、仕切られた複数の熱交換部分表面で構成されてもよく、熱交換部分表面は第1側板31の局所と1つの外側電池ユニット13の局所とが熱伝導層を介して間接的に接触して伝導式熱交換を行う部位である。具体的な方式は後の実施例に基づいて具体的に説明する。
一部の実施例において、図10に示すように、熱管理部材は、第1熱交換流路34と連通する第1流体入口36と第1流体出口37を含む。1つの第1熱交換流路34は迂回設置された複数の流路部分区間を含み、隣接する2つの流路部分区間の間に仕切部33が設けられ、第1熱交換流路34は更に中間流路部分区間342を含み、隣接する2つの流路部分区間が中間流路部分区間342を介して連通している。具体的に図10に示すように、本実施例で、1つの第1熱交換流路34には第1流体入口36と連通する1番目の流路部分区間341、及び第1流体出口37と連通する2番目の流路部分区間343が設けられ、1番目の流路部分区間341と2番目の流路部分区間343が熱管理部材の長さ方向Yに沿って延在し、1番目の流路部分区間341と2番目の流路部分区間343との間には1番目の流路部分区間341と2番目の流路部分区間343を仕切る仕切部33が設けられている。中間流路部分区間342は、仕切部33のエッジに位置し、熱管理部材の幅方向Xに沿って延在し、隣接する1番目の流路部分区間341と2番目の流路部分区間343とが中間流路部分区間342を介して連通する。全体的には第1熱交換流路34が迂回した構造を形成し、隣接する1番目の流路部分区間341と2番目の流路部分区間343が180°折り畳まれることで、電池ユニットを冷却するための冷却空間が比較的コンパクトになった。1つの第1熱交換流路34の区間数は実際に冷却必要な電池寸法及び実際の使用環境によって決まり、1つの流路部分区間の具体的数量と具体的長さ寸法はいずれも限定されるものでない。第1流体入口36に近いところの熱交換流体温度が比較的低く、第1流体出口37に近いところの熱交換流体温度が比較的高いので、1つの電池ユニット(外側電池ユニット13、中間電池ユニット14を含む)と熱交換する1つの熱交換表面(第1熱交換表面310と第2エッジ熱交換表面320を含む)には、第1流体入口36に近い温度の低い熱交換部分表面を含ませながら、第1流体出口37に近い温度の高い熱交換部分表面を含ませることで、温度を中和させて電池ユニット温度に極端状況が発生することに至らないようにできることに加えて、第1流体入口36、第1流体出口37に近いところの電池ユニット温度と中間流路部分区間342(熱管理部材300の端部に位置する)に近いところの電池ユニット温度が大きく相違することがなく、電池ユニットの温度均一性を向上させることができる。
一部の実施例において、図7と図10に示すように、第1流体入口36と第1流体出口37との間の連結線の両側にそれぞれ1つの第1熱交換流路34が設けられている。具体的には、第1流体入口36と第1流体出口37が熱管理部材の長さ方向Yに沿った中間位置に設置され、第1流体入口36と第1流体出口37との間の連結線の両側にそれぞれ1つの第1熱交換流路34が配置され、両側の第1熱交換流路34がいずれも第1流体入口36と第1流体出口37と連通していることで、第1流体入口36と第1流体出口37が同時に2つの第1熱交換流路34に流体を供給することができる。第1流体入口36と第1流体出口37が熱管理部材300の中間に配置され、第1流体入口36と第1流体出口37との間の連結線の両側にそれぞれ1つの第1熱交換流路34が配置されていることで、熱交換流体の流動距離を短縮できると共に、熱交換流体の並列接続回路を増加させて流動抵抗を効果的にすることができ、同時に熱管理部材300の第1流体入口36と第1流体出口37との間の連結線の両側の電池ユニットの温度一致性の向上に寄与する。
一部の実施例において、図10~図17に基づいて、第1熱交換流路34、第1側板31及び第2側板32を説明する。
一部の実施例において、図10に示すように、熱管理部材300内の1つの第1熱交換流路34は1番目の流路部分区間341、2番目の流路部分区間343及び中間流路部分区間342に分けられている。それらの中で、1番目の流路部分区間341、2番目の流路部分区間343は主に電池ユニットと提携して温度調節を行うことに用いられる。1番目の流路部分区間341と2番目の流路部分区間343は基本的同じ構造を有し、第1流路部分区間341を例として説明する。
一部の実施例において、図10、図11、図16及び図17に示すように、1番目の流路部分区間341が設けられた部位において、熱管理部材300の第1側板31における1番目の流路1部分区間341に対応する位置に第1側流路1部分区間314が形成され、第1側流路1部分区間314における外側電池ユニット13と提携する部位に長さY方向に沿って並べられた複数の第1熱交換表面1部分区間311が形成されている。2番目の流路部分区間343が設けられた部位において、熱管理部材300の第1側板31における2番目の流路部分区間343に対応する位置に第1側流路2部分区間315が形成され、第1側流路2部分区間315における外側電池ユニット13と提携する部位に長さY方向に沿って並べられた複数の第1熱交換表面2部分区間312が形成されている。
図10と図11に示すように、第1側流路3100は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第1側部分流路3141-3144と3151-3154を含み、第1側部分流路3141-3144と3151-3154のそれぞれにおける1つの外側電池ユニットと提携する部分に第1熱交換部分表面3111-3114と3121-3124が形成され、第1熱交換部分表面3111-3114が第1熱交換表面1部分区間311を構成し、第1熱交換部分表面3121-3124が第1熱交換表面2部分区間312を構成し、第1熱交換表面1部分区間311と第1熱交換表面2部分区間312が共同で第1熱交換表面310を構成している。即ち、各第1熱交換表面310は、複数の第1熱交換部分表面3111-3114と3121-3124を含み、第1熱交換面積S1が複数の第1熱交換部分表面3111-3114と3121-3124の表面積の和である。ただし、それに限定されることがなく、第1熱交換表面1部分区間311又はより小さい第1熱交換部分表面3111-3114が1つの電池ユニットに対して温度調節を行うことに用いられる場合に、第1熱交換表面310は1つの第1熱交換表面1部分区間311又はより小さい第1熱交換部分表面3111-3114であってもよい。
図14に示すように、第2側流路3200は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第2側部分流路3241-3246と3251-3256を含み、第2側部分流路3241-3246と3251-3256のそれぞれにおける1つの中間電池ユニットと提携する部分に第2エッジ熱交換部分表面3211-3216と3221-3226が形成されている。第2熱交換部分表面3211-3216が第2熱交換表面1部分区間321を構成し、第2熱交換部分表面3221-3226が第2熱交換表面2部分区間322を構成し、第2熱交換表面1部分区間321と第2熱交換表面2部分区間322が共同で第2熱交換表面320を構成している。即ち、各第2エッジ熱交換表面320は、複数の第2エッジ熱交換部分表面3211-3216と3221-3226を含み、第2熱交換面積S2が複数の第2エッジ熱交換部分表面3211-3216と3221-3226の表面積の和である。ただし、それに限定されることがなく、第2熱交換表面1部分区間321又はより小さい複数の第2エッジ熱交換部分表面3211-3216が1つの電池ユニットに対して温度調節を行うことに用いられる場合に、第2エッジ熱交換表面320は第2熱交換表面1部分区間321又はより小さい複数の第2エッジ熱交換部分表面3211-3216であってもよい。
当該実施例において、第1熱交換部分表面3111-3114、3121-3124と第2エッジ熱交換部分表面3211-3216、3221-3226の表面積と数量を調節することによって、第2熱交換面積S2が第1熱交換面積S1より小さいことを実現できるだけでなく、第2熱交換面積S2と第1熱交換面積S1との間の比例関係を精確に調節でき、実際の要求に応じて組み合わせて第2熱交換面積S2と第1熱交換面積S1との間の比例を適切にし、より正確な熱交換制御を実現した。
具体的には、図10、図11、図16及び図17に示すように、第1側流路3100は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた2つの第1側流路部分区間、即ち、第1側流路1部分区間314と第1側流路2部分区間315を含む。
第1側流路1部分区間314は、複数の第1側部分流路を含み、一部の実施例において、第1側部分流路部分区間314は、第1側1部分流路3141、第1側2部分流路3142、第1側3部分流路3143及び第1側4部分流路3144といった4つの第1側部分流路を含み、4つの第1側部分流路3141、3142、3143、3144の間が若干の第1側仕切部315を介して仕切られている。第1側仕切部315は、熱管理部材300の内部へ凹み、外側電池ユニットまで所定の距離離れ、外側電池ユニット13と直接的又は間接的に接触しない。4つの第1側部分流路が第1側板31から突出し、各第1側部分流路における1つの外側電池ユニット13と提携する部分に第1熱交換部分表面が形成され、つまり、各第1側部分流路の熱管理部材300の内部へ凹んだ弧状外壁における外側電池ユニット13と提携する部分に1つの第1熱交換部分表面が形成され、第1熱交換部分表面が外側電池ユニット13の外形に適応し、第1熱交換部分表面が外側電池ユニット13と直接的に接触したり、熱伝導層を介して間接的に接触して熱交換する。隣接する第1熱交換部分表面が第1側仕切部315を介して互いに仕切られていることで、各第1側部分流路の熱管理部材300の内部へ凹んだ弧状外壁において、外側電池ユニット13に直接的に接触したり、熱伝導層を介して間接的に接触して熱交換するのは第1熱交換部分表面しかなく、第1側仕切部315が外側電池ユニット13と直接的又は間接的に接触することなく、このようにして、第1熱交換部分表面と第1側仕切部の面積と数量を変えることによって、第1熱交換表面の熱交換面積を調節できる。第1側流路2部分区間315も、第1側5部分流路3151、第1側6部分流路3152、第1側7部分流路3153及び第1側8部分流路3154といった4つの第1側部分流路を含む。つまり、第1側流路3100は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた8つの第1側部分流路、即ち第1側1部分流路3141、第1側2部分流路3142、第1側3部分流路3143、第1側4部分流路3144、第1側5部分流路3151、第1側6部分流路3152、第1側7部分流路3153及び第1側8部分流路3154を含む。
具体的には、図10に示すように、1つの第1熱交換表面1部分区間311は、第1側1部分流路3141に位置する第1熱交換1部分表面3111、第1側2部分流路3142に位置する第1熱交換2部分表面3112、第1側3部分流路3143に位置する第1熱交換3部分表面3113及び第1側4部分流路3144に位置する第1熱交換4部分表面3114を含む。第1熱交換1部分表面3111、第1熱交換2部分表面3112、第1熱交換3部分表面3113及び第1熱交換4部分表面3114は、第1外側壁31における同一の凹んだ弧状外壁に位置し、幅X方向に沿って並べられている。同様に、2番目の流路部分区間343が設けられた部位において、熱管理部材300の第1側板31における2番目の流路部分区間343に対応する位置にも第1側流路2部分区間315が形成され、第1側流路2部分区間315における外側電池ユニット13と提携する部位に長さY方向に沿って並べられた複数の第1熱交換表面2部分区間312が形成されている。それぞれが幅X方向において1つの第1熱交換表面1部分区間311に並列に並べられている。各第1熱交換表面2部分区間312も、幅X方向に沿って並べられた4つの第1熱交換部分表面3121-3124を含む。第1熱交換表面2部分区間312の構造については第1熱交換表面1部分区間311の構造を参照できる。
具体的には、図10に示すように、幅X方向に並列に並べられた1つの第1熱交換表面1部分区間311と1つの第1熱交換表面2部分区間312は1つの第1熱交換表面310を構成している。つまり、第1熱交換表面310が1番目の流路部分区間341と2番目の流路部分区間343に配置されている。1つの第1熱交換表面310が8つの第1熱交換部分表面3111-3114、3121-3124で構成されている。ただし、これに限定されることがなく、第1熱交換表面の部分区間数量と部分表面数量は流路部分区間の数量と各流路部分区間中の第1側流路部分区間の数量に依存し、実際に冷却必要な電池寸法及び実際の使用環境によって決定してもよく、具体的に限定しない。1つの第1熱交換表面310は1つの外側電池ユニット13と提携して温度調節を行い、1つの外側電池ユニット13は、1つの電池セルを含んでもよいし、同軸に配置された複数の電池セルを含んでもよい。
上記の実施例から分かるように、図10に示すように、1つの第1熱交換表面310の第1熱交換面積S1が1つの外側電池ユニット13と提携して温度調節を行う複数の第1熱交換部分表面の表面積の和である。具体的には、1つの第1熱交換表面310の第1熱交換面積S1が、1つの第1熱交換表面1部分区間311の4つの第1熱交換部分表面3111-3114と1つの第1熱交換表面2部分区間312の4つの第1熱交換部分表面3121-3124の表面積の和である。
一部の実施例において、各第1熱交換表面310は第1熱交換幅W1を有し、各第2エッジ熱交換表面320は第2熱交換幅W2を有し、第1熱交換幅W1が第2熱交換幅W2よりも大きく、その中、第1熱交換幅W1が複数の第1熱交換部分表面の幅の和であり、第2熱交換幅W2が複数の第2エッジ熱交換部分表面の幅の和であり、第2熱交換幅W2と第1熱交換幅W1の割合が0.1-0.9の間にある。
当該実施例において、第1熱交換表面320の第1熱交換幅W1と第2エッジ熱交換表面320の第2熱交換幅W2の割合を調節することによって、第1熱交換面積と第2熱交換面積の比例調節を実現した。その中、第1熱交換表面310の第1熱交換幅W1の調節は第1熱交換部分表面の幅と数量を調節することによって実現され、第2エッジ熱交換表面320の第2熱交換幅W2の調節は第2エッジ熱交換部分表面の幅と数量を調節することによって実現される。第1熱交換幅W1と第2熱交換幅W2の割合制御によって、第1熱交換面積S1と第2熱交換面積S2の比例調節を簡単に実現できる。以下、添付図面に基づいて具体的に説明する。
一部の実施例において、図11と図12に示すように、1つの第1熱交換表面1部分区間311において、長さY方向で、第1側1部分流路3141、第1側2部分流路3142、第1側3部分流路3143及び第1側4部分流路3144の幅がいずれも変わっていない。第1熱交換1部分表面3111は第1部分幅W11を有し、第1熱交換2部分表面3112は第2部分幅W12を有し、第1熱交換3部分表面3113は第3部分幅W13を有し、第1熱交換4部分表面3114は第4部分幅W14を有する。第1部分幅W11、第2部分幅W12、第3部分幅W13及び第4部分幅W14は同じであっても、異なってもよく、限定されることがない。例えば、図12において、第2部分幅W12、第3部分幅W13が第1部分幅W11と第4部分幅W14より大きくてもよい。このようにして、1つの第1熱交換表面310の幅が複数の第1熱交換部分表面の幅の和である。第1熱交換表面2部分区間312の構造は第1熱交換1部分表面3111の構造と同じであるか、又は対称する。具体的には、図10において、1つの第1熱交換表面310の幅が1つの第1熱交換表面1部分区間311の4つの熱交換部分表面3111-3114と1つの第1熱交換表面2部分区間312の4つの熱交換部分表面3121-3124の幅の和である。第1熱交換部分表面と第1側仕切部の幅と数量を変えることによって、第1熱交換表面310の幅を調節できる。
一部の実施例において、1つの熱交換表面部分区間に対応する側部分流路の長さY方向に沿った幅は固定値でなく、変わる可能性がある。この時に、1つの第1熱交換部分表面の第1幅は長さY方向における平均幅であり、1つの第1熱交換表面310の幅は複数の第1熱交換部分表面の平均幅の和である。
図14に示すように、第2側流路3200は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた2つの第2側流路部分区間、即ち第2側流路1部分区間324と第2側流路2部分区間325を含む。第2側流路3200は第1側流路3100と提携して第1熱交換流路34を形成している。
具体的には、図13~図17に示すとおりである。各第2側流路1部分区間324は、複数の第2側部分流路を含み、一部の実施例において、1つの第2側部分流路1部分区間324は、第2側1部分流路3241、第2側2部分流路3242、第2側3部分流路3243、第2側4部分流路3244、第2側5部分流路3245、第2側6部分流路3246といった6つの第2側部分流路を含み、6つの第2側部分流路が若干の第2側仕切部325と326を介して仕切られている。第2側仕切部325、326は、熱管理部材の内部へ凹み、中間電池ユニット14まで所定の距離離れ、中間電池ユニット14と直接的又は間接的に接触しない。6つの第2側部分流路が第2側板32から突出し、各第2側部分流路における1つの中間電池ユニット14と提携する部分に第2エッジ熱交換部分表面が形成され、つまり、各第2側部分流路の熱管理部材300の内部へ凹んだ弧状外壁における中間電池ユニット14と提携する部分に1つの第2エッジ熱交換部分表面が形成されている。隣接する第2エッジ熱交換部分表面が第2側仕切部325、326を介して互いに仕切られていることで、各第1側部分流路のエッジ熱管理部材の内部へ凹んだ弧状外壁において、中間電池ユニット14と直接的に接触したり、熱伝導層を介して間接的に接触して熱交換するのは第2エッジ熱交換部分表面しかなく、第2側仕切部325、326が中間電池ユニット14と直接的又は間接的に接触することなく、このようにして、第2エッジ熱交換部分表面と第2側仕切部の面積と数量を変えることによって、第2エッジ熱交換表面の熱交換面積を調節できる。同様に、1つの第2側部分流路2部分区間325も、第2側7部分流路3251、第2側8部分流路3252、第2側9部分流路3253、第2側10部分流路3254、第2側11部分流路3255、第2側12部分流路3256といった6つの第2側部分流路を含む。つまり、第2側流路3200は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた第2側1部分流路3241、第2側2部分流路3242、第2側3部分流路3243、第2側4部分流路3244、第2側5部分流路3245、第2側6部分流路3246、第2側7部分流路3251、第2側8部分流路3252、第2側9部分流路3253、第2側10部分流路3254、第2側11部分流路3255、第2側12部分流路3256といった12個の第2側部分流路を含む。
一部の実施例において、図13~図17に示すように、1番目の流路部分区間341が設けられた部位において、熱管理部材300の第2側板32における1番目の流路部分区間341に対応する位置に第2側流路1部分区間324が形成され、第2側流路1部分区間324における1つの中間電池ユニット14と提携する部位に長さY方向に沿って並べられた複数の第2エッジ熱交換表面1部分区間321形成されている。2番目の流路部分区間343が設けられた部位において、熱管理部材300の第2側板32における2番目の流路部分区間343に対応する位置に第2側流路2部分区間325が形成され、第2側流路2部分区間325における1つの中間電池ユニット14と提携する部位に長さY方向に沿って並べられた複数の第2エッジ熱交換表面2部分区間322が形成されている。
図14に示すように、並列に並べられた1つの第2エッジ熱交換表面1部分区間321と1つの第2エッジ熱交換表面2部分区間322は1つの第2エッジ熱交換表面320を構成している。
具体的には、図14に示すように、1つの第2エッジ熱交換表面1部分区間321は、第2側1部分流路3241に位置する第2熱交換1部分表面3211、第2側2部分流路3242に位置する第2熱交換2部分表面3212、第2側3部分流路3243に位置する第2熱交換3部分表面3213、第2側4部分流路3244に位置する第2熱交換4部分表面3214、第2側5部分流路3245に位置する第2熱交換5部分表面3215、第2側6部分流路3246に位置する第2熱交換6部分表面3216を含む。第2熱交換1部分表面3211、第2熱交換2部分表面3212、第2熱交換3部分表面3213、第2熱交換4部分表面3214、第2熱交換5部分表面3215、第2熱交換6部分表面3216は、第2外側壁32における同一の凹んだ弧状外壁に位置し、幅X方向に沿って並べられている。同様に、2番目の流路部分区間343が設けられた部位において、熱管理部材300の第2側板32における2番目の流路部分区間343に対応する位置にも第2側流路2部分区間325が形成され、第2側流路2部分区間325における中間電池ユニット14と提携する部位に長さY方向に沿って並べられた複数の第2エッジ熱交換表面2部分区間322が形成されている。各第2エッジ熱交換表面2部分区間322も、幅X方向に沿って並べられた6つの第2エッジ熱交換部分表面3221-3226を含む。第2エッジ熱交換表面2部分区間322の構造については第2エッジ熱交換表面1部分区間321の構造を参照できる。
具体的には、図14に示すように、並列に並べられた1つの第2エッジ熱交換表面1部分区間321と1つの第2エッジ熱交換表面2部分区間322は1つの第2エッジ熱交換表面320を構成している。つまり、第2熱交換表面320が1番目の流路部分区間341と2番目の流路部分区間343に配置されている。1つの第2エッジ熱交換表面320が12個の第2エッジ熱交換部分表面3211-3216、3221-3226で構成されている。ただし、これに限定されることがなく、第2エッジ熱交換表面320の部分区間数量と部分表面数量は流路部分区間の数量と各流路部分区間中の第2側流路部分区間の数量に依存し、実際に冷却必要な電池寸法及び実際の使用環境によって決定してもよく、具体的に限定しない。1つの第2エッジ熱交換表面320は1つの中間電池ユニット14と提携して温度調節を行い、1つの中間電池ユニット14は、1つの電池セルを含んでもよいし、複数の電池セルを含んでもよい。
上記の実施例から分かるように、1つの第2エッジ熱交換表面320の第2熱交換面積S2が1つの中間電池ユニット14と提携して温度調節を行う複数の第2エッジ熱交換部分表面の表面積の和である。具体的には、1つの第2エッジ熱交換表面320の第2熱交換面積S2が、1つの第2エッジ熱交換表面1部分区間321の6つの第2エッジ熱交換部分表面3211-3216と1つの第2エッジ熱交換表面2部分区間322の6つの第2エッジ熱交換部分表面3221-3226の表面積の和である。
一部の実施例において、図15に示すように、1つの第2エッジ熱交換表面1部分区間321において、長さY方向で、第2側1部分流路3241、第2側2部分流路3242、第2側3部分流路3243、第2側4部分流路3244、第2側5部分流路3245、第2側6部分流路3246の幅が変わっていない。第2熱交換1部分表面3211は第1部分幅W21を有し、第2熱交換2部分表面3212は第2部分幅W22を有し、第2熱交換3部分表面3213は第3部分幅W23を有し、第2熱交換4部分表面3214は第4部分幅W24を有し、第2熱交換5部分表面3215は第5部分幅W25を有し、第2熱交換6部分表面3216は第6部分幅W26を有する。第1部分幅W21、第2部分幅W22、第3部分幅W23、第4部分幅W24、第5部分幅W25、第6部分幅W26は同じであっても、異なってもよく、限定されることがない。このようにして、1つの第2エッジ熱交換表面320の幅が複数の第2エッジ熱交換部分表面の幅の和である。具体的には、図15において、1つの第2エッジ熱交換表面320の幅が、1つの第2エッジ熱交換表面1部分区間321の6つの熱交換部分表面3211-3216と1つの第2エッジ熱交換表面2部分区間の6つの熱交換部分表面3221-3226の幅の和である。第2エッジ熱交換部分表面と第2側仕切部325、326の幅と数量を変えることによって、第2エッジ熱交換表面320の幅を調節できる。
一部の実施例において、1つの熱交換表面部分区間の側面部分流路の長さY方向に沿った幅は固定値でなく、変わる可能性がある。この時に、1つの第2エッジ熱交換部分表面の幅は第2エッジ熱交換部分表面の長さY方向における平均幅であり、1つの第2エッジ熱交換表面の幅は複数の第2エッジ熱交換部分表面の平均幅の和である。
一部の実施例において、第1熱交換流路34は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数のサブ流路を含み、各サブ流路は、少なくとも1つの第1側部分流路と少なくとも1つの第2側部分流路を含み、1つのサブ流路を構成した第1側部分流路と第2側部分流路は互いに連通している。
当該実施例において、一部の第1側部分流路と複数の第2側部分流路を互いに連通するように設置することによって、第1熱交換流路34がそれぞれの内部の熱交換流体が同時に第1側板と第2側板と熱交換できる複数のサブ流路に分けられて、第1熱交換流路34の設計が簡素化され、熱管理部材の製造が容易になる。
図16、図17において第1流路部分区間341を例として説明する。第2流路部分区間343が第1流路部分区間と同じ構造を有する。一部の第1側部分流路3100と複数の第2側部分流路3200を互いに連通するように設置することによって、第1熱交換流路34がそれぞれの内部の熱交換流体が同時に第1側板31と第2側板32と熱交換できる複数のサブ流路に分けられて、第1熱交換流路34の設計が簡素化され、熱管理部材300の製造が容易になる。一部の実施例において、1つのサブ流路を構成した少なくとも1つの第1側部分流路3100の熱交換面積の和が少なくとも1つの第2側部分流路3200の熱交換面積の和よりも大きい。一部の実施例において、1つのサブ流路を構成した少なくとも1つの第1側部分流路3100の幅の和が少なくとも1つの第2側部分流路3200の幅の和よりも大きい。
具体的には、第1側板31に第1側仕切部313が設けられ、第2側板32に第2側仕切部323が設けられ、第1側仕切部313と第2側仕切部323が熱管理部材300の内部へ凹んで連結して仕切部33を構成して、熱管理部材300を間隔のある1番目の流路部分区間341と第2流路部分区間343とに仕切っている。
一部の実施例において、図16と図17に示すように、第1側板31の第1側流路3100と第2側板32の第2側流路3200が組み合わせられて第1熱交換流路34を形成している。具体的には、第1熱交換流路34は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数のサブ流路を含んでもよい。第1流路部分区間341を例とすると、第1流路部分区間341は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数のサブ流路、即ち第1サブ流路3411、第2サブ流路3412、第3サブ流路3413、第4サブ流路3414を含む。第2流路部分区間343の構造については第1流路部分区間341の構造を参照できる。1つのサブ流路を構成した第1側部分流路3100と第2側部分流路3200は互いに連通している。
一部の実施例において、第1側流路3100は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第1側部分流路を含み、各第1側部分流路における1つの外側電池ユニットと提携する部分に第1熱交換部分表面が形成され、各第1熱交換表面が複数の第1熱交換部分表面を含む。第2側流路3200は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第2側部分流路を含み、各第2側部分流路における1つの中間電池ユニットと提携する部分に第2エッジ熱交換部分表面が形成され、各第2エッジ熱交換表面が複数の第2エッジ熱交換部分表面を含み、第2熱交換面積S2が複数の第2エッジ熱交換部分表面の表面積の和である。
当該実施例において、第1側流路3100が複数の第1側部分流路に分けられ、第1熱交換面積S1が複数の第1熱交換部分表面の表面積の和であり、第2側流路3200が複数の第2側部分流路に分けられ、第2熱交換面積S2が複数の第2側部分流路の第2エッジ熱交換部分表面の表面積の和であり、第1熱交換部分表面と第2エッジ熱交換部分表面の表面積と数量を調節することによって、第2熱交換面積S2が第1熱交換面積S1より小さいことを実現できるだけでなく、第2熱交換面積S2と第1熱交換面積S1との間の比例関係を精確に調節でき、実際の要求に応じて組み合わせて第2熱交換面積S2と第1熱交換面積S1との間の比例を適切にし、より正確な熱交換制御を実現した。
具体的図16と図17に示すように、第1側板31の1番目の流路部分区間341を例とし、第2流路部分区間343が第1流路部分区間341と類似した構造を有する。
第1側板31の1番目の流路部分区間341には熱交換流体の流動方向に垂直な方向に沿って並列に並べられた4つの第1側部分流路、即ち第1側1部分流路3141、第1側2部分流路3142、第1側3部分流路3143及び第1側4部分流路3144が設けられている。第2側板32の1番目の流路部分区間341には6つの第2側部分流路、即ち第2側1部分流路3241、第2側2部分流路3242、第2側3部分流路3243、第2側4部分流路3244、第2側5部分流路3245、第2側6部分流路3246が設けられている。
第1側板31と第2側板32が一体に組み立てられた後、1番目の流路部分区間341が、第1サブ流路3411、第2サブ流路3412、第3サブ流路3413、第4サブ流路3414といった4つのサブ流路に分けられた。その中、第1サブ流路3411は第1側1部分流路3141と第2側1部分流路3241を互いに連通するように組合せてなったものであり、第1側1部分流路3141の幅W11が第2側1部分流路3241の幅W21以上であり、第1側1部分流路3141の熱交換面積も第2側1部分流路3241の熱交換面積以上であり、第2サブ流路3412は第1側2部分流路3142と第2側2部分流路3242及び第2側3部分流路3243をそれぞれ連通させて構成されたものである。説明必要であるように、図17に示すように、第2側仕切部326が第2側2部分流路3242と第2側3部分流路3243を仕切ったが、第2側仕切部326が全て第1側板31に連結されたというわけではなく、また、第1側2部分流路3142の幅W12が第2側2部分流路3242と第2側3部分流路3243の幅の和W22+W23よりも大きいので、第1側2部分流路3142、第2側2部分流路3242、第2側3部分流路3243の三者が互いに連通して第2サブ流路3412を構成し、第1側2部分流路3142の熱交換面積も第2側2部分流路3242と第2側3部分流路3243の熱交換面積の和よりも大きい。
同じ理由で、第3サブ流路3413は第1側3部分流路3143と第2側4部分流路3244及び第2側5部分流路3245を互いに連通させて構成されたものであり、また、第1側3部分流路3143の幅W13が第2側4部分流路3244と第2側5部分流路3245の幅の和W24+W25よりも大きく、第4サブ流路3414は第1側4部分流路3144と第2側6部分流路3246を互いに連通するように組み合わせてなったものであり、また、第1側4部分流路3144の幅W14が第2側6部分流路3246の幅W26よりも大きい。つまり、1つのサブ流路を構成した第1側部分流路と第2側部分流路は互いに連通している。
図16と図17を比較することで分かったように、1つの第1熱交換表面310の全幅である第1熱交換幅W1が、1つの第1熱交換表面1部分区間311の4つの熱交換部分表面3111-3114と1つの第1熱交換表面2部分区間312の4つの熱交換部分表面3121-3124の幅の和であり、一部の実施例において、第1熱交換幅W1が、第1熱交換表面1部分区間311の4つの熱交換部分表面3111-3114の幅の和の2倍であり、W1=2*(W11+W12+W13+W14)であると考えてもよい。
1つの第2エッジ熱交換表面320の全幅である第2熱交換幅W2が、1つの第2エッジ熱交換表面1部分区間321の6つの熱交換部分表面3211-3216と1つの第2エッジ熱交換表面2部分区間の6つの熱交換部分表面3221-3226の幅の和であり、一部の実施例において、第2熱交換幅W2が、第2エッジ熱交換表面1部分区間321の6つの熱交換部分表面3211-3216の幅の和の2倍であり、W2=2*(W21+W22+W23+W24+W25+W26)であると考えてもよい。W11+W12+W13+W14>W21+W22+W23+W24+W25+W26の場合に、少なくとも1つの第1熱交換表面310の第1熱交換幅W1が少なくとも1つの第2エッジ熱交換表面320の第2熱交換幅W2よりも大きく、W1>W2である。
各電池ユニットと熱管理部材300の第1熱交換表面310及び第2エッジ熱交換表面320の長さY方向における直接的接触又は間接的接触の長さが基本的に同じな場合に、1つの第1熱交換表面310の第1熱交換面積S1が、1つの第1熱交換表面1部分区間311の4つの熱交換部分表面3111-3114と1つの第1熱交換表面2部分区間312の4つの熱交換部分表面3121-3124の熱交換面積の和である。1つの第2エッジ熱交換表面320の第2熱交換面積S2が、1つの第2エッジ熱交換表面1部分区間321の6つの熱交換部分表面3211-3216と1つの第2エッジ熱交換表面2部分区間の6つの熱交換部分表面3221-3226の熱交換面積の和である。第1熱交換表面310の全幅が第2エッジ熱交換表面320の全幅よりも大きい場合に、第1熱交換面積S1も第2熱交換面積S2よりも大きく、S1>S2である。
なお、図18と19を参照し、図19は、Y方向に沿った側面図に示すように、外側電池ユニット13の表面と第1熱交換表面310とが伝導式熱交換を行う局所模式図を示し、図18は、Y方向に沿った側面図に示すように、中間電池ユニット14の表面と第2エッジ熱交換表面320とが伝導式熱交換を行う局所模式図を示し、図18と19からも分かったように、第1熱交換幅W1が第2熱交換幅W2よりも大きく、W1>W2であり、第1熱交換面積S1も第2熱交換面積S2よりも大きく、S1>S2である。
本実施例では、第1側板31と第2側板32における部分流路の幅/面積と部分流路の数量を調節することによって、第2熱交換面積S2と第1熱交換面積S1との間の比例関係を精確に調節でき、実際の要求に応じて組み合わせて第2熱交換面積と第1熱交換面積との間の比例を適切にし、より正確な熱交換制御を実現し、更に、熱管理部材の2つの側板31と32が同じ規格の電池ユニットと提携する場合でも、第1側板31と第2側板32において電池ユニットに対して異なる冷却効果を形成することを実現した。なお、一部の第1側部分流路と第2側部分流路を連通するように設置することによって、第1熱交換流路34内の熱交換流体が同時に第1側板31と第2側板32の外の電池ユニットと熱交換でき、第1熱交換流路34の設計が簡素化され、熱管理部材の製造が容易になる。当然ながら、第1側流路と第2側流路とが連通しないように第1側板31と第2側板32との間に更にセパレータを設置して、それぞれ独立的な第1熱交換流路34を形成させるようにしてもよい。
一部の実施例において、第2熱交換幅W2と第1熱交換幅W1の割合は0.1-0.9の間にあり、例えば、W2/W1は0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.6、0.65、0.7、0.75、0.8、0.85から選択できるが、これらの具体的な数値に限定されることがない。
一部の実施例において、第2熱交換面積S2と第1熱交換面積S1の割合は0.1-0.9の間にある。S2/S1は0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.6、0.65、0.7、0.75、0.8、0.85から選択できるが、これらの具体的な数値に限定されることがない。
図に示されていない一部の実施例では、第1側板31に第1側流路3100を1つしか形成しなくてもよく、第1側流路3100内に更に部分流路を設置しない。第2側板32の第2側流路3200は更に上記の実施例に示すように、間隔をおいて設置された複数の第2側部分流路を含んでもよく、1つの第1側流路3100が全ての第2側部分流路と連通している。各第2側部分流路における1つの中間電池ユニットと提携する部分に第2エッジ熱交換部分表面が形成され、各第2エッジ熱交換表面が複数の第2エッジ熱交換部分表面を含み、第2熱交換面積S2が複数の第2エッジ熱交換部分表面の表面積の和である。第1側流路3100は1つであり、第2側流路3200は複数の第2側部分流路に分けられ、第2熱交換面積S2が複数の第2側部分流路の第2エッジ熱交換部分表面の表面積の和である。第2エッジ熱交換部分表面の表面積と数量を調節することによって、第2熱交換面積が第1熱交換面積より小さいことを実現できるだけでなく、第2熱交換面積S2と第1熱交換面積S1との間の比例関係を精確に調節でき、実際の要求に応じて組み合わせて第2熱交換面積S2と第1熱交換面積S1との間の比例を適切にし、より正確な熱交換制御を実現した。
一部の実施例において、1つの第1側流路3100と複数の第2側部分流路は互いに連通して第1熱交換流路34を形成している。当該実施例において、1つの第1側流路3100と複数の第2側部分流路を互いに連通するように設置することによって、第1熱交換流路34内の熱交換流体が同時に第1側板31と第2側板32と熱交換でき、第1熱交換流路34の設計が簡素化され、熱管理部材300の製造が容易になる。
一部の実施例において、各第1熱交換表面は第1熱交換幅W1を有し、各第2エッジ熱交換表面は第2熱交換幅W2を有し、第1熱交換幅W1が第2熱交換幅W2よりも大きく、その中、第1熱交換幅W1が第1熱交換表面の幅であり、第2熱交換幅W2が複数の第2エッジ熱交換部分表面の幅の和であり、第2熱交換幅W2と第1熱交換幅W1の割合が0.1-0.9の間にある。このように設置することによって、各第1熱交換表面の第1熱交換幅W1が各第2エッジ熱交換表面の第2熱交換幅W2よりも大きく、W1>W2であり、第1熱交換面積S1も第2熱交換面積S2よりも大きく、S1>S2であることも実現できる。このようにして、第1熱交換流路34の設計が簡素化可能になり、熱管理部材の製造が容易になる。当然ながら、第1側流路と第2側流路が連通しないように第1側板31と第2側板32との間に更にセパレータを設置して、それぞれ独立的な第1熱交換流路34を形成させるようにしてもよい。
一部の実施例において、熱管理部材300には、第1側流路3100及び/又は第2側流路3200に設置され、第1側流路3100及び/又は第2側流路3200を流れる熱交換流体に乱流を発生させることに用いられる第1乱流部316が更に設けられている。第1側流路3100及び/又は第2側流路に第1乱流部316を設置することによって、第1側流路3100及び/又は第2側流路3200を流れる熱交換流体を乱流させて、熱交換流体の熱交換効果を向上させることができる。
具体的には、図10、11、12及び17に示す一実施例では、第2サブ流路3412、第3サブ流路3413に対応する第1側板31には、第1側2部分流路3142、第1側3部分流路3143から熱管理部材300の内部へ突出する複数の第1乱流部316が設けられ、第1乱流部316は、対向する第2側板32における第2側仕切部326と接触してもいし、第2側仕切部326との間に所定の隙間を残してもよい。第1乱流部316は、第2サブ流路3412、第3サブ流路3413を十分に乱流させて、第1熱交換流路34内の熱交換流体温度を均一にして、電池ユニットの温度調節をより均一にすることができる。第1乱流部316が第2サブ流路3412、第3サブ流路3413の長さ方向Yに複数設置され、一部の実施例において、複数の第1乱流部316が幅方向Xにおいてずらして設置されてもよい。第1乱流部316が第2側板の第2側部分流路に設けられてもよい。
一部の実施例において、第1乱流部316が第1側流路及び/又は第2側流路における電池ユニットと提携しない部位に設置されている。第1乱流部316を電池ユニットと提携する部位に設置すれば、第1乱流部316は第1熱交換表面及び/又は第2エッジ熱交換表面の表面積を占める可能性があり、更に熱交換効果に影響を及ぼす。第1乱流部316を電池ユニットと提携しない部位に設置することで、第1乱流部316は第1熱交換面積S1と第2熱交換面積S2に影響を及ぼすことがなく、下流の第1熱交換表面310及び/又は第2エッジ熱交換表面320で乱流を形成することができ、熱交換効果を向上させた。具体的には、図10に示すように、第1乱流部316は、第1側板31の弧状外壁における熱管理部材300から離れる方向へ突出した、電池ユニットと提携しない部分に設置されるため、第1熱交換面積S1と第2熱交換面積S2に影響を及ぼすことがない。
図20-図29は本願に係る実施例の第2局面により提供された電池構造を示す。その中、図20-図29に示す実施例におけるエッジ熱管理部材400と500は本願に係る実施例の第1局面により提供された熱管理部材300の構造と同じであり、その具体的な構造について上記実施例の記述を参照する。
本願に係る実施例の電池は、少なくとも3層の電池ユニットと温度調節システムを含む。その中、少なくとも3層の電池ユニットは、2層の外側電池ユニット及び2層の外側電池ユニットの間に位置する少なくとも1層の中間電池ユニットを含み、各層の外側電池ユニットと各層の中間電池ユニットがいずれも複数の電池ユニットを含み、温度調節システムは、外側電池ユニット及び中間電池ユニットと熱交換することに用いられ、2組の第1熱交換表面と複数組の第2熱交換表面を含み、各組の第1熱交換表面が複数の第1熱交換表面を含み、各組の第2熱交換表面が複数の第2熱交換表面を含み、第1熱交換表面と第2熱交換表面が温度調節システム内部の熱交換流体と熱交換でき、その中、温度調節システムは、各層の外側電池ユニットの1つの側面が1組の第1熱交換表面と提携して温度調節を行い、各外側電池ユニットの1つの側面が1組の第1熱交換表面中の1つの第1熱交換表面と提携して温度調節を行い、少なくとも1つの第1熱交換表面が第1熱交換面積S1を有し、各層の中間電池ユニットが2組の第2熱交換表面の間に設置され、各層の中間電池ユニットの反対側となる2つの側面がそれぞれ隣接する1組の第2熱交換表面と提携して温度調節を行い、各中間電池ユニットの反対側となる2つの側面がそれぞれ隣接する1つの第2熱交換表面と提携して温度調節を行い、第1熱交換面積S1が少なくとも1つの第2熱交換表面の熱交換面積よりも大きいように配置される。
当該実施例において、温度調節システムは、2組の第1熱交換表面と複数組の第2熱交換表面を含み、2層の外側電池ユニットと少なくとも1層の中間電池ユニットと熱交換し、その中、各層の外側電池ユニットの1つの側面が1組の第1熱交換表面と熱交換し、即ち、各外側電池ユニットと温度調節システムが第1熱交換面積を介して熱交換し、各層の中間電池ユニットの反対側となる2つの側面がそれぞれ隣接する1組の第2熱交換表面と熱交換し、即ち、各中間電池ユニットと温度調節システムが2つの第2熱交換表面の熱交換面積を介して熱交換する。更に奇数層の電池ユニットを備える電池と偶数層の電池ユニットを備える電池の構築を実現でき、更に電池の層数と厚さをより自由に設計でき、より望ましい空間適応性を有するようになった。なお、第1熱交換面積が第2熱交換表面の熱交換面積よりも大きいので、中間電池ユニットと外側電池ユニットの冷却効果の自由調節を実現できる。第1熱交換面積と第2熱交換表面の熱交換面積の割合を変えることによって、外側電池ユニットと中間電池ユニットに近接した冷却効果を持たせて、電池ユニット間の温度差を低下させて、電池状態を一致させて、電池の全体的な性能を向上させることができる。
一部の実施例において、同じ層の複数の外側電池ユニットを熱管理部材の長さ方向Yに沿って並列に並べて設置でき、熱管理部材の幅方向Xに1つの外側電池ユニットを配置できる。各外側電池ユニットは、1つの電池セルを含んでもよいし、同軸に配置された複数の電池セルを含んでもよい。1つの外側電池ユニットに属する複数の電池セル同士は電気的に接続してもしなくてもよい。各層の外側電池ユニットの隣接した列の電池ユニットはバス部材によって直列接続又は並列接続してもよい。各層の中間電池ユニットの構造については各層の外側電池ユニットの構造を参照できる。
一部の実施例において、第2熱交換表面の熱交換面積と第1熱交換面積S1の割合は0.1-0.9の間にある。
一部の実施例において、図20-24に示すように、本実施例の電池は、3層の電池ユニットと温度調節システム1000を含む。図20に示すように、その中、3層の電池ユニットは、2層の外側電池ユニット13、15と1層の中間電池ユニット14を含み、2層の外側電池ユニット13、15と1層の中間電池ユニット14が平行し、各層の外側電池ユニット13、15がいずれも複数の外側電池ユニット13、15を含み、1層の中間電池ユニット14が複数の中間電池ユニット14を含み、温度調節システム1000は、平行して設置された2つのエッジ熱管理部材400、500を含む。図20-24に示すエッジ熱管理部材400、500の構造は図7-17における熱管理部材300の構造と同じであるため、繰り返して説明しない。
具体的には、エッジ熱管理部材400の第1側板41に1組の上記温度調節システム1000の第1熱交換表面410が形成され、エッジ熱管理部材500の第1側板51にも1組の上記温度調節システム1000の第1熱交換表面510が形成され、エッジ熱管理部材400、500の第1熱交換表面410、510が、図7-図11、16、17における第1熱交換表面310の構造と同じで、第1熱交換面積S1を有する。上記の温度調節システム1000の複数組の第2熱交換表面は、それぞれ2つのエッジ熱管理部材400、500の第2側板42、52に形成された2組の第2エッジ熱交換表面420、520を含み、第2エッジ熱交換表面420、520が、図13-17における第2エッジ熱交換表面320の構造と同じで、第2熱交換面積S2を有する。
2つのエッジ熱管理部材400、500の2つの第2側板42、52が隣接し、且つ2つの第1側板41、51が反対側であり、2つのエッジ熱管理部材400、500の第1側板41、51にそれぞれ1層の外側電池ユニット13、15が設けられ、各外側電池ユニット15、13の1つの側面が対応する1つの第1熱交換表面410、510と提携し、2つのエッジ熱管理部材400、500の間に1層の中間電池ユニット14が設けられ、各中間電池ユニット14の2つの反対側となる側面がそれぞれ2つのエッジ熱管理部材400、500の1つの第2エッジ熱交換表面420、520と提携する。
このようにして、図21と図22を参照し、図21において、Y方向に沿った側面図に示す中間電池ユニット14と2つの熱管理部材400、500の温度調節提携部位の局所模式図が示され、中間電池ユニット14の上側面が上方のエッジ熱管理部材400の第2側板42の第2エッジ熱交換表面420と熱交換し、熱交換面積が第2熱交換面積S2であり、中間電池ユニット14の下側面が下方のエッジ熱管理部材500の第2側板52の第2エッジ熱交換表面520と熱交換し、熱交換面積も第2熱交換面積S2であるため、中間電池ユニット14と2つのエッジ熱管理部材400、500の合計熱交換面積が第2熱交換面積2S2の2倍である。図19において、Y方向に沿った側面図に示す外側電池ユニット13と1つの熱管理部材500の温度調節提携部位の局所模式図が示され、外側電池ユニット13の表面が上部のエッジ熱管理部材500の第1側板51の第1熱交換表面510と伝導式熱交換を行い、合計熱交換面積である第1面積がS1である。最も上の1層の外側電池ユニットにおいて、1つの外側電池ユニット15とエッジ熱管理部材400の合計熱交換面積が外側電池ユニット13の合計熱交換面積と同じであり、S1でもある。
第1局面に係る実施例によれば、第2熱交換面積S2と第1熱交換面積S1の割合は0.1-0.9の間にある。S2/S1は0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.6、0.65、0.7、0.75、0.8、0.85であってもよい。従って、本実施例の電池において、中間電池ユニットと外側電池ユニットの合計熱交換面積比2S2/S1は0.2-1.8の間にあってもよい。一部の実施例において、2S2/S1は0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7等であってもよいが、これらの具体的な値に限定されることがない。中間電池ユニット14と外側電池ユニット13、15の合計熱交換面積比2S2/S1は実際の要求に応じて適切な範囲を選択できる。例えば、中間電池ユニット14と外側電池ユニット13、15として同じ規格の電池を採用した時に、2S2/S1は0.3-1.2の間、例えば、0.4-1.0の間や0.3-0.6の間、0.6-0.8の間にあってもよく、このようにして、中間電池ユニット14と外側電池ユニット13、15に基本的同じ冷却効果を持たせることができ、中間電池ユニット14と外側電池ユニット13、15の温度と性能を一致させ、電池性能をより安定的にし、優れた信頼性、より長い寿命にする。更に例えば、中間電池ユニット14の放熱効果が低く、又は中間電池ユニット14と外側電池ユニット13、15の規格が同じでない等の場合に、中間電池ユニット14に更に強い冷却効果が必要になる時に、2S2/S1は1.2-1.8の間、例えば1.3-1.6や1.4-1.5の間にあってもよく、このようにして、中間電池に更に強い温度調節性能を持たせ、更に中間電池ユニット14と外側電池ユニット13、15の温度と性能を一致させ、電池性能をより安定的にし、優れた信頼性、より長い寿命にする。従って、本実施例の電池によれば、2S2/S1の比例を調節することによって、中間電池ユニット14と外側電池ユニット13、15の冷却効果の自由調節を実現でき、異なるタイプの電池に対応でき、異なる部位の電池の異なる温度調節性能要求を満す。なお、更に奇数層電池の組合を実現でき、各熱管理部材の2つの側板を共に電池ユニットに対する温度調節に用い、熱管理部材の数量が電池ユニットの層数より1層少なく、電池の全厚が少なくなり、より望ましい空間適応性を有するようになった。
一部の実施例において、図23、24に示すように、2つのエッジ熱管理部材400、500は熱交換流体が連通している。具体的には、エッジ熱管理部材400に第1流体入口46、第1流体出口47が設けられている。第1流体入口46、第1流体出口47が図10における流体入口36と流体出口37の構造と同じであり、これに基づき、エッジ熱管理部材400には更に第2流体出口48、第2流体入口49が設けられ、その中、第2流体出口48が第1流体入口46と連通し、第2流体入口49が第1流体出口47と連通している。下方のエッジ熱管理部材500に第3流体入口56と第3流体出口57が設けられ、次に第3流体入口56が第2流体出口48と連通し、第3流体出口57が第2流体入口49と連通し、更に2つのエッジ熱管理部材400、500の熱交換流体を連通させる。このようにして2つの熱管理部材400、500が同じ熱管理システムに接続されることになり、管路を簡素化し、コストを低減し、電池構造をよりコンパクトにすることができる。ただし、2つのエッジ熱管理部材400、500の熱交換流体連通方式は図23、図24の方式に限定されることがなく、直列接続であっても、並列接続であってもよく、本願は限定するものでない。
一部の実施例において、図25に示すように、電池ユニットは、4層以上であり、2層の外側電池ユニット13、15と少なくとも2層の中間電池ユニットを含む。温度調節システム2000は、平行して設置された2つのエッジ熱管理部材400、500及び少なくとも1つの中間熱管理部材600を含む。その中、少なくとも1つの中間熱管理部材600は、エッジ熱管理部材400、500のいずれに対しても平行するように2つのエッジ熱管理部材400、500の間に設置され、2つのエッジ熱管理部材400、500は、2つの第2側板42、52がそれぞれ1つの中間熱管理部材600の1つの第3側板61、62と隣接し、2つの第1側板41、51が反対側である。
2つのエッジ熱管理部材400、500の第1側板41、51のそれぞれには対応する第1側板41、51の第1熱交換表面410、510と提携する1層の外側電池ユニット13、15が設けられ、具体的な提携方式は図20、図22と同じであり、ここで繰り返して説明しない。
各エッジ熱管理部材400、500と隣接する1つの中間熱管理部材600との間に1層の中間電池ユニットが設けられ、エッジ熱管理部材400、500と提携する1層の中間電池ユニットにおいて、各中間電池ユニットの2つの側面がそれぞれエッジ熱管理部材400、500の第2側面42、52の第2エッジ熱交換表面420、520、及び1つの中間熱管理部材600の第3側板61の第2中間熱交換表面610と提携し、及び/又は、
隣接する2つずつの中間熱管理部材600の間に更に1層の中間電池ユニット17が設けられ、両側がいずれも中間熱管理部材600と提携する1層の中間電池ユニット17において、各中間電池ユニット17の2つの側面がそれぞれ2つの中間熱管理部材600の対向した第3側板61、62の第2中間熱交換表面610と提携する。
図20の実施例と比べると、図25における実施例は、少なくとも1つの中間熱管理部材600と少なくとも1層の中間電池ユニットを増加したことで相違する。中間熱管理部材600の個数は電池ユニットの層数から3を差し引いたものである。
以下、中間熱管理部材600を備えた電池の構造について具体的に説明する。
一部の実施例において、図25に示すように、電池は、2層の外側電池ユニット13、15と2層の中間電池ユニット14、16を含む4層の電池ユニットを備え、温度調節システム2000は、2つのエッジ熱管理部材400、500と1つの中間熱管理部材600を含む。その中、1つの中間熱管理部材600が2つのエッジ熱管理部材400、500の間に設置され、中間熱管理部材がエッジ熱管理部材のいずれに対しても平行して設置され、2つのエッジ熱管理部材400、500の2つの第2側板42、52がそれぞれ1つの中間熱管理部材600の1つの第3側板61、62と隣接し、2つのエッジ熱管理部材400、500の2つの第1側板41、51が反対側であり、2つのエッジ熱管理部材400、500の第1側板41、51にそれぞれ1層の外側電池ユニット13、15が設けられ、外側電池ユニット13、15が対応する第1側板41、51の第1熱交換表面と提携し、具体的な構造と提携方式は図20、図22と同じであり、ここで繰り返して説明しない。
別の局面において、図25に示すように、各エッジ熱管理部材400、500と隣接する1つの中間熱管理部材600との間に1層の中間電池ユニット14、16が設けられ、エッジ熱管理部材400、600と提携する1層の中間電池ユニット14、16において、各中間電池ユニット14、16の1つの側面がそれぞれエッジ熱管理部材400、500の第2側面42、52の第2エッジ熱交換表面420、520と提携し、各中間電池ユニット14、16のもう1つの側面がそれぞれ1つの中間熱管理部材600の第3側板61の第2中間熱交換表面610と提携する。
図26に示すように、具体的に中間電池ユニット16を例とし、中間電池ユニット16の上側面が上方のエッジ熱管理部材400の第2側板42の第2エッジ熱交換表面420と熱交換し、熱交換面積が第2熱交換面積S2であり、中間電池ユニット14の上側面が上方の中間熱管理部材600の第3側板61の第2中間熱交換表面610と熱交換し、熱交換面積が第3熱交換面積S3であるため、中間電池ユニット16と1つのエッジ熱管理部材400及び1つの中間熱管理部材600の合計熱交換面積が第2熱交換面積S2と第3熱交換面積S3の和S2+S3である。外側電池ユニット13、15とエッジ熱管理部材の熱交換面積がS1である。中間電池ユニット14については中間電池ユニット16を参照できる。
第2熱交換面積S2と第1熱交換面積S1の割合は0.1-0.9の間にあり、第3熱交換面積S3と第1熱交換面積S1の割合は0.1-0.9の間にある。従って、本実施例の電池において、中間電池ユニット14、16と外側電池ユニット13、15の合計熱交換面積比、即ち第1熱交換面積S2と第2熱交換面積S3の和と第1熱交換面積S1の割合(S2+S3)/S1は0.2-1.8の間にあってもよい。一部の実施例において、(S2+S3)/S1は0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7等であってもよいが、これらの具体的な値に限定されることがない。中間電池ユニット14、16と外側電池ユニット13、15の合計熱交換面積比(S2+S3)/S1は実際の要求に応じて適切な範囲を選択できる。例えば、中間電池ユニット14と外側電池ユニット13、15として同じ規格の電池を採用した時に、(S2+S3)/S1は0.3-1.2の間、例えば0.4-1.0の間や0.3-0.6の間、0.6-0.8の間にあってもよく、このようにして、中間電池ユニット14、16と外側電池ユニット13、15に基本的同じ冷却効果を持たせ、中間電池ユニット14、16と外側電池ユニット13、15の温度と性能を一致させ、電池性能をより安定的にし、優れた信頼性、より長い寿命にすることができる。更に例えば、中間電池ユニット14、16の放熱効果が低く、又は中間電池ユニット14、16と外側電池ユニット13、15の規格が異なる等の場合に、中間電池ユニット14、16に更に強い冷却効果が必要になる時に、(S2+S3)/S1は1.2-1.8の間、例えば1.3-1.6や1.4-1.5の間にあってもよく、このようにして、中間電池に更に強い温度調節性能を持たせ、更に中間電池ユニット14と外側電池ユニット13、15の温度と性能を一致させ、電池性能をより安定的にし、優れた信頼性、より長い寿命にする。
従って、本実施例の電池によれば、(S2+S3)/S1の比例を調節することによって、中間電池ユニット14、16と外側電池ユニット13、15の冷却効果の自由調節を実現でき、異なるタイプの電池に対応でき、異なる部位の電池の異なる温度調節性能要求を満す。なお、中間熱管理部材を用いることによって、電池は4層以上の奇数層又は偶数層の電池ユニットの温度調節を実現でき、電池モジュール化方式がより柔軟的になり、そして各熱管理部材の2つの側板を共に電池ユニットに対する温度調節に用い、熱管理部材の数量が電池ユニットの層数より1層少なく、電池の全厚が少なくなり、より望ましい空間適応性を有するようになった。なお、第2熱交換面積S2と第3熱交換面積S3は同じであっても、異なってもよく、このようにして、異なるエッジ熱管理部材と中間管理部材を組み合わせ、第1熱交換面積S1、第2熱交換面積S2、第3熱交換面積S3の大きさと比例関係を調整することによって、多種の形式の電池ユニット組合方式を満たすことができ、また、各層の電池冷却ユニットの異なる温度調節性能要求及び熱管理部材中の熱交換流体のそれぞれの箇所での温度差に応じて、差別化設計とより精確な温度調節制御を行って、中間電池ユニット14と外側電池ユニット13、15の温度と性能を一致させ、電池性能をより安定的にし、優れた信頼性、より長い寿命にすることができる。
一部の実施例において、2つのエッジ熱管理部材400、500と中間熱管理部材600は熱交換流体が連通しており、熱交換流体連通方式は直列接続であっても、並列接続であってもよく、本願に係る実施例は限定するものでない。当然ながら、2つのエッジ熱管理部材400、500と中間熱管理部材は互いに連通せず、独立して動作してもよい。
具体的には、図27は本願に係る実施例の中間熱管理部材600の構造を示した。中間熱管理部材の両側の第3側板61、62は図13における熱管理部材300の第2側板32と類似した構造を有する。2つの第3側板61、62は中間熱管理部材600の厚さZ方向の中線に対して対称して設置されている。
中間熱管理部材600内には熱交換流体を流動させる第2熱交換流路64が形成され、中間熱管理部材は、第2熱交換流路64と連通する第4流体入口66と第4流体出口67を含む。1つの第2熱交換流路64は迂回設置された複数の流路部分区間を含み、隣接する2つの流路部分区間の間に第3仕切部63が設けられ、第2熱交換流路64は更に第2中間流路部分区間642を含み、隣接する2つの流路部分区間が第2中間流路部分区間642を介して連通している。
具体的には図27に示すように、本実施例で、1つの第2熱交換流路64には第3流体入口66と連通する第3流路部分区間641、及び第3流体出口67と連通する第4流路部分区間643が設けられ、第3流路部分区間641と第4流路部分区間643が中間熱管理部材600の長さ方向Yに沿って延在し、第3流路部分区間641と第4流路部分区間643との間には第3流路部分区間641と第4流路部分区間643を仕切る第3仕切部63が設けられている。第2中間流路部分区間642は、第3仕切部633のエッジに位置し、中間熱管理部材の幅方向Xに沿って延在し、隣接する第3流路部分区間641と第4流路部分区間643とが第2中間流路部分区間642を介して連通する。全体的には第2熱交換流路64が迂回した構造を形成し、隣接する第3流路部分区間641と第4流路部分区間643が180°折り畳まれることで、電池ユニットを冷却するための冷却空間が比較的コンパクトになった。1つの第2熱交換流路64の区間数は実際に冷却必要な電池寸法及び実際の使用環境によって決まり、1つの流路部分区間の具体的数量と具体的長さ寸法はいずれも限定されるものでない。第3流体入口66に近いところの熱交換流体温度が比較的低く、第3流体出口67に近いところの熱交換流体温度が比較的高いので、1つの電池ユニットと熱交換する1つの第3熱交換表面610には、第3流体入口66に近い温度の低い熱交換部分表面を含ませながら、第3流体出口67に近い温度の高い熱交換部分表面を含ませることで、温度を中和させて電池ユニット温度に極端状況が発生することに至らないようにできることに加えて、第3流体入口66、第3流体出口67に近いところの電池ユニット温度と第2中間流路部分区間642(中間熱管理部材600の端部に位置する)に近いところの電池ユニット温度が大きく相違することがなく、電池ユニットの温度均一性を向上させることができる。
一部の実施例において、第3流体入口66と第3流体出口67の両側にそれぞれ1つの第2熱交換流路64が設けられている。具体的には、第3流体入口66と第3流体出口67が中間熱管理部材の長さ方向Yに沿った中間位置に設置され、両側にそれぞれ1つの第2熱交換流路64が配置され、両側の第2熱交換流路64がいずれも第3流体入口66と第3流体出口67と連通していることで、第3流体入口66と第3流体出口67が同時に2つの第2熱交換流路64に流体を供給することができ、第3流体入口66と第3流体出口67が中間熱管理部材600の中間に配置され、第3流体入口66と第3流体出口67の間の連結線の両側にそれぞれ1つの第2熱交換流路64が配置されていることで、熱交換流体の流動距離を短縮できると共に、熱交換流体の並列接続回路を増加させて流動抵抗を効果的にすることができ、同時に中間熱管理部材600の第3流体入口66と第3流体出口67との間の連結線の両側の電池ユニットの温度一致性の向上に寄与する。
具体的には、図27、28に示すように、中間熱管理部材600の2つの第3側板61、62のそれぞれにおいて、第3流路部分区間641に対応する位置に第3側流路部分区間が形成され、第3側流路部分区間614における1つの中間電池ユニットと提携する部位に長さY方向に沿って並べられた複数の第2中間熱交換表面1部分区間611が形成されている。各第3側流路部分区間は、複数の第3側部分流路を含み、一部の実施例において、1つの第3側部分流路部分区間は、第3側1部分流路6141、第3側2部分流路6142、第3側3部分流路6143、第3側4部分流路6144、第3側5部分流路6145、第3側6部分流路6146といった6つの第3側部分流路を含み、6つの第3側部分流路が若干の第3側仕切部625と626を介して仕切られている。6つの第3側部分流路が第3側板61から突出し、各第3側部分流路における1つの中間電池ユニット14と提携する部分に第3熱交換部分表面が形成され、つまり、各第3側部分流路の中間熱管理部材600の内部へ凹んだ弧状外壁における中間電池ユニット14と提携する部分に1つの第3熱交換部分表面が形成されている。第4流路部分区間643の構造については第3流路部分区間641の構造を参照できる。
具体的には、図29に示すように、1つの第2中間熱交換表面1部分区間611は、第3側1部分流路6141に位置する第3熱交換1部分表面6111、第3側2部分流路6142に位置する第3熱交換2部分表面6112、第3側3部分流路6143に位置する第3熱交換3部分表面6113、第3側4部分流路6144に位置する第3熱交換4部分表面6114、第3側5部分流路6145に位置する第3熱交換5部分表面6115、第3側6部分流路6146に位置する第3熱交換6部分表面6116を含む。第3熱交換1部分表面6111、第3熱交換2部分表面6112、第3熱交換3部分表面6113、第3熱交換4部分表面6114、第3熱交換5部分表面6115、第3熱交換6部分表面6116は、第3側板61における同一の凹んだ弧状外壁に位置し、幅X方向に沿って並べられている。同様に、第3流路部分区間643が設けられた部位において、中間熱管理部材600の第3側板61における第3流路部分区間643に対応する位置にも第3側流路部分区間が形成され、第3側流路部分区間における第3電池ユニット14と提携する部位に長さY方向に沿って並べられた複数の第2中間熱交換表面2部分区間612が形成されている。それぞれが幅X方向において1つの第2中間熱交換表面1部分区間611に並列に並べられている。各第2中間熱交換表面2部分区間612も、幅X方向に沿って並べられた6つの第3熱交換部分表面を含む。第2中間熱交換表面2部分区間612の構造については第2中間熱交換表面1部分区間611の構造を参照でき、第2中間熱交換表面2部分区間612の構造は第2中間熱交換表面1部分区間611の構造と同じであってもよいし、第3仕切部63に対して鏡面対称してもよい。
具体的には、図27に示すように、並列に並べられた1つの第2中間熱交換表面1部分区間611と1つの第2中間熱交換表面2部分区間612は1つの第2中間熱交換表面610を構成している。1つの第2中間熱交換表面610が12個の第3熱交換部分表面で構成されている。ただし、これに限定されることがなく、第2中間熱交換表面1部分区間611又はより小さい第3熱交換部分表面6111-6116が1つの電池ユニットに対して温度調節を行うことに用いられる場合に、第2中間熱交換表面は第2中間熱交換表面1部分区間611又はより小さい第3熱交換部分表面であってもよい。第2中間熱交換表面610の部分区間数量と部分表面数量は流路部分区間の数量と各流路部分区間中の第3側流路部分区間の数量に依存し、実際に冷却必要な電池寸法及び実際の使用環境によって決定してもよく、具体的に限定しない。1つの第2中間熱交換表面610は1つの中間電池ユニット14と提携して温度調節を行い、1つの中間電池ユニット14は、1つの電池セルを含んでもよいし、複数の電池セルを含んでもよい。
具体的には、各第2中間熱交換表面610が中間熱管理部材600の幅方向Xに沿って分布され、1組の第2中間熱交換表面610が中間熱管理部材600の長さ方向Yに沿って並べられる。
具体的には、少なくとも1つの第2中間熱交換表面610の第3熱交換面積S3が1つの中間電池ユニット14と提携して温度調節を行う複数の第3熱交換部分表面の表面積の和である。具体的には、1つの第2中間熱交換表面610の第3熱交換面積S3が、1つの第2中間熱交換表面1部分区間611の6つの第3熱交換部分表面6111-6116と1つの第2中間熱交換表面2部分区間612の6つの第3熱交換部分表面の表面積の和である。
一部の実施例において、図29に示すように、1つの第2中間熱交換表面1部分区間611において、長さY方向で、第3側1部分流路6141、第3側2部分流路6142、第3側3部分流路6143、第3側4部分流路6144、第3側5部分流路6145、第3側6部分流路6146の幅が変わっていない。第3熱交換1部分表面6111は第1部分幅W31を有し、第3熱交換2部分表面6112は第3部分幅W32を有し、第3熱交換3部分表面6113は第3部分幅W33を有し、第3熱交換4部分表面6114は第4部分幅W34を有し、第3熱交換5部分表面6115は第5部分幅W35を有し、第3熱交換6部分表面6116は第6部分幅W36を有する。第1部分幅W31、第3部分幅W32、第3部分幅W33、第4部分幅W34、第5部分幅W35、第6部分幅W36は同じであっても、異なってもよく、限定されることがない。このようにして、1つの第2中間熱交換表面610の幅が複数の第3熱交換部分表面の幅の和である。具体的には、図25において、1つの第2中間熱交換表面610の全幅である第3熱交換幅W3が、1つの第2中間熱交換表面1部分区間611の6つの熱交換部分表面6111-6116と1つの第2中間熱交換表面2部分区間612の6つの熱交換部分表面の幅の和である。
一部の実施例において、1つの第2中間熱交換表面部分区間の側面部分流路の長さY方向に沿った幅は固定値でなく、変わる可能性がある。この時に、1つの第3熱交換部分表面の幅は第3熱交換部分表面の長さY方向における平均幅であり、1つの第2中間熱交換表面の全幅である第3熱交換幅W3は複数の第3熱交換部分表面の平均幅の和である。
一部の実施例において、図28に示すように、2つの第3側板61、62の第3側流路が組み合わせられて第2熱交換流路64になった。具体的には、第2熱交換流路64は複数のサブ流路を含んでもよく、各第3側板61、62における側流路は複数の側面部分流路を含んでもよい。各サブ流路は、1つの第3側板61の少なくとも1つの部分流路ともう1つの第3側板62の少なくとも1つの側面部分流路を含み、1つのサブ流路を構成した側面部分流路は互いに連通している。このように設置することで、第2熱交換流路64が複数のサブ流路に分けられ、各サブ流路内の熱交換流体が同時に2つの第3側板と熱交換でき、第2熱交換流路64の設計が簡素化され、熱管理部材の製造が容易になる。
具体的には、図28と図29を参照し、第3側板61に第3側仕切部613が設けられ、第3側板62に第4側仕切部623が設けられ、第3側仕切部613と第4側仕切部623が連結されて第3仕切部63を構成して、中間熱管理部材600を間隔のある第3流路部分区間641と第4流路部分区間642とに仕切っている。第3側板61には第3側1部分流路6141、第3側2部分流路6142、第3側3部分流路6143、第3側4部分流路6144、第3側5部分流路6145、第3側6部分流路6146といった6つの第3側部分流路が設けられている。第3側板62は第3側板61に対称して設置され、それにも6つの第4側部分流路6241-6246が設けられている。第3側部分流路6141-6146と第4側部分流路6241-6246は中間熱管理部材600の厚さZ方向の中線に沿って鏡面対称し、対向した2つの第3側部分流路と第4側部分流路は連通して6つの第2サブ流路6411-6416を構成している。第3側板61、62のそれぞれには6つの第2サブ流路6411-6416を仕切る若干の第3側仕切部625と626が設けられている。第4流路部分区間643は第3流路部分区間641と同じ構造を有する。第2熱交換流路64は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第2サブ流路を含み、各第2サブ流路は、少なくとも2つの第3側部分流路を含み、1つの第2サブ流路を構成した少なくとも2つの第3側部分流路は互いに連通している。
図27、図29によると、第3側板61と62の1つの第2中間熱交換表面610の全幅である第3熱交換幅W3が、1つの第2中間熱交換表面1部分区間611の6つの熱交換部分表面と1つの第2中間熱交換表面2部分区間612の6つの熱交換部分表面の幅の和である(第2中間熱交換表面1部分区間611の6つの熱交換部分表面6111-6116の幅の和の2倍であり、第3熱交換幅W3=2*(W31+W32+W33+W34+W35+W36)であると考えてもよい)。その中、中間熱管理部材600の第3側板61、62の少なくとも1つの第2中間熱交換表面610の第3熱交換幅W3が、エッジ熱管理部材400の少なくとも1つの第1熱交換表面410の第1熱交換幅W1より小さく、W3<W1である。エッジ熱管理部材500の第1熱交換表面510の第1熱交換幅もW1である。
更に、中間熱管理部材600の第3側板61、62の少なくとも1つの第2中間熱交換表面610の第3熱交換面積S3もエッジ熱管理部材400の少なくとも1つの第1熱交換表面410の第1熱交換面積S1よりも小さく、S3<S1である。エッジ熱管理部材500の第1熱交換表面510の熱交換面積も第1熱交換面積S1である。
一部の実施例において、第3熱交換幅W3と第1熱交換幅W1の割合は0.1-0.9の間にあり、例えば、W3/W1は0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.6、0.65、0.7、0.75、0.8、0.85から選択できるが、これらの具体的な数値に限定されることがない。第3熱交換幅W3と第2熱交換幅W2は同じであっても、異なってもよく、実際の要求に応じてW3、W2とW1の組合を選択できる。
一部の実施例において、第3熱交換面積S3と第1熱交換面積S1の割合は0.1-0.9の間にある。S3/S1は0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.6、0.65、0.7、0.75、0.8、0.85から選択できるが、これらの具体的な数値に限定されることがない。第3熱交換面積S3と第2熱交換面積S2は同じであっても、異なってもよく、実際の要求に応じてS3、S2とS1の組合を選択できる。
図示されていない一部の実施例では、中間熱管理部材600には更に第3側流路に設置される第2乱流部が設けられている。一部の実施例において、第2乱流部は、第3側流路における中間電池ユニット14と提携しない部位に設置され、第3側流路を流れる熱交換流体に乱流を発生させることに用いられる。第2乱流部の設置位置と方式については上記の実施例を参照できる。
一部の実施例において、図30に示すように、温度調節システム3000は、中間熱管理部材600が2つ以上であり、各エッジ熱管理部材400、500と隣接する1つの中間熱管理部材600との間に1層の中間電池ユニット14、16が設けられている以外に、隣接する2つの中間熱管理部材600の間にも1層の中間電池ユニット17が設けられていることで、図20における温度調節システム2000と相違する。外側電池ユニット13、15と中間電池ユニット14、16の温度調節方式は図28における調節方式と同じであり、繰り返して説明しなく、以下、中間電池ユニット17の温度調節方式を説明する。
具体的に中間電池ユニット17を例とすると、中間電池ユニット17の上下側面がいずれも両側の中間熱管理部材600の第3側板61の第2中間熱交換表面610と熱交換し、熱交換面積が第3熱交換面積S3であるので、中間電池ユニット17と2つの中間熱管理部材600の合計熱交換面積が第3熱交換面積S3の2倍であり、即ち2S3である。
第3熱交換面積S3と第1熱交換面積S1の割合は0.1-0.9の間にある。従って、本実施例の電池において、中間電池ユニット17と外側電池ユニット13、15の合計熱交換面積比、即ち2倍の第2熱交換面積S3と第1熱交換面積S1の割合2S3/S1は0.2-1.8の間にあってもよい。一部の実施例において、2S3/S1は0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7等であってもよいが、これらの具体的な値に限定されることがない。中間電池ユニット17と外側電池ユニット13、15の合計熱交換面積比2S3/S1は実際の要求に応じて適切な範囲を選択できる。例えば、中間電池ユニット17と外側電池ユニット13、15として同じ規格の電池を採用した時に、2S3/S1は0.3-1.2の間、例えば0.4-1.0の間や0.3-0.6の間、0.6-0.8の間にあってもよく、このようにして、中間電池ユニット17と外側電池ユニット13、15に基本的同じ冷却効果を持たせ、中間電池ユニット17と外側電池ユニット13、15の温度と性能を一致させ、電池性能をより安定的にし、優れた信頼性、より長い寿命にすることができる。更に例えば、中間電池ユニット17の放熱効果が低く、又は中間電池ユニット17と外側電池ユニット13、15の規格が異なる等の場合に、中間電池ユニット17に更に強い冷却効果が必要になる時に、2S3/S1は1.2-1.8の間、例えば1.3-1.6や1.4-1.5の間にあってもよく、このようにして、中間電池17に更に強い温度調節性能を持たせる。S1、S2及びS3の具体的比例を調節することによって、中間電池ユニット14、16と外側電池ユニット13、15の温度と性能を一致させ、電池性能をより安定的にし、優れた信頼性、より長い寿命にする。
従って、本実施例の電池によれば、S1、S2及びS3の比例を調節することによって、中間電池ユニット17、14、16と外側電池ユニット13、15の冷却効果の自由調節を実現でき、更に異なるタイプの電池に対応でき、異なる部位の電池の異なる温度調節性能要求を満す。なお、中間熱管理部材を用いることによって、電池は4層以上の電池ユニットの温度調節を実現でき、そして各熱管理部材の2つの側板を共に電池ユニットに対する温度調節を行うことに用い、熱管理部材の数量が電池ユニットの層数より1層少なく、電池の全厚さが少なくなり、より望ましい空間適応性を有するようになった。なお、第2熱交換面積S2と第3熱交換面積S3は同じであっても、異なってもよく、このようにして、異なるエッジ熱管理部材と中間管理部材を組み合わせ、第1熱交換面積S1、第2熱交換面積S2、第3熱交換面積S3の大きさと比例関係を調整することによって、多種の形式の電池ユニット組合方式を満たすことができ、また、各層の電池冷却ユニットの異なる温度調節性能要求及び熱管理部材中の熱交換流体のそれぞれの箇所での温度差に応じて、差別化設計とより精確な温度調節制御を行って、更に中間電池ユニット14と外側電池ユニット13、15の温度と性能を一致させ、電池性能をより安定的にし、優れた信頼性、より長い寿命にすることができる。
本実施例では、第3側板61、62における部分流路の幅/面積と部分流路の数量を調節することによって、第3熱交換面積S3と第1熱交換面積S1との間の比例関係を精確に調節でき、実際の要求に応じて組み合わせて第3熱交換面積S3と第1熱交換面積S1との間の比例を適切にし、更に(S2+S3)/S1及び2S3/S1の比例を調節する。
一部の実施例において、2つのエッジ熱管理部材400、500と中間熱管理部材600は熱交換流体が連通しており、熱交換流体連通方式は直列接続であってもよいし、並列接続であってもよく、本願は限定するものでない。当然ながら、2つのエッジ熱管理部材400、500と中間熱管理部材は互いに連通せず、独立して動作してもよい。
一部の実施例において、図32に示すように、電池ユニット130、140、150は断面が四辺形の柱状電池であり、熱管理部材81、82は電池ユニット130、140、150の形状に適応するように平板状に形成されている。熱管理部材81、82の横断面構造は図23におけるエッジ熱管理部材400、500の横断面構造と同じである。
一部の実施例において、図33に示すように、電池ユニット131、141、151は断面が六辺形の柱状電池であり、熱管理部材91、92は電池ユニット131、141、151の形状に適応するように三角波形に形成されている。熱管理部材91、92の横断面構造は図23におけるエッジ熱管理部材400、500の横断面構造と同じである。
図32と図33に示す実施例では、熱管理部材は電池ユニットの形状に適応するように、長さ方向に沿って平板状又は波形に形成され、電池ユニットに好適に合って、高い熱交換効率を図って、より望ましい熱交換効果を実現することができる。
本発明に係る実施例の第3局面によれば、更に、電気エネルギーを提供するための上記実施例に記載の電池を含む電気利用装置を提供する。本願に係る実施例に記載の電池は、例えば、携帯電話、携帯機器、ノートパソコン、電動バイク、電気自動車、汽船、宇宙機、電動玩具及び電動工具等、電池を使用する種々の電気利用装置に適用され、例えば、宇宙機は、飛行機、ロケット、スペースシャトル及び宇宙飛行船等を含み、電動玩具は、例えば、ゲーム機、電動車玩具、電動汽船玩具及び電動飛行機玩具等、固定型又は携帯型の電動玩具を含み、電動工具は、金属切削電動工具、研磨電動工具、組み立て電動工具及び鉄道用電動工具、例えば、電気ドリル、電動グラインダー、電動スパナ、電動ドライバー、電気ハンマー、電動インパクトドリル、コンクリートバイブレータ及び電気カンナを含む。
例えば、図34は本願の別の実施例の電気利用装置の構造模式図を示し、電気利用装置は自動車であってもよく、自動車は燃料油による自動車、天然ガスによる自動車又は新エネルギーによる自動車であってもよく、新エネルギーによる自動車は、純電気自動車、ハイブリッドカー又は航続距離延長型自動車等であってもよい。自動車は、電池2101、制御器2102及びモータ2103を含む。電池2101は、自動車の操作電源と駆動電源として制御器2102とモータ2103に給電するためのものであり、例えば、電池2101は自動車の始動、ナビゲーション及び走行時の作動のための電気利用ニーズに用いられる。例えば、電池2101は制御器2102に給電し、制御器2102はモータ2103に給電するように電池2101を制御し、モータ2103は電池2101の電力を受け取って自動車の駆動電源として、燃料油又は天然ガスに代って又は部分的に代わって自動車に駆動動力を提供する。
最後に説明すべきであるように、以上の実施例はただ本願の技術手段を説明するためのものであり、本願はこれに制限されない。上記した実施例を参照して本願を詳細に説明したが、当業者にとって明らかであるように、依然として上記した各実施例に記載の技術手段を変更し、又はその中の一部の技術特徴を同等に置き換えることができるが、これらの変更又は置換は、対応する技術手段の本質を本願の各実施例の技術手段の精神と範囲から逸脱させるものではない。
第1側流路1部分区間314は、複数の第1側部分流路を含み、一部の実施例において、第1側部分流路部分区間314は、第1側1部分流路3141、第1側2部分流路3142、第1側3部分流路3143及び第1側4部分流路3144といった4つの第1側部分流路を含み、4つの第1側部分流路3141、3142、3143、3144の間が若干の第1側仕切部317を介して仕切られている。第1側仕切部317は、熱管理部材300の内部へ凹み、外側電池ユニットまで所定の距離離れ、外側電池ユニット13と直接的又は間接的に接触しない。4つの第1側部分流路が第1側板31から突出し、各第1側部分流路における1つの外側電池ユニット13と提携する部分に第1熱交換部分表面が形成され、つまり、各第1側部分流路の熱管理部材300の内部へ凹んだ弧状外壁における外側電池ユニット13と提携する部分に1つの第1熱交換部分表面が形成され、第1熱交換部分表面が外側電池ユニット13の外形に適応し、第1熱交換部分表面が外側電池ユニット13と直接的に接触したり、熱伝導層を介して間接的に接触して熱交換する。隣接する第1熱交換部分表面が第1側仕切部317を介して互いに仕切られていることで、各第1側部分流路の熱管理部材300の内部へ凹んだ弧状外壁において、外側電池ユニット13に直接的に接触したり、熱伝導層を介して間接的に接触して熱交換するのは第1熱交換部分表面しかなく、第1側仕切部317が外側電池ユニット13と直接的又は間接的に接触することなく、このようにして、第1熱交換部分表面と第1側仕切部の面積と数量を変えることによって、第1熱交換表面の熱交換面積を調節できる。第1側流路2部分区間315も、第1側5部分流路3151、第1側6部分流路3152、第1側7部分流路3153及び第1側8部分流路3154といった4つの第1側部分流路を含む。つまり、第1側流路3100は、熱交換流体の流動方向に垂直な方向に沿って並列に並べられた8つの第1側部分流路、即ち第1側1部分流路3141、第1側2部分流路3142、第1側3部分流路3143、第1側4部分流路3144、第1側5部分流路3151、第1側6部分流路3152、第1側7部分流路3153及び第1側8部分流路3154を含む。

Claims (35)

  1. 熱管理部材において、
    前記熱管理部材の一側に位置する複数の外側電池ユニットと提携して温度調節を行うための複数の第1熱交換表面を含む1組の第1熱交換表面であって、各前記第1熱交換表面が1つの前記外側電池ユニットと提携して温度調節を行うためのものである1組の第1熱交換表面と、
    前記熱管理部材の他方側に位置する複数の中間電池ユニットと提携して温度調節を行うための複数の第2エッジ熱交換表面を含む1組の第2エッジ熱交換表面であって、各前記第2エッジ熱交換表面が1つの前記中間電池ユニットと提携して温度調節を行うためのものである1組の第2エッジ熱交換表面と、を含み、
    各前記第1熱交換表面の熱交換面積が第1熱交換面積S1であり、各前記第2エッジ熱交換表面の熱交換面積が第2熱交換面積S2であり、前記第1熱交換面積S1が前記第2熱交換面積S2よりも大きいことを特徴とする、熱管理部材。
  2. 熱管理部材において、
    前記熱管理部材内に熱交換流体の移動経路を提供するための第1熱交換流路が形成され、前記熱管理部材は、対向するように設置され、それらの間に前記第1熱交換流路が形成された第1側板と第2側板を含み、
    前記1組の第1熱交換表面が前記第1側板に形成され、前記熱交換流体が前記第1熱交換表面を介して前記外側電池ユニットに対して温度調節を行い、
    前記1組の第2エッジ熱交換表面が前記第2側板に形成され、前記熱交換流体が更に前記第2エッジ熱交換表面を介して前記中間電池ユニットに対して温度調節を行うことを特徴とする、請求項1に記載の熱管理部材。
  3. 前記第1側板には、複数の前記外側電池ユニットと提携する部位に複数の前記第1熱交換表面が形成された第1側流路が形成され、
    前記第2側板には、複数の前記中間電池ユニットと提携する部位に複数の前記第2エッジ熱交換表面が形成された第2側流路が形成さ、
    前記第1側流路と前記第2側流路とが提携して前記第1熱交換流路を形成していることを特徴とする、請求項2に記載の熱管理部材。
  4. 前記第1側流路は、1つであり、1つの前記外側電池ユニットと提携する部位に1つの前記第1熱交換表面が形成され、前記第1熱交換面積S1が前記第1熱交換表面の表面積であり、前記第2側流路は、前記熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第2側部分流路を含み、各第2側部分流路における1つの前記中間電池ユニットと提携する部分に第2エッジ熱交換部分表面が形成され、各前記第2エッジ熱交換表面が複数の前記第2エッジ熱交換部分表面を含み、前記第2熱交換面積S2が複数の前記第2エッジ熱交換部分表面の表面積の和であることを特徴とする、請求項3に記載の熱管理部材。
  5. 前記第1側流路と前記複数の第2側部分流路は互いに連通して前記第1熱交換流路を形成していることを特徴とする請求項4に記載の熱管理部材。
  6. 各前記第1熱交換表面は第1熱交換幅W1を有し、各前記第2エッジ熱交換表面は第2熱交換幅W2を有し、前記第1熱交換幅W1が前記第2熱交換幅W2よりも大きく、前記第1熱交換幅W1が前記第1熱交換表面の幅であり、前記第2熱交換幅W2が前記複数の第2エッジ熱交換部分表面の幅の和であり、前記第2熱交換幅W2と前記第1熱交換幅W1の割合が0.1-0.9の間にあることを特徴とする、請求項4又は5に記載の熱管理部材。
  7. 前記第1側流路は、前記熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第1側部分流路を含み、各第1側部分流路における1つの前記外側電池ユニットと提携する部分に第1熱交換部分表面が形成され、各前記第1熱交換表面が複数の第1熱交換部分表面を含み、前記第1熱交換面積S1が前記複数の第1熱交換部分表面の表面積の和であり、前記第2側流路は、前記熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第2側部分流路を含み、各第2側部分流路における1つの前記中間電池ユニットと提携する部分に第2エッジ熱交換部分表面が形成され、各前記第2エッジ熱交換表面が複数の第2エッジ熱交換部分表面を含み、前記第2熱交換面積S2が前記複数の第2エッジ熱交換部分表面の表面積の和であることを特徴とする、請求項3に記載の熱管理部材。
  8. 前記第1熱交換流路は、前記熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数のサブ流路を含み、各サブ流路は、少なくとも1つの前記第1側部分流路と少なくとも1つの前記第2側部分流路を含み、1つの前記サブ流路を構成した前記第1側部分流路と前記第2側部分流路は互いに連通していることを特徴とする、請求項7に記載の熱管理部材。
  9. 各前記第1熱交換表面は第1熱交換幅W1を有し、各前記第2エッジ熱交換表面は第2熱交換幅W2を有し、前記第1熱交換幅W1が前記第2熱交換幅W2よりも大きく、前記第1熱交換幅W1が前記複数の第1熱交換部分表面の幅の和であり、前記第2熱交換幅W2が前記複数の第2エッジ熱交換部分表面の幅の和であり、前記第2熱交換幅W2と前記第1熱交換幅W1の割合が0.1-0.9の間にあることを特徴とする、請求項7又は8に記載の熱管理部材。
  10. 更に、前記第1側流路及び/又は前記第2側流路に設置され、前記第1側流路及び/又は前記第2側流路を流れる熱交換流体に乱流を発生させることに用いられる第1乱流部を含むことを特徴とする、請求項3-9のいずれか一項に記載の熱管理部材。
  11. 前記第1乱流部が前記第1側流路における前記外側電池ユニットと提携しない部位に設置され、及び/又は、前記第1乱流部が前記第2側流路における前記中間電池ユニットと提携しない部位に設置されることを特徴とする、請求項10に記載の熱管理部材。
  12. 前記第2熱交換面積S2と第1熱交換面積S1の割合は0.1-0.9の間にあることを特徴とする、請求項1-11のいずれか一項に記載の熱管理部材。
  13. 熱管理部材において、
    各前記第1熱交換表面が前記熱管理部材の幅方向に沿って配置され、前記1組の第1熱交換表面が前記熱管理部材の長さ方向に沿って並べられ、また、
    各前記第2エッジ熱交換表面が前記熱管理部材の幅方向に沿って配置され、前記1組の第2エッジ熱交換表面が前記熱管理部材の長さ方向に沿って並べられることを特徴とする、請求項1-11のいずれか一項に記載の熱管理部材。
  14. 2層の外側電池ユニット及び前記2層の外側電池ユニットの間に位置する少なくとも1層の中間電池ユニットを含み、前記各層の外側電池ユニットと各層の中間電池ユニットがいずれも複数の電池ユニットを含む少なくとも3層の電池ユニットと、
    前記外側電池ユニット及び前記中間電池ユニットと熱交換することに用いられ、2組の第1熱交換表面と複数組の第2熱交換表面を含む温度調節システムであって、各組の第1熱交換表面が複数の前記第1熱交換表面を含み、各組の第2熱交換表面が複数の前記第2熱交換表面を含み、前記第1熱交換表面と前記第2熱交換表面が前記温度調節システム内部の熱交換流体と熱交換できる温度調節システムと、を含み、
    前記温度調節システムは、
    各層の外側電池ユニットの1組の側面が1組の第1熱交換表面と提携して温度調節を行い、各外側電池ユニットの1つの側面が1つの前記第1熱交換表面と提携して温度調節を行い、各前記第1熱交換表面が第1熱交換面積S1を有し、
    前記各層の中間電池ユニットが2組の第2熱交換表面の間に設置され、前記各層の中間電池ユニットの反対側となる2組の側面がそれぞれ隣接する1組の第2熱交換表面と提携して温度調節を行い、前記各中間電池ユニットの反対側となる2つの側面がそれぞれ隣接する1つの第2熱交換表面と提携して温度調節を行い、
    前記第1熱交換面積S1が前記第2熱交換表面の熱交換面積よりも大きいように配置されることを特徴とする、電池。
  15. 前記第2熱交換表面の熱交換面積と前記第1熱交換面積S1の割合は0.1-0.9の間にあることを特徴とする、請求項14に記載の電池。
  16. 前記電池ユニットは、3層であり、2層の外側電池ユニットと1層の中間電池ユニットを含み、
    前記温度調節システムは、内部に熱交換流体の移動経路を提供するための第1熱交換流路が形成された2つのエッジ熱管理部材であって、それぞれ対向するように設置された第1側板と第2側板を含み、前記第1側板に1組の前記第1熱交換表面が形成された2つのエッジ熱管理部材を含み、
    前記複数組の第2熱交換表面が2組の第2エッジ熱交換表面を含み、各組の第2エッジ熱交換表面が複数の第2エッジ熱交換表面を含み、2つのエッジ熱管理部材の前記第2側板にそれぞれ1組の前記第2エッジ熱交換表面が形成され、各前記第2エッジ熱交換表面が第2熱交換面積S2を有し、
    2つの前記エッジ熱管理部材の2つの前記第2側板が隣接し、且つ2つの前記第1側板が反対側であり、
    前記2つのエッジ熱管理部材の前記第1側板にそれぞれ1層の前記外側電池ユニットが設けられ、各前記外側電池ユニットの1つの側面が対応する1つの前記第1熱交換表面と提携し、
    前記2つのエッジ熱管理部材の間に1層の前記中間電池ユニットが設けられ、各前記中間電池ユニットの2つの反対側となる側面がそれぞれ2つのエッジ熱管理部材の1つの前記第2エッジ熱交換表面と提携することを特徴とする、請求項14又は15に記載の電池。
  17. 前記第2熱交換面積S2と第1熱交換面積S1の割合は0.1-0.9の間にあることを特徴とする、請求項16に記載の電池。
  18. 前記電池ユニットは、4層以上であり、2層の外側電池ユニットと少なくとも2層の中間電池ユニットを含み、
    前記温度調節システムは、内部に熱交換流体の移動経路を提供するための第1熱交換流路が形成された2つのエッジ熱管理部材であって、それぞれ反対に設置された第1側板と第2側板を含み、前記第1側板に1組の前記第1熱交換表面が形成された2つのエッジ熱管理部材を含み、
    前記複数組の第2熱交換表面が2組の第2エッジ熱交換表面を含み、各組の第2エッジ熱交換表面が複数の第2エッジ熱交換表面を含み、2つのエッジ熱管理部材の前記第2側板にそれぞれ1組の前記第2エッジ熱交換表面が形成され、各前記第2エッジ熱交換表面が第2熱交換面積S2を有し、
    前記温度調節システムは、内部に熱交換流体の移動経路を提供するためのものともなる第2熱交換流路が形成された少なくとも1つの中間熱管理部材であって、それぞれ反対側に位置する2つの第3側板を含む少なくとも1つの中間熱管理部材を更に含み、前記複数組の第2熱交換表面が更に複数組の第2中間熱交換表面を含み、各前記第3側板にそれぞれ1組の前記第2中間熱交換表面が形成され、各組の前記第2中間熱交換表面が複数の前記第2中間熱交換表面を含み、各前記第2中間熱交換表面が第3熱交換面積S3を有し、前記第1熱交換面積S1が前記第3熱交換面積S3よりも大きく、
    前記中間熱管理部材の個数としては前記電池ユニットの層数から3を差し引いたものであり、
    前記少なくとも1つの中間熱管理部材が2つの前記エッジ熱管理部材の間に設置され、前記2つのエッジ熱管理部材の2つの前記第2側板がそれぞれ1つの前記中間熱管理部材の1つの前記第3側板に隣接し、前記2つのエッジ熱管理部材の前記2つの第1側板が反対側であり、
    前記の2つの前記エッジ熱管理部材の前記第1側板にそれぞれ1層の前記外側電池ユニットが設けられ、各前記外側電池ユニットが対応する前記第1側板の1つの前記第1熱交換表面と提携し、
    各前記エッジ熱管理部材と隣接する1つの前記中間熱管理部材との間に1層の中間電池ユニットが設けられ、前記エッジ熱管理部材と提携する1層の中間電池ユニットにおいて、各前記中間電池ユニットの1つの側面が前記エッジ熱管理部材の前記第2側面の1つの前記第2エッジ熱交換表面と提携し、各前記中間電池ユニットのもう1つの側面が前記1つの中間熱管理部材の前記第3側板の1つの前記第2中間熱交換表面と提携し、及び/又は
    隣接する2つずつの前記中間熱管理部材の間に更に1層の中間電池ユニットが設けられ、両側がいずれも前記中間熱管理部材と提携する1層の中間電池ユニットにおいて、各前記中間電池ユニットの2つの側面がそれぞれ2つの前記中間熱管理部材の対向した前記第3側板の1つの前記第2中間熱交換表面と提携することを特徴とする、請求項14又は15に記載の電池。
  19. 前記第3熱交換面積S3と第1熱交換面積S1の割合は0.1-0.9の間にあり、及び/又は
    前記第2熱交換面積S2と前記第3熱交換面積S3の和と前記第1熱交換面積S1の割合は0.2-1.8の間にあることを特徴とする、請求項18に記載の電池。
  20. 前記エッジ熱管理部材の前記第1側板には、1層の前記外側電池ユニットと提携する部位に前記複数の第1熱交換表面が形成された第1側流路が形成され、
    前記エッジ熱管理部材の前記第2側板には、1層の前記中間電池ユニットと提携する部位に前記複数の第2エッジ熱交換表面が形成された第2側流路が形成され、
    前記第1側流路と前記第2側流路とが組み合わせられて前記第1熱交換流路を形成していることを特徴とする、請求項16-19のいずれか一項に記載の電池。
  21. 前記第1側流路は、1つであり、1つの前記外側電池ユニットと提携する部位に前記1つの第1熱交換表面が形成され、前記第1熱交換面積S1が前記第1熱交換表面の表面積であり、前記第2側流路は、前記熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第2側部分流路を含み、各第2側部分流路における1つの前記中間電池ユニットと提携する部分に第2エッジ熱交換部分表面が形成され、前記1つの第2エッジ熱交換表面が1つの前記中間電池ユニットと提携する複数の第2エッジ熱交換部分表面を含み、前記第2熱交換面積S2が前記複数の第2エッジ熱交換部分表面の表面積の和であることを特徴とする、請求項20に記載の電池。
  22. 前記第1側流路と前記複数の第2側部分流路は互いに連通して前記第1熱交換流路を形成していることを特徴とする、請求項21に記載の電池。
  23. 各前記第1熱交換表面は第1熱交換幅W1を有し、各前記第2エッジ熱交換表面は第2熱交換幅W2を有し、前記第1熱交換幅W1が前記第2熱交換幅W2よりも大きく、前記第1熱交換幅W1が前記第1側流路における1つの前記外側電池ユニットと提携する部位の幅であり、前記第2熱交換幅W2が前記複数の第2エッジ熱交換部分表面の幅の和であり、前記第2熱交換幅W2と前記第1熱交換幅W1の割合が0.1-0.9の間にあることを特徴とする、請求項21又は22に記載の電池。
  24. 前記第1側流路は、前記熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第1側部分流路を含み、各第1側部分流路における1つの前記外側電池ユニットと提携する部分に第1熱交換部分表面が形成され、各前記第1熱交換表面が1つの前記外側電池ユニットと提携する複数の第1熱交換部分表面を含み、前記第1熱交換面積S1が前記複数の第1熱交換部分表面の表面積の和であり、前記第2側流路は、前記熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第2側部分流路を含み、各第2側部分流路における1つの前記中間電池ユニットと提携する部分に第2エッジ熱交換部分表面が形成され、各前記第2エッジ熱交換表面が1つの中間電池ユニットと提携する複数の第2エッジ熱交換部分表面を含み、前記第2熱交換面積S2が前記複数の第2エッジ熱交換部分表面の表面積の和であることを特徴とする、請求項20に記載の電池。
  25. 各前記第1熱交換表面は第1熱交換幅W1を有し、各前記第2エッジ熱交換表面は第2熱交換幅W2を有し、前記第1熱交換幅W1が前記第2熱交換幅W2よりも大きく、前記第1熱交換幅W1が前記複数の第1熱交換部分表面の幅の和であり、前記第2熱交換幅W2が前記複数の第2エッジ熱交換部分表面の幅の和であり、前記第2熱交換幅W2と前記第1熱交換幅W1の割合が0.1-0.9の間にあることを特徴とする、請求項24に記載の電池。
  26. 前記第1熱交換流路は、前記熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第1サブ流路を含み、各第1サブ流路は、少なくとも1つの前記第1側部分流路と少なくとも1つの前記第2側部分流路を含み、1つの前記第1サブ流路を構成した第1側部分流路と第2側部分流路は互いに連通していることを特徴とする、請求項24又は25に記載の電池。
  27. 前記エッジ熱管理部材は、更に、前記第1側流路及び/又は前記第2側流路に設置され、前記第1側流路及び/又は前記第2側流路を流れる前記熱交換流体に乱流を発生させることに用いられる第1乱流部を含むことを特徴とする、請求項20-26のいずれか一項に記載の電池。
  28. 前記第1乱流部が前記第1側流路における前記外側電池ユニットと提携しない部位に設置され、及び/又は、前記第1乱流部が前記第2側流路における前記中間電池ユニットと提携しない部位に設置されることを特徴とする、請求項27に記載の電池。
  29. 各前記第1熱交換表面が前記エッジ熱管理部材の幅方向に沿って分布され、各組の前記第1熱交換表面が前記エッジ熱管理部材の長さ方向に沿って並べられ、また、
    各前記第2エッジ熱交換表面が前記エッジ熱管理部材の幅方向に沿って分布され、1組の前記第2エッジ熱交換表面が第1前記熱管理部材の長さ方向に沿って並べられることを特徴とする、請求項16-28のいずれか一項に記載の電池。
  30. 前記中間熱管理部材の各前記第3側板には、それぞれの1層の前記中間電池ユニットと提携する部位に1組の前記第2中間熱交換表面が形成された第3側流路が形成され、
    2つの対向した前記第3側板の前記第3側流路が組み合わせられて前記第2熱交換流路を形成していることを特徴とする、請求項18-29のいずれか一項に記載の電池。
  31. 前記第3側流路は、前記熱交換流体の流動方向に垂直な方向に沿って並列に並べられた複数の第3側部分流路を含み、各第3側部分流路における1つの前記中間電池ユニットと提携する部分に1つの第2中間熱交換部分表面が形成され、各前記第2中間熱交換表面が1つの中間電池ユニットと提携する複数の第2中間熱交換部分表面を含み、前記第3熱交換面積S3が前記複数の第2中間熱交換部分表面の表面積の和であることを特徴とする、請求項30に記載の電池。
  32. 前記第3熱管理部材は、更に、前記第3側流路に設置され、前記第3側流路を流れる前記熱交換流体に乱流を発生させることに用いられる第2乱流部を含むことを特徴とする、請求項30又は31に記載の電池。
  33. 前記第2乱流部が前記第3側流路における前記中間電池ユニットと提携しない部位に設置されることを特徴とする、請求項32に記載の電池。
  34. 各前記第2中間熱交換表面が前記中間熱管理部材の幅方向に沿って分布され、各組の前記第2中間熱交換表面が前記中間熱管理部材の長さ方向に沿って並べられることを特徴とする、請求項19-33のいずれか一項に記載の電池。
  35. 請求項14-34のいずれか一項に記載の電池を含むことを特徴とする、電気利用装置。
JP2022568604A 2021-07-22 2021-07-22 熱管理部材、電池及び電気利用装置 Pending JP2023537450A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/108010 WO2023000281A1 (zh) 2021-07-22 2021-07-22 热管理部件、电池和用电装置

Publications (1)

Publication Number Publication Date
JP2023537450A true JP2023537450A (ja) 2023-09-01

Family

ID=84980314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022568604A Pending JP2023537450A (ja) 2021-07-22 2021-07-22 熱管理部材、電池及び電気利用装置

Country Status (6)

Country Link
US (1) US20230231225A1 (ja)
EP (1) EP4148870A4 (ja)
JP (1) JP2023537450A (ja)
KR (1) KR20230015901A (ja)
CN (1) CN116420265A (ja)
WO (1) WO2023000281A1 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006000885B3 (de) * 2006-01-04 2007-08-02 Daimlerchrysler Ag Verfahren zur Herstellung eines Wärmetauscher-Rohrbündels für Wärmetauscher von elektrochemischen Energiespeichern
CN101290997A (zh) * 2007-04-20 2008-10-22 华信精密股份有限公司 散热型电池模块
KR102285283B1 (ko) * 2016-05-11 2021-08-03 에스케이이노베이션 주식회사 서브모듈 및 서브모듈을 포함하는 전지모듈
CN205960164U (zh) * 2016-06-27 2017-02-15 华霆(合肥)动力技术有限公司 一种加热液冷装置
US10727462B2 (en) * 2016-09-28 2020-07-28 KULR Technology Corporation Thermal runaway shield
CN206422186U (zh) * 2017-01-23 2017-08-18 威马汽车技术有限公司 电池包换热管排布置结构
GB2578738B (en) * 2018-11-05 2020-12-09 Xerotech Ltd Thermal management system for a battery
CN112397805A (zh) * 2019-08-15 2021-02-23 太普动力新能源(常熟)股份有限公司 具有散热功能的电池组

Also Published As

Publication number Publication date
WO2023000281A1 (zh) 2023-01-26
CN116420265A (zh) 2023-07-11
EP4148870A4 (en) 2024-03-20
US20230231225A1 (en) 2023-07-20
KR20230015901A (ko) 2023-01-31
EP4148870A1 (en) 2023-03-15

Similar Documents

Publication Publication Date Title
CN217182265U (zh) 电池和用电设备
WO2024021304A1 (zh) 热管理部件、电池以及用电设备
US11990592B2 (en) Battery, apparatus using battery, and manufacturing method and manufacturing device of battery
CN214254530U (zh) 电池及包括该电池的装置
US20240088477A1 (en) Battery, power consumption device, and method and device for producing battery
US20230268588A1 (en) Battery, power consumption device, and method and device for producing battery
JP2023537450A (ja) 熱管理部材、電池及び電気利用装置
WO2023240407A1 (zh) 热管理部件、热管理系统、电池及用电装置
WO2023184709A1 (zh) 电池热管理系统、电池及用电装置
WO2023245501A1 (zh) 热管理部件、热管理系统、电池及用电装置
CN116802896A (zh) 热管理部件、电池及用电设备
CN219892239U (zh) 一种换热板、热管理组件及电池
CN219696557U (zh) 热管理系统、电池的箱体、电池以及用电装置
CN219759742U (zh) 电池包及用电设备
EP4131583A1 (en) Battery, and associated power device, preparation method and preparation device
WO2023141888A1 (zh) 电池、用电装置、制备电池的方法和制备电池的装置
WO2024098394A1 (zh) 热管理部件、电池模组、电池及用电装置
CN221126048U (zh) 一种换热结构及电池包
WO2023004831A1 (zh) 电池、用电装置、制备电池的方法和制备电池的装置
WO2024124705A1 (zh) 电池及用电装置
EP4243160A1 (en) Battery and electric device
EP4258437A1 (en) Battery, electric device, and battery preparation method and device
CN117223151A (zh) 电池及用电装置
CN117438695A (zh) 一种电池模组、电池包以及电动汽车
JP2024509489A (ja) 電池、電力消費機器、電池の製造方法及び機器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240426