JP2023534557A - Rna結合タンパク質部位を標的とするオリゴヌクレオチド - Google Patents

Rna結合タンパク質部位を標的とするオリゴヌクレオチド Download PDF

Info

Publication number
JP2023534557A
JP2023534557A JP2023504274A JP2023504274A JP2023534557A JP 2023534557 A JP2023534557 A JP 2023534557A JP 2023504274 A JP2023504274 A JP 2023504274A JP 2023504274 A JP2023504274 A JP 2023504274A JP 2023534557 A JP2023534557 A JP 2023534557A
Authority
JP
Japan
Prior art keywords
antisense oligonucleotide
tdp
nucleotide sequence
mrna
antisense
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023504274A
Other languages
English (en)
Inventor
エベリング,マルティン
ヤーガジア,ラヴィ
ジェンソン,ラルス
リ,メイリン
ヴィケサ,ヨーナス
ワン,コンウェイ
ヴァイレ,クリスティアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of JP2023534557A publication Critical patent/JP2023534557A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/334Modified C
    • C12N2310/33415-Methylcytosine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/33Alteration of splicing

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本発明は、TDP-43枯渇細胞における複数の独立したmRNAのプロセシングにおいてRNA結合タンパク質機能を回復することができるプレmRNA転写物上の保存されたTDP-43結合部位に相補的なアンチセンスオリゴヌクレオチドに関する。

Description

本発明は、複数のRNA転写物上のTDP-43結合部位などの複数のRNA上のRNA結合タンパク質標的部位に相補的、例えば完全に相補的であり、RNA結合タンパク質が機能的に枯渇している症状及び医学的適応症での使用などのために、複数のRNA転写物に対してRNA結合タンパク質機能を回復することができるアンチセンスオリゴヌクレオチドに関する。
TAR DNA結合タンパク質43(TDP-43)は、RNA関連代謝に関与する汎用性のあるRNA/DNA結合タンパク質である。TDP-43沈着物の調節不全は、運動ニューロン疾患:筋萎縮性側索硬化症(ALS)及び前頭側頭葉変性症(FTLD)を有する患者の脳及び脊髄における封入体として作用する(Prasad et al.,Front.Mol.Neurosci.,2019)。
TDP-43は主に核に局在するが、その機能の一部のために細胞質にもシャトルする(Ayala et al.,2008)。ALS及びFTLDなどの疾患では、細胞質封入体形成をもたらす細胞質TDP-43濃度の増加がある(Neumann et al.,2006;Winton et al.,2008a)。細胞質の誤局在化は、核枯渇に関連し得、TDP-43機能の低下又は喪失をもたらし得る。TDP-43標的RNAの異常なスプライシングをもたらし、広範なスプライシング異常をもたらすTDP-43突然変異が存在する(例えば、Arnold et al.,PNAS 2013 110 E736-745及びYang et al.,PNAS.U.S.A.111,E1121-E1129を参照のこと)。
Klimらは、TDP-43機能低下時のSTMN2喪失がSTMN2スプライシングの変化に起因することを報告しており、ALSのための治療戦略としてSTMN2を回復させることを示唆している。
TDP-43枯渇は、TDP-43病理と呼ばれる様々な疾患で示され、例えば、筋萎縮性側索硬化症(ALS)、前頭側頭葉変性症(FTLD)、進行性核上性麻痺(PSP)、原発性側索硬化症、進行性筋萎縮症、アルツハイマー病、パーキンソン病、自閉症、海馬硬化性認知症、ダウン症候群、ハンチントン病、ポリグルタミン病、例えば脊髄小脳失調症3、ミオパシー及び慢性外傷性脳症などの疾患を含む。
Tollervey et al.,Nature Neuroscience 2010,452-458は、健康な脳組織及びFTLD患者由来の脳組織におけるRNA標的の特徴付け及びTDP-43の位置依存的スプライシング調節について報告している。ほとんどのTDP-43結合部位は、イントロン、長い非コードRNA(lncRNA)及び遺伝子間転写物にマッピングされ、UGリッチモチーフが濃縮されていた。TDP-43中の保存されたRNPセグメントは、TAR DNA配列及びUGリピートを有するRNA配列への結合に関与する(Ayala et al.,J.Mol.Biol.2005;348:575-588)。TDP病理などの細胞におけるTDP-43枯渇は、TDP-43 RNA標的へのTDP-43のRNA結合の喪失と相関している。
ヒトRNA中のTDP-43結合部位は、RNA結合タンパク質及び関連するモチーフのデータベースからオンラインで入手可能である(https://attract.cnic.es/results/e9f29380-8921-406e-84a8-27ce9b9398b4#を参照)。開示される特定の特徴付けられたヒトRNA TDP-43結合部位には、以下のRNA配列が含まれる。GUGAAUGA、GUUGUGC、UGUGUGUGUGUG(配列番号20)、GAAUGG、UGUGUGUG、GAAUGA、UGUGUG、GUUGUUC、及びGUUUUGC。
Melamed et alは、TDP-43神経変性の特徴としてSTMN2の早期ポリアデニル化媒介性喪失について報告している。国際公開第2019/241648号は、STMN2発現を増加させるための2’O-メトキシエチルASOを開示している。
本発明者らは、TDP-43核酸結合部位に相補的、例えば完全に相補的であり、TDP-43 RNA転写物標的のプロセシング又は調節、例えば、TDP-43機能喪失を示す細胞において調節不全であるRNA転写物の発現及びスプライシングを回復させることができるアンチセンスオリゴヌクレオチドを同定し、それにより、TDP-43枯渇細胞(すなわち、TDP-43機能が喪失した細胞)におけるTDP-43機能性を回復させるための新規なアプローチ、並びにTDP-43病理を処置するための新規な治療アプローチを提供する。
本発明の目的
本発明は、TDP-43枯渇細胞における複数の独立したmRNAのプロセシングにおいてRNA結合タンパク質機能を回復することができるプレmRNA転写物上の保存されたTDP-43結合部位に相補的なアンチセンスオリゴヌクレオチドに関する。
本発明は、低下したレベルの機能性TDP-43を有する細胞において、RNA結合タンパク質の機能性、例えばTDP-43機能性又はTDP-43様機能性を回復させるためのオリゴヌクレオチドを提供する。
本発明は、RNAプロセシング又は1つ若しくは複数のTDP-43標的RNAの発現においてTDP-43の核機能を回復させ、それによってTDP-43標的RNAの機能的表現型を少なくとも部分的に回復させるか又は増強することができるオリゴヌクレオチドを提供する。そのようなオリゴヌクレオチド化合物は、本明細書では、RNA結合タンパク質模倣物、例えばTDP-43模倣物と呼ばれる。
本発明は、TDP-43結合部位に相補的なアンチセンスオリゴヌクレオチド、及びTDP-43病理の処置などの治療におけるそれらの使用を提供する。
本発明はさらに、複数のRNA転写物、すなわち異なる遺伝子座から転写されるRNA転写物上のTDP-43結合部位に相補的なオリゴヌクレオチドを提供する。複数のRNA転写物は、例えば、プレmRNA、mRNA及びlncRNAからなる群から独立して選択され得る。
本発明は、8~40ヌクレオチド長のアンチセンスオリゴヌクレオチドであって、(5’-3’)(UG)n、(GU)n[式中、nは4~20である]、UGUGUGUG、UGUGUGUGU、UGUGUGUGUG(配列番号37)、UGUGUGUGUGU(配列番号38)、UGUGUGUGUGUG(配列番号35)、UGUGUGUGUGUGU(配列番号39)、GUGUGUGU、GUGUGUGUG、GUGUGUGUGU(配列番号40)、GUGUGUGUGUG(配列番号41)、GUGUGUGUGUGU(配列番号42)、GUGUGUGUGUGUG(配列番号43)、及びGUGAAUGAからなる群から選択される配列に相補的、例えば完全に相補的な、少なくとも8ヌクレオチド長の連続ヌクレオチド配列を含み、アンチセンスオリゴヌクレオチドは、TDP-43が枯渇した細胞、例えば異常なTDP-43タンパク質を発現している細胞において、1つ又は複数のTDP-43標的RNAの機能的表現型を回復させることができる、アンチセンスオリゴヌクレオチド;又はその薬学的に許容され得る塩を提供する。
連続ヌクレオチド配列は、1つ又は複数の修飾ヌクレオシドを含み得る。
背景技術のセクションで説明したように、機能性TDP-43は、主に核局在化タンパク質であり、細胞質に存在し得る。しかしながら、細胞質封入体と呼ばれる細胞質におけるTDP-43の凝集(異常なTDP-43とも呼ばれる)は、非機能的なTDP-43と関連しており、これは、例えば多数のプレmRNAのプロセッシングにおける核TDP-43の機能性の喪失と関連している。したがって、細胞質封入体においてTDP-43を発現する細胞は、TDP-43が枯渇していると見なされるべきである。
アンチセンスオリゴヌクレオチドは、単離されたアンチセンスオリゴヌクレオチド又は精製されたオリゴヌクレオチドであり得る。本発明のアンチセンスオリゴヌクレオチドは、製造された(人工の)アンチセンスオリゴヌクレオチドである。
機能的表現型は、例えば、機能的TDP-43(すなわち、非異常TDP-43、典型的には核TDP-43)によって調節されるか又はそれに依存するRNAプロセシング事象、及び/又はその忠実度が機能的TDP-43に依存するRNAプロセシング事象であり得る。したがって、本発明のアンチセンスオリゴヌクレオチドの使用によるTDP-43の機能性の増強は、例えば本明細書中に例示されるように、STMN2、ARHGAP32、SLC5A7、CERT1、CAMK2B、KALRN及びUNC13A RNAプロセシングを参照して、機能性TDP-43によって調節されるか又はそれに依存するRNAプロセシング事象の忠実度を評価することによって評価され得る。
本発明は、医薬における使用のための、8~40ヌクレオチド長のアンチセンスオリゴヌクレオチドであって、(5’-3’)(UG)n、(GU)n[式中、nは4~20である]、UGUGUGUG、UGUGUGUGU、UGUGUGUGUG(配列番号37)、UGUGUGUGUGU(配列番号38)、UGUGUGUGUGUG(配列番号35)、UGUGUGUGUGUGU(配列番号39)、GUGUGUGU、GUGUGUGUG、GUGUGUGUGU(配列番号40)、GUGUGUGUGUGU(配列番号42)、GUGUGUGUGUGUG(配列番号43)、及びGUGAAUGAからなる群から選択される配列に対して少なくとも75%相補性、例えば少なくとも90%相補性又は100%相補性を有する少なくとも8ヌクレオチド長の連続ヌクレオチド配列を含む、アンチセンスオリゴヌクレオチド、又はその薬学的に許容され得る塩を提供する。
連続ヌクレオチド配列は、1つ又は複数の修飾ヌクレオシドを含み得る。
本発明は、TDP-43病理を特徴とする疾患の処置における使用のための、8~40ヌクレオチド長のアンチセンスオリゴヌクレオチドであって、(5’-3’)(UG)n、(GU)n[式中、nは4~20である]、UGUGUGUG、UGUGUGUGU、UGUGUGUGUG(配列番号37)、UGUGUGUGUGU(配列番号38)、UGUGUGUGUGUG(配列番号35)、UGUGUGUGUGUGU(配列番号39)、GUGUGUGU、GUGUGUGUG、GUGUGUGUGU(配列番号40)、GUGUGUGUGUGU(配列番号42)、GUGUGUGUGUGUG(配列番号43)、及びGUGAAUGAからなる群から選択される配列に対して少なくとも75%相補性、例えば少なくとも90%相補性又は100%相補性を有する少なくとも8ヌクレオチド長の連続ヌクレオチド配列を含む、アンチセンスオリゴヌクレオチド、又はその薬学的に許容され得る塩を提供する。
連続ヌクレオチド配列は、1つ又は複数の修飾ヌクレオシドを含み得る。
有利には、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列UGUGUGUGUGUG(配列番号35)、又はGUGUGUGUGUGU(配列番号42)、又はUGUGUGUGUGUGU(配列番号39)、又はGUGUGUGUGUGUG(配列番号43)に相補的な、例えば完全に相補的な、少なくとも12個又は少なくとも13個の連続ヌクレオチドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又は連続ヌクレオチド配列は、配列UGUGUGUGUGUGUG(配列番号46)、又はGUGUGUGUGUGUGU(配列番号47)に相補的な、例えば完全に相補的な、少なくとも14個の連続ヌクレオチドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又は連続ヌクレオチド配列は、配列(UG)n又は(GU)n[式中nは整数6~20、例えば7~9である]に相補的である、例えば完全に相補的な、少なくとも18個の連続ヌクレオチドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又は連続ヌクレオチド配列は、配列UGUGUGUGUGUGUGUGUG(配列番号48)、又はGUGUGUGUGUGUGUGUGU(配列番号49)に相補的な、例えば完全に相補的な、少なくとも18個の連続ヌクレオチドを含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列CACACACA又はACACACACを含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列CACACACACACA(配列番号14)又はACACACACACAC(配列番号5)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列CACACACACACAC(配列番号15)又はACACACACACACA(配列番号6)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列CACACACACACACACA(配列番号16)又はACACACACACACACAC(配列番号7)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号20)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号21)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号22)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号23)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号24)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号25)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号26)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号27)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号28)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号29)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号30)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号31)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号32)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号33)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号34)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号50)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号51)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号52)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号53)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号54)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号55)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号56)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号57)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号58)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号59)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号60)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号61)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号62)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号63)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号64)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号65)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号66)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号67)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号68)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号69)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号70)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号71)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号72)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号73)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号74)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号75)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号76)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号77)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号78)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号79)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号80)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号81)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号82)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号83)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号84)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号85)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号86)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号87)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号88)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号89)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号90)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号91)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号92)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号93)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号94)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号95)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号96)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号97)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号98)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号99)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号100)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号101)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号102)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列(配列番号103)を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、(CA)n又は(AC)nを含み、式中nは整数6~20、例えば7~9である。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列番号1~18からなる群から選択される配列、又は配列番号1~34及び配列番号50~103から選択される配列を含む。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列番号1~18からなる群から選択される配列、又は配列番号1~34及び配列番号50~103から選択される配列からなる。
本発明は、化合物ID番号1~18からなる群から選択されるアンチセンスオリゴヌクレオチド又はその薬学的に許容され得る塩を提供する。したがって、本発明のオリゴヌクレオチドは、化合物ID番号1~18からなる群から選択されるアンチセンスオリゴヌクレオチド又はその薬学的に許容され得る塩であり得る。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチドは、少なくとも12又は少なくとも13ヌクレオチドの長さを有する。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドの連続ヌクレオチド配列は、少なくとも12ヌクレオチド長である。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも12個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも13個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも14個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも15個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも16個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも17個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも18個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも19個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも20個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも21個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも22個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも23個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも24個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも25個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも26個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも27個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも28個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも29個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも30個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも31個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明の任意の態様によるアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、少なくとも32個の連続ヌクレオチドの長さを有する。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチドは、約-10ΔG未満、例えば約-15ΔG未満、例えば約-17ΔG未満の、相補的標的RNAに対するアンチセンスオリゴヌクレオチドのギブス自由エネルギーを有する。有利には、そのようなアンチセンスオリゴヌクレオチドの連続ヌクレオチド配列は、少なくとも12、例えば少なくとも13ヌクレオチド長である。
好都合には、本発明のアンチセンスオリゴヌクレオチドは、1つ又は複数の修飾ヌクレオシドを含み得る。
好都合には、本発明のアンチセンスオリゴヌクレオチドは、LNAヌクレオシドを含み得る。連続ヌクレオチド配列内のLNAヌクレオチドがさらに有利である。いくつかの実施形態では、本発明のアンチセンスオリゴヌクレオチドは、LNAヌクレオシド及び非LNAヌクレオシド、例えばDNAヌクレオシドを含み得る。いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、LNAヌクレオシド及びDNAヌクレオシドを含み得る。いくつかの実施形態では、アンチセンスオリゴヌクレオチドの全てのヌクレオシド又はその連続ヌクレオチド配列は、LNA及びDNAヌクレオシドから独立して選択される。有利には、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列内に存在する連続するDNAヌクレオシドの長さは、標的RNA分解をもたらすRNaseH動員を防ぐように制限される。適切には、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、4つを超える連続するDNAヌクレオシドを含まず、より有利には、3つを超える連続するDNAヌクレオシドを含まない。
使用される場合、有利には、本発明によるアンチセンスオリゴヌクレオチドは、2つ以上のTDP-43標的プレmRNA(標的RNA)のスプライシングを調節することができる。例として、2つ以上のTDP-43標的RNAは、STMN2プレmRNA、ARHGAP32プレmRNA、SLC5A7プレmRNA、CERT1プレmRNA、CAMK2BプレmRNA、KALRNプレmRNA及びUNC13AプレmRNAからなる群から独立して選択され得る。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチドは、2つ以上のTDP-43標的プレmRNA(標的RNA)のスプライシングを調節することができる。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチドは、3つ以上のTDP-43標的プレmRNA(標的RNA)のスプライシングを調節することができる。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチドは、4つ以上のTDP-43標的プレmRNA(標的RNA)のスプライシングを調節することができる。
いくつかの実施形態では、本発明によるアンチセンスオリゴヌクレオチドは、2、3、4、5、6、7、8、9、10個又はそれ以上のTDP-43標的プレmRNA(標的RNA)のスプライシングを調節することができる。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、TDP-43枯渇細胞に投与した場合、STMN2(野生型)の発現を増強することができ、さらに、ARHGAP32プレmRNA、SLC5A7プレmRNA、CERT1プレmRNA、CAMK2BプレmRNA、KALRNプレmRNA及びUNC13AプレmRNAからなる群から選択される少なくとも1つ、例えば2つ以上のプレmRNAのプレmRNAスプライシングの忠実度を増強することができる。いくつかの実施形態では、2つ以上の選択されたプレmRNAは、STMN2及びARHGAP32;STMN2及びSLC5A7;STMN2及びCERT1;ARHGAP32及びSLC5A7;ARHGAP32及びCERT1;並びにSLC5A7及びCERT1からなる群から選択される。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、TDP-43枯渇細胞に投与した場合、STMN2プレmRNA、ARHGAP32プレmRNA、SLC5A7プレmRNA、CERT1プレmRNA、CAMK2BプレmRNA、KALRNプレmRNA及びUNC13AプレmRNAからなる群から選択される2つ以上のプレmRNAのプレmRNAスプライシングの忠実度を増強することができる。いくつかの実施形態では、2つ以上の選択されたプレmRNAは、STMN2及びARHGAP32;STMN2及びSLC5A7;STMN2及びCERT1;ARHGAP32及びSLC5A7;ARHGAP32及びCERT1;並びにSLC5A7及びCERT1からなる群から選択される。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、TDP-43枯渇細胞に投与した場合、STMN2プレmRNA、ARHGAP32プレmRNA、SLC5A7プレmRNA、CERT1プレmRNA、CAMK2BプレmRNA、KALRNプレmRNA及びUNC13AプレmRNAからなる群から選択される3つ以上のプレmRNAのプレmRNAスプライシングの忠実度を増強することができる。
いくつかの実施形態では、2つ以上の選択されたプレmRNAは、STMN2及びARHGAP32;STMN2及びSLC5A7;並びにSTMN2及びCERT1プレmRNA.からなる群から選択される。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、TDP-43枯渇細胞に投与した場合、STMN2プレmRNA、ARHGAP32プレmRNA、SLC5A7プレmRNA、CERT1プレmRNA、CAMK2BプレmRNA、KALRNプレmRNA及びUNC13AプレmRNAのプレmRNAスプライシングの忠実度を増強することができる。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、STMN2プレmRNAを発現しているTDP-43枯渇細胞に投与された場合、STMN2の発現を増加させることができる。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、STMN2プレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、隣接するエクソン1/エクソン2接合部を有する野生型STMN2成熟mRNAと比較して、エクソン1とエクソン2との間に潜在性エクソン(ce1)を含むSTMN2成熟mRNAの割合を減少させることができる。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、ARHGAP32プレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、異常にスプライシングされたARHGAP32成熟mRNAのレベルを減少させることができる。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、SLC5A7プレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、SLC5A7 mRNA転写物中の異常なエクソン封入のレベルを減少させることができる。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、CERT1プレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、CERT1 mRNA転写物中の異常なエクソン封入のレベルを減少させることができる。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、CAMK2BプレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、CAMK2B mRNA転写物中の異常なエクソン封入のレベルを減少させることができる。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、KALRNプレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、KALRN mRNA転写物中の異常なエクソン封入のレベルを減少させることができる。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、UNC13AプレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、UNC13A mRNA転写物中の異常なエクソン封入のレベルを減少させることができる。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、TDP-43枯渇細胞におけるSTMN2、CERT1、SLC5A7、ARHGAP32、CAMK2B、KALRN及びUNC13AプレmRNAのうちの2つ以上の異常なスプライシングを修正することができる。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、3個を超えるか、又は4個を超える連続するDNAヌクレオシドの領域を含まない。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、RNAseH切断を媒介することができない。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、モルホリノアンチセンスオリゴヌクレオチドである。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、例えば、及び有利に、より低いギブス自由エネルギー、例えば-10未満、例えば-15未満などのギブス自由エネルギーを提供するために、アンチセンスオリゴヌクレオチドと相補的RNA分子との間の結合親和性を増強する1つ又は複数の親和性増強ヌクレオシド、例えば2’糖修飾ヌクレオシドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、1つ又は複数の修飾ヌクレオシド、例えば1つ又は複数の親和性増強2’糖修飾ヌクレオシド、例えば、2’糖修飾ヌクレオシドを含む:2’-O-アルキル-RNA;2’-O-メチルRNA(2’-OMe);2’-アルコキシ-RNA;2’-O-メトキシエチル-RNA(2’-MOE);2’-アミノ-DNA;2’-フルオロ-RNA;2’-フルオロ-DNA;アラビノ核酸(ANA);2’-フルオロ-ANA;ロックド核酸(LNA)、又はそれらの組み合わせからなる群から独立して選択される。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、2’-O-メトキシエチル-RNA(2’-MOE)ヌクレオシドを含む。いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列中の全てのヌクレオシドは、2’-O-メトキシエチル-RNA(2’-MOE)ヌクレオシドであり、任意に、ホスホロチオエートヌクレオシド間結合によって連結されている。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、2’-O-メチルヌクレオシドを含む。いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列中の全てのヌクレオシドは、2’-O-メチルヌクレオシドであり、任意に、ホスホロチオエートヌクレオシド間結合によって連結されている。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列内の1つ又は複数の修飾ヌクレオシドは、ロックド核酸ヌクレオシド(LNA)、例えば、拘束型エチルヌクレオシド(cEt)又はβ-D-オキシ-LNAからなる群から選択されるLNAヌクレオシドである。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドの連続ヌクレオチド配列は、任意にホスホロチオエートヌクレオシド間結合によって連結されたヌクレオシドLNAヌクレオシド及びDNAヌクレオシドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、ミックスマー又はトータルマーである。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列番号1~18からなる群から選択される核酸塩基の配列、配列番号1~34及び配列番号50~103から選択される配列、又はそれらの少なくとも8個の連続ヌクレオチドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列番号1~18からなる群から選択される核酸塩基の配列、配列番号1~34及び配列番号50~103から選択される配列、又はそれらの少なくとも9個の連続ヌクレオチドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列番号1~18からなる群から選択される核酸塩基の配列、配列番号1~34及び配列番号50~103から選択される配列、又はそれらの少なくとも10個の連続ヌクレオチドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列番号1~18からなる群から選択される核酸塩基の配列、配列番号1~34及び配列番号50~103から選択される配列、又はそれらの少なくとも11個の連続ヌクレオチドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列番号1~18からなる群から選択される核酸塩基の配列、配列番号1~34及び配列番号50~103から選択される配列、又はそれらの少なくとも12個の連続ヌクレオチドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列番号1~18からなる群から選択される核酸塩基の配列、配列番号1~34及び配列番号50~103から選択される配列、又はそれらの少なくとも13個の連続ヌクレオチドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列番号1~18からなる群から選択される核酸塩基の配列、配列番号1~34及び配列番号50~103から選択される配列、又はそれらの少なくとも14個の連続ヌクレオチドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列番号1~18からなる群から選択される核酸塩基の配列、配列番号1~34及び配列番号50~103から選択される配列、又はそれらの少なくとも15個の連続ヌクレオチドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列番号1~18からなる群から選択される核酸塩基の配列、配列番号1~34及び配列番号50~103から選択される配列、又はそれらの少なくとも16個の連続ヌクレオチドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、配列番号1~18からなる群から選択される核酸塩基の配列、配列番号1~34及び配列番号50~103から選択される配列、又はそれらの少なくとも17個の連続ヌクレオチドを含む。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列中に存在するシトシン塩基は、シトシン及び5-メチルシトシンからなる群から独立して選択される。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列中に存在するシトシン塩基は、5-メチルシトシンである。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列中に存在するLNAシトシン塩基は、LNA 5-メチルシトシンである。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列中に存在するLNAシトシン塩基は、LNA 5-メチルシトシンであり、DNAシトシン塩基は、シトシンである。
有利には、連続ヌクレオチド配列上のヌクレオシド間に位置するヌクレオシド間結合の1つ又は複数が修飾される。いくつかの実施形態では、連続ヌクレオチド配列上のヌクレオシド間に位置するヌクレオシド間結合の少なくとも約75%、少なくとも約80%、少なくとも約85%、少なくとも約90%、少なくとも約95%、又は約100%が修飾されている。
いくつかの実施形態では、修飾されたヌクレオシド間結合の1つ若しくは複数、又は全ては、ホスホロチオエート結合である。いくつかの実施形態では、連続ヌクレオチド配列内の結合の1つ若しくは複数、又は全ては、ホスホロチオエート結合である。
いくつかの実施形態では、連続ヌクレオチド配列に存在する全てのヌクレオシド間結合が、ホスホロチオエートヌクレオシド間結合である。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド中に存在する全てのヌクレオシド間結合は、ホスホロチオエートヌクレオシド間結合である。
いくつかの実施形態では、連続ヌクレオチド配列の長さは8~32ヌクレオチドである。
いくつかの実施形態では、連続ヌクレオチド配列の長さは8~20ヌクレオチドである。
いくつかの実施形態では、連続ヌクレオチド配列の長さは12~18ヌクレオチドである。
いくつかの実施形態では、連続ヌクレオチド配列の長さは13~18ヌクレオチドである。
いくつかの実施形態では、連続ヌクレオチド配列の長さは14~18ヌクレオチドである。
いくつかの実施形態では、連続ヌクレオチド配列の長さは10~32ヌクレオチドである。
いくつかの実施形態では、連続ヌクレオチド配列の長さは20~32ヌクレオチドである。
いくつかの実施形態では、連続ヌクレオチド配列の長さは21~32ヌクレオチドである。
いくつかの実施形態では、連続ヌクレオチド配列の長さは22~32ヌクレオチドである。
いくつかの実施形態では、連続ヌクレオチド配列の長さは23~32ヌクレオチドである。
いくつかの実施形態では、連続ヌクレオチド配列の長さは24~32ヌクレオチドである。
いくつかの実施形態では、連続ヌクレオチド配列の長さは25~32ヌクレオチドである。
いくつかの実施形態では、連続ヌクレオチド配列の長さは26~32ヌクレオチドである。
いくつかの実施形態では、連続ヌクレオチド配列の長さは27~32ヌクレオチドである。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、連続ヌクレオチド配列からなる。
いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、16,1、8,3、18,3、18,4、16,2、18,2、7,2、15,2、16,3、15,3、8,1、8,2、7,3、6,4、6,3、18,1、7,1、14,2、6,2、14,4、15,4、10,1、及び15,5.からなる群から選択されるオリゴヌクレオチドを含むか、又はそれからなる。
本発明は、(化合物ID番号)16,1、8,3、18,3、18,4、16,2、18,2、7,2、15,2、16,3、15,3、8,1、8,2、7,3、6,4、6,3、18,1、7,1、14,2、6,2、14,4、15,4、10,1、及び15,5からなる群から選択されるアンチセンスオリゴヌクレオチドを提供する。
本発明のオリゴヌクレオチドは、1つ以上のコンジュゲート基を含んでもよく、すなわち、オリゴヌクレオチドは、アンチセンスオリゴヌクレオチドコンジュゲートであってもよい。
本発明は、本発明に従ったオリゴヌクレオチドを含むコンジュゲート、及び、前記オリゴヌクレオチドに共有結合した少なくとも1つのコンジュゲート部分を提供する。
本発明は、本発明のアンチセンスオリゴヌクレオチド又はコンジュゲートの薬学的に許容され得る塩などの塩、例えばナトリウム塩又はカリウム塩を提供する。
本発明は、請求項のオリゴヌクレオチド又は本発明のコンジュゲートと、薬学的に許容され得る希釈剤、溶媒、担体、塩、及び/又はアジュバントとを含む、医薬組成物を提供する。
本発明は、本発明のオリゴヌクレオチド又は本発明のコンジュゲートと、薬学的に許容され得る希釈剤又は溶媒及びカチオンとを含む、医薬組成物を提供する。カチオンは、例えば、ナトリウムカチオン又はカリウムカチオンであり得る。希釈剤/溶媒は水であり得る。
本発明は、異常又は枯渇したレベルのTDP-43を発現している細胞においてTDP-43の機能性を増強するためのインビボ又はインビトロ方法などの方法を提供し、該方法は、本発明のオリゴヌクレオチド、又は本発明によるコンジュゲート、又は本発明による塩若しくは組成物を有効量で細胞に投与することを含む。
本発明は、対象におけるTDP-43病理を処置又は予防するための方法であって、治療有効量又は予防有効量の本発明のオリゴヌクレオチド若しくは本発明によるコンジュゲート、又は本発明による塩若しくは組成物を、TDP-43病理に罹患しているか、又は罹患しやすい対象に投与することを含む、方法を提供する。
本発明は、医薬として使用するための、本発明のオリゴヌクレオチド若しくは本発明によるコンジュゲート、又は本発明による塩若しくは組成物を提供する。
本発明は、TDP-43病理の処置における使用のための、本発明のオリゴヌクレオチド若しくは本発明によるコンジュゲート、又は本発明による塩若しくは組成物を提供する。
本発明は、TDP-43病理の処置又は予防のための医薬の調製のための、本発明のオリゴヌクレオチド若しくは本発明によるコンジュゲート、又は本発明による塩若しくは組成物の使用を提供する。
本発明は、TDP-43病理が、筋萎縮性側索硬化症(ALS)、前頭側頭葉変性症(FTLD)、進行性核上性麻痺(PSP)、原発性側索硬化症、進行性筋萎縮症、アルツハイマー病、パーキンソン病、自閉症、海馬硬化性認知症、ダウン症候群、ハンチントン病、ポリグルタミン病、例えば脊髄小脳失調症3、ミオパシー及び慢性外傷性脳症からなる群から選択される神経障害である、本発明の使用又は方法を提供する。
いくつかの実施形態では、TDP-43病理は、筋萎縮性側索硬化症(ALS)、前頭側頭葉変性症(FTLD)からなる群から選択される神経障害である。
本発明は、本発明のアンチセンスオリゴヌクレオチド、並びに、薬学的に許容され得る希釈剤、担体、塩、及び/又はアジュバントを含む、医薬組成物を提供する。
本発明は、本発明のアンチセンスオリゴヌクレオチドの薬学的に許容され得る塩を提供する。いくつかの実施形態では、薬学的に許容され得る塩は、ナトリウム塩、カリウム塩又はアンモニウム塩である。
本発明は、本発明のオリゴヌクレオチドと、リン酸緩衝生理食塩水などの薬学的に許容され得る溶媒とを含む、本発明のオリゴヌクレオチドの薬学的溶液を提供する。
本発明は、凍結乾燥粉末の形態などの固体粉末形態の本発明のオリゴヌクレオチドを提供する。
典型的には、本発明のアンチセンスオリゴヌクレオチドは、少なくとも8又は少なくとも10ヌクレオチド長、例えば10~32、15~32、20~32、21~32、22~32、23~32、24~32、25~32、26~32、27~32又は10~20ヌクレオチド長の連続ヌクレオチド配列を含み、連続ヌクレオチド配列は、TDP-43 RNA結合配列に対して少なくとも75%相補的、例えば少なくとも90%相補的、又は完全に相補的である。いくつかの実施形態では、アンチセンスオリゴヌクレオチドの全てのヌクレオシドは、連続ヌクレオチド配列を形成する。
いくつかの実施形態では、本発明のアンチセンスオリゴヌクレオチドは、少なくとも2つのヒトプレmRNAのスプライシングを調節することができる。例えば、ヒトSTMN2、CERT1、SLC5A7、ARHGAP32、CAMK2B、KALRN及びUNC13AプレmRNAのスプライシングは、実施例に示すように、TDP-43結合に依存する。
さらなる態様では、本発明は、神経変性疾患、例えば筋萎縮性側索硬化症(ALS)を処置又は予防するための方法であって、治療有効量又は予防有効量の本発明のオリゴヌクレオチドを、疾患に罹患しているか又は疾患に罹りやすい対象に投与することを含む、方法を提供する。
さらなる態様では、本発明のオリゴヌクレオチド又は組成物は、TDP-43の病理又は核からのTDP-43の誤局在化を特徴とする神経変性障害としての神経変性疾患、例えば筋萎縮性側索硬化症(ALS)の処置又は予防に使用される。
配列表
本出願と共に提出された配列表は、参照により本明細書に組み込まれる。
異常なSTMN2 mRNA発現レベル対WT STMN2 mRNA発現レベルの比によって測定される、TDP-43枯渇細胞におけるSTMN2 mRNAプロセシングの補正におけるオリゴヌクレオチド長と有効性との間の相関。注目すべきことに、より効果的な化合物は、少なくとも12ヌクレオチド長であった。 異常なSTMN2 mRNA発現レベル対WT STMN2 mRNA発現レベルの比によって測定される、TDP-43枯渇細胞におけるSTMN2 mRNAプロセシングの補正におけるオリゴヌクレオチドのギブス自由エネルギー(ΔG)と有効性との間の相関。注目すべきことに、より効果的な化合物は、少なくとも-10ΔGのギブス自由エネルギーを有していた。 異常なSTMN2 mRNA発現レベル対WT STMN2 mRNA発現レベルの比によって測定される、TDP-43枯渇細胞におけるSTMN2 mRNAプロセシングの補正におけるオリゴヌクレオチドの融解温度(予測Tm)と有効性との間の相関の欠如。 化合物Aで処置した際のグルタニューロンにおけるTARDBPノックダウン。未処理のグルタニューロン、化合物A、化合物A+B及び化合物A+Cで処理したグルタニューロンにおけるTARDBPの相対的発現。 化合物Aで処置した際のグルタニューロンにおけるSTMN2野生株発現。A)未処理グルタニューロン、化合物A、化合物A+B及び化合物A+Cで処理したグルタニューロンのSTMN2遺伝子の5’末端にマッピングされた正規化リードを示すグラフィカル・ユーザ・インターフェース。灰色の長方形は、選択的スプライスアクセプター部位の使用である整列したリードを強調している。 B)未処理のグルタニューロン、化合物A、化合物A+B及び化合物A+Cで処理したグルタニューロンにおける野生型STMN2転写物の相対的発現。 TDP-43枯渇細胞におけるSTMN2 mRNAへの潜在性エクソン封入をもたらす異常なスプライシング事象の一例の説明図である。図は、mRNA転写物を含有するSTMN2潜在性エクソンのヌクレオチド配列(配列番号120)を示し、アミノ酸配列は、得られた切断型スタスミン-2タンパク質(本明細書ではSTMN2タンパク質と呼ぶ)である。網掛けの太字のヌクレオチド配列はSTMN2エクソン1配列であり、下線のヌクレオチド配列はイントロン1に由来する潜在性エクソン配列であり、潜在性スプライス部位はv記号で示されている。ATG開始コドン、TAG停止コドン及びポリアデニル化シグナルを強調している。 化合物A、B及びCで処置した際のグルタニューロンにおけるARHGAP32発現。A)未処理グルタニューロン、化合物A、化合物A+B及び化合物A+Cで処理したグルタニューロンのhg38(ARHGAP32に対する部分ズーム)にアライメントされた正規化リードを示すグラフィカル・ユーザ・インターフェース。灰色の長方形は、選択的スプライスアクセプター部位の使用を示す整列したリードを示す。 B)未処理のグルタニューロン、化合物A、化合物A+B及び化合物A+Cで処理したグルタニューロンにおける 選択的最終エクソン(ENSG00000134909における位置200153)の封入を有するARHGAP32アイソフォームの相対的発現。 ARHGAP32遺伝子(配列番号121)の新規の最終エクソンのヌクレオチド配列であり、新規潜在性スプライス部位は^記号で示され、太字でない文字はTDP-43枯渇細胞において濃縮された潜在性エクソンを表す。潜在性エクソンの封入により、潜在性エクソン内に2つのポリアデニル化部位(影付きの文字)が封入され、その結果、ARHGAP32によってコードされるタンパク質であるRho GTPアーゼ活性化タンパク質32の切断型の発現がもたらされる。イタリック体の文字は、GTリッチRNA結合タンパク質結合部位である。 化合物A、B及びCで処置した際のグルタニューロンにおけるSLC5A7発現。A)未処理グルタニューロン、化合物A、化合物A+B及び化合物A+Cで処理したグルタニューロンのSLC5A7にアライメントされた正規化リードを示すグラフィカル・ユーザ・インターフェース。灰色の長方形は、選択的エクソンの封入を示す整列したリードを示す。 B)未処理のグルタニューロン、化合物A、化合物A+B及び化合物A+Cで処理したグルタニューロンにおける 選択的最終エクソンの封入を有するSLC5A7アイソフォームの相対的発現。 SLC5A7遺伝子(配列番号122)から封入される新規エクソンのヌクレオチド配列。新規潜在性スプライス部位は^記号で示され、太字でない下線付き文字はTDP-43枯渇細胞において濃縮された潜在性エクソンを表す。イタリック体の文字は、GTリッチRNA結合タンパク質結合部位(TDP-43結合部位)である。 化合物A、B及びCで処置した際のグルタニューロンにおけるCERT1発現。A)未処理グルタニューロン、化合物A、化合物A+B及び化合物A+Cで処理したグルタニューロンのCERT1にアライメントされた正規化リードを示すグラフィカル・ユーザ・インターフェース。灰色の長方形は、選択的エクソンの封入を示す整列したリードを示す。 B)未処理のグルタニューロン、化合物A、化合物A+B及び化合物A+Cで処理したグルタニューロンにおける 選択的最終エクソンの封入を有するCERT1アイソフォームの相対的発現。 TDP-43枯渇細胞中のCERT1遺伝子(配列番号123)から含まれる新規インフレームエクソンのヌクレオチド配列。CERT1の新しいエクソンが下線付き文字で示されており、TDP-43結合部位はイタリック体である。 ベン図である。0.01未満のp値を有する選択的スプライシングを示し、対照と比較して2倍を超える変化を示す転写物の数。化合物Aの対照は未処理のグルタニューロンであるのに対して、化合物A+B及びA+Cの対照はTDP-43ノックダウン(化合物A)である。TDP-43枯渇細胞(化合物Aのみで処理)では、TDP-43枯渇のために選択的にスプライシングされた合計925個の転写物があった。その後、TDP-43枯渇細胞をSTMN2標的化オリゴヌクレオチド(化合物B)で処理した場合、化合物Aで処理した細胞と比較して、選択的にスプライシングされた114個の転写物が存在した。その後、TDP-43枯渇細胞を本発明のRNAタンパク質結合部位標的化オリゴヌクレオチド(化合物C)で処理した場合、化合物Aで処理した細胞と比較して、選択的にスプライシングされた351個の転写物が存在した。これは、本発明の化合物が、STMN2標的化オリゴヌクレオチドと比較して、全体的なRNAスプライシングの調節においてより効果的であることを示している。 図14Aは、CAMK2B遺伝子にマッピングされた正規化されたリードのマッピングを示すグラフ図を示す。化合物A又は対照としての未処理細胞(PBS)で処理したグルタニューロン、続いてmRNA単離及びNGS。TDP43タンパク質の喪失時のCAMK2B遺伝子内の新規エクソンの位置を、水平な灰色長方形で示す(CAMK2Bの新規エクソンを囲むエクソンのみを示す)。新規スプライスドナー部位は灰色の矢印で示されている。CAMK2BプレmRNAはマイナス鎖から転写される。 図14Bは、TDP43タンパク質の喪失時に観察される新規CANK2Bエクソンの配列を示す。太字は、グルタニューロンで観察されたカノニカルエクソンである。下線は新規エクソンであり、斜体では多くの終止コドンのうちの最初の終止コドンが示されている。はカノニカルスプライス部位を示し、は新規スプライスアクセプター部位の位置を示す。 図15Aは、KALRN遺伝子にマッピングされた正規化されたリードのマッピングを示すグラフ図を示す。化合物A又は対照としての未処理細胞(PBS)で処理したグルタニューロン、続いてmRNA単離及びNGS。TDP43タンパク質の喪失時のKALRN遺伝子内の新規エクソンの位置を、灰色長方形で示す(KALRNの新規エクソンを囲むエクソンのみを示す)。 図15Bは、異常にスプライシングされたエクソンを含むKALRN遺伝子にマッピングされた正規化されたリードのマッピングを拡大したグラフ図を示す。化合物A又は対照としての未処理細胞(PBS)で処理したグルタニューロン、続いてmRNA単離及びNGS。TDP43タンパク質の喪失時のKALRN遺伝子内の新規エクソンの位置を、水平な灰色長方形で示す。矢印は、TDP43タンパク質の喪失時に使用されるスプライス部位を示す。 図15Cは、TDP43タンパク質の喪失時に観察される新規KALRNエクソンの配列を示す。太字は、グルタニューロンで観察された新規エクソンである。斜体では、コード配列内の多くの終止コドンのうちの最初のものが示されている。は、新規スプライス部位の位置を示す。 図15Dは、TDP43タンパク質の喪失時に観察される新規KALRNエクソンのng配列を示す。太字は、グルタニューロンで観察された新規エクソンである。斜体では、コード配列内の多くの終止コドンのうちの最初のものが示されている。は、新規スプライス部位の位置を示す。 図16Aは、128ヌクレオチド(A)又は178ヌクレオチド(B)のいずれかの潜在性エクソンの封入をもたらす異常なスプライシング事象の説明図を示す。太字は、UNC13Aの2つの潜在性エクソンのヌクレオチド配列である。スプライス部位はによって示されており、エクソンに対するイントロン配列5’及び3’は通常の大文字で示されている。UNC13A遺伝子が19番染色体のマイナス鎖上に位置するので、逆相補配列が示されている。 図16Bは、UNC13A遺伝子にマッピングされた正規化されたリードのマッピングを示すグラフ図を示す。化合物A又は対照としての未処理細胞(PBS)で処理したグルタニューロン、続いてmRNA単離及びNGS。TDP43タンパク質の喪失時のUNC13A遺伝子内の新規エクソンの位置を、灰色長方形で示す(UNC13Aの新規エクソンを囲むエクソンのみを示す)。 図16Cは、TDP43タンパク質の喪失時のUNC13A遺伝子内の新規エクソンを示すグラフ図を示す。化合物A又は対照としての未処理細胞(PBS)で処理したグルタニューロン、続いてmRNA単離及びNGS。矢印は、新規スプライス部位を示す。
定義
RNA結合タンパク質模倣物及びTDP-43模倣物
TDP-43は、ヒトにおいてヒト染色体1:11,012,653-11,022,858の順鎖(遺伝子ENSG00000120948,Chr 1:11,012,344-11,025,739、典型的なTDP-43転写物の例=ENST00000439080.6)にコードされているTAR RNA/DNA結合タンパク質であり、RNAスプライシング、安定性及び代謝に広く関与している。健康な細胞では、TDP-43タンパク質は核内に位置するが、いくつかの神経変性疾患では、機能障害TDP-43凝集体が細胞質内に形成される(しばしば過剰リン酸化及びユビキチン化TDP-43に関連する)。
TDP-43は、多数の独立したRNA転写物中のGUリピートに結合するRNA結合タンパク質の一例である。TDP-43などのRNA結合タンパク質と多数のRNA転写物の集団との相互作用は、プレmRNAに対するスプライシング、RNA安定性、RNA蓄積などのRNA転写物の生物学に大きな影響を及ぼし、したがって、細胞内の独立したRNAの集団の発現を発揮するための機構を提供する。これは、機能的TDP-43のRNA結合の喪失が神経変性と密接に関連するTDP-43枯渇の場合に特に関連する。
本発明は、プレmRNA転写物の集団上の保存されたTDP-43結合部位などの複数のRNA転写産物上のGUリッチ領域に相補的なアンチセンスオリゴヌクレオチドを提供する。実施例において例示されるように、本発明のオリゴヌクレオチドの投与は、RNA結合タンパク質、例えばTDP-43の枯渇又は非存在下では異常にプロセシングされる複数の独立したRNA転写物の機能的プロセシングを回復させることができる。したがって、本発明の化合物とも呼ばれる本発明のアンチセンスオリゴヌクレオチドは、複数のRNA転写物のRNA生物学を調節する際に、TDP-43などのRNA結合タンパク質の機能性を回復させるという点で、RNA結合タンパク質模倣物又はTDP-43模倣物と呼ばれることがある。
例として、(例えば、TDP-43枯渇細胞において)本発明の化合物の使用によって回復又は増強されるTDP-43機能性などのRNA結合タンパク質機能性は、プレmRNA転写物の発現、プロセシング、例えばスプライシング事象であり、そうでなければ低下したレベルの機能性TDP-43を有する細胞(本明細書ではTDP-43枯渇細胞と呼ばれる)において調節不全である機能性遺伝子発現の回復をもたらす。これは、遺伝子発現の増強又は遺伝子発現の質の増強をもたらし得る。
有利には、本発明の化合物は、機能的TDP-43を模倣し、1つ又は複数のTDP-43標的RNAの発現においてTDP-43の核機能を回復させ、それによってTDP-43標的RNAの機能的表現型を回復させることができる。
他のRNA結合タンパク質がTDP-43結合部位に結合し得、したがって、本明細書で言及されるTDP-43模倣物は、複数の核酸標的(すなわち、異なる遺伝子座から記載されるRNA標的)などの1つ又は複数のRNA標的のTDP-43結合部位に相補的であり、正常な(野生型)の発現を回復させることができるオリゴヌクレオチドであることが理解されよう。
Arnold et al.,PNAS 2013に報告されているように、いくつかのTDP-43病理は特定のTDP-43変異に関連しており、これらは必ずしもTDP-43細胞質枯渇に関連していない可能性がある。本発明の文脈において、TDP-43の正常な機能は遺伝的に破壊され得るので、これはまた、枯渇又は正常なTDP-43(本発明のTDP-43模倣物を使用して対処することができる表現型)の潜在的な原因であると考えられる。
TDP-43 RNA標的の例
図13に示すように、神経細胞におけるTDP-43の枯渇は、細胞内のRNA転写物の大きな集団のRNAプロセシングの著しい変化をもたらす-この例では、749個のRNA転写物は、TDP-43の枯渇後に、RNA配列決定によって決定される代替的なRNAプロセシングを示した。
実施例は、これらのTDP-43標的RNAのうちの7つを例示する:STMN2、ARHGAP32、SLC5A7、CERT1、CAMK2B、KALRN及びUNC13A。
Arnold et al.,PNAS 2013 110 E736-745は、TDP-43枯渇細胞(TDP-43 ASO枯渇マウス)におけるTDP-43結合RNAのプレmRNAスプライシングの広範な異常を同定し、マイクロアレイ分析を使用した指標となるTDP-43調節スプライシング事象の同定を説明している。スプライシングがTDP-43によって調節されるArnoldらによって同定されたRNAには、Eif4h、Taf1b、Kcnip2(TDP-43変異依存性)、Sort1、Kcnd3、Ahi1、Atxn2、Ctnnd(用量依存性)が含まれる。
STMN2(Klim et al.,Nat Neurosci.2019 Feb;22(2):167-179)-(例えばALSにおける)神経細胞におけるTDP-43枯渇は、STMN2転写物のミススプライシングをもたらす。STMN2は微小管調節因子をコードし、その発現は、TDP-43のノックダウン及びTDP-43の誤局在化の後、並びに患者特異的運動ニューロン及び死後の患者脊髄において低下する。
STMN2の翻訳後安定化は、TDP-43枯渇によって誘導される神経突起伸長及び軸索再生欠損を救済した。TDP-43枯渇は、STMN2のエクソン1とエクソン2との間の潜在性イントロンの組み込みをもたらす。国際公開第2019/241648号は、STMN2のミススプライシングを抑制するために使用される完全にMOE修飾されたホスホロチオエートASOを開示している。
上記の転写物及び関連するTDP-43枯渇スプライシング事象を使用して、本発明の化合物を使用してTDP-43機能性の回復についてアッセイすることができる。
TDP-43病理
TDP-43病理は、TDP-43の発現の減少又は異常に関連する疾患であり、しばしば細胞質TDP-43、特に過剰リン酸化及びユビキチン化TDP-43の増加に関連する。
TDP-43枯渇は、TDP-43病理と呼ばれる様々な疾患で示され、例えば、筋萎縮性側索硬化症(ALS)、前頭側頭葉変性症(FTLD)、進行性核上性麻痺(PSP)、原発性側索硬化症、進行性筋萎縮症 アルツハイマー病、パーキンソン病、自閉症、海馬硬化性認知症、ダウン症候群、ハンチントン病、ポリグルタミン病、例えば脊髄小脳失調症3、ミオパシー及び慢性外傷性脳症などを含む。
TDP-43が枯渇した細胞
TDP-43が枯渇している細胞とは、TDP-43の機能レベルが低下している細胞を指す。TDP-43病理では、異常なTDP-43発現は機能不全細胞質TDP-43の蓄積及び機能性核TDP-43レベルの低下をもたらすことが理解されるであろう。したがって、TDP-43が枯渇しているそのような細胞は、TDP-43の機能レベルの低下を特徴とし得、したがって、機能不全TDP-43のレベルの増加に関連し得る。インビトロ評価のために、TDP-43枯渇は、例えば遺伝子工学的アプローチ(例えば、CRISPR/CAS9)によって、又は実施例に例示されるように、TDP-43のアンチセンスオリゴヌクレオチド阻害剤(ヒトTDP-43転写物を標的とするギャップマーオリゴヌクレオチドによって例示される)の使用によって操作され得る。
いくつかの実施形態では、TDP-43が枯渇している細胞はニューロン細胞である。
TDP-43結合部位に相補的な配列
TDP-43結合部位は、例えばポリGUモチーフ(RNA結合のAデータベースhttps://attract.cnic.es/results/e9f29380-8921-406e-84a8-27ce9b9398b4#を参照のこと)を特徴とし、適切にはアンチセンスオリゴヌクレオチド介入のために、(GU)n又は(UG)nのモチーフを含んでいてもよく、ここでnは、少なくとも3又は好ましくは少なくとも4である。いくつかの実施形態では、nは、4、5、6、7、8、9又は10である。
いくつかの実施形態では、TDP-43結合部位は、(UG)n、(GU)n[式中、nは4~20である]、UGUGUGUG、UGUGUGUGU、UGUGUGUGUG、UGUGUGUGUGU、UGUGUGUGUGUG、UGUGUGUGUGUGU、GUGUGUGU、GUGUGUGUG、GUGUGUGUGU、GUGUGUGUGUG、GUGUGUGUGUGU(配列番号42)、GUGUGUGUGUGUG、及びGUGAAUGAからなる群から選択される配列を含み得る。
いくつかの実施形態では、TDP-43結合部位は、GUGAAUGA、GUUGUGC、UGUGUGUGUGUG(配列番号35)、GAAUGG、UGUGUGUG、GAAUGA、UGUGUG、GUUGUUC、及びGUUUUGCからなる群から選択される配列を含み得る。いくつかの実施形態では、TDP-43結合部位は、配列UGUGUGUGUGUGUG(配列番号46)を含み得る。
いくつかの実施形態では、本発明のオリゴヌクレオチドは、(UG)n、(GU)n[式中、nは4~20である]、UGUGUGUG、UGUGUGUGU、UGUGUGUGUG、UGUGUGUGUGU、UGUGUGUGUGUG、UGUGUGUGUGUGU、GUGUGUGU、GUGUGUGUG、GUGUGUGUGU、GUGUGUGUGUG、GUGUGUGUGUGU、GUGUGUGUGUGUG、及びGUGAAUGAからなる群から選択される1つ又は複数の配列に相補的、例えば完全に相補的な配列を含み得る。
本発明のオリゴヌクレオチドは、TDP-43結合部位配列、例えば(GU)n、(UG)n、GUGAAUGA、GUUGUGC、GAAUGG、UGUGUGUG、GAAUGA、UGUGUG、UGUGUGUGUGUG(配列番号35)、GUUGUUC、及びGUUUUGCからなる群から選択される1つ又は複数の配列に相補的、例えば完全に相補的な配列を含み得る。
オリゴヌクレオチド
本明細書で用いられる「オリゴヌクレオチド」という用語は、2つ以上の共有結合したヌクレオシドを含む分子として当業者に一般に理解されるように定義される。このような共有結合したヌクレオシドはまた、核酸分子又はオリゴマーとも称されうる。オリゴヌクレオチドは、通常、固相化学合成と、その後の精製及び単離によって研究室内で作製される。オリゴヌクレオチドの配列に言及する場合には、共有結合したヌクレオチド又はヌクレオシドの核酸塩基部分の配列又は順序、若しくはその修飾が言及される。本発明のオリゴヌクレオチドは、人工のものであり、化学的に合成され、通常は精製又は単離される。
本発明のオリゴヌクレオチドは、例えば2’糖修飾ヌクレオシドなどの1つ以上の修飾ヌクレオシドを含んでもよい。本発明のオリゴヌクレオチドは、1以上のホスホロチオエートのヌクレオシド間結合のような、1以上の修飾ヌクレオシド間結合を含むことができる。
アンチセンスオリゴヌクレオチド
本明細書で用いられる「アンチセンスオリゴヌクレオチド」という用語は、標的核酸、特に標的核酸上の連続配列にハイブリダイズすることによって標的遺伝子の発現を調節することができるオリゴヌクレオチドとして定義される。アンチセンスオリゴヌクレオチドは、本質的に二本鎖ではなく、したがってsiRNA又はshRNAではない。本発明のアンチセンスオリゴヌクレオチドは一本鎖であってもよい。本発明の単鎖オリゴヌクレオチドは、自己内又は自己間の相補性の程度がオリゴヌクレオチドの全長にわたって約50%未満である限り、ヘアピン又は分子間二重構造(同じオリゴヌクレオチドの2つの分子間の二重鎖)を形成することができるものと理解される。
いくつかの実施形態では、本発明の一本鎖アンチセンスオリゴヌクレオチドは、RNAヌクレオシドを含まなくてもよい。
有利には、本発明のオリゴヌクレオチドは、例えば2’糖修飾ヌクレオシドなどの1つ以上の修飾ヌクレオシド又はヌクレオチドを含む。さらに、本発明のいくつかのアンチセンスオリゴヌクレオチドでは、修飾されていないヌクレオシドがDNAヌクレオシドであることが有利であり得る。
連続ヌクレオチド配列
「連続ヌクレオチド配列」という用語は、標的核酸に相補的なオリゴヌクレオチドの領域を指す。この用語は、本明細書で「連続核酸塩基配列」という用語及び「オリゴヌクレオチドモチーフ配列」という用語と互換的に用いられる。いくつかの実施形態では、アンチセンスオリゴヌクレオチドの全てのヌクレオチドが連続ヌクレオチド配列を構成する。連続ヌクレオチド配列は、標的核酸又は標的配列に相補的であり、場合によっては完全に相補的である本発明のオリゴヌクレオチド中のヌクレオチドの配列である。
いくつかの実施形態において、アンチセンスオリゴヌクレオチドは、連続ヌクレオチド配列を含み、任意に、更なるヌクレオチド、例えば、官能基(例えばコンジュゲート基)を連続ヌクレオチド配列に結合するのに使用され得るヌクレオチドリンカー領域を必要に応じて含んでいてもよい。ヌクレオチドリンカー領域は、標的核酸に相補的であっても相補的でなくてもよい。オリゴヌクレオチドの連続ヌクレオチド配列は、それ自体としてオリゴヌクレオチドより長くなることはできないことと、オリゴヌクレオチドは連続ヌクレオチド配列より短くなることはできないことと、が理解される。
ヌクレオチド及びヌクレオシド
ヌクレオチド及びヌクレオシドは、オリゴヌクレオチド及びポリヌクレオチドの構成単位であり、本発明の目的のために、天然に存在するヌクレオチド及びヌクレオシドと、天然に存在しないヌクレオチド及びヌクレオシドとの両方を含む。本来、DNAヌクレオチド及びRNAヌクレオチドなどのヌクレオチドは、リボース糖部分、核酸塩基部分、及び1つ以上のリン酸基(ヌクレオシドには存在しない)を含む。ヌクレオシド及びヌクレオチドはまた、互換的に「単位」又は「モノマー」と呼ぶことができる。
修飾ヌクレオシド
本明細書で用いられる「修飾ヌクレオシド」又は「ヌクレオシド修飾」という用語は、糖部分又は(核酸)塩基部分の1つ以上の修飾の導入によって、同等のDNA又はRNAヌクレオシドと比較して修飾されたヌクレオシドを指す。有利には、本発明のアンチセンスオリゴヌクレオチドの修飾ヌクレオシドの1つ以上は、修飾された糖部分を含む。修飾ヌクレオシドという用語はまた、「ヌクレオシド類似体」又は修飾「ユニット」又は修飾「モノマー」という用語と互換的に使用されてもよい。非修飾DNA又はRNA糖部分を有するヌクレオシドは、本明細書ではDNA又はRNAヌクレオシドと称される。DNA又はRNAヌクレオシドの塩基領域に修飾を有するヌクレオシドは、それらがワトソン・クリック塩基対合可能な場合には、依然として一般的にDNA又はRNAと称される。本発明の化合物に使用され得る例示的な修飾ヌクレオシドには、LNA、2’-O-MOE及びモルホリノヌクレオシド類似体が含まれる。
修飾ヌクレオシド間結合
「修飾ヌクレオシド間結合」という用語は、2つのヌクレオシドを共に共有結合する、ホスホジエステル(PO)結合以外の結合として当業者に一般的に理解されるように定義される。したがって、本発明のオリゴヌクレオチドは、1以上のホスホロチオエートのヌクレオシド間結合のような、1以上の修飾ヌクレオシド間結合を含むことができる。
いくつかの実施形態では、オリゴヌクレオチド又はその連続ヌクレオチド配列の少なくとも50%のヌクレオシド間結合がホスホロチオエートであり、例えばオリゴヌクレオチド又はその連続ヌクレオチド配列の少なくとも60%、例えば少なくとも70%、例えば少なくとも75%、例えば少なくとも80%又は例えば少なくとも90%又はそれよりも多くのヌクレオシド間結合がホスホロチオエートである。いくつかの実施形態では、オリゴヌクレオチド又はその連続ヌクレオチド配列のヌクレオシド間結合の全てが、ホスホロチオアートである。
有利には、オリゴヌクレオチドの連続ヌクレオチド配列の全てのヌクレオシド間結合がホスホロチオエートであるか、又はオリゴヌクレオチドの全てのヌクレオシド間結合がホスホロチオエート結合である。
核酸塩基
核酸塩基という用語は、ヌクレオシド及びヌクレオチドに存在するプリン(例えばアデニン及びグアニン)及びピリミジン(例えばウラシル、チミン及びシトシン)部分を含み、これらは核酸ハイブリダイゼーションにおいて水素結合を形成する。本発明の文脈において、核酸塩基という用語は、天然に存在する核酸塩基とは異なり得るが、核酸ハイブリダイゼーションの際に機能的である修飾核酸塩基も包含する。この文脈において、「核酸塩基」とは、アデニン、グアニン、シトシン、チミジン、ウラシル、キサンチン、及びヒポキサンチンなどの天然に存在する核酸塩基と、天然に存在しないバリアントとの両方を指す。このようなバリアントは、例えば、Hiraoら(2012)Accounts of Chemical Research第45巻2055頁及びBergstrom(2009)Current Protocols in Nucleic Acid Chemistry Suppl.37 1.4.1に記載されている。
いくつかの実施形態では、核酸塩基部分は、プリン又はピリミジンを修飾プリン又はピリミジン、例えば置換プリン又は置換ピリミジン、例えばイソシトシン、シュードイソシトシン、5-メチルシトシン、5-チオゾロ-シトシン、5-プロピニル-シトシン、5-プロピニル-ウラシル、5-ブロモウラシル5-チアゾロ-ウラシル、2-チオ-ウラシル、2’-チオ-チミン、イノシン、ジアミノプリン、6-アミノプリン、2-アミノプリン、2,6-ジアミノプリン及び2-クロロ-6-アミノプリン、5’ニトロインドールから選択される核酸塩基に変えることにより修飾される。
核酸塩基部分は、対応する各核酸塩基についての文字コード、例えば、A、T、G、C又はUにより示されてもよく、ここで、各文字は、任意に等価機能の改変された核酸塩基を含んでもよい。例えば、例示したオリゴヌクレオチドにおいて、核酸塩基部分は、A、T、G、C、及び5-メチルシトシンから選択される。任意に、LNAギャップマーについて、5-メチルシトシンLNAヌクレオシドが使用され得る。
修飾オリゴヌクレオチド
修飾オリゴヌクレオチドという用語は、1つ以上の糖修飾ヌクレオシド及び/又は修飾ヌクレオシド間結合を含むオリゴヌクレオチドを表す。「キメラオリゴヌクレオチド」という用語は、糖修飾ヌクレオシド及びDNAヌクレオシドを含むオリゴヌクレオチドを記述するために文献で使用されている用語である。いくつかの実施形態では、本発明のアンチセンスオリゴヌクレオチドがキメラオリゴヌクレオチドであることが有利であり得る。
相補性
「相補性」という用語は、ヌクレオシド/ヌクレオチドのワトソン・クリック塩基対合能力を説明する。ワトソン・クリック塩基対は、グアニン(G)-シトシン(C)及びアデニン(A)-チミン(T)/ウラシル(U)である。オリゴヌクレオチドは修飾核酸塩基を有するヌクレオシドを含んでいてもよく、例えば5-メチルシトシンは、しばしばシトシンの代わりに用いられ、したがって、相補性という用語は、非修飾核酸塩基と修飾核酸塩基との間のワトソン・クリック塩基対合を包含することが理解されよう(例えば、Hirao et al(2012)Accounts of Chemical Research vol 45 page 2055 and Bergstrom(2009)Current Protocols in Nucleic Acid Chemistry Suppl.37 1.4.1を参照されたい)。
本明細書で使用される「%相補的」という用語は、連続ヌクレオチド配列にわたって参照配列(例えば、標的配列又は配列モチーフ)に相補的である、核酸分子(例えば、オリゴヌクレオチド)の連続ヌクレオチド配列のヌクレオチドの割合(パーセント)を指す。したがって、相補性のパーセンテージは、2つの配列間(標的配列5’-3’と3’-5’からのオリゴヌクレオチド配列とを整列させた場合)で相補的である(ワトソン・クリック塩基対から)整列した核酸塩基の数を数え、その数をオリゴヌクレオチド中のヌクレオチドの総数で割り、100を掛けることによって計算される。このような比較において、整列(塩基対を形成)しない核酸塩基/ヌクレオチドは、ミスマッチと称される。挿入及び欠失は、連続ヌクレオチド配列の%相補性の計算において許容されない。相補性の決定において、核酸塩基の化学的修飾は、核酸塩基がワトソン・クリック塩基対合を形成する機能的能力が保持される限り、無視されることが理解されるであろう(例えば、5-メチルシトシンは、%同一性の計算の目的のために、シトシンと同一であると見なされる)。
本発明において、アンチセンスオリゴヌクレオチドの連続ヌクレオチド配列とTDP-43結合部位又は標的配列との間の相補性のレベルは、少なくとも約75%であり得る。
本発明において、アンチセンスオリゴヌクレオチドの連続ヌクレオチド配列と標的TDP-43結合部位又は標的配列との間の相補性のレベルは、少なくとも約80%であり得る。
本発明において、アンチセンスオリゴヌクレオチドの連続ヌクレオチド配列とTDP-43結合部位又は標的配列との間の相補性のレベルは、少なくとも約85%であり得る。
本発明において、アンチセンスオリゴヌクレオチドの連続ヌクレオチド配列とTDP-43結合部位又は標的配列との間の相補性のレベルは、少なくとも約90%であり得る。
本発明において、アンチセンスオリゴヌクレオチドの連続ヌクレオチド配列とTDP-43結合部位又は標的配列との間の相補性のレベルは、少なくとも約95%であり得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に完全に相補的であり得る。「完全に相補的」という用語は、100%の相補性を指す。
本発明の化合物は、TDP-43標的RNA中のTDP-43結合部位に相補的である。
実施例において例示されるように、完全な相補性は必要とされない場合があり、いくつかの実施形態では、オリゴヌクレオチドは、それが効果的に結合するTDP-43標的RNA TDP-43 RNA結合部位に対する1、2、3、4、5、6、7、8個又はそれを超えるミスマッチを含み得る。これに関して、異なるTDP-43標的RNA中の複数のTDP-43結合部位に十分に相補的であるが同一ではないオリゴヌクレオチドを設計することができる。いくつかの実施形態では、複数のTDP-43 RNA標的中のTDP-43結合部位配列の完全な同一性がない場合、イノシンなどのユニバーサル塩基をアンチセンスオリゴヌクレオチド中の相補的位置に使用することができる。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対する1つ以上のミスマッチを含み得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対する2つ以上のミスマッチを含み得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対する3つ以上のミスマッチを含み得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対する4つ以上のミスマッチを含み得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対する5つ以上のミスマッチを含み得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対する6つ以上のミスマッチを含み得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対する7つ以上のミスマッチを含み得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対する8つ以上のミスマッチを含み得る。
いくつかの実施形態では、1つ以上、例えば、2つ以上、3つ以上、4つ以上、5つ以上、6つ以上、7つ以上、又は8つ以上ミスマッチを含有する本発明のオリゴヌクレオチドは、10~32ヌクレオチド長であるオリゴヌクレオチドについて-10kcal未満の推定ΔG°値で標的核酸にハイブリダイズし得る。
いくつかの実施形態では、1つ以上、例えば、2つ以上、3つ以上、4つ以上、5つ以上、6つ以上、7つ以上、又は8つ以上ミスマッチを含有する本発明のオリゴヌクレオチドは、10~32ヌクレオチド長であるオリゴヌクレオチドについて、-12kcal、-15kcal、-17kcal、-20kcal、-30kcal、-40kcal、-50kcal又は-60kcal未満の推定ΔG°値で標的核酸にハイブリダイズし得る。
ΔG°値の計算については後述する。
同一性
本明細書で使用される「同一性」という用語は、連続ヌクレオチド配列にわたって参照配列(例えば、配列モチーフ)と同一である、核酸分子(例えば、オリゴヌクレオチド)内の連続ヌクレオチド配列のヌクレオチドの割合(パーセントで表される)を指す。したがって、同一性のパーセンテージは、2つの配列(本発明の化合物の連続ヌクレオチド配列及び参照配列における)の間で同一の(一致する)整列された核酸塩基の数を数え、その数をオリゴヌクレオチドのヌクレオチドの総数で割り、100を掛けることにより計算される。したがって、同一性の百分率=(一致数×100)/整列領域(例えば、連続ヌクレオチド配列)の長さ。挿入及び欠失は、連続ヌクレオチド配列の同一性の百分率の計算において許容されない。同一性の決定において、核酸塩基の化学的修飾は、核酸塩基がWatson Crick塩基対を形成する機能的能力が保持される限り、無視されることが理解されよう(例えば、5-メチルシトシンは、同一性%の計算の目的のために、シトシンと同一であると見なされる)。
ハイブリダイゼーション
本明細書で用いられる「ハイブリダイズ」又は「ハイブリダイズする」という用語は、2つの核酸鎖(例えば、オリゴヌクレオチド及び標的核酸)が対向する鎖上の塩基対間に水素結合を形成することにより二重鎖を形成することと理解されるべきである。2つの核酸鎖の間の結合の親和性は、ハイブリダイゼーションの強度である。これは、オリゴヌクレオチドの半分が標的核酸と二重鎖を形成する温度として定義される、融解温度(T)によって説明されることが多い。生理学的条件では、Tは親和性に厳密に比例しない(Mergny及びLacroix(2003年)「Oligonucleotides」第13巻第515~537頁)。標準状態ギブス自由エネルギーΔG°は、結合親和性をより正確に表し、ΔG°=-RTln(K)によって反応の解離定数(K)に関連付けられ、式中、Rは気体定数であり、Tは絶対温度である。したがって、オリゴヌクレオチドと標的核酸との間の反応の非常に低いΔG°は、オリゴヌクレオチドと標的核酸との間の強いハイブリダイゼーションを反映している。ΔG°は、水性濃度が1M、pHが7、温度が37℃の反応に関連したエネルギーである。標的核酸へのオリゴヌクレオチドのハイブリダイゼーションは、自発反応であり、自発反応の場合、ΔG°はゼロ未満である。ΔG°は、Hansenら,1965,Chem.Comm.36-38、及びHoldgateら,2005,Drug Discov Todayに記載されているように、例えば等温滴定熱量測定(ITC)により、実験的に測定し得る。当業者は、ΔG°測定のために市販の装置が入手可能であることを知るであろう。ΔG°は、SantaLucia,1998,Proc Natl Acad Sci USA.95:1460-1465に記載の最近接モデル(nearest neighbor model)を用いて(Sugimotoら,1995,Biochemistry34:11211-11216、及びMcTigueら,2004,Biochemistry43:5388-5405に記載された適切に誘導された熱力学的パラメータを使用し)、数値的に推定し得る。いくつかの実施形態では、本発明のオリゴヌクレオチドは、10~30ヌクレオチド長のオリゴヌクレオチドに対して-10kcal未満の概算ΔG°値で標的核酸にハイブリダイズする。いくつかの実施形態では、ハイブリダイゼーションの程度又は強度は、標準状態ギブス自由エネルギーΔG°により測定される。オリゴヌクレオチドは、8~30ヌクレオチド長のオリゴヌクレオチドに対して-10kcalの範囲未満、例えば-15kcal未満、例えば-20kcal未満、及び例えば-25kcal未満の概算ΔG°値で標的核酸にハイブリダイズし得る。いくつかの実施形態では、オリゴヌクレオチドは、-10から-60kcal、例えば-12から-40、例えば-15から-30kcal、又は-16から-27kcal、例えば-18から-25kcalの推定ΔG°値で、標的核酸にハイブリダイズする。
例示的なTDP-43 RNA標的
いくつかの実施形態では、TDP-43標的RNAは、スタスミン2、又はSCG10、SCGN10として公知の哺乳動物タンパク質、例えば以下の遺伝子として開示されるヒトSTMN2である:ENSG00000104435(ensemble.org)、ヒト第8染色体:79,610,814-79,666,175フォワード鎖(GRCh38:CM000670.2)にコードされる。
いくつかの実施形態では、TDP-43標的RNAは、セラミドトランスポーター1(CERT1)として公知の哺乳動物タンパク質、例えば以下の遺伝子として開示されるヒトCERT1である:ENSG00000113163(ensemble.org)、ヒト第5染色体:75,356,345-75,512,138リバース鎖(GRCh38:CM000667.2)にコードされる。
いくつかの実施形態では、TDP-43標的RNAは、溶質担体ファミリー5メンバー7として公知の哺乳動物タンパク質、例えば、以下の遺伝子として開示されるヒトSLC5A7である:ENSG00000115665(ensemble.org)、ヒト第2染色体:107,986,523-108,013,994フォワード鎖(GRCh38:CM000664.2)にコードされる。
いくつかの実施形態では、TDP-43標的RNAは、Rho GTPアーゼ活性化タンパク質32として公知の哺乳動物タンパク質、例えば、以下の遺伝子として開示されるヒトARHGAP32である:ENSG00000134909(ensemble.org)、ヒト染色体11:128,965,060-129,279,324リバース鎖(GRCh38:CM000673.2)にコードされる。
いくつかの実施形態では、TDP-43標的RNAはCAMK2Bである。
いくつかの実施形態では、TDP-43標的RNAはKALRNである。
いくつかの実施形態では、TDP-43標的RNAはUNC13Aである。
標的細胞
本明細書で使用される「標的細胞」という用語は、本発明の化合物の投与によって発現が補正される標的化TDP-43 RNA標的を発現している細胞を指す。適切には、標的細胞はさらにTDP-43が枯渇している。実験的使用のために、TDP-43枯渇は、例えば遺伝子操作(例えば、CRISPR/CAS9)を介して、又はTDP-43のASO阻害剤の使用を介して、細胞内に操作され得る。
いくつかの実施形態では、標的細胞は、インビボ又はインビトロであり得る。いくつかの実施形態では、標的細胞は、哺乳動物細胞、例えばげっ歯類細胞、例えばマウス細胞若しくはラット細胞、又は霊長類細胞、例えばサル細胞若しくはヒト細胞である。
いくつかの実施形態では、標的細胞は、神経細胞である。
インビトロ評価のために、標的細胞は、グルタミン酸作動性ニューロン(本明細書ではグルタニューロン細胞とも呼ばれる)、例えばヒトグルタミン酸作動性ニューロン、例えばTDP-43が枯渇したヒトグルタミン酸作動性ニューロンであり得る。ヒトグルタミン酸作動性ニューロンは、Cellular Dynamics(iCell GlutaNeurons)から入手可能である。インビトロ評価のための標的細胞、例えばグルタニューロンはインビトロである。例えばインビトロ評価のための標的細胞のTDP-43枯渇は、例えばアンチセンスオリゴヌクレオチド又はsiRNA試薬を使用して達成され得るか、又は例えばCRISPR/Cas9編集又はshRNAベクター発現を介して細胞に操作され得る。実施例においてさらに例示されるように、例えば、インビトロ使用のための標的細胞は、ヒト多能性幹細胞由来ニューロンであり得、例えば、これらは、iCell GlutaNeurons Kit,01279 Cat.R1034(Fujifilm Cellular Dynamics)として得ることができる。
スプライス調節
スプライス調節を使用して、潜在性スプライシングを修正し、選択的スプライシングを調節し、オープンリーディングフレームを回復させ、タンパク質ノックダウンを誘導することができる。
スプライス調節は、プレmRNAの異なるスプライス産物の定量的評価を可能にするRNAシーケンシング(RNAseq)によって、又は一方若しくは他方のスプライス形態に特異的であるように設計されたPCRアッセイを使用するデジタル液滴PCRによってアッセイすることができる。本発明のいくつかの実施形態では、アンチセンスオリゴヌクレオチドは、STMN2プレmRNAのスプライシングを調節し、例えば、それらは、例えば標的細胞又はTDP-43枯渇細胞において、エクソン1とエクソン2との間に位置するRNA配列を含む成熟STMN2 mRNAのレベルを低下させる(実施例に示される)。本発明のいくつかの実施形態では、アンチセンスオリゴヌクレオチドは、STMN2プレmRNAのスプライシングを調節し、例えば、それらは、例えば標的細胞において、WT STMN2転写物と呼ばれる、エクソン1とエクソン2との間に位置するRNA配列を含まない成熟した正しくスプライシングされたSTMN2 mRNAのレベルを増強する。
本発明のいくつかの実施形態では、本発明のアンチセンスオリゴヌクレオチドは、例えば、実施例に示されるように、成熟CERT1 mRNAにおける異常なエクソンの封入を減少させることによって、標的細胞におけるCERT1のスプライシングを調節する。
本発明のいくつかの実施形態では、本発明のアンチセンスオリゴヌクレオチドは、例えば、実施例に示されるように、成熟SLC5A7 mRNAにおける異常なエクソンの封入を減少させることによって、標的細胞におけるSLC5A7のスプライシングを調節する。
本発明のいくつかの実施形態では、本発明のアンチセンスオリゴヌクレオチドは、例えば、実施例に示されるように、成熟ARHGAP32 mRNAにおける異常なエクソンの封入を減少させることによって、標的細胞におけるARHGAP32のスプライシングを調節する。
高親和性修飾ヌクレオシド
高親和性修飾ヌクレオシドは、修飾されたヌクレオチドであり、これは、オリゴヌクレオチドに組み込まれる場合、例えば融解温度(T)によって測定されるように、その相補的標的に対するオリゴヌクレオチドの親和性を高める。本発明の高親和性修飾ヌクレオシドは、好ましくは、修飾ヌクレオシドあたり+0.5~+12℃、より好ましくは+1.5~+10℃、最も好ましくは+3~+8℃の融解温度の上昇をもたらす。数多くの高親和性修飾ヌクレオシドが当該技術分野において知られており、例えば、多くの2’置換ヌクレオシド及びロックド核酸(LNA)が挙げられる(例えば、Freier&Altmann;Nucl.Acid Res.,1997,25,4429-4443及びUhlmann;Curr.Opinion in Drug Development,2000,3(2),293-213を参照されたい)。
糖修飾
本発明のオリゴマーは、修飾された糖部分、すなわち、DNA及びRNAに見られるリボース糖部分と比較して、糖部分が修飾された1つ以上のヌクレオシドを含み得る。
リボース糖部分の修飾を有する数多くのヌクレオシドは、親和性及び/又はヌクレアーゼ耐性などのオリゴヌクレオチドのある特定の性質を改善することを主な目的として作製されてきた。
そのような修飾には、例えばヘキソース環(HNA)又は二環式環(典型的には、リボース環(LNA)のC2とC4炭素の間にバイラジカル架橋を有する)、又は典型的にはC2とC3炭素の間の結合を欠く非結合リボース環(例えば、UNA)で置き換えることにより、リボース環構造が修飾されているものが含まれる。他の糖修飾ヌクレオシドには、例えばビシクロヘキソース核酸(国際公開第2011/017521号)又は三環式核酸(国際公開第2013/154798号)が含まれる。修飾ヌクレオシドにはまた、糖部分が例えばペプチド核酸(PNA)又はモルホリノ核酸の場合には非糖部分で置き換えられているヌクレオシドが含まれる。
糖修飾にはまた、リボース環上の置換基を、水素以外の基、又はDNA及びRNAヌクレオシド中に天然に存在する2’-OH基に変更することによってなされる修飾も含まれる。置換基は、例えば2’、3’、4’、又は5’位で導入され得る。
2’糖修飾ヌクレオシド
2’糖修飾ヌクレオシドは、2’位にH若しくは-OH以外の置換基を有するヌクレオシド(2’置換ヌクレオシド)、又はリボース環の2’炭素と第2の炭素との間に架橋を形成できる2’結合バイラジカルを含むヌクレオシド、例えばLNA(2’-4’バイラジカル架橋)ヌクレオシドである。
実際、2’糖置換ヌクレオシドの開発には多くの注目が集まっており、数多くの2’置換ヌクレオシドが、オリゴヌクレオチドに組み込まれた際に有益な特性を有することが見出されている。例えば、2’修飾糖は、高められた結合親和性及び/又は増大されたヌクレアーゼ耐性をオリゴヌクレオチドにもたらすことができる。2’置換修飾ヌクレオシドの例は、2’-O-アルキル-RNA、2’-O-メチル-RNA、2’-アルコキシ-RNA、2’-O-メトキシエチル-RNA(MOE)、2’-アミノ-DNA、2’-フルオロ-RNA及び2’-F-ANAヌクレオシドである。更なる例については、例えばFreier&Altmann;Nucl.Acid Res.,1997,25,4429-4443及びUhlmann;Curr.Opinion in Drug Development,2000,3(2),293-213、及びDeleavey and Damha,Chemistry and Biology 2012,19,937を参照されたい。以下は、いくつかの2’置換修飾ヌクレオシドの例示である。
Figure 2023534557000001
本発明に関して、2’置換糖修飾ヌクレオシドは、LNAのような2’架橋ヌクレオシドを含まない。
ロックド核酸ヌクレオシド(LNAヌクレオシド)
「LNAヌクレオシド」は、上記ヌクレオシドのリボース糖環のC2’とC4’とを結合するバイラジカル(「2’-4’架橋」とも称される)を含む2’修飾ヌクレオシドであり、これはリボース環のコンホメーションを制限又は固定する。これらのヌクレオシドはまた、文献において、架橋核酸又は二環式核酸(BNA)とも称されている。リボースの立体配座の固定は、LNAが相補的RNA又はDNA分子のオリゴヌクレオチドに組み込まれる場合、ハイブリダイゼーションの親和性の向上(二重鎖の安定化)に関連している。これは、オリゴヌクレオチド/相補二重鎖の融解温度を測定することによって、日常的に決定されうる。
非限定的で例示的なLNAヌクレオシドは、国際公開第99/014226、国際公開第00/66604、国際公開第98/039352、国際公開第2004/046160、国際公開第00/047599、国際公開第2007/134181、国際公開第2010/077578、国際公開第2010/036698、国際公開第2007/090071、国際公開第2009/006478、国際公開第2011/156202、国際公開第2008/154401、国際公開第2009/067647、国際公開第2008/150729、Morita et al.,Bioorganic&Med.Chem.Lett.12,73-76、Seth et al.J.Org.Chem.2010,Vol 75(5)pp.1569-81、及びMitsuoka et al.,Nucleic Acids Research 2009,37(4),1225-1238、及びWan and Seth,J.Medical Chemistry 2016,59,9645-9667に開示されている。
さらなる非限定的な例示的LNAヌクレオシドを、スキーム1に開示する。
スキーム1:
Figure 2023534557000002
特定のLNAヌクレオシドは、ベータ-D-オキシ-LNA、6’-メチル-ベータ-D-オキシLNA、例えば(S)-6’-メチル-ベータ-D-オキシ-LNA(ScET)及びENAである。
特定の有利なLNAは、ベータ-D-オキシ-LNAである。
モルホリノオリゴヌクレオチド
いくつかの実施形態では、本発明のオリゴヌクレオチドは、モルホリノヌクレオシドを含むか、又はモルホリノヌクレオシドからなる(すなわち、モルホリノオリゴマーであり、ホスホロジアミデートモルホリノオリゴマー(PMO)として)。スプライス調節モルホリノオリゴヌクレオチドは、臨床使用が承認されており、例えば、デュシェンヌ型筋ジストロフィーの処置に使用される、DMDのフレームシフト変異を標的とする30ntモルホリノオリゴヌクレオチドである、エテプリルセンを参照のこと。モルホリノオリゴヌクレオチドは、例えば、以下の4つの連続するモルホリノヌクレオチドの説明に示されるように、ホスホロジアミデート基を介して連結されたメチレンモルホリン環など、リボースではなく6員のモルホリン環に結合した核酸塩基を有する。
Figure 2023534557000003
いくつかの実施形態では、本発明のモルホリノオリゴヌクレオチドは、例えば、20~40モルホリノヌクレオチド長、例えば、25~35モルホリノヌクレオチド長であり得る。
RNase Hの活性及び動員
アンチセンスオリゴヌクレオチドのRNase H活性とは、相補的RNA分子との二重鎖にあるときにRNアーゼHを動員する能力を指す。国際公開第01/23613号は、RNaseH活性を決定するためのインビトロ方法を提供し、これはRNaseHを動員する能力の決定に使用され得る。典型的には、オリゴヌクレオチドが、相補的標的核酸配列が提供された場合に、試験されている修飾オリゴヌクレオチドと同じ塩基配列を有するが、オリゴヌクレオチド中の全てのモノマー間にホスホロチオアート結合を有するDNAモノマーのみを含有するオリゴヌクレオチドを使用し、国際公開第01/23613号(参照により本明細書に組み込まれる)の実施例91~95により提供される方法論を使用したときに決定された初期速度の少なくとも5%、例えば、少なくとも10%又は20%超のpmol/l/分で測定された初期速度を有する場合に、このオリゴヌクレオチドはRNase Hを動員し得ると見なされる。RHase H活性の決定に使用するために、組換えRNase H1が、Lubio Science GmbH、Lucerne、Switzerlandから入手可能である。
DNAオリゴヌクレオチドは、2’糖修飾ヌクレオシド、典型的には高親和性2’糖修飾ヌクレオシド、例えば2-O-MOE及び/又はLNAを含む領域が5’及び3’に隣接するDNAヌクレオシド(典型的には少なくとも5又は6個の連続するDNAヌクレオシド)の領域を含むギャップマーオリゴヌクレオチドと同様に、RNaseHを効果的に動員することが公知である。スプライシングの効果的な調節のために、プレmRNAの分解は望ましくなく、したがって、標的のRNaseH分解を回避することが好ましい。したがって、本発明のオリゴヌクレオチドは、好ましくはギャップマーオリゴヌクレオチドではない。RNaseH動員は、オリゴヌクレオチド中の連続するDNAヌクレオチドの数を制限することによって回避され得、したがって、効果的なスプライス調節のために、ミックスマー(mimxer)及びトータルマー(totalmer)設計が使用され得る。
ミックスマー(Mixmer)及びトータルマー(Totalmer)
スプライス調節のために、RNAaseHを動員しないアンチセンスオリゴヌクレオチドを使用することがしばしば有利である。RNaseH活性はDNAヌクレオチドの連続配列を必要とするので、アンチセンスオリゴヌクレオチドのRNaseH活性は、3個を超えるか、又は4個を超える連続DNAヌクレオシドの領域を含まないアンチセンスオリゴヌクレオチドを設計することによって達成され得る。これは、2’糖修飾ヌクレオシドなどの糖修飾ヌクレオシドと、1、2若しくは3個のDNAヌクレオシドなどのDNAヌクレオシドの短い領域とを含むアンチセンスオリゴヌクレオチド又はその連続ヌクレオシド領域をミックスマー設計で使用することによって達成され得る。ミックスマーは、本明細書において、ヌクレオシドが1個のLNAヌクレオシドと1個のDNAヌクレオシドとの間で交互である2個毎の設計(例えば5’及び3’末端がLNAヌクレオシドであるLDLDLDLDLDLDLDLL)、並びに、3個毎にヌクレオシドがLNAヌクレオシドであるLDDLDDLDDLDDLDDLなどの3個毎の設計によって例示される。
トータルマーは、DNA又はRNAヌクレオシドを含まないアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列であり、例えば、治療的使用のための効果的なスプライス調節因子であると報告されている完全MOEホスホロチオエート、例えばMMMMMMMMMMMMMMMMMMMM(M=2’-O-MOE)などの2’-O-MOEヌクレオシドのみを含んでもよい。あるいは、ミックスマーは、MLMLMLMLMLMLMLMLMLML等の修飾ヌクレオシドの混合物を含んでいてもよく、式中、L=LNA及びM=非LNA修飾ヌクレオシド、例えば2’-O-MOEヌクレオシドである。
有利には、ミックスマー及びトータルマー中のヌクレオシド間ヌクレオシドはホスホロチオエートであってもよく、又はミックスマー中のヌクレオシド結合の大部分はホスホロチオエートであってもよい。ミックスマー及びトータルマーは、例として、ホスホジエステル又はホスホロジチオエートなどの他のヌクレオシド間結合を含み得る。
オリゴヌクレオチド内の領域D’又はD’’
本発明のオリゴヌクレオチドの核酸塩基の連続する配列は、典型的には、異なるTDP-43 RNA標的に存在する複数のTDP-43結合部位に相補的である。TDP-43結合部位に相補的、例えば完全に相補的であるアンチセンスオリゴヌクレオチドの領域は、連続ヌクレオチド配列と呼ばれる。いくつかの実施形態では、アンチセンスオリゴヌクレオチドの全てのヌクレオシドは、連続ヌクレオチド配列内にある(すなわち、アンチセンスオリゴヌクレオチド及び連続ヌクレオチド配列は、同じ長さのヌクレオチドである)。いくつかの実施形態では、アンチセンスオリゴヌクレオチドは、連続ヌクレオチド配列と、任意に、コンジュゲート又は他の非相補的末端ヌクレオチド(例えば、領域D’又はD’’)などの任意の官能基にオリゴヌクレオチドを連結し得るヌクレオチドベースのリンカー領域とを含む。
本発明のオリゴヌクレオチドは、いくつかの実施形態では、標的核酸に相補的なオリゴヌクレオチドの連続ヌクレオチド配列、例えばミックスマー(mixmer)又はトータルマー(toalmer)、並びにさらに5’及び/又は3’ヌクレオシドを含むか、又はそれからなり得る。さらなる5’及び/又は3’ヌクレオシドは、標的核酸に完全に相補的であっても、完全に相補的でなくてもよい。このようなさらなる5’及び/又は3’ヌクレオシドは、本明細書では領域D’及びD’’と称され得る。
領域D’又はD’’の付加は、連続ヌクレオチド配列、例えばミックスマー(mixmer)又はトータルマー(totoalmer)をコンジュゲート部分又は別の官能基に連結する目的のために使用され得る。連結に用いられる場合、コンジュゲート部分を有する連続ヌクレオチド配列は、生体切断可能なリンカーとしての役割を果たしうる。あるいは、それはエキソヌクレアーゼ保護を提供するために、若しくは合成又は製造を容易にするために使用されてもよい。
領域D’又はD’’は、独立して、1、2、3、4又は5個の追加のヌクレオチドを含むか、又はそれからなり、標的核酸に相補的であっても、相補的でなくてもよい。F又はF’領域に隣接するヌクレオチドは、DNA又はRNAなどの糖修飾ヌクレオチドではなく、若しくはこれらの塩基修飾バージョンでもない。D’又はD’領域は、ヌクレアーゼ感受性の生体切断可能なリンカーとしての役割を果たしうる(リンカーの定義を参照されたい)。いくつかの実施形態では、追加の5’及び/又は3’末端ヌクレオチドは、ホスホジエステル結合で結合されており、DNA又はRNAである。領域D’又はD’’としての使用に好適なヌクレオチドベースの生体切断性リンカーは、国際公開第2014/076195号に開示されており、これには例としてホスホジエステル結合DNAジヌクレオチドが含まれる。ポリオリゴヌクレオチド構築物における生体切断可能なリンカーの使用は国際公開第WO2015/113922号に開示されており、それらは複数のアンチセンス構築物を単一のオリゴヌクレオチド内で結合するのに使用されている。
一実施形態では、本発明のオリゴヌクレオチドは、ミックスマー(mixmer)又はトータルマー(totalmer)を構成する連続ヌクレオチド配列に加えて、領域D’及び/又はD’’を含む。
いくつかの実施形態において、領域D’又はD’’とミックスマー又はトータルマー領域との間に位置するヌクレオシド間結合は、ホスホジエステル結合である。
コンジュゲート
本明細書で用いられるコンジュゲートという用語は、非ヌクレオチド部分(コンジュゲート部分又は領域C又は第3の領域)に共有結合したオリゴヌクレオチドを指す。コンジュゲート部分は、任意に領域D’又はD’’などのリンカー基を介して、アンチセンスオリゴヌクレオチドに共有結合していてもよい。
オリゴヌクレオチドコンジュゲート及びそれらの合成は、ManoharanによるAntisense Drug Technology,Principles,Strategies,and Applications,S.T.Crooke,ed.,Ch.16,Marcel Dekker,Inc.,2001 and Manoharan,Antisense and Nucleic Acid Drug Development,2002,12,103の包括的レビューにも報告されている。
いくつかの実施形態では、非ヌクレオチド部分(コンジュゲート部分)が、炭水化物(例えば、GalNAc)、細胞表面受容体リガンド、原薬、ホルモン、親油性物質、ポリマー、タンパク質、ペプチド、毒素(例えば、細菌毒素)、ビタミン、ウイルスタンパク質(例えば、カプシド)、又はそれらの組み合わせからなる群から選択される。
リンカー
結合又はリンカーは、1つ以上の共有結合を介して目的の1つの化学基又はセグメントを目的の別の化学基又はセグメントに連結する、2つの原子間の接続である。コンジュゲート部分は、直接又は連結部分(例えば、リンカー又はテザー)を介してオリゴヌクレオチドに結合させることができる。リンカーは、第3の領域、例えばコンジュゲート部分(領域C)を、第1の領域、例えば、標的核酸に相補的なオリゴヌクレオチド又は連続ヌクレオチド配列(領域A)に共有結合する役割を果たす。
本発明の幾つかの実施形態では、本発明のコンジュゲート又はオリゴヌクレオチドコンジュゲートは、任意に、標的核酸に相補的なオリゴヌクレオチド又は連続ヌクレオチド配列(領域A又は第1の領域)と、コンジュゲート部分(領域C又は第3の領域)との間に位置するリンカー領域(第2の領域又は領域B及び/又は領域Y)を含みうる。
領域Bは、哺乳動物の体内で通常遭遇する又は遭遇するものに類似した条件下で切断可能である生理学的に不安定な結合を含むか、又はそれからなる生体切断可能なリンカーを指す。生理学的に不安定なリンカーが化学的変換(例えば、切断)を受ける条件には、pH、温度、酸化又は還元条件、若しくは薬剤などの化学条件、並びに哺乳動物の細胞で見られる又は遭遇するものに類似した塩濃度が含まれる。哺乳動物の細胞内条件には、タンパク質分解酵素又は加水分解酵素又はヌクレアーゼなどの哺乳動物細胞に通常存在する酵素活性の存在も含まれる。一実施形態では、生体切断可能なリンカーは、S1ヌクレアーゼ切断の影響を受けやすい。いくつかの実施形態では、ヌクレアーゼ感受性リンカーは、少なくとも2つの連続するホスホジエステル結合を含むDNAヌクレオシドなどの1~5個のヌクレオシドを含む。ホスホジエステルを含有する生体切断可能なリンカーは、国際公開第2014/076195号パンフレットにより詳細に記載されている。
領域Yは、必ずしも生体切断可能ではないが、主にコンジュゲート部分(領域C又は第3の領域)をオリゴヌクレオチド(領域A又は第1の領域)に共有結合させるのに役立つリンカーを指す。領域Yリンカーは、鎖構造、又はエチレングリコール、アミノ酸単位若しくはアミノアルキル基などの繰返し単位のオリゴマーを含み得る。本発明のオリゴヌクレオチドコンジュゲートは、以下の局所要素A-C、A-B-C、A-B-Y-C、A-Y-B-C又はA-Y-Cから構築することができる。いくつかの実施形態では、リンカー(領域Y)は、例えばC6~C12アミノアルキル基を含むC2~C36アミノアルキル基などのアミノアルキルである。いくつかの実施形態では、リンカー(領域Y)は、C6アミノアルキル基である。
処置
本明細書で使用される「処置」という用語は、既存の疾患(例えば、本明細書で言及される疾患又は障害)の処置、又は疾患の予防(prevention)、すなわち予防法(prophylaxis)の両方を指す。したがって、本明細書で言及される処置は、いくつかの実施形態において、予防的であり得ることが認識されよう。いくつかの実施形態では、処置は予防的ではなく、例えば、処置は、患者において診断された既存の疾患症状の処置である。
本発明のオリゴヌクレオチド
本発明のオリゴヌクレオチドは、複数の独立したプレmRNA転写物上のRNA結合部位、例えば複数のプレmRNA転写物上のTDP-43 RNA結合部位に相補的なアンチセンスオリゴヌクレオチドである。本発明のオリゴヌクレオチドは、例えばプレmRNAスプライシングの(独立した)調節、RNA安定化の増強、コードされたタンパク質の発現の増強、プレmRNAによってコードされる切断型タンパク質の発現の減少を介して、複数のプレmRNA転写物の発現を調節することができる。したがって、実施例に示されるように、本発明のオリゴヌクレオチドは、正確に発現された機能性タンパク質をコードする成熟mRNAへのプレmRNAプロセシングの忠実度を高めるために使用され得る。したがって、本発明のオリゴヌクレオチドは、プレmRNA成熟の調節不全に関連する疾患の処置における使用に適し得る。
いくつかの実施形態では、本発明のオリゴヌクレオチドは、オリゴヌクレオチドと標的核酸TDP-43結合領域との間に1個、2個、3個、4個、5個、6個、7個、8個又はそれ以上のミスマッチを含み得る。ミスマッチにもかかわらず、標的核酸へのハイブリダイゼーションは、TDP-43 RNA標的RNAの所望の調節を示すのに依然として十分であり得る。ミスマッチから生じる結合親和性の低下は、オリゴヌクレオチド内のヌクレオチド数の増加、及び/又は、標的への結合親和性を増加させることができる修飾ヌクレオシド、例えばオリゴヌクレオチド配列内に存在する、LNAを含む2’糖修飾ヌクレオシドの数の増加により有利に補償され得る。
いくつかの実施形態では、イノシンなどの1、2、3、4、5、6、7、8又はそれ以上のユニバーサルヌクレオシドをミスマッチ位置で使用することができる。
イノシンは、以下の構造を有するヌクレオシドである。
Figure 2023534557000004
ユニバーサルヌクレオシドは、オリゴヌクレオチドが、非同一のTDP-43結合領域を有する異なるTDP-43標的RNAを標的とする場合に特に有用である。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対するミスマッチを表す位置に1つ以上のユニバーサルヌクレオチドを含み得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対するミスマッチを表す位置に2つ以上のユニバーサルヌクレオチドを含み得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対するミスマッチを表す位置に3つ以上のユニバーサルヌクレオチドを含み得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対するミスマッチを表す位置に4つ以上のユニバーサルヌクレオチドを含み得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対するミスマッチを表す位置に5つ以上のユニバーサルヌクレオチドを含み得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対するミスマッチを表す位置に6つ以上のユニバーサルヌクレオチドを含み得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対するミスマッチを表す位置に7つ以上のユニバーサルヌクレオチドを含み得る。
いくつかの実施形態では、連続ヌクレオチド配列は、TDP-43結合部位又は標的配列に対するミスマッチを表す位置に8つ以上のユニバーサルヌクレオチドを含み得る。
いくつかの実施形態では、1つ以上、例えば、2つ以上、3つ以上、4つ以上、5つ以上、6つ以上、7つ以上、又は8つ以上の、ミスマッチを表す位置におけるユニバーサルヌクレオチドを含む本発明のオリゴヌクレオチドは、10~32ヌクレオチド長であるオリゴヌクレオチドについて-10kcal未満の推定ΔG°値で標的核酸にハイブリダイズし得る。
いくつかの実施形態では、1つ以上、例えば、2つ以上、3つ以上、4つ以上、5つ以上、6つ以上、7つ以上、又は8つ以上ミスマッチを含有する本発明のオリゴヌクレオチドは、10~32ヌクレオチド長であるオリゴヌクレオチドについて、-12kcal、-15kcal、-17kcal、-20kcal、-30kcal、-40kcal、-50kcal又は-60kcal未満の推定ΔG°値で標的核酸にハイブリダイズし得る。
ΔG°値の計算については上述されている。
いくつかの実施形態において、本発明のアンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列は、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39又は40個の連続ヌクレオチド長を含むか、又はそれからなる。
いくつかの実施形態では、オリゴヌクレオチド又は連続ヌクレオチド配列は、配列番号1~18の配列からなる群から選択される配列、又は配列番号1~34及び配列番号50~103から選択される配列を含むか、又はそれからなる。配列番号1~18に示される配列又は配列番号1~34及び配列番号50~103から選択される配列は、塩基対形成において示される核酸塩基として機能する修飾核酸塩基を含んでいてもよく、例えば、メチルシトシンの代わりに5-メチルシトシンが使用され得ることが理解されるであろう。イノシンは、ユニバーサル塩基として使用され得る。
いくつかの実施形態では、アンチセンスオリゴヌクレオチド又は連続ヌクレオチド配列は、配列番号1~18からなる群より選択される配列又は配列番号1~34及び配列番号50~103から選択される配列に対して少なくとも75%、例えば少なくとも80%、少なくとも85%、少なくとも90%の同一性、少なくとも90%又はそれ以上の同一性を有する8~30又は8~40ヌクレオチド長を含むか、又はそれからなる。いくつかの実施形態では、アンチセンスオリゴヌクレオチド又は連続ヌクレオチド配列は、配列番号1~18からなる群より選択される配列又は配列番号1~34及び配列番号50~103から選択される配列に対して100%の同一性を有する8~30又は8~40ヌクレオチド長を含むか、又はそれからなる。
連続核酸塩基配列(モチーフ配列)は、例えばヌクレアーゼ耐性及び/又は標的核酸に対する結合親和性を増大させるために修飾され得ることが理解される。
修飾ヌクレオシド(高親和性修飾ヌクレオシドなど)がオリゴヌクレオチド配列に組み込まれるパターンは、一般にオリゴヌクレオチド設計と称される。
本発明のオリゴヌクレオチドは、修飾ヌクレオシド及びDNAヌクレオシドを用いて設計される。高親和性修飾ヌクレオシドを用いることが有利である。
一実施形態では、オリゴヌクレオチドは、少なくとも1個の修飾ヌクレオシド、例えば少なくとも2、少なくとも3、少なくとも4、少なくとも5、少なくとも6、少なくとも7、少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、少なくとも16個の修飾ヌクレオシド、少なくとも17個の修飾ヌクレオシド、少なくとも18個の修飾ヌクレオシド、少なくとも19個の修飾ヌクレオシド、少なくとも20個の修飾ヌクレオシド、少なくとも21個の修飾ヌクレオシド、少なくとも22個の修飾ヌクレオシド、少なくとも23個の修飾ヌクレオシド、少なくとも24個の修飾ヌクレオシド、少なくとも25個の修飾ヌクレオシド、少なくとも26個の修飾ヌクレオシド、少なくとも27個の修飾ヌクレオシド、少なくとも28個の修飾ヌクレオシド、少なくとも29個の修飾ヌクレオシド、少なくとも30個の修飾ヌクレオシド、少なくとも31個の修飾ヌクレオシド、少なくとも32個の修飾ヌクレオシド又はそれ以上を含む。一実施形態では、オリゴヌクレオチドは、1~10個の修飾ヌクレオシド、例えば2~9個の修飾ヌクレオシド、例えば3~8個の修飾ヌクレオシド、例えば4~7個の修飾ヌクレオシド、例えば6又は7個の修飾ヌクレオシドを含む。好適な修飾は、「修飾ヌクレオシド」、「高親和性修飾ヌクレオシド」、「糖修飾」、「2’糖修飾」、及びロックド核酸(LNA)の「定義」セクションに記載されている。
一実施形態では、オリゴヌクレオチドは、1つ以上の糖修飾ヌクレオシド、例えば2’糖修飾ヌクレオシドを含む。好ましくは、本発明のオリゴヌクレオチドは、2’-O-アルキル-RNA、2’-O-メチル-RNA、2’-アルコキシ-RNA、2’-O-メトキシエチル-RNA、2’-アミノ-DNA、2’-フルオロ-DNA、アラビノ核酸(ANA)、2’-フルオロ-ANA及びLNAヌクレオシドからなる群から独立して選択される1つ以上の2’糖修飾ヌクレオシドを含む。修飾ヌクレオシドの1つ又は複数がロックド核酸(LNA)である場合、有利である。
更なる実施形態では、オリゴヌクレオチドは、少なくとも1つの修飾ヌクレオシド間結合を含む。好適なヌクレオシド間修飾は、「修飾ヌクレオシド間結合」の「定義」セクションに記載されている。連続ヌクレオチド配列内の少なくとも75%、例えば全てのヌクレオシド間結合がホスホロチオエート又はボラノホスフェート結合であれば有利である。いくつかの実施形態において、オリゴヌクレオチドの連続する配列中の全てのヌクレオチド間結合は、ホスホロチオエート結合である。
薬学的に許容され得る塩
本発明は、本発明のアンチセンスオリゴヌクレオチドの薬学的に許容され得る塩を意図する。いくつかの実施形態では、薬学的に許容され得る塩は、ナトリウム塩、カリウム塩又はアンモニウム塩である。
製造方法
更なる態様では、本発明は、ヌクレオチド単位を反応させ、それによってオリゴヌクレオチドからなる共有結合された連続ヌクレオチド単位を形成することを含む、本発明のオリゴヌクレオチドを製造するための方法を提供する。好ましくは、この方法は、ホスホロアミダイト化学を使用する(例えば、Caruthersら(1987年)「Methods in Enzymology」第154巻第287~313頁を参照のこと)。さらなる実施形態において、この方法は、連続ヌクレオチド配列をコンジュゲーティング部分(リガンド)と反応させて、コンジュゲート部分をオリゴヌクレオチドに共有結合させることをさらに含む。更なる態様では、本発明のオリゴヌクレオチド又はコンジュゲートしたオリゴヌクレオチドを、薬学的に許容され得る希釈剤、溶媒、担体、塩、及び/又はアジュバントと混合することを含む、本発明の組成物を製造するための方法が提供される。
医薬組成物
更なる態様では、本発明は、前述のオリゴヌクレオチド及び/又はオリゴヌクレオチドコンジュゲート又はその塩のいずれかと、薬学的に許容され得る希釈剤、担体、塩及び/又はアジュバントとを含む、医薬組成物を提供する。薬学的に許容され得る希釈剤には、リン酸緩衝生理食塩水(PBS)が含まれ、薬学的に許容され得る塩には、限定するものではないが、ナトリウム塩及びカリウム塩が含まれる。いくつかの実施形態において、薬学的に許容され得る希釈剤は、無菌リン酸緩衝生理食塩水である。いくつかの実施形態では、オリゴヌクレオチドは、50~300μM溶液の濃度で薬学的に許容され得る希釈剤中で使用される。
用途
本発明のオリゴヌクレオチドは、例えば、診断、治療及び予防法のための研究試薬として利用され得る。
研究では、そのようなオリゴヌクレオチドを使用して、細胞(例えば、神経細胞などのインビトロ細胞培養物)及び実験動物におけるTDP-43の活性を模倣し、それによって標的の機能分析又は治療的介入の標的としてのその有用性の評価を促進することができる。
本発明は、異常又は枯渇したレベルのTDP-43を発現している細胞においてTDP-43の機能性を増強するためのインビボ又はインビトロ方法などの方法を提供し、該方法は、本発明によるオリゴヌクレオチド、コンジュゲート、塩又は組成物を有効量で細胞に投与することを含む。いくつかの実施形態では、標的細胞は、哺乳動物細胞、特にヒト細胞である。標的細胞は、哺乳動物の組織の一部を形成するインビトロ細胞培養物又はインビボ細胞であってよい。好ましい実施形態では、標的細胞は、正常なTDP-43活性が枯渇しているニューロン細胞などのニューロン細胞である。いくつかの実施形態では、標的細胞は、TDP-43の疾患関連バリアントを発現し、及び/又は機能不全TDP-43を発現し得る。
治療のために、オリゴヌクレオチドは、TDP-43を模倣することによって処置することができる疾患又は障害を有することが疑われる動物又はヒトに投与することができる。
本発明は、疾患を処置又は予防するための方法であって、治療的又は予防的有効量の本発明のオリゴヌクレオチド、オリゴヌクレオチドコンジュゲート、又は医薬組成物を、疾患を患う、又はそれに罹り易い対象に投与することを含む、方法を提供する。
本発明はまた、医薬として使用するための、本明細書で定義されるオリゴヌクレオチド、組成物又はコンジュゲートに関する。
本発明に従ったオリゴヌクレオチド、オリゴヌクレオチドコンジュゲート又は医薬組成物は、典型的には有効量で投与される。
本発明はまた、本明細書で言及される障害の処置のための医薬の製造のため、又は本明細書で言及される障害の処置方法のための、上記本発明のオリゴヌクレオチド又はオリゴヌクレオチドコンジュゲートの使用を提供する。
本発明はさらに、TDP-43の病理又は核からのTDP-43の誤局在化を特徴とする神経変性障害、例えばALSなどの神経変性障害としての神経障害を処置するための医薬を製造するための、本明細書で定義されるオリゴヌクレオチド、オリゴヌクレオチドコンジュゲート又は医薬組成物の使用に関する。
本発明はまた、本明細書で言及される障害を処置する方法で使用するための本発明のオリゴヌクレオチド又はアンチセンスオリゴヌクレオチドを提供する。
一実施形態では、本発明は、TDP-43の病理又は核からのTDP-43の誤局在化を特徴とする神経変性障害、例えばALSなどの神経変性障害としての神経障害の処置に使用するためのオリゴヌクレオチド、オリゴヌクレオチドコンジュゲート又は医薬組成物に関する。
投与
本発明のオリゴヌクレオチド又は医薬組成物は、例えば、脳内、脳室内又は髄腔内投与によって投与され得る。
好ましい実施形態において、本発明のオリゴヌクレオチド又は医薬組成物は、静脈内、動脈内、皮下、腹腔内又は筋肉内注射若しくは注入、髄腔内又は頭蓋内、例えば脳内又は脳室内、硝子体内投与を含む非経口経路によって投与される。一実施形態では、活性オリゴヌクレオチド又はオリゴヌクレオチドコンジュゲートは、静脈内投与される。別の実施形態では、活性オリゴヌクレオチド又はオリゴヌクレオチドコンジュゲートは、皮下投与される。
実施例1-TDP-43枯渇神経細胞におけるSTMN2プレmRNAのスプライシングを補正する能力における一連の「TDP-43」模倣ASOの評価
使用した化合物:
化合物1,1~19,1(化合物A)
材料及び方法
細胞培養材料:
96ウェル、黒色/透明、組織培養処理プレート-蓋付き平底、Falcon 353219
ラミニン521 Biolamina
DPBS(1X)CaCl2+/MgCl2+、Gibco 14040-091
DAPT Sigma Aldrich D5942
iCell Motor Neuronsキット、01279 Cat.R1049(Fujifilm Cellular Dynamics)
RNA単離材料:
Rneasy Plus 96キット、Qiagenカタログ番号:74192
Rnase-Free Dnase Set、Qiagenカタログ番号:79254
ライブラリー調製材料:
TruSeq(登録商標)Stranded Total RNA Library Prep Gold、Illuminaカタログ番号:20020599
細胞播種、維持及びLNAオリゴヌクレオチド処理:
ヒトグルタミン酸作動性ニューロンを、ポリ-L-オルニチン/ラミニンで被覆した96ウェルプレートに2.0×105細胞/cm2でプレーティングした。TDP-43をノックダウンするために、細胞を3日目から5uMで化合物Aとインキュベートした。10日目から、細胞をさらに化合物1,1~18,1で10uMで72時間処理し、次いで溶解緩衝液(キットと共に供給される)で溶解した。対照細胞を希釈剤単独(PBS)で処理した。RNA単離は、DNase処理工程を含み、製造業者の説明書に従って実施した。
TDP-43 LNAオリゴヌクレオチド-化合物A:
配列番号19,1=TCcacactgaacaAACC(大文字はβ-D-オキシLNAであり、小文字はDNAであり、LNA Cは5-メチルシトシンであり、全てのヌクレオシド間結合はホスホロチオエートである)。
培地を除去し、100ul/ウェル(96mwp)溶解緩衝液(PureLink(登録商標)Pro96Thermo Fisherキット)を添加した。RNA精製は、DnaseI処理を含み、製造者の説明書に従って実施した(RNA Purification PureLink(登録商標)Pro 96 Thermo Fisherキット)。
RNAシーケンシング分析
シーケンシングライブラリーを、rRNA(Illumina)を除去するためにRiboZeroを有するTruSeq鎖全RNAライブラリー調製プロトコルを使用して作製した。ライブラリーを、150bpのリード長でNovaSeq6000シーケンサー(Illumina)においてペアエンドシーケンシングに供した。
試料:TARDBP(TDP-43をコードする)標的化オリゴヌクレオチド19,1及び一連のTDP-43模倣ASO、化合物1,1~18,1を用いて及び用いずに処理したヒト運動ニューロン(hMNS)。Partek Flow(hg38及びCufflinksを用いたマッピング)を用いてデータ解析を行った。
潜在性エクソンを含有するSTMN2の発現レベル及び野生型STMN2のレベルを未処理対照細胞における発現レベル(100%)に対して正規化し、結果表Aに示し、図1~3に図示する。
以下の化合物は、TDP-43枯渇細胞におけるWT STMN2 mRNAの発現増強をもたらした:5,1、14,1、1,1、15,5、14,2、15,1、6,1、6,4、13,1、15,4、9,1、10,1、6,3、7,1、18,1、8,1、7,3、16,3、14,4、15,3、6,2、8,2、7,2、18,3、16,1、16,2、15,2、18,2、及び8,3
以下の化合物は、対照細胞における発現レベルよりも高い、TDP-43枯渇細胞におけるWT STMN2 mRNAの発現増強をもたらした:18,1、8,1、7,3、16,3、14,4、15,3、6,2、8,2、7,2、18,3、16,1、16,2、15,2、18,2、及び8,3。これらの特に有効な化合物は、長さが12~18ntsの範囲であった。これらの特に有効な化合物は、約-12~約-21のdGのギブス自由エネルギーの範囲であった。
注目すべきは、最も有効な化合物が18ntsの長さ及び約-20のギブス自由エネルギーを有し、少なくとも約-12のギブス自由エネルギーを有する少なくとも12ヌクレオチド長の化合物が有利であることを示すことである。
以下の化合物は、TDP-43枯渇細胞におけるSTMN2異常スプライシングmRNAの発現を減少させた:18,4、16,1、14,2、6,4、8,3、18,3、8,1、16,3、14,3、6,3、16,2、7,1、3,1、15,5、7,3、18,1、5,1、15,3、18,2、2,1、15,4、及び12,1。
以下のTDP-43模倣オリゴヌクレオチド化合物は、WT STMN2転写物と比較して、STMN2転写物を含有するSTMN2潜在性エクソンの比の顕著な低減をもたらした(150未満):16,1、8,3、18,3、18,4、16,2、18,2、7,2、15,2、16,3、15,3、8,1、8,2、7,3、6,4、6,3、18,1、7,1、14,2、6,2、14,4、15,4、10,1、15,5。
図1~図3に示すように、より長い長さ(図1)及び/又はより低いギブス自由エネルギー(ΔG)(図2)を有する化合物が、TDP-43媒介性の正しいスプライシングを補正するのにより有効であるという明らかな傾向がある。注目すべきことに、オリゴヌクレオチド/RNA二重鎖の融解温度は、TDP-43媒介スプライス補正の補正と相関することが見出されなかった(図3)。
Figure 2023534557000005

Figure 2023534557000006

Figure 2023534557000007

Figure 2023534557000008
実施例2-ヒト多能性幹細胞由来のニューロン培養、オリゴヌクレオチド処理及びRNA単離-TDP-43枯渇細胞における複数の独立したRNAの異常なスプライシングを修正するためのTDP-43模倣ASOの評価
使用したオリゴヌクレオチド
化合物A:LNAギャップマーオリゴヌクレオチドを標的とするTDP-43、配列番号19
TCcacactgaacaAACC(大文字はβ-D-オキシLNAであり、小文字はDNAであり、LNA Cは5-メチルシトシンであり、全てのヌクレオシド間結合はホスホロチオエートである)-本明細書では化合物#19,1と呼ぶ。
化合物B-STMN2
STMN2の発現を標的として上方調節するLNA/DNAミックスマー
化合物ID番号36:G(配列番号36)
式中、大文字はβ-D-オキシLNAヌクレオチドであり、小文字は2’デオキシリボースヌクレオシド(DNAヌクレオシド)であり、Cは5-メチルシトシンβ-D-オキシLNAヌクレオシドであり、下付き文字sはホスホロチオエートヌクレオシド間結合である。
化合物C-TDP43
LNA/DNA 18 ntミックスマー((8,3)の式
C(配列番号8)
式中、大文字はβ-D-オキシLNAヌクレオチドであり、小文字は2’デオキシリボースヌクレオシド(DNAヌクレオシド)であり、Cは5-メチルシトシンβ-D-オキシLNAヌクレオシドであり、下付き文字sはホスホロチオエートヌクレオシド間結合である。
実験を実施するために使用した方法論は実施例1に記載した通りであったが、化合物Aで前処理した後、細胞を化合物B若しくは化合物Cで処理したか、又は追加の化合物を用いなかった。
シーケンシングライブラリーを、rRNA(Illumina)を除去するためにRiboZeroを有するTruSeq鎖全RNAライブラリー調製プロトコルを使用して作製した。ライブラリーを、150bpのリード長及び1億のペアエンドリードの平均出力でNovaSeq6000シーケンサー(Illumina)においてペアエンドシーケンシングに供した。リードのトリミング(短いリードの除去並びに3’末端から最後のヌクレオチドの除去)後にデータ分析を行った。リードをTopHat2の使用によってhg38に対してマッピングし、転写物の定量化をCufflinksの使用によって行った。選択的スプライシング転写物の同定は、Partek Flowに含まれるパイプラインを使用することによって行った。
mRNAのシーケンシングはFasteris(スイス)で行った-シーケンシングは三連で行い、平均出力は1億対のエンドリードであった。リードのトリミング(短いリードの除去並びに3’末端から最後のヌクレオチドの除去)後にデータ分析を行った。リードをTopHat2の使用によってhg38に対してマッピングし、転写物の定量化をCufflinksの使用によって行った。選択的スプライシング転写物の同定は、Partek Flowに含まれるパイプラインを使用することによって行った。
結果
TDP-43は、いくつかのプレmRNAのカノニカルスプライシングにおいて重要であることが知られているので(Conti et al.,2015及びHumphrey et al.2017)、本発明者らは、化合物A、A+B、A+Cで処理したグルタネロン及び未処理細胞をシーケンシングすることを選択した。次世代シーケンシング(Illumina)を、ペアードエンド(PE)シーケンシング(2×150bp)として単離されたmRNAに対して行い、1億を超えるPEリードを得た。トランスクリプトーム内の選択的スプライシングを同定するために、サンプルあたり1億400万個のPEリードを有するようにリードの数をサブサンプリングした(処理は三連で実施した)。
TARDBPに対するギャップマーでの処理後にTARDBPが除去されたことを確認するために、mRNA-Seqデータに基づいて発現レベルを調べた。TDP-43タンパク質をコードするTARDBPの約75倍のノックダウンが観察された(残りのTARDBP転写物は2%未満)(図4)。相対発現から分かるように、化合物A+B又はA+Cによる処理は、TARDBP ASO(化合物A)単独による処理と比較して、TARDBPの発現レベルを変化させなかった(図4)。
STMN2
次に、本発明者らは、化合物A(TDP-43 KD)で処理するとスプライシングパターンを変化させ、本発明者らのTDP-43模倣オリゴ(化合物C)で処理すると回復し得る他の転写物を調査した。STMN2のTDP-43結合部位を標的とするTDP-43模倣ASOを対照として含めた(化合物B)。最初に、本発明者らは、以前に公開された新しいスプライスアクセプター部位の包含が、本発明者らのSTMN2特異的ASO(化合物B)又は一般的なTDP-43模倣ASO(化合物C)によって影響されることに注目した。分析は、野生型(wt)STMN2の量が化合物A+Bでの処理によって完全に回復し、化合物A+Cで部分的に回復したことを示した(図5A及びB)。野生型STMN2の回復は、TDP-43結合部位への結合を遮断し、それによってイントロン1におけるSTMN2スプライスアクセプター部位の使用を妨げることに起因する。2019年に公開されたこの新しいスプライスアクセプター部位(Klim et al.2019及びMelamed et al.2019)(chr8:79,616,822に位置する)は、STMN2エクソン2に通常使用されるアクセプター部位を置き換える。この新しいスプライスアクセプター部位の使用は、スプライスアクセプター部位に対して203ヌクレオチド3’のポリアデニル化部位の使用のために短縮されるスプライスバリアントをもたらす(図6)。
STMN2は、正常なhMN伸長及び修復に必要なタンパク質をコードする。重要なことに、本発明者らは、STMN2の翻訳後安定化が、TDP-43ノックダウンによって誘導される運動神経突起伸長及び軸索再生の欠損を救済し得ることを確立した。
Klim,J.R.,Williams,L.A.,Limone,F.Et al.ALSに関与するタンパク質TDP-43は、運動ニューロンの成長及び修復のメディエーターであるSTMN2のレベルを維持する。Nat Neurosci 22,167-179(2019).https://doi.org/10.1038/s41593-018-0300-4
ARHGAP32
代替転写と呼ばれる徹底的な調査により、別の遺伝子名がニューロンの発生及び維持に関与することが以前に示された。この遺伝子、ARHGAP32は、Rho GTPアーゼ活性化タンパク質32をコードし、これは主に脳で発現され、適切なニューロンの発達及び維持に関与することが示されている。TDP-43のノックダウンは、pos.Chr11:128992046における選択的スプライスアクセプター部位の使用をもたらす(図7に示すように実験的に検証され、図8のARHGAP32プレmRNA配列を参照して例示される遺伝子のENSG00000134909位置200153に選択的最終エクソンをもたらす-選択的スプライス部位はで示され、ARHGAP32プレmRNAのフラグメントのみが図8に示され、また、本明細書において配列番号35としても開示されることに留意されたい)。選択的スプライス部位の使用によって作り出された新しいエクソンはまた、スプライスアクセプター部位のそれぞれ下流2471及び2532ntsの、2つの可能なポリアデニル化部位を含む(図8の網掛け部分を参照されたい)。TDP-43がTARDBPギャップマーで減少したグルタニューロン(すなわち、TDP-43枯渇細胞)の処理は、本発明のオリゴヌクレオチド(化合物C)の添加が選択的スプライスアクセプター部位の使用を減少させるのに対して、STMN2標的化ミックスマー(化合物B)は効果がなかったことを示す(図7)。図8に示す第2のポリアデニル化部位の前には、潜在的なTDP-43結合部位であるGUリピートRNA結合タンパク質配列がある(図8)。選択的スプライスアクセプター部位の使用の結果は、C末端切断型のARHGAP32タンパク質を生成し、オープンリーディングフレームがこのバリアントの新しい最後のエクソン中に終止コドンを含むので、Rho GTPアーゼ活性化タンパク質32の切断をもたらすことである。新規タンパク質バリアントは、2,087アミノ酸長である野生型Rho GTPアーゼ活性化タンパク質32と比較して、C末端に6個の新規アミノ酸を有する390アミノ酸長である。Rho-GAPドメインの大部分は、このバリアントでは欠けている。同じく欠如している野生型Rho GTPアーゼ活性化タンパク質32のC末端部分は、神経成長を調節する神経成長因子(NGF)に対する高親和性受容体であるTrkAと直接相互作用することが示されている。
SLC5A7
選択的スプライスを示す別のプレmRNAは、高親和性コリントランスポーター1をコードするSLC5A7転写物である。TDP-43タンパク質の喪失は、スプライスアクセプター部位(chr2:108,007,307)及びスプライスドナー部位(chr2:108,007,400)の使用を増加させ、94塩基対の長さを有する新規エクソン(chr2:108,007,307-108,007,400)の封入をもたらす(図9)。相対的発現から分かるように、新規アイソフォームは、TDP-43のノックダウン時に6倍超増加する(化合物A)。しかしながら、TDP-43模倣ASO(化合物C)によるその後の処置は、この選択的エクソンの封入を完全になくしたので、この転写バリアントの発現プロファイルは未処置細胞に似ている(図9A及びB)。このエクソン封入は、翻訳中のフレームシフト及び新規エクソン内の未熟な終止コドンをもたらし、326アミノ酸の潜在的な短縮型バリアントが生成される(野生型タンパク質は580アミノ酸長である(UniprotエントリーQ9GZV3)。高親和性コリントランスポーター1(SLC5A7)のC末端短縮は、運動ニューロン欠損を引き起こし、場合によってはALSの初期診断を引き起こすことが示されている(Salter et al.2018;Neurol Genet.2018 Apr;4(2):e222)。この観察されたエクソン封入のタンパク質結果は、C末端短縮を引き起こす突然変異を有する患者に見られるC末端短縮に似ている。
CERT1
選択的スプライシングを示す別の転写物は、セラミド転移タンパク質又は(CERT1)をコードするCERT1 mRNAである。TDP-43の喪失は、新しいスプライスドナー及びスプライスアクセプター部位の使用をもたらし、hg38 chr5:75415197-75415235(ENSG00000113163における位置96395~96433)に位置する新規エクソンを封入する(図11及び12)。TDP-43(化合物A)の喪失は新規アイソフォームを約18倍増加させるが、STMN2 ASO(化合物A+B)及びTDP-43模倣ASO(化合物A+C)の両方によるその後の処置は、この新規のインフレームエクソンの封入を除去し、野生型細胞に類似した(図11)。プレmRNA内では、潜在性エクソンの後にいくつかの潜在的なTDP-43結合部位が続く(図12)。潜在性エクソンは39bp長であり、それによってORFを変化させないが、セラミド転移タンパク質(CERT1)内に13アミノ酸を導入する。この結果は不明である。CERT1は、小胞体(ER)からゴルジ体へのセラミドの移動を担う。セラミドはERで合成され、次いで、CERT1によってゴルジに移され、そこでスフィンゴミエリンに変換される。スフィンゴミエリンは、動物細胞膜、特にいくつかの神経細胞軸索を取り囲む膜状ミエリン鞘に見られるスフィンゴ脂質の一種である。セラミドシグナル伝達経路の調節は、いくつかの神経変性疾患及び神経炎症性疾患に関与している(Jana et al.J Neurol Sci.2009 Mar 15;278(1-2):5-15)。
TDP-43標的化ASO(化合物B及び化合物C)が同様の標的を有するかどうかを比較するために、選択基準をいくつか設定した選択的スプライシング転写物の分析を行った。p値は0.01未満であるべきであり、対照分析と比較して2倍を超える変化があるべきである。TARDBPのノックダウン時に選択的スプライシングを示す転写物の数は749であるが(化合物A対未処理細胞)、最初のTARDBP KDの後にSTMN2標的化ASOを使用して選択的スプライシングされた転写物の数は691転写物であった(化合物A+B対化合物A)。これらの691個の選択的に発現された転写物のうち、483個は、TDP-43 KDから同定された転写物と重複していた。最後に、TARDBPノックダウン(KD、TDP-43枯渇)後のTDP-43模倣ASOの比較を、TARDBP KDと比較した(化合物A+C対化合物A)。これにより、未処理細胞に対する最初のTDP-43 KDで見られたものと同じ502個の選択的スプライシング転写物が明らかになった(図13)。この分析は、本発明のアンチセンスオリゴヌクレオチドが、STMN2に特異的に標的化される化合物と比較して、RNAスプライシングの調節に対してより包括的な効果を有することを示し、この結果は、STMN2特異的化合物BがTDP-43枯渇によって引き起こされる異常なスプライシングを補正することができず、本発明の化合物が有効であったARHGAP32、SLC5A7及びCERT1の特異的転写物分析と完全に一致する。
実施例3:CAリピートASOを使用したTDP43の欠如によって引き起こされる誤ったmRNAスプライシングの救済。
ここで、本発明者らは、CAリピートアンチセンスオリゴヌクレオチドがいくつかのTDP43標的上で、適切なスプライシングを誘導する能力を示す(STMN2、KALRN、CAMK2B、CERT1及びUNC13A)。
CAMK2B
選択的スプライシングを示す別のプレmRNAは、カルシウム/カルモジュリン依存性プロテインキナーゼII型サブユニットβをコードするCAMK2B転写物であり、樹状突起スパイン及びシナプス形成並びに神経可塑性に関与する。CANK2Bは、7番染色体:44217150-44334577:-1(hg38)(EnsemblエントリーENSG00000058404)に位置する。
TDP43タンパク質の喪失は、位置chr7:44,231,004-44,231,005におけるカノニカルスプライスドナー部位の使用を減少させ、伸長したエクソンをもたらす。この配列内で、新規スプライスアクセプター部位は、chr7:44,222,113-44,222,114に位置するTDP43タンパク質の喪失時にも使用される。したがって、新規エクソンは、chr7:44,222,115-44,231,054に位置する。このエクソンは8938ヌクレオチド長であり、多数の終止コドンを含み、CAMK2B mRNAのナンセンス媒介性の崩壊をもたらす(図14b)。
KALRN
KALRN遺伝子(EnsemblエントリーENSG00000160145)は、第3染色体(第3染色体:124,033,369-124,726,325)(hg38)上に位置する。KALRNは、Dbl及びプレクストリン相同ドメインを有するハンチンチン関連タンパク質相互作用タンパク質、Protein Duo又はセリン/トレオニン-プロテインキナーゼとしても知られるカリリンRho GEFキナーゼをコードする。
TDP43タンパク質の喪失は、KALRNプレmRNA内の2つの新規な選択的スプライスアクセプター部位(chr3:124,700,977;chr3:124,700,975-124,700,976に位置するAG)及びスプライスドナー部位(chr3:124,701,255,chr3:124,701,256-124,701,257に位置するGT)の使用を増加させる(図15a及び図15b)。これにより、279ヌクレオチドの新規エクソンの封入をもたらし(chr3:124,700,977-124,701,255)、これは潜在的に93アミノ酸をコードする。しかしながら、図15cから分かるように、ORFは、斜体の下線付きTGAで示されるナンセンスコドンに迅速に入る。
UNC13A
UNC13Aは、プロテインunc-13ホモログAをコードする。UNC13A遺伝子(Ensemblエントリー、ENSG00000130477)は、第19染色体:17601336-17688365:-1(hg38)(マイナス鎖)に位置する。タンパク質unc-13ホモログAは、小胞融合の前のシナプス小胞プライミングに作用することによって神経伝達物質放出に関与し、容易に放出可能な小胞プール(RRP)の活性依存的再充填に関与する。ほとんどの興奮性/グルタミン酸作動性シナプスにおけるシナプス小胞成熟に必須であるが、阻害性/GABA媒介性シナプスでは必須ではない(UniProt)。UNC13A遺伝子内のバリアントは、筋萎縮性側索硬化症(ALS)及び前頭側頭型認知症(FTD)のリスクを増加させることが長い間知られており、最近の2つの論文では、TDP 43喪失時に潜在性エクソンの封入が記載された(Anna-Leigh Brown et al,「Common ALS/FTD risk variants in UNC13A exacerbate its cryptic splicing and loss upon TDP-43 mislocalization」bioRxiv 2021.04.02.438170;doi:’https://doi.org/10.1101/2021.04.02.438170;X.Rosa Ma et al.,TDP-43 represses cryptic exon inclusion in FTD/ALS gene UNC13A,bioRxiv 2021.04.02.438213doi:https://doi.org/10.1101/2021.04.02.438213)。さらに、2つの既知の多型が、UNC13AプレmRNA内のTDP-43結合を変化させ、それにより潜在性エクソンの封入をもたらすALS/FTDリスクと強く関連する(Brown et al,2021)。
本発明者らのデータは、以下に記載されるように、Brown et al,2021によって記載された潜在性エクソンの封入を同様に示す。TDP43が失われると、UNC13A内の2つのエクソンが、選択的スプライスアクセプター部位及びスプライスドナー部位の使用によって観察される。一方のエクソンは128ヌクレオチド長であり、19番染色体:17,642,414-17,642,541上に位置し、他方は178ヌクレオチド長であり、19番染色体:17,642,414-17,642,591上に位置する(図16a)。2つのエクソンは重複しており、同じスプライスアクセプター部位chr19:17,642,414を使用するが、スプライスドナー部位は異なり、それぞれchr19:17,642,591及びchr19:17,642,541である(図16b及び図16c)。両方のエクソンがUNC13Aのオープンリーディングフレームを破壊している(図16a)。
ヒトグルタミン酸作動性ニューロン(Fujifilm)を、0日目に、200ul培養培地中、ラミニン及びポリ(エチレンイミン)溶液(Sigma Aldrich)でコーティングした96ウェルプレートあたり60000細胞で播種した。実験全体の間、細胞培養培地の半分を週に3回交換した(1、5、8、11、13、15日目)。TDP-43をノックダウンするために、化合物A(配列番号19,1)を1日目及び8日目に5uMで培養培地に添加した(2つの対照ウェルを除く)。CAリピートアンチセンスオリゴヌクレオチドを培養培地に5日目及び13日目に10uMで添加した。合計48個の異なるCAリピートアンチセンスオリゴヌクレオチドを添加した。12ウェルに、ベースライン基準としての役割を果たすために化合物A(配列番号19,1)のみを入れた。
Magnapure溶解緩衝液(Roche)を使用して細胞を18日目に回収し、DNase処理工程を含み製造業者の指示に従ってRNAをMagNA pure 96システム(Roche)で単離した。精製RNAを90で30sek(30 sek at 90)変性させた後、cDNA合成を行った。RT-qPCR用のiScript Advanced cDNA Synthesisキット(Biorad)を製造者の説明書に従って使用してcDNAを作成した。
標的遺伝子の発現レベルの測定は、QX1システム(Bio-Rad)を使用した液滴デジタルPCRによって行った。正常にスプライシングされた標的mRNAの発現を測定するために使用されるpcrプローブアッセイは、2つのエクソンにまたがるように設計され、その間に新たな「変異」エクソンが生じるであろう。
結果表Bに示されるデータを、ハウスキーピング遺伝子HPRT1の発現に対して正規化し、最後に、TDP43ノックダウン又はCAリピートアンチセンスオリゴヌクレオチドを受けなかった2つの対照ウェル(PBS)の平均発現値に対して正規化した。
(Integrated DNA technologies(IDT))で合成した以下のPCRプローブアッセイを使用した:
TARDBP
プライマー1:CAGCTCATCCTCAGTCATGTC(配列番号44)
プライマー2:GATGGTGTGACTGCAAACTTC(配列番号45)
プローブ:/5Cy5/CAGCGCCCCACAAACACTTTTCT/3IAbRQSp/配列番号104)
STMN2
プライマー1:CTGCTCAGCGTCTGC(配列番号105)
プライマー2:GTTGCGAGGTTCCGG(配列番号106)
プローブ:/5HEX/CTAAAACAG/ZEN/CAATGGCCTACAAGGAAAAAATGAAG/3IABkFQ/(配列番号107)
CERT1
プライマー1:CTAATGGTTAAACGTGAGGACAGC(配列番号108)
プライマー2:ATCTGGTCCTCCAAAGTGGG(配列番号109)
プローブ:/5HEX/CAGAAGAGA/ZEN/CTGGATAAGGAAACTGAGAAGAAAAGAAGAACAG/3IABkFQ/(配列番号110)
KALRN
プライマー1:CGAGCCCTCGGAGTTTG(配列番号111)
プライマー2:TCCTTCCAAGAAATGGTGGC(配列番号112)
プローブ:/5HEX/CGACTTCCA/ZEN/GAATATGATGCTGCTGCTGATG/3IABkFQ/(配列番号113)
CAMK2B
プライマー1:CTGACAGTGCCAATACCACC(配列番号114)
プライマー2:GCTGCTCCGTGGTCTTAAT(配列番号115)
プローブ:/5Cy5/ATGAAGACGCTAAAGCCCGGAAGCAG/3IAbRQSp/(配列番号116)
UNC13A
プライマー1:GATCAAAGGCGAGGAGAAGG(配列番号117)
プライマー2:TGGCATCTGGGATCTTCAC(配列番号118)
プローブ:/56-FAM/ACCTGTCTG/ZEN/CATGAGAACCTGTTCCACTTC/3IABkFQ/(配列番号119)
以下のCY5.5標識HPRT1プローブをBioRadから購入した:dHsaCPE13136107。
結果表B:遺伝子TARDBP、STMN2、CERT1、CAMK2B、KALRN及びUNC13A.の発現値を表示する。発現を、未処置グルタニューロン(PBS)の平均と比較した発現パーセンテージとして示す。見ることができるように、いくつかのCA反復アンチセンスオリゴヌクレオチドは、TDP43ノックダウンアンチセンスオリゴヌクレオチドTDP43 KD(配列番号19,1)のみで処理した細胞と比較して、標的遺伝子の発現を上昇させることができる。
Figure 2023534557000009

Figure 2023534557000010

Figure 2023534557000011

Figure 2023534557000012

Figure 2023534557000013
実施例4-CAリピートに富むASOを使用したTDP43の欠如によって引き起こされる誤ったmRNAスプライシングの救済。
いくつかの配列変異を含むCAリピートASOが依然としてTDP43の欠如によって引き起こされる誤ったmRNAスプライシングを修正することができることを示すために、本発明者らは最大5ヌクレオチドの変化を有するCAリピートASOを作製し、それらが依然としてmRNAスプライシングを修正することができることを示す。これらのCAリピートに富むASOを、TDP43の非存在下で3つの既知のTDP43標的(STMN2、KALRN、CAMK2B)に対する適切なスプライシングを誘導する能力について試験する。
ヒトグルタミン酸作動性ニューロン(Fujifilm)を、0日目に、200ul培養培地中、ラミニン及びポリ(エチレンイミン)溶液(Sigma Aldrich)でコーティングした96ウェルプレートあたり60000細胞で播種した。実験全体の間、細胞培養培地の半分を週に3回交換した(1、3、6、8、10、13、15日目)。TDP-43をノックダウンするために、化合物A(配列番号19,1)を1日目及び8日目に5uMで培養培地に添加した(4つの対照ウェルを除く)。CAリピートに富むASOを培養培地に10日目及び13日目に10uMで添加した。以下の表Cに示すように、60の異なるCAリピートに富むASOを添加した。10ウェルに、ベースライン基準としての役割を果たすために化合物A(配列番号19,1)のみを入れた。
Magnapure溶解緩衝液(Roche)を使用して細胞を16日目に回収し、DNase処理工程を含み製造業者の指示に従ってRNAをMagNA pure 96システム(Roche)で単離した。精製RNAを90Cで30sek(30 sek at 90C)変性させた後、cDNA合成を行った。RT-qPCR用のiScript Advanced cDNA Synthesisキット(Biorad)を製造者の説明書に従って使用してcDNAを作成した。
標的遺伝子の発現レベルの測定は、QX1システム(Bio-Rad)を使用した液滴デジタルPCRによって行った。正常にスプライシングされた標的mRNAの発現を測定するために使用されるpcrプローブアッセイは、2つのエクソンにまたがるように設計され、その間に新たな「変異」エクソンが生じるであろう。
表Cに示されるデータを、ハウスキーピング遺伝子HPRT1の発現に対して正規化し、最後に、TDP43ノックダウン又はCAリピートASOを受けなかった2つの対照ウェル(PBS)の平均発現値に対して正規化した。
(Integrated DNA technologies(IDT))で合成した以下のPCRプローブアッセイを使用した(TARDBP):
プライマー1:CAGCTCATCCTCAGTCATGTC(配列番号44)
プライマー2:GATGGTGTGACTGCAAACTTC(配列番号45)
プローブ:/5Cy5/CAGCGCCCCACAAACACTTTTCT/3IAbRQSp/)(配列番号104)
STMN2:
プライマー1:CTGCTCAGCGTCTGC(配列番号105)
プライマー2:GTTGCGAGGTTCCGG(配列番号106)
プローブ:/5HEX/CTAAAACAG/ZEN/CAATGGCCTACAAGGAAAAAATGAAG/3IABkFQ/)(配列番号107)
KALRN:
プライマー1:CGAGCCCTCGGAGTTTG(配列番号111)
プライマー2:TCCTTCCAAGAAATGGTGGC(配列番号112)
プローブ:/5HEX/CGACTTCCA/ZEN/GAATATGATGCTGCTGCTGATG/3IABkFQ/)(配列番号113)
CAMK2B:
プライマー1:CTGACAGTGCCAATACCACC(配列番号114)
プライマー2:GCTGCTCCGTGGTCTTAAT(配列番号115)
プローブ:/5Cy5/ATGAAGACGCTAAAGCCCGGAAGCAG/3IAbRQSp/)(配列番号116)
以下のCY5.5標識HPRT1プローブをBioRadから購入した:dHsaCPE13136107。
結果表C-遺伝子の発現値を示す:TDP43、CANK2B、STMN2及びKALRN。発現を、未処置グルタニューロン(PBS)の平均と比較した発現パーセンテージとして示す。
Figure 2023534557000014

Figure 2023534557000015
特定の参考文献
Salter CG,Beijer D,Hardy H,et al.Truncating SLC5A7 mutations underlie a spectrum of dominant hereditary motor neuropathies.Neurol Genet.2018;4(2):e222.
Yukiko Nasu-Nishimura 1,Tomoatsu Hayashi,Tomohiro Ohishi,Toshio Okabe,Susumu Ohwada,Yoshimi Hasegawa,Takao Senda,Chikashi Toyoshima,Tsutomu Nakamura,Tetsu Akiyama.Role of the Rho GTPase-activating Protein RICS in Neurite Outgrowth.Genes Cells.2006 Jun;11(6):607-14.
Arundhati Jana,Edward L.Hogan,and Kalipada Pahan.Ceramide and neurodegeneration:Susceptibility of neurons and oligodendrocytes to cell damage and death.J Neurol Sci.2009 Mar 15;278(1-2):5-15.
Conti et al.TDP-43 affects splicing profiles and isoform production of genes involved in the apoptotic and mitotic cellular pathways.Nucleic Acids Res.2015 Oct 15;43(18):8990-9005.
Humphrey et al.Quantitative analysis of cryptic splicing associated with TDP-43 depletion.BMC Medical Genomics 2017;volume 10,Article number:38(2017).
Melamed et al.Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration.Nat Neurosci.2019 Feb;22(2):180-190.
Klim et al.,ALS-implicated protein TDP-43 sustains levels of STMN2,a mediator of motor neuron growth and repair.Nature Neuroscience 22,pages167-179(2019)
Figure 2023534557000016

Figure 2023534557000017

Figure 2023534557000018

Figure 2023534557000019

Figure 2023534557000020

Figure 2023534557000021

Figure 2023534557000022

Figure 2023534557000023

Figure 2023534557000024

Figure 2023534557000025

Figure 2023534557000026

Figure 2023534557000027

Figure 2023534557000028

Figure 2023534557000029

Figure 2023534557000030

Claims (57)

  1. 8~40ヌクレオチド長のアンチセンスオリゴヌクレオチドであって、(5’-3’)(UG)n、(GU)n[式中、nは4~20である]、UGUGUGUG、UGUGUGUGU、UGUGUGUGUG、UGUGUGUGUGU、UGUGUGUGUGUG、UGUGUGUGUGUGU、GUGUGUGU、GUGUGUGUG、GUGUGUGUGU、GUGUGUGUGUG、GUGUGUGUGUGU、GUGUGUGUGUGUG、及びGUGAAUGAからなる群から選択される配列に相補的な少なくとも8ヌクレオチド長の連続ヌクレオチド配列を含み、TDP-43が枯渇した細胞又は異常なTDP-43タンパク質を発現している細胞において、1つ又は複数のTDP-43標的RNAの機能的表現型を回復させることができる、アンチセンスオリゴヌクレオチド。
  2. 医薬における使用のための、8~40ヌクレオチド長のアンチセンスオリゴヌクレオチドであって、(5’-3’)(UG)n、(GU)n[式中、nは4~20である]、UGUGUGUG、UGUGUGUGU、UGUGUGUGUG、UGUGUGUGUGU、UGUGUGUGUGUG、UGUGUGUGUGUGU、GUGUGUGU、GUGUGUGUG、GUGUGUGUGU、GUGUGUGUGUGU、GUGUGUGUGUGUG、及びGUGAAUGAからなる群から選択される配列に対して少なくとも75%、例えば少なくとも90%相補性又は100%相補性を有する少なくとも8ヌクレオチド長の連続ヌクレオチド配列を含む、アンチセンスオリゴヌクレオチド。
  3. TDP-43病理を特徴とする疾患の処置における使用のための、8~40ヌクレオチド長のアンチセンスオリゴヌクレオチドであって、(5’-3’)(UG)n、(GU)n[式中、nは4~20である]、UGUGUGUG、UGUGUGUGU、UGUGUGUGUG、UGUGUGUGUGU、UGUGUGUGUGUG、UGUGUGUGUGUGU、GUGUGUGU、GUGUGUGUG、GUGUGUGUGU、GUGUGUGUGUGU、GUGUGUGUGUGUG、及びGUGAAUGAからなる群から選択される配列に対して少なくとも75%、例えば少なくとも90%相補性又は100%相補性を有する少なくとも8ヌクレオチド長の連続ヌクレオチド配列を含む、アンチセンスオリゴヌクレオチド。
  4. 前記連続ヌクレオチド配列が、1つ又は複数の修飾ヌクレオシドを含む、請求項1に記載のアンチセンスオリゴヌクレオチド、又は請求項2若しくは請求項4に記載の使用のためのアンチセンスオリゴヌクレオチド。
  5. 前記連続ヌクレオチド配列が、配列CACACACA若しくは配列ACACACAC;又は配列番号1~18からなる群から選択される配列、若しくは配列番号1~34及び配列番号50~103から選択される配列を含む、請求項1~4のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  6. 前記連続ヌクレオチド配列が、少なくとも12ヌクレオチド長である、請求項1~5のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  7. 前記連続ヌクレオチド配列が、少なくとも13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31又は32ヌクレオチド長である、請求項1~6のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  8. 前記連続ヌクレオチド配列が、標的配列に対して少なくとも75%相補的である、請求項1に記載のアンチセンスオリゴヌクレオチド。
  9. 前記連続ヌクレオチド配列が、標的配列に対して少なくとも80%、少なくとも85%、少なくとも90%又は少なくとも95%相補的である、請求項1~8のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  10. 前記連続ヌクレオチド配列が、標的配列に対して1、2、3、4、5、6、7、8個又はそれを超えるミスマッチを含む、請求項1~9のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  11. 相補的標的RNAに対する前記アンチセンスオリゴヌクレオチドのギブス自由エネルギーが、約-10ΔG未満、例えば約-15ΔG未満、例えば約-17ΔG未満である、請求項1~10のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  12. 2つ以上のTDP-43標的プレmRNAのスプライシングを調節することができる、請求項1~11のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  13. 前記2つ以上のTDP-43標的RNAが、STMN2プレmRNA、ARHGAP32プレmRNA、SLC5A7プレmRNA、CAMK2BプレmRNA、KALRNプレmRNA、CERT1プレmRNA、UNC13AプレmRNAからなる群から独立して選択される、請求項1~12のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  14. TDP-43枯渇細胞に投与した場合に、STMN2 mRNA、ARHGAP32 mRNA、SLC5A7 mRNA、CERT1 mRNA、CAMK2B mRNA、KALRN mRNA及びUNC13A mRNAからなる群から選択される2つ以上のmRNAのプレmRNAスプライシングの忠実度を高めることができる、請求項1~13のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  15. STMN2プレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、STMN2の発現を増加させることができる、請求項1~14のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  16. STMN2プレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、隣接するエクソン1/エクソン2接合部を有する野生型STMN2成熟mRNAと比較して、エクソン1とエクソン2との間に潜在性エクソン(ce1)を含むSTMN2成熟mRNAの割合を減少させることができる、請求項1~15のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  17. ARHGAP32プレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、異常にスプライシングされたARHGAP32成熟mRNAのレベルを減少させることができる、請求項1~16のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  18. SLC5A7プレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、SLC5A7 mRNA転写物中の異常なエクソン封入のレベルを減少させることができる、請求項1~17のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  19. CERT1プレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、CERT1 mRNA転写物中の異常なエクソン封入のレベルを減少させることができる、請求項1~18のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  20. CAMK2BプレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、CAMK2B mRNA転写物中の異常なエクソン封入のレベルを減少させることができる、請求項1~19のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  21. KALRNプレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、KALRN mRNA転写物中の異常なエクソン封入のレベルを減少させることができる、請求項1~20のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  22. UNC13AプレmRNAを発現しているTDP-43枯渇細胞に投与した場合に、UNC13A mRNA転写物中の異常なエクソン封入のレベルを減少させることができる、請求項1~21のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  23. TDP-43枯渇細胞におけるSTMN2、CERT1、SLC5A7及びARHGAP32、CAMK2B、KALRN及びUNC13AプレmRNAのうちの2つ以上の異常なスプライシングを修正することができる、請求項1~14のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  24. 3個を超えるか、又は4個を超える連続DNAヌクレオシドの領域を含まない、請求項1~23のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  25. RNAseH切断を媒介することができない、請求項1~24のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  26. モルホリノアンチセンスオリゴヌクレオチドである、請求項4~25のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  27. 前記1つ又は複数の修飾ヌクレオシドが、2’糖修飾ヌクレオシド、例えば、2’-O-アルキル-RNA;2’-O-メチルRNA(2’-OMe);2’-アルコキシ-RNA;2’-O-メトキシエチル-RNA(2’-MOE);2’-アミノ-DNA;2’-フルオロ-RNA;2’-フルオロ-DNA;アラビノ核酸(ANA);2’-フルオロ-ANA;ロックド核酸(LNA)、及びそれらの任意の組み合わせからなる群から独立して選択される2’糖修飾ヌクレオシドである、請求項4~26のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  28. 前記2’糖修飾ヌクレオシドが、親和性向上2’糖修飾ヌクレオシドである、請求項27に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  29. 前記アンチセンスオリゴヌクレオチドの前記連続ヌクレオチド配列が、2’-O-メトキシエチル-RNA(2’-MOE)ヌクレオシドを含む、請求項4~25、27又は28のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用。
  30. 前記連続ヌクレオチド配列の全てのヌクレオシドが、任意にホスホロチオエートヌクレオシド間結合によって連結された2’-O-メトキシエチル-RNA(2’-MOE)ヌクレオシドである、請求項29に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  31. 前記修飾ヌクレオシドの1つ又は複数が、ロックド核酸ヌクレオシド(LNA)、例えば、拘束型エチルヌクレオシド(cEt)及びβ-D-オキシ-LNAからなる群から選択されるLNAヌクレオシドである、請求項4~25、27又は28のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  32. 前記アンチセンスオリゴヌクレオチドの前記連続ヌクレオチド配列が、LNAヌクレオシド及びDNAヌクレオシドを含むか、又はLNAヌクレオシド及びDNAヌクレオシドからなる、請求項31に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  33. 前記アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列が、ミックスマー又はトータルマーである、請求項4~25又は27~32に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  34. 前記アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列が、配列番号1~18からなる群から選択される核酸塩基の配列、配列番号1~34及び配列番号50~103から選択される配列、又はそれらの少なくとも8個の連続ヌクレオチドを含む、請求項1~33のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  35. 前記アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列が、配列番号1~18からなる群から選択される核酸塩基の配列又は配列番号1~34及び配列番号50~103から選択される配列の少なくとも9、10、11、12、13、14、15、16又は17個の連続ヌクレオチドを含む、請求項34に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  36. 前記アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列中に存在するシトシン塩基が、シトシン及び5-メチルシトシンからなる群から独立して選択される、請求項4~35のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  37. 前記アンチセンスオリゴヌクレオチド又はその連続ヌクレオチド配列中に存在するシトシン塩基が5-メチルシトシンである、請求項4~36のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  38. 前記連続ヌクレオチド配列上のヌクレオシド間に位置するヌクレオシド間結合の1つ又は複数が修飾されている、請求項4~37のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  39. 前記連続ヌクレオチド配列上のヌクレオシド間に位置するヌクレオシド間結合の少なくとも約75%、少なくとも約80%、少なくとも約85%、少なくとも約90%、少なくとも約95%、又は約100%が修飾されている、請求項4~38のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用。
  40. 修飾された前記ヌクレオシド間結合の1つ若しくは複数又は全てがホスホロチオエート結合を含む、請求項38又は39に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  41. 前記アンチセンスオリゴヌクレオチド中に存在する全てのヌクレオシド間結合がホスホロチオエートヌクレオシド間結合である、請求項4~25又は27~40のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用。
  42. 前記連続ヌクレオチド配列の長さが8~20ヌクレオチドである、請求項1~41のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  43. 前記連続ヌクレオチド配列の長さが12~18ヌクレオチドである、請求項1~41のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  44. 前記連続ヌクレオチド配列の長さが、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29又は30ヌクレオチドである、請求項1~41のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  45. 前記連続ヌクレオチド配列からなる、請求項1~44のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  46. 16,1、8,3、18,3、18,4、16,2、18,2、7,2、15,2、16,3、15,3、8,1、8,2、7,3、6,4、6,3、18,1、7,1、14,2、6,2、14,4、15,4、10,1、及び15,5からなる群から選択されるオリゴヌクレオチドを含むか、又はそれからなる、請求項1に記載のアンチセンスオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチド。
  47. 請求項1~46のいずれか一項に記載のオリゴヌクレオチド又は使用のためのアンチセンスオリゴヌクレオチドと、前記オリゴヌクレオチドに共有結合した少なくとも1つのコンジュゲート部分とを含む、コンジュゲート。
  48. 請求項1~46のいずれか一項に記載のアンチセンスオリゴヌクレオチド若しくは使用のためのアンチセンスオリゴヌクレオチド、又は請求項47に記載のコンジュゲートの、薬学的に許容され得る塩。
  49. ナトリウム塩又はカリウム塩である、請求項46に記載の塩。
  50. 請求項1~46に記載のオリゴヌクレオチド若しくは使用のためのオリゴヌクレオチド、又は請求項47に記載のコンジュゲート、又は請求項48若しくは49に記載の薬学的塩と、薬学的に許容され得る希釈剤、溶媒、担体、塩及び/又はアジュバントとを含む、医薬組成物。
  51. 異常又は枯渇したレベルのTDP-43を発現している細胞においてTDP-43の機能性を増強するためのインビボ又はインビトロ方法などの方法であって、請求項1~46のいずれか一項に記載のオリゴヌクレオチド、又は請求項47に記載のコンジュゲート、又は請求項48若しくは49に記載の塩、又は請求項50に記載の組成物を有効量で前記細胞に投与することを含む、方法。
  52. 対象におけるTDP-43病理を処置又は予防するための方法であって、治療有効量又は予防有効量の請求項1~46のいずれか一項に記載のオリゴヌクレオチド、又は請求項47に記載のコンジュゲート、又は請求項48若しくは49に記載の塩、又は請求項50に記載の組成物を、前記TDP-43病理に罹患しているか、又は罹患しやすい対象に投与することを含む、方法。
  53. 医薬としての使用のための、請求項1~46のいずれか一項に記載のオリゴヌクレオチド、又は請求項47に記載のコンジュゲート、又は請求項48若しくは49に記載の塩、又は請求項50に記載の組成物。
  54. TDP-43病理の処置における使用のための、請求項1~46のいずれか一項に記載のオリゴヌクレオチド、又は請求項47に記載のコンジュゲート、又は請求項48若しくは49に記載の塩、又は請求項50に記載の組成物。
  55. TDP-43病理の処置又は予防のための医薬の調製のための、請求項1~46に記載のオリゴヌクレオチド、又は請求項47に記載のコンジュゲート、又は請求項48若しくは49に記載の塩、又は請求項50に記載の組成物の使用。
  56. 前記TDP-43病理が、筋萎縮性側索硬化症(ALS)、前頭側頭葉変性症(FTLD)、進行性核上性麻痺(PSP)、原発性側索硬化症、進行性筋萎縮症、アルツハイマー病、パーキンソン病、自閉症、海馬硬化性認知症、ダウン症候群、ハンチントン病、ポリグルタミン病、例えば脊髄小脳失調症3、ミオパシー及び慢性外傷性脳症からなる群から選択される神経障害である、請求項1~55のいずれか一項に記載の使用、オリゴヌクレオチド又は方法。
  57. 前記TDP-43病理が、筋萎縮性側索硬化症(ALS)、前頭側頭葉変性症(FTLD)からなる群から選択される神経障害である、請求項1~56のいずれか一項に記載の使用、オリゴヌクレオチド又は方法。
JP2023504274A 2020-07-23 2021-07-22 Rna結合タンパク質部位を標的とするオリゴヌクレオチド Pending JP2023534557A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20187354.4 2020-07-23
EP20187354 2020-07-23
PCT/EP2021/070487 WO2022018187A1 (en) 2020-07-23 2021-07-22 Oligonucleotides targeting rna binding protein sites

Publications (1)

Publication Number Publication Date
JP2023534557A true JP2023534557A (ja) 2023-08-09

Family

ID=71783880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023504274A Pending JP2023534557A (ja) 2020-07-23 2021-07-22 Rna結合タンパク質部位を標的とするオリゴヌクレオチド

Country Status (7)

Country Link
US (1) US20220033818A1 (ja)
EP (1) EP4185696A1 (ja)
JP (1) JP2023534557A (ja)
CN (1) CN116209761A (ja)
AR (1) AR123043A1 (ja)
TW (1) TW202219273A (ja)
WO (1) WO2022018187A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2022255175A1 (en) * 2021-04-06 2023-11-23 Trace NewCo, Inc. Compositions and methods for treating tdp-43 proteinopathy
WO2023118087A1 (en) * 2021-12-21 2023-06-29 F. Hoffmann-La Roche Ag Antisense oligonucleotides targeting unc13a
WO2023217890A1 (en) * 2022-05-10 2023-11-16 F. Hoffmann-La Roche Ag Antisense oligonucleotides targeting cfp-elk1 intergene region
WO2023222858A1 (en) * 2022-05-18 2023-11-23 F. Hoffmann-La Roche Ag Improved oligonucleotides targeting rna binding protein sites
GB202208387D0 (en) * 2022-06-08 2022-07-20 Ucl Business Ltd Modified U7 snRNA construct
GB202208384D0 (en) * 2022-06-08 2022-07-20 Ucl Business Ltd Modified U7 snRNA construct

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3756313B2 (ja) 1997-03-07 2006-03-15 武 今西 新規ビシクロヌクレオシド及びオリゴヌクレオチド類縁体
NZ503765A (en) 1997-09-12 2002-04-26 Exiqon As Bi-cyclic and tri-cyclic nucleotide analogues
ID30093A (id) 1999-02-12 2001-11-01 Sankyo Co Analog-analog nukleosida dan oligonukleotida baru
JP2002543214A (ja) 1999-05-04 2002-12-17 エクシコン エ/エス L−リボ−lna類縁体
US6617442B1 (en) 1999-09-30 2003-09-09 Isis Pharmaceuticals, Inc. Human Rnase H1 and oligonucleotide compositions thereof
DK2752488T3 (da) 2002-11-18 2020-04-20 Roche Innovation Ct Copenhagen As Antisense-design
CA2640171C (en) 2006-01-27 2014-10-28 Isis Pharmaceuticals, Inc. 6-modified bicyclic nucleic acid analogs
WO2007134181A2 (en) 2006-05-11 2007-11-22 Isis Pharmaceuticals, Inc. 5'-modified bicyclic nucleic acid analogs
US7666854B2 (en) 2006-05-11 2010-02-23 Isis Pharmaceuticals, Inc. Bis-modified bicyclic nucleic acid analogs
US8278425B2 (en) 2007-05-30 2012-10-02 Isis Pharmaceuticals, Inc. N-substituted-aminomethylene bridged bicyclic nucleic acid analogs
EP2173760B2 (en) 2007-06-08 2015-11-04 Isis Pharmaceuticals, Inc. Carbocyclic bicyclic nucleic acid analogs
CA2692579C (en) 2007-07-05 2016-05-03 Isis Pharmaceuticals, Inc. 6-disubstituted bicyclic nucleic acid analogs
WO2009067647A1 (en) 2007-11-21 2009-05-28 Isis Pharmaceuticals, Inc. Carbocyclic alpha-l-bicyclic nucleic acid analogs
DK2356129T3 (da) 2008-09-24 2013-05-13 Isis Pharmaceuticals Inc Substituerede alpha-L-bicykliske nukleosider
WO2011017521A2 (en) 2009-08-06 2011-02-10 Isis Pharmaceuticals, Inc. Bicyclic cyclohexose nucleic acid analogs
US8846637B2 (en) 2010-06-08 2014-09-30 Isis Pharmaceuticals, Inc. Substituted 2′-amino and 2′-thio-bicyclic nucleosides and oligomeric compounds prepared therefrom
US9221864B2 (en) 2012-04-09 2015-12-29 Isis Pharmaceuticals, Inc. Tricyclic nucleic acid analogs
PL2920304T3 (pl) 2012-11-15 2019-07-31 Roche Innovation Center Copenhagen A/S Koniugaty oligonukleotydowe
KR102287532B1 (ko) 2014-01-30 2021-08-11 에프. 호프만-라 로슈 아게 생분해성 컨쥬게이트를 갖는 폴리 올리고머 화합물
WO2017106283A1 (en) * 2015-12-14 2017-06-22 Cold Spring Harbor Laboratory Compositions and methods for treatment of liver diseases
AU2019287635A1 (en) 2018-06-14 2020-12-17 Ionis Pharmaceuticals, Inc. Compounds and methods for increasing STMN2 expression
CA3117163A1 (en) * 2018-11-08 2020-05-14 Aligos Therapeutics, Inc. S-antigen transport inhibiting oligonucleotide polymers and methods
AU2020288555A1 (en) * 2019-06-03 2022-01-20 Quralis Corporation Oligonucleotides and methods of use for treating neurological diseases
CN116034161A (zh) * 2020-03-25 2023-04-28 哈佛学院校长同事会 用于恢复stmn2水平的方法和组合物

Also Published As

Publication number Publication date
TW202219273A (zh) 2022-05-16
CN116209761A (zh) 2023-06-02
WO2022018187A1 (en) 2022-01-27
US20220033818A1 (en) 2022-02-03
EP4185696A1 (en) 2023-05-31
AR123043A1 (es) 2022-10-26

Similar Documents

Publication Publication Date Title
JP2023534557A (ja) Rna結合タンパク質部位を標的とするオリゴヌクレオチド
KR101807324B1 (ko) 다운 증후군 유전자에 대한 천연 안티센스 전사체의 억제에 의한 다운 증후군 유전자 관련된 질환의 치료
TW201200138A (en) Treatment of Atonal homolog 1 (ATOH1) related diseases by inhibition of natural antisense transcript to ATOH1
JP2024056820A (ja) Scn9a発現を調節するためのオリゴヌクレオチド
TW201209163A (en) Treatment of BCL2 binding component 3 (BBC3) related diseases by inhibition of natural antisense transcript to BBC3
CN112912500A (zh) 用于调节atxn2表达的寡核苷酸
CN113785060A (zh) 用于调节atxn2表达的寡核苷酸
WO2023104693A1 (en) Antisense oligonucleotides targeting actl6b
WO2023118087A1 (en) Antisense oligonucleotides targeting unc13a
US20230193269A1 (en) Oligonucleotides for splice modulation of card9
EP3898975A2 (en) Antisense oligonucleotides targeting card9
US20220204973A1 (en) Antisense Oligonucleotide for Targeting Progranulin
JP7288052B2 (ja) Scn9a発現を阻害するための増強されたオリゴヌクレオチド
WO2023222858A1 (en) Improved oligonucleotides targeting rna binding protein sites
US20220403388A1 (en) Oligonucleotide Progranulin Agonists
TW202409276A (zh) 改良之靶向rna結合蛋白位點的寡核苷酸
WO2020089260A1 (en) Antisense oligonucleotides targeting tia1
WO2021158810A1 (en) Oligonucleotides for splice modulation of camk2d
WO2023242324A1 (en) Antisense oligonucleotides for targeting progranulin
WO2023217890A1 (en) Antisense oligonucleotides targeting cfp-elk1 intergene region
TW202329983A (zh) Rna編輯
WO2022018155A1 (en) Lna oligonucleotides for splice modulation of stmn2
WO2020011653A1 (en) Antisense oligonucleotides targeting kynu
WO2020038971A1 (en) Antisense oligonucleotides targeting vcan

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230330