JP2023532733A - 損失の認定および定量化を介したメータードリフトのリアルタイム判定 - Google Patents

損失の認定および定量化を介したメータードリフトのリアルタイム判定 Download PDF

Info

Publication number
JP2023532733A
JP2023532733A JP2022581572A JP2022581572A JP2023532733A JP 2023532733 A JP2023532733 A JP 2023532733A JP 2022581572 A JP2022581572 A JP 2022581572A JP 2022581572 A JP2022581572 A JP 2022581572A JP 2023532733 A JP2023532733 A JP 2023532733A
Authority
JP
Japan
Prior art keywords
fuel
storage facility
fuel storage
meter
drift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022581572A
Other languages
English (en)
Inventor
スワループ・プレム
カンブル・アティシュ
デブ・ボダヤン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wayne Fueling Systems LLC
Original Assignee
Wayne Fueling Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wayne Fueling Systems LLC filed Critical Wayne Fueling Systems LLC
Publication of JP2023532733A publication Critical patent/JP2023532733A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/08Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred
    • B67D7/085Testing or calibrating apparatus therefore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/08Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred
    • B67D7/30Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred with means for predetermining quantity of liquid to be transferred
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/08Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred
    • B67D7/22Arrangements of indicators or registers
    • B67D7/221Arrangements of indicators or registers using electrical or electro-mechanical means
    • B67D7/222Arrangements of indicators or registers using electrical or electro-mechanical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/15Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters specially adapted for gas meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/13Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters using a reference counter

Abstract

一態様では、燃料貯蔵施設を特徴付けるデータが、燃料貯蔵施設と動作可能に通信しているセンサから受信され得る。燃料貯蔵施設と流体連通している燃料ディスペンサーの流量計のメータードリフトの推定値が、受信したデータに基づいて決定され得る。メータードリフトの推定値は、流量計の較正を特徴付ける較正パラメータが所定の流量計較正パラメータから逸脱したかどうかを予測する少なくとも1つの予測モデルに基づいて決定され得る。メータードリフトの推定値が提供され得る。

Description

〔関連出願の相互参照〕
本出願は、2020年6月30日に出願され、「FUEL LEAK DETERMINATION VIA PREDICTIVE MODELING」と題された米国仮特許出願第63/046,345号、および2021年1月8日に出願され、「REAL-TIME DETERMINATION OF METER DRIFT VIA LOSS QUALIFICATION AND QUANTIFICATION」と題された米国特許出願第17/144,940号の優先権を主張しており、これらは参照により全体として本明細書に組み込まれる。
〔分野〕
損失の定量化および認定(qualification)を介したメータードリフトのリアルタイム判定のためのシステムおよび方法が提供される。関連する装置、技術、および物品も説明される。
燃料供給取引中の燃料ディスペンサー動作の一側面は、燃料ディスペンサーが燃料補給所の顧客に所望の量の燃料を正確に提供できることである。燃料ディスペンサーは、典型的には、流量計を含み得、これは、燃料供給取引中に燃料補給所の顧客に提供される燃料の量を測定する責任を負う。流量計は、通常は毎年、正確に較正され、燃料ディスペンサーが所望の量の燃料を燃料補給所の顧客に正確に提供することを保証するために、該当する規制機関によってそのようなものとして認証される。
現在、燃料補給所は、燃料分配の精度が維持されることを確実にするために、燃料ディスペンサー流量計の年1回または定期的な較正に依存し、燃料ディスペンサー流量計の較正が較正間で比較的安定していると仮定している。しかしながら、燃料の正確な分配を確実にする責任を負う流量計の較正が、較正の合間にその適切なパラメータから逸脱する(「メータードリフト」と呼ばれる)ことが時々あることが知られている。これが起こると、燃料ディスペンサーは、所望の量の燃料を正確に分配せず、これは、適切な較正パラメータからの較正ドリフトの方向に応じて燃料補給所の顧客または燃料補給所のいずれかに損失をもたらす可能性がある。さらに、これは、燃料補給所の在庫管理にも影響を与える場合があり、これにより、燃料補給所に位置する1つ以上の燃料供給タンクからの漏れの不正確な推定、環境汚染、評判の低下、および公衆衛生上のリスクをもたらす可能性がある。さらに、これは、適用される環境保護法の遵守の欠如をもたらし得、その結果、該当する規制機関から燃料補給所オーナーに重い罰が課される可能性がある。これらの損失は小さいかもしれないが、メータードリフトの開始からメータードリフトの検出までの時間が長くなるにつれて、これらの影響の大きさは増大する。そして、現在、燃料補給所におけるウェットストックの監視のためのいくつかの従来のシステムは、より定期的にメータードリフトに関連する損失を容易に検出する能力を提供していない。
損失の定量化および認定を介したメータードリフトのリアルタイム判定のためのシステムおよび方法が提供される。関連する装置、技術、および物品も説明される。
一態様では、燃料貯蔵施設を特徴付けるデータが、燃料貯蔵施設と動作可能に通信しているセンサから受信され得る。燃料貯蔵施設と流体連通している燃料ディスペンサーの流量計のメータードリフトの推定値が、受信したデータに基づいて決定され得る。メータードリフトの推定値は、流量計の較正を特徴付ける較正パラメータが所定の流量計較正パラメータから逸脱したかどうかを予測する少なくとも1つの予測モデルに基づいて決定され得る。メータードリフトの推定値が提供され得る。
以下の特徴のうちの1つ以上は、任意の実現可能な組み合わせで含まれ得る。例えば、少なくとも1つの予測モデルは、燃料貯蔵施設の所定の較正パラメータと、燃料貯蔵施設の物理モデルと、データにおける少なくとも1つのエラー度を示すエラーモデルと、を含むことができる。例えば、メータードリフト損失量予測が、燃料貯蔵施設について決定され得、メータードリフト損失量予測の決定は、受信したデータ、燃料貯蔵施設について決定された較正パラメータ、物理モデル、およびエラーモデルの最適化に基づくことができる。例えば、センサは、ディップスティック、自動タンクゲージ、燃料漏れ検出センサ、磁歪プローブ、店頭デバイス、フォアコートコントローラ、バックオフィスシステム、および/または燃料ディスペンサーのうちの1つ以上を含むことができる。例えば、燃料貯蔵施設を特徴付けるデータは、燃料貯蔵施設から周辺環境への燃料の漏れの表示および/もしくは単位時間当たりの漏れの割合、燃料貯蔵施設の環境パラメータ、燃料供給者から燃料貯蔵施設への燃料の引き渡しの結果として燃料貯蔵施設に加えられた燃料の量、ならびに/または顧客への燃料の販売の結果として燃料貯蔵施設から除去された燃料の量、のうちの1つ以上を含むことができる。例えば、メータードリフトの推定値は、サーバーに通信可能に結合されたディスプレイのグラフィカルユーザーインターフェースに提供され得、グラフィカルユーザーインターフェースは、ディスプレイ上にメータードリフト損失量予測の視覚的特徴付けを提示するように構成され得る。例えば、メータードリフトの推定値は、サーバーに通信可能に結合されたディスプレイのグラフィカルユーザーインターフェースに提供され得、グラフィカルユーザーインターフェースは、ディスプレイ上にメータードリフトの推定値の視覚的特徴付けを提示するように構成され得る。例えば、メータードリフトの推定値は、反復可能な時間間隔で決定され得る。例えば、物理モデルは、流体バランスモデルであり得る。例えば、決定することは、数学的プログラミングに基づくことができ、物理モデルによって特徴付けられる関数を最大化または最小化し、関数の入力値を少なくとも変化させることであって、入力値(input valves)が、受信したデータを特徴付ける、ことと、関数の出力値を計算することであって、出力値がメータードリフトの推定値を特徴付ける、ことと、を含むことができる。
別の態様では、システムが提供され、システムは、少なくとも1つのデータプロセッサと、少なくとも1つのデータプロセッサに本明細書に記載の動作を実行させるように構成された命令を格納するメモリと、を含むことができる。動作は、燃料貯蔵施設と動作可能に通信しているセンサから、燃料貯蔵施設を特徴付けるデータを受信することと、受信したデータに基づいて、燃料貯蔵施設と流体連通している燃料ディスペンサーの流量計のメータードリフトの推定値を決定することであって、決定することは、流量計の較正を特徴付ける較正パラメータが所定の流量計較正パラメータから逸脱したかどうかを予測する少なくとも1つの予測モデルにさらに基づく、ことと、メータードリフトの推定値を提供することと、を含むことができる。
以下の特徴のうちの1つ以上は、任意の実現可能な組み合わせで含まれ得る。例えば、少なくとも1つの予測モデルは、燃料貯蔵施設の所定の較正パラメータと、燃料貯蔵施設の物理モデルと、データにおける少なくとも1つのエラー度を示すエラーモデルと、を含むことができる。例えば、動作は、燃料貯蔵施設のメータードリフト損失量予測を決定することをさらに含み得、メータードリフト損失量予測の決定は、受信したデータ、燃料貯蔵施設の所定の較正パラメータ、物理モデル、およびエラーモデルの最適化に基づくことができる。例えば、センサは、ディップスティック、自動タンクゲージ、燃料漏れ検出センサ、磁歪プローブ、店頭デバイス、フォアコートコントローラ、バックオフィスシステム、および/または燃料ディスペンサーのうちの1つ以上を含むことができる。例えば、燃料貯蔵施設を特徴付けるデータは、燃料貯蔵施設から周辺環境への燃料の漏れの表示および/もしくは単位時間当たりの漏れの割合、燃料貯蔵施設の環境パラメータ、燃料供給者から燃料貯蔵施設への燃料の引き渡しの結果として燃料貯蔵施設に加えられた燃料の量、ならびに/または顧客への燃料の販売の結果として燃料貯蔵施設から除去された燃料の量のうちの1つ以上を含むことができる。例えば、メータードリフトの推定値は、サーバーに通信可能に結合されたディスプレイのグラフィカルユーザーインターフェースに提供され得、グラフィカルユーザーインターフェースは、ディスプレイ上にメータードリフト損失量予測の視覚的特徴付けを提示するように構成され得る。例えば、物理モデルは、流体バランスモデルであり得る。例えば、決定することは、数学的プログラミングに基づくことができ、物理モデルによって特徴付けられる関数を最大化または最小化することと、関数の入力値を少なくとも変化させることであって、入力値が、受信したデータを特徴付ける、ことと、関数の出力値を計算することであって、出力値が、メータードリフトの推定値を特徴付ける、ことと、を含むことができる。例えば、動作は、反復可能な時間間隔でメータードリフトの推定値を決定することをさらに含むことができる。
非一時的なコンピュータプログラム製品(すなわち、物理的に具現化されたコンピュータプログラム製品)も記載され、これは、命令を格納し、命令が1つ以上のコンピューティングシステムの1つ以上のデータプロセッサによって実行されると、少なくとも1つのデータプロセッサが、本明細書の動作を実行する。同様に、1つ以上のデータプロセッサと、1つ以上のデータプロセッサに結合されたメモリと、を含むことができるコンピュータシステムも記載されている。メモリは、少なくとも1つのプロセッサに、本明細書に記載される動作のうちの1つ以上を実行させる命令を一時的または永続的に格納することができる。さらに、方法が、単一のコンピューティングシステム内にあるか、または2つ以上のコンピューティングシステム間に分配された、1つ以上のデータプロセッサによって実施され得る。そのようなコンピューティングシステムは、接続され得、ネットワーク(例えば、インターネット、無線広域ネットワーク、ローカルエリアネットワーク、広域ネットワーク、有線ネットワークなど)を通じた接続を含む1つ以上の接続を介する、複数のコンピューティングシステムのうちの1つ以上の間の直接接続を介するなどして、データおよび/もしくはコマンドまたは他の命令などを交換することができる。
本明細書に記載される主題の1つ以上の変形例の詳細は、添付図面および以下の説明に記載されている。本明細書に記載された主題の他の特徴および利点は、説明および図面から、また特許請求の範囲から明らかになるであろう。
本明細書の実施形態は、同様の参照符号が同一または機能的に類似した要素を示す添付図面と併せて以下の説明を参照することにより、より良く理解され得る。
損失の定量化および認定を介したメータードリフトのリアルタイム判定を提供することができる、本主題のいくつかの実施態様の例としてのプロセスを示すプロセスフロー図である。 本明細書に示され、説明されるような、本主題を実施するための例示的なシステムの概略図である。 図2のシステムと動作可能に通信している燃料補給所の概略図である。 メータードリフトの推定値およびメータードリフトに関連する損失の予測を決定するための例示的なプロセスを示すフロー図である。
前述した図面は、必ずしも縮尺通りではなく、本開示の基本原理を例示する様々な好ましい特徴の幾分簡略化した表現を提示していることを理解されたい。例えば、特定の寸法、向き、場所、および形状を含む、本開示の特定の設計上の特徴は、特定の意図された用途および使用環境によって、一部が決定される。
燃料供給取引中の燃料ディスペンサー動作の一側面は、燃料ディスペンサーが燃料補給所の顧客に所望の量の燃料を正確に提供できることである。現在、燃料補給所は、燃料分配の精度が維持されることを確実にするために、燃料ディスペンサー流量計の年1回または定期的な較正に依存しており、燃料ディスペンサー流量計の較正が較正間で比較的安定していると仮定している。しかしながら、燃料の正確な分配を確実にする責任を負う流量計の較正が、較正の合間にその適切なパラメータから逸脱する(「メータードリフト」と呼ばれる)ことが時々あることが知られている。本主題は、いくつかの実施態様において、燃料補給所で日常的に収集されるウェットストック在庫管理データに基づいて、(「メータードリフト」として知られる)燃料ディスペンサーの流量計の較正におけるドリフトを検出することができる方法を含む。この方法は、地下貯蔵タンクの容積較正、周囲条件の変動による流体の熱膨張、季節の影響、荷不足(または詐欺の可能性)、および空売り(またはディスペンサーノズルの漏れ、盗難)を正確に追跡することができる。この方法は、物理学に基づく流体バランシングを含み得、これは、在庫のモデル化および予測モデル化技術を使用して、メータードリフト検出におけるエラーの原因を低減し、メータードリフトに関連する損失を定量化することができる。
物理学に基づく流体バランシングは、所与の期間にわたり燃料貯蔵施設内の燃料の温度調整された開始および終了レベルを予測することと、その所与の期間中の燃料貯蔵施設からの燃料の販売および燃料貯蔵施設への燃料の引き渡し、ならびに燃料貯蔵施設からの漏れを考慮することと、を含み得る。物理学に基づく流体バランシングと、物理学に基づく流体バランシングが単独では考慮することができないエラーおよび矛盾の原因を考慮する予測モデル化技術と、を採用することにより、本方法のいくつかの実施態様は、燃料貯蔵施設と流体連通している燃料ディスペンサー流量計のメータードリフトに起因する損失の予測を提供することができる。
図1は、損失の定量化および認定を介したメータードリフトのリアルタイム判定を提供することができる、本主題のいくつかの実施態様の例としてのプロセス100を示すプロセスフロー図である。
110において、燃料貯蔵施設を特徴付けるデータが、燃料貯蔵施設と動作可能に通信しているセンサから受信され得る。センサは、いくつかの実施態様では、燃料貯蔵施設に貯蔵されている燃料のレベルを決定するように構成され得、貯蔵施設を特徴付けるデータは、燃料貯蔵施設に貯蔵されている燃料のレベルを含み得る。いくつかの実施態様では、センサは、燃料貯蔵施設に貯蔵されている燃料の温度を測定するように構成され得、貯蔵施設を特徴付けるデータは、燃料貯蔵施設に貯蔵されている燃料の温度を含み得る。
いくつかの実施態様では、センサは、燃料貯蔵施設に貯蔵されている燃料のレベルを測定するように構成された、ディップスティック、磁歪プローブ、および/または自動タンクゲージを含むことができる。いくつかの実施態様では、センサは、燃料貯蔵施設が燃料貯蔵施設の周辺の環境に燃料を漏らしているかどうかを判定するように構成された燃料漏れ検出センサを含むことができ、燃料貯蔵施設を特徴付けるデータは、燃料貯蔵施設から周辺環境への燃料の漏れの表示および/または単位時間当たりの漏れの割合のうちの1つ以上を含むことができる。いくつかの実施態様では、センサは、店頭デバイス、フォアコートコントローラ、バックオフィスシステム、および燃料ディスペンサーのいずれか1つを含むことができ、これらはそれぞれ、燃料貯蔵施設と動作可能に通信していてよく、かつ、燃料貯蔵施設の環境パラメータ(例えば、周囲温度など)、およびそこに貯蔵されている燃料(例えば、温度、燃料レベルなど)を記録するように構成され得、燃料貯蔵施設を特徴付けるデータは、燃料貯蔵施設の環境パラメータ(例えば、周囲温度など)、およびそこに貯蔵されている燃料(例えば、温度、燃料レベルなど)を含むことができる。いくつかの実施態様では、センサは、燃料供給者から燃料貯蔵施設への燃料の引き渡しの結果として燃料貯蔵施設に加えられた燃料の量を決定するように構成され得、燃料貯蔵施設を特徴付けるデータは、燃料供給者から燃料貯蔵施設への燃料の引き渡しの結果として燃料貯蔵施設に加えられた燃料の量を含み得る。いくつかの実施態様では、センサは、顧客への燃料の販売の結果として燃料貯蔵施設から除去された燃料の量を決定するように構成され得、燃料貯蔵施設を特徴付けるデータは、顧客への燃料の販売の結果として燃料貯蔵施設から除去された燃料の量を含み得る。いくつかの実施態様では、センサは、上述した機能性の1つ以上の側面を組み込んだ複数のセンサを含み得る。
いくつかの実施態様では、燃料貯蔵施設は、燃料補給所の燃料ディスペンサーに燃料を供給するように構成された、燃料補給所の地下燃料貯蔵タンクとすることができる。いくつかの実施態様では、燃料貯蔵施設は、複数の地下燃料貯蔵タンクを含み得、これらはそれぞれ、燃料補給所に位置しており、それと動作可能に通信している前述のセンサのうちの1つ以上を有し、燃料補給所の燃料ディスペンサーに燃料を供給するように構成される。いくつかの実施態様では、燃料貯蔵施設は、燃料補給所とは別の場所に位置することができる。
いくつかの実施態様では、データは、サーバーで受信され得る。いくつかの実施態様では、サーバーは、データを収集することができる複数のセンサに通信可能に結合されたウェットストック管理サーバーを含むことができる。サーバーは、燃料貯蔵施設および/または燃料補給所から離れた場所にある、遠隔の、例えばクラウドベースの、サーバーであり得るが、いくつかの実施態様では、サーバーは、燃料貯蔵施設および/または燃料補給所に位置することができる。いくつかの実施形態では、複数のセンサのうちの1つ以上から受信されたデータは、現場に位置するモノのインターネット(IoT)またはエッジデバイスなどの中間データ収集デバイス(図示せず)によって収集され得、データ収集デバイスは、収集されたデータを処理のためにサーバーに送信することができる。
いくつかの実施態様では、センサから受信したデータは、指定された期間(例えば、1日)の燃料貯蔵施設の1つ以上の側面を特徴付けることができる。例えば、いくつかの実施態様では、データは、指定された期間の開始時刻に燃料貯蔵施設に存在する燃料の量、燃料供給者からの燃料の引き渡しによって燃料貯蔵施設に加えられた燃料の量、顧客への燃料の販売によって燃料貯蔵施設から除去された燃料の量、指定された期間の終了時刻に燃料貯蔵施設に存在する燃料の量、燃料貯蔵施設の容量、燃料貯蔵施設に貯蔵される燃料の種類、燃料貯蔵施設に貯蔵される燃料の等級、燃料貯蔵施設の周囲の天候、温度、および/または圧力条件、ならびに燃料貯蔵施設に配置されるセンサの種類を特徴付けることができる。いくつかの実施態様では、燃料貯蔵施設が複数の燃料タンクを含む場合、データは、複数の燃料タンクが互いの一部または全部と流体連通しているかどうか、および、互いに流体連通している燃料タンクの数を特徴付けることができる。
120において、燃料貯蔵施設と流体連通している燃料ディスペンサーの流量計のメータードリフトの推定値が、受信したデータに基づいて決定され得る。メータードリフトの推定値は、流量計の較正を特徴付ける較正パラメータが所定の流量計較正パラメータから逸脱したかどうかを予測する少なくとも1つの予測モデルに基づいて決定され得る。いくつかの実施態様では、少なくとも1つの予測モデルは、燃料貯蔵施設の所定の較正パラメータと、燃料貯蔵施設の物理モデルと、データにおける少なくとも1つのエラー度を示すエラーモデルと、を含むことができる。
いくつかの実施態様では、所定の較正パラメータは、タンクチャートなど、燃料貯蔵施設の1つ以上の特性を含むことができる。いくつかの実施態様では、所定の較正パラメータが本質的に非線形である場合(例えば、所定の較正パラメータがタンクチャートである場合)、所定の較正パラメータは、少なくとも1つの予測モデルによって使用されるように、複数の所定のブレークポイントを有する区分的線形関数として近似され得、所定のブレークポイントのそれぞれの間の傾きは、エラーモデルの最適化によって決定され得る。しかしながら、いくつかの実施態様では、所定の較正パラメータは、当業者に知られている他の技術を用いて近似され得る。いくつかの実施態様では、所定のブレークポイントの数も、エラーモデルの最適化によって決定され得る。いくつかの実施態様では、所定のブレークポイントの数は、例えば、k平均および勾配ブースティング木を含む機械学習技術を使用して決定され得る。いくつかの実施態様では、所定の較正パラメータは、以前に取得された燃料貯蔵施設を特徴付けるデータを含むか、使用するか、またはそれに基づいていることができる。
いくつかの実施態様では、物理モデルは、流体バランスモデルを含むことができ、流体バランスモデルは、受信したデータに基づいて燃料貯蔵施設の予測燃料レベルを決定し、これは、燃料貯蔵施設と流体連通している燃料ディスペンサーの流量計のメータードリフトの推定値を導き出すために使用され得る。例えば、いくつかの実施態様では、流体バランスモデルは、以前の期間の開始時の燃料貯蔵施設内の燃料の開始レベル、以前の期間の終了時の燃料貯蔵施設内の燃料の終了レベル、以前の期間中に燃料貯蔵施設から販売された燃料の量、以前の期間中に燃料貯蔵施設に引き渡された燃料の量、および燃料貯蔵施設から周辺環境に漏れた燃料の量に基づいて、所与の期間の燃料貯蔵施設内の燃料の開始レベルを予測することができる。
いくつかの実施態様では、少なくとも1つの予測モデルは、別の状況では所与の期間(例えば、1日)中の燃料貯蔵施設からの燃料の販売および所与の期間中の燃料貯蔵施設からの燃料の引き渡しにより考慮することができない、所与の期間の燃料貯蔵施設内の燃料の開始レベルと所与の期間の燃料貯蔵施設内の燃料の終了レベルとの間のさまざまなエラーおよび矛盾を考慮することができる。いくつかの実施態様では、そのようなエラーおよび矛盾は、燃料貯蔵施設と流体連通している燃料ディスペンサーの流量計のメータードリフトの結果であり得る。いくつかの実施態様では、そのようなエラーおよび矛盾は、所与の期間中の燃料貯蔵施設からの燃料の漏れ、計算/測定エラーまたは燃料の盗難に起因する燃料貯蔵施設からの燃料販売および燃料貯蔵施設への燃料引き渡しにおける矛盾、などのうちの1つ以上の結果であり得る。
いくつかの実施態様では、少なくとも1つの予測モデルは、一連の期間(例えば、数日)のエラーおよび矛盾を考慮することができる。いくつかの実施態様では、少なくとも1つの予測モデルは、エラーモデルの使用によって、前述のエラーおよび矛盾を考慮することができる。エラーモデルは、メータードリフトの推定値を高い精度で決定する際に使用するための様々なエラー補正項を最小化するために、少なくとも1つの予測モデルによって物理モデルと共に使用され得る、1つ以上のオプティマイザ関数を含むことができる。例えば、いくつかの実施態様では、エラーモデルは、所与の日における燃料貯蔵施設からの燃料販売量を決定する際に導入される任意の乗法的エラーに対する平均補正係数の、1からの偏差、および所与の日に引き渡される燃料量を決定する際に導入される任意の加法的エラーに対する平均補正係数の、1からの偏差を最小化することができる。いくつかの実施態様では、エラーモデルは、燃料貯蔵施設の平均漏れ値の、0からの偏差を最小化することができる。いくつかの実施態様では、エラーモデルは、これらの偏差の各々の加重平均を最小化することができ、加法的補正係数に関連付けられたエラー寄与(error contributions)をさらに含むことができる。
いくつかの実施態様では、エラーモデルは、最小化されたコスト関数を用いて1つ以上の線形方程式を解くことができ、それによって、検討中の期間にわたるメータードリフトの推定値を決定することができる。いくつかの実施態様では、メータードリフトの推定値の決定は、数学的プログラミングにさらに基づくことができ、物理モデルによって特徴付けられる関数を最大化または最小化することと、受信したデータを特徴付ける関数の入力値を少なくとも変化させることと、メータードリフトの推定値を特徴付ける関数の出力値を計算することと、を含むことができる。いくつかの実施態様では、メータードリフトの推定値は、1つ以上の反復可能な時間間隔で決定され得る。
いくつかの実施態様では、少なくとも1つの予測モデルは、メータードリフトの推定値を決定する際に使用するためのユーザー提供のパラメータを受信することができる。いくつかの実施態様では、ユーザー提供のパラメータは、メータードリフトの推定値を決定するために使用される受信したデータの品質を向上させるために少なくとも1つの予測モデルによって使用され得る、様々なデータ品質パラメータを含むことができる。例えば、データ品質パラメータは、少なくとも1つの予測モデルによって決定されるメータードリフトの予測推定値がある値を超える場合にデータの一部を無視または除去するための指示を含むことができる。さらに、いくつかの実施態様では、データ品質パラメータは、少なくとも1つの予測モデルによって決定されるメータードリフトの予測推定値に対する精度ベンチマークとして少なくとも1つの予測モデルによって使用され得る、人為的に誘発されたパラメータを含むことができる。
いくつかの実施態様では、ユーザー提供のパラメータは、エラーモデルの動作特性に影響を及ぼし得るエラーモデルパラメータも含み得る。例えば、いくつかの実施態様では、エラーモデルパラメータは、燃料引き渡しエラー補正加重項(fuel delivery error correction weight term)、予測燃料漏れ率加重項(predicted fuel leakage rate weight term)、および/または所定の較正パラメータのアスペクトの上限/下限を含むことができる。
以下は、前述した所定の較正パラメータ、物理モデル、およびエラーモデルを組み込んだ、本明細書に記載の予測モデルの例示的な数学的実施態様である。式1は、所定の較正パラメータおよび物理モデルを組み込んだ本主題のいくつかの実施態様において予測モデルによって使用され得る、一般化された流体バランス式を説明するものである:
Figure 2023532733000002
式(1)に含まれるパラメータおよび表現は,目的の所与の時間窓wについて、また、時間窓wにおける検討中のいくつかのデータポイントdについて、評価される。SLは、特定の瞬間i,∀i∈{1,…,d}における燃料貯蔵施設内の燃料の開始レベルであり、ELは、瞬間i,∀i∈{1,…,d}における燃料貯蔵施設内の燃料の終了レベルであり、Sは、瞬間i,∀i∈{1,…,d}における販売によって燃料貯蔵施設から除去された燃料の量であり、Dは、瞬間i,∀i∈{1,…,d}における引き渡しにより燃料貯蔵施設に加えられた燃料の量であり、
Figure 2023532733000003
は、ある日i,∀i∈{1,…,d}の温度であり、
Figure 2023532733000004
は、時間窓wの中央温度であり、coeffは、燃料の熱膨張係数である。
これらの前述したパラメータはそれぞれ既知であるが、未知であり、かつ最適化モデルの使用を介して近似され得る、いくつかのパラメータがある。これらのパラメータは、販売測定における乗法的エラーの補正係数である、
Figure 2023532733000005
瞬間i,∀i∈{1,…,d}における加法的エラー引き渡し測定(additive error deliveries measurement)に対する補正係数である、
Figure 2023532733000006
(εはすべての引き渡し以外のデータポイント(non-delivery data points)でゼロであることに注意されたい)、および、燃料貯蔵施設に損失があるか利得があるかによって正または負となり得る、瞬間i,∀i∈{1,…,d}における漏れである、
Figure 2023532733000007
を含む。
燃料貯蔵施設のタンクチャートは非線形であるため、タンクチャートのパラメータは区分的線形関数で近似され得る。b,∀j∈{0,1,…,n}は、ストックレベルに対する区分的線形補正におけるn=bksの所定のブレークポイントのセットである。具体的には、b=0であり、b=燃料貯蔵施設の全高である。j’(i)∈{0,1,…,n-1}は、bj’(i)が、SL以下である最大のブレークポイントであるように、定義され得る。
Figure 2023532733000008
は、最適化モデルによって決定される、bとbj+1との間の線形部分の傾きである。
最適化モデルを実行するにあたり、補正項
Figure 2023532733000009
が1に近くなくてはならないことが想定される。したがって、最適化モデルの第1の目的は、補正項の1からの差を最小化することである。また、平均漏れ値
Figure 2023532733000010
および加算的補正項
Figure 2023532733000011
が0に近くなくてはならないことも想定される。したがって、最適化モデルの第2の目的は、これらの項の0からの差を最小化することである。いくつかの実施態様では、最適化モデルは、この2つの目的の加重平均を最小化することができる。
以下に提供される式2は、物理モデルを最適化し、それによってメータードリフトの正確な推定値を提供するために、本主題のいくつかの実施態様において予測モデルによって使用され得るエラーモデルの数学的表現を示している。現在の問題を最適化するために、線形プログラミングからの具体的な数学的モデルが使用され、それは、数学的モデルが、モデル定義の時に供給されるリアルタイムデータ値で直接定義され得るからである。
Figure 2023532733000012
式(2)は、様々なデータ品質パラメータに応じて調整され得る様々なオプティマイザ加重(optimizer weights)を特徴とする最適化関数である。オプティマイザ加重は、以下のように定義される:
Figure 2023532733000013
それによって以下のとおりとなる:
Figure 2023532733000014
ここで、beta_th_lは、較正ブレークポイントの傾きに対する下限値であり、beta_th_uは、較正ブレークポイントの傾きに対する上限値であり、filtおよび-filtは、加法的引き渡し補正項の限界値であり、Nは、窓w内の引き渡し点の数であり、Nは、データポイントの数であり、販売が、所与の窓サイズ内で報告される。オプティマイザを使って線形方程式のセットを解くと、モデルは、
Figure 2023532733000015
を評価することができ、これは、ノズルのメータードリフトに起因する販売におけるエラー/ドリフトに関連する補正項である。したがって、このモデルは、燃料貯蔵施設と流体連通している燃料ディスペンサーの1つ以上の流量計に関連するメータードリフトの推定値を提供することができる。
130において、メータードリフトの推定値が提供され得る。いくつかの実施態様では、メータードリフトの推定値は、サーバーに提供され得、サーバーは、メータードリフトの推定値を示す通知を生成し、その通知を、さらなる処理および/または表示のために末端端末に提供することができる。いくつかの実施態様では、サーバーは、燃料貯蔵施設および/または燃料ディスペンサーの場所とは異なる場所に位置するリモートサーバーとすることができる。いくつかの実施態様では、サーバーは、燃料貯蔵施設および/または燃料ディスペンサー(例えば、燃料補給所)と同じ場所に位置することができる。いくつかの実施態様では、末端端末は、燃料貯蔵施設および/または燃料ディスペンサーの場所とは異なる場所に位置することができる。いくつかの実施態様では、末端端末は、燃料貯蔵施設および/または燃料ディスペンサー(例えば、燃料補給所)と同じ場所に位置することができる。いくつかの実施態様では、通知は、前述したサーバーおよび末端端末のいずれかと動作可能に通信しているディスプレイ上に表示され、それによってメータードリフトの存在の可能性を示す視覚的警告とすることができる。いくつかの実施態様では、メータードリフトの推定値は、(燃料ディスペンサーを介した)燃料貯蔵施設からの燃料の販売に関連し、燃料ディスペンサーの流量計におけるメータードリフトを示す、エラーのグラフ判定を提供することによって、前述のディスプレイの1つ以上を介して、エンドユーザーにグラフ形式で提示され得る。
いくつかの実施態様では、メータードリフトの推定値は、さらなる処理のためにデータプロセッサに提供され得る。データプロセッサは、メータードリフトの推定値を使用して、メータードリフトが直ちに修正されない場合のメータードリフトに関連する損失の推定量を特徴付けるメータードリフト損失量予測を決定することができる。
いくつかの実施態様では、本主題は、図2に示すように、システム300において実施されるように構成され得る。システム300は、プロセッサ310、メモリ320、ストレージデバイス330、および入力/出力デバイス340のうちの1つ以上を含むことができる。構成要素310、320、330および340の各々は、システムバス350を用いて相互接続され得る。プロセッサ310は、システム100内で実行するための命令を処理するように構成され得る。いくつかの実施態様では、プロセッサ310は、シングルスレッドプロセッサとすることができる。代替的な実施態様では、プロセッサ310は、マルチスレッドプロセッサとすることができる。プロセッサ310は、入力/出力デバイス340を通じて情報を受信または送信することを含む、メモリ320内またはストレージデバイス330上に格納された命令を処理するようにさらに構成され得る。メモリ320は、システム300内の情報を格納することができる。いくつかの実施態様では、メモリ320は、コンピュータ可読媒体とすることができる。代替的な実施態様では、メモリ320は、揮発性メモリユニットとすることができる。さらにいくつかの実施態様では、メモリ320は、不揮発性メモリユニットとすることができる。ストレージデバイス330は、システム100のための大容量記憶装置を提供することが可能である。いくつかの実施態様では、ストレージデバイス330は、コンピュータ可読媒体とすることができる。代替的な実施態様では、ストレージデバイス330は、フロッピーディスクデバイス、ハードディスクデバイス、光ディスクデバイス、テープデバイス、不揮発性固体メモリ、または任意の他のタイプのストレージデバイスとすることができる。入力/出力デバイス340は、システム300の入力/出力操作を提供するように構成され得る。いくつかの実施態様では、入力/出力デバイス340は、キーボードおよび/またはポインティングデバイスを含むことができる。代替的な実施態様では、入力/出力デバイス340は、グラフィカルユーザーインターフェースを表示するためのディスプレイユニットを含むことができる。いくつかの実施態様では、システム300は、図3に示すように、燃料補給所400の1つ以上の構成要素と動作可能に通信することができる。燃料補給所400は、燃料貯蔵施設410を含むことができ、これは、燃料補給所400の地中に配置され、燃料補給所400で燃料を保持するように構成された1つ以上の燃料タンク420を含むことができる。燃料貯蔵施設410の1つ以上の燃料タンク420は、燃料貯蔵施設410に近接して位置し、かつ1つ以上の燃料タンク420に貯蔵された燃料、1つ以上の燃料タンク420、および燃料貯蔵施設410を特徴付けるデータを取得するように構成された、1つ以上のセンサ430と動作可能に通信することが可能である。1つ以上のセンサ430はまた、システム300が、メータードリフトの推定値を決定する際に使用される取得データを受信することができるように、システム300と動作可能に通信することができる。
燃料貯蔵施設410の1つ以上の燃料タンク420はまた、1つ以上の燃料タンクに収容された燃料を顧客に分配することができる、燃料ディスペンサー440と流体連通し、かつ動作可能に通信していてよい。燃料ディスペンサーは、流量計450を含むことができ、これは、燃料分配取引中に燃料ディスペンサーの1つ以上のノズルによって顧客に提供される燃料の体積率を決定し、燃料ディスペンサーのプロセッサに燃料の体積率を提供するように構成され、プロセッサは、燃料の体積率を使用して、燃料ディスペンサーの1つ以上のノズルによって分配される燃料の量を決定することができる。燃料ディスペンサー440は、システム300が、流量計450によって提供された燃料の体積率に基づく、顧客への燃料の販売中に1つ以上のノズルから顧客に提供された燃料の量を特徴付けるデータを燃料ディスペンサー440から受信することができるように、システム300と動作可能に通信していてよい。このデータは、本明細書の他の箇所に記載された方法および技術に従って、メータードリフトの推定値を決定するためにシステム300によって使用され得る。
図4は、本明細書に記載されるような本主題のいくつかの実施態様を組み込む、メータードリフトの推定値およびメータードリフトに関連する損失の予測を決定するための例示的なプロセス500を示すフローチャートである。プロセス500がステップ502で開始された後、センサは、ステップ504で、燃料貯蔵施設を特徴付けるデータを燃料貯蔵施設から取得することができる。ステップ506において、燃料貯蔵施設を特徴付けるデータは、プロセッサによって受信され得る。プロセッサは、ステップ508において、本明細書に記載されるような予測モデルを実行し、燃料貯蔵施設内に収容されるウェットストック(例えば、燃料)のエラー/損失の様々な原因を決定することができる。ステップ510で、プロセッサは、決定されたエラー/損失の原因のいずれかがメータードリフトに起因し得るかどうかを評価することができる。決定されたエラー/損失の原因の1つ以上がメータードリフトに起因し得ない場合、プロセスは、ステップ512で所定の期間(例えば、1日)中断され、その後、ステップ502で再び再開する。
決定されたエラーの原因の1つ以上がメータードリフトに起因し得る場合、プロセッサは次に、ステップ514でメータードリフトの推定値を決定し、それによって、燃料貯蔵施設と流体連通しかつ動作可能に通信する流量計の較正が、流量計の所定の較正パラメータから逸脱しているかどうかを評価することができる。次いで、プロセッサは、ステップ516において、決定されたメータードリフトの推定値を含む通知を決定することができ、プロセッサは、ステップ518において、さらなる使用/分析のために通知を提供することができる(例えば、燃料ディスペンサーの係員端末に通知を表示する、燃料ディスペンサー、燃料ディスペンサーが位置する燃料補給所、および/または燃料貯蔵施設の動作を分析するように構成されたサーバーに通知を送信する、など)。さらに、プロセッサは、ステップ520において、決定されたメータードリフトの推定値に基づいて、メータードリフトによる経時的な損失の予測を決定することができ、ステップ522において、さらなる使用/分析のために予測を提供することができる(例えば、予測を燃料ディスペンサーの係員端末に表示する、燃料ディスペンサー、燃料ディスペンサーが位置する燃料補給所、および/または燃料貯蔵施設の動作を分析するよう構成されたサーバーに予測を送信する、など)。ステップ518および522が完了すると、次に、プロセスは、ステップ512で所定の期間(例えば、1日)中断し、その後、ステップ402で再び再開することができる。
プロセス500および本明細書に記載される他のプロセス/技術によって決定されるメータードリフトの推定値は、履歴由来の推定値(historically-derived estimate)であり得る。したがって、予測モデルは、反復的に(例えば、リアルタイムまたは毎日)センサによって取得されたデータを使用して、反復的に(例えば、リアルタイムまたは毎日)実行され得る。したがって、燃料貯蔵施設データの反復的な(例えば、毎日の)収集および予測モデルの実行を介して特定された損失を追跡することによって、プロセス500は、流量計の較正が経時的に変化し、それによってメータードリフトを引き起こしているかどうかについての評価を提供することができる。さらに、メータードリフトによる経時的な損失の予測は、予測モデルの実行によって、およびメータードリフトの推定値の決定によって決定される、経時的な流量計の較正の変化に基づいて、将来(on a going-forward basis)決定され得る。
図1および図4に示されるステップは単に例示のための例であり、特定の他のステップが所望により含まれるかまたは除外され得ることに留意されたい。さらに、ステップの特定の順序が示されているが、この順序は単に例示であり、ステップの任意の好適な配置が、本明細書の実施形態の範囲から逸脱することなく利用されてもよい。さらに、図示されたステップは、本特許請求の範囲に従って、任意の適切な方法で変更され得る。
したがって、本明細書で議論されるようなシステムは、すべての既知の警告およびデータポイント、サイト機器、およびインフラストラクチャの詳細をモデルへと組み合わせて、ユーザーにメータードリフトの推定値を提供し、メータードリフトに関連する損失を定量化することができる。人工知能および機械学習技術を適用してモデルおよびパラメータ推奨を提供することにより、流量計較正ドリフトの検出をより効率的に行うことができ、それによってコストを節約し、安全性および規制遵守を改善することができる。
本明細書に記載された主題の1つ以上の態様または特徴は、デジタル電子回路、集積回路、特別に設計された特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)コンピュータハードウェア、ファームウェア、ソフトウェア、および/またはそれらの組み合わせにおいて実現され得る。これらの様々な態様または特徴は、データおよび命令をストレージシステムから受信し、データおよび命令をストレージシステムに送信するように結合された、特殊用途または汎用であり得る少なくとも1つのプログラマブルプロセッサ、少なくとも1つの入力デバイス、ならびに少なくとも1つの出力デバイスを含むプログラマブルシステム上で実行可能かつ/または解釈可能である1つ以上のコンピュータプログラムでの実施を含むことができる。プログラマブルシステムまたはコンピューティングシステムは、クライアントおよびサーバーを含むことができる。クライアントおよびサーバーは、一般に、互いに離れており、典型的には、通信ネットワークを通じて相互作用する。クライアントとサーバーの関係は、それぞれのコンピュータ上で実行され、かつ互いにクライアント-サーバー関係を有するコンピュータプログラムによって生じる。
プログラム、ソフトウェア、ソフトウェアアプリケーション、アプリケーション、コンポーネント、またはコードとも呼ばれ得る、これらのコンピュータプログラムは、プログラマブルプロセッサ用の機械命令を含み、高レベルの手続き型言語、オブジェクト指向プログラミング言語、関数型プログラミング言語、論理プログラミング言語、および/またはアセンブリ/機械言語で実施され得る。本明細書で使用される場合、「機械可読媒体」という用語は、プログラマブルプロセッサに機械命令および/またはデータを提供するために使用される、例えば磁気ディスク、光ディスク、メモリ、およびプログラマブル論理デバイス(PLD)などの任意のコンピュータプログラム製品、装置および/またはデバイスを指し、機械命令を機械可読信号として受信する機械可読媒体を含む。「機械可読信号」という用語は、機械命令および/またはデータをプログラマブルプロセッサに提供するために使用される任意の信号を指す。機械可読媒体は、例えば、非一過性の固体メモリまたは磁気ハードドライブまたは任意の同等の記憶媒体のように、そのような機械命令を非一時的に格納することができる。機械可読媒体は、代替的または追加的に、例えば、1つ以上の物理プロセッサコアに関連するプロセッサキャッシュまたは他のランダムアクセスメモリのように、そのような機械命令を一時的に格納することができる。
ユーザーとの相互作用を提供するために、本明細書に記載の主題の1つ以上の態様または特徴は、ユーザーに情報を表示するための例えば陰極線管(CRT)または液晶ディスプレイ(LCD)または発光ダイオード(LED)モニタなどのディスプレイデバイスと、ユーザーがコンピュータに入力を提供し得る例えばマウスまたはトラックボールなどのキーボードおよびポインティングデバイスと、を有するコンピュータ上で実施され得る。他の種類のデバイスも、ユーザーとの相互作用を提供するために使用され得る。例えば、ユーザーに提供されるフィードバックは、例えば視覚フィードバック、聴覚フィードバック、または触覚フィードバックなどの任意の形態の感覚フィードバックとすることができ、ユーザーからの入力は、音響、音声、または触覚入力を含むがこれらに限定されない、任意の形態で受信され得る。他の可能な入力デバイスは、タッチスクリーン、または他のタッチセンシティブデバイス、例えば、単一もしくは多点抵抗性もしくは容量性トラックパッド、音声認識ハードウェアおよびソフトウェア、光学スキャナー、光学ポインター、デジタル画像キャプチャデバイスおよび関連する解釈ソフトウェアなどを含むが、これらに限定されない。
当業者であれば、上述した実施形態に基づく本発明のさらなる特徴および利点を理解するであろう。したがって、本発明は、添付の特許請求の範囲によって示される場合を除き、具体的に示され、説明されたものによって限定されるものではない。本明細書で引用されたすべての刊行物および参考文献は、その全体が参照により本明細書に明示的に組み込まれる。
〔実施の態様〕
(1) 方法であって、
燃料貯蔵施設と動作可能に通信しているセンサから、前記燃料貯蔵施設を特徴付けるデータを受信することと、
受信した前記データに基づいて、前記燃料貯蔵施設と流体連通している燃料ディスペンサーの流量計のメータードリフトの推定値を決定することであって、前記決定することは、前記流量計の較正を特徴付ける較正パラメータが、所定の流量計較正パラメータから逸脱したかどうかを予測する少なくとも1つの予測モデルにさらに基づく、ことと、
前記メータードリフトの推定値を提供することと、
を含む、方法。
(2) 前記少なくとも1つの予測モデルは、前記燃料貯蔵施設の所定の較正パラメータと、前記燃料貯蔵施設の物理モデルと、前記データにおける少なくとも1つのエラー度を示すエラーモデルと、を含む、実施態様1に記載の方法。
(3) 前記燃料貯蔵施設のメータードリフト損失量予測を決定することをさらに含み、前記メータードリフト損失量予測の前記決定は、前記受信したデータ、前記燃料貯蔵施設の前記所定の較正パラメータ、前記物理モデル、および前記エラーモデルの最適化に基づく、実施態様2に記載の方法。
(4) 前記センサは、ディップスティック、自動タンクゲージ、燃料漏れ検出センサ、磁歪プローブ、店頭デバイス、フォアコートコントローラ、バックオフィスシステム、および/または燃料ディスペンサーのうちの1つ以上を含む、実施態様1に記載の方法。
(5) 前記燃料貯蔵施設を特徴付ける前記データは、前記燃料貯蔵施設から周辺環境への燃料の漏れの表示および/もしくは単位時間当たりの漏れの割合、前記燃料貯蔵施設の環境パラメータ、燃料供給者から前記燃料貯蔵施設への燃料の引き渡しの結果として前記燃料貯蔵施設に加えられた燃料の量、ならびに/または顧客への燃料の販売の結果として前記燃料貯蔵施設から除去された燃料の量、のうちの1つ以上を含む、実施態様1に記載の方法。
(6) 前記メータードリフトの推定値は、前記サーバーに通信可能に結合されたディスプレイのグラフィカルユーザーインターフェースに提供され、前記グラフィカルユーザーインターフェースは、前記ディスプレイ上に前記メータードリフト損失量予測の視覚的特徴付けを提示するように構成される、実施態様1に記載の方法。
(7) 前記メータードリフトの推定値は、前記サーバーに通信可能に結合されたディスプレイのグラフィカルユーザーインターフェースに提供され、前記グラフィカルユーザーインターフェースは、前記ディスプレイ上に前記メータードリフトの推定値の視覚的特徴付けを提示するように構成される、実施態様1に記載の方法。
(8) 反復可能な時間間隔で前記メータードリフトの推定値を決定することをさらに含む、実施態様1に記載の方法。
(9) 前記物理モデルは、流体バランスモデルである、実施態様1に記載の方法。
(10) 前記決定することは、数学的プログラミングにさらに基づき、前記物理モデルによって特徴付けられる関数を最大化または最小化することと、前記関数の入力値を少なくとも変化させることであって、前記入力値が、前記受信したデータを特徴付ける、ことと、前記関数の出力値を計算することであって、前記出力値が、前記メータードリフトの推定値を特徴付ける、ことと、を含む、実施態様1に記載の方法。
(11) システムであって、
少なくとも1つのデータプロセッサと、
前記少なくとも1つのデータプロセッサに動作を実行させるように構成された命令を格納するメモリと、
を含み、前記動作は、
燃料貯蔵施設と動作可能に通信しているセンサから、前記燃料貯蔵施設を特徴付けるデータを受信することと、
受信した前記データに基づいて、前記燃料貯蔵施設と流体連通している燃料ディスペンサーの流量計のメータードリフトの推定値を決定することであって、前記決定することは、前記流量計の較正を特徴付ける較正パラメータが、所定の流量計較正パラメータから逸脱したかどうかを予測する少なくとも1つの予測モデルにさらに基づく、ことと、
前記メータードリフトの推定値を提供することと、
を含む、システム。
(12) 前記少なくとも1つの予測モデルは、前記燃料貯蔵施設の所定の較正パラメータと、前記燃料貯蔵施設の物理モデルと、前記データにおける少なくとも1つのエラー度を示すエラーモデルと、を含む、実施態様11に記載のシステム。
(13) 前記動作は、前記燃料貯蔵施設のメータードリフト損失量予測を決定することをさらに含み、前記メータードリフト損失量予測の前記決定は、前記受信したデータ、前記燃料貯蔵施設の前記所定の較正パラメータ、前記物理モデル、および前記エラーモデルの最適化に基づく、実施態様12に記載のシステム。
(14) 前記センサは、ディップスティック、自動タンクゲージ、燃料漏れ検出センサ、磁歪プローブ、店頭デバイス、フォアコートコントローラ、バックオフィスシステム、および/または燃料ディスペンサーのうちの1つ以上を含む、実施態様11に記載のシステム。
(15) 前記燃料貯蔵施設を特徴付ける前記データは、前記燃料貯蔵施設から周辺環境への燃料の漏れの表示および/もしくは単位時間当たりの漏れの割合、前記燃料貯蔵施設の環境パラメータ、燃料供給者から前記燃料貯蔵施設への燃料の引き渡しの結果として前記燃料貯蔵施設に加えられた燃料の量、ならびに/または顧客への燃料の販売の結果として前記燃料貯蔵施設から除去された燃料の量、のうちの1つ以上を含む、実施態様11に記載のシステム。
(16) 前記メータードリフトの推定値は、前記サーバーに通信可能に結合されたディスプレイのグラフィカルユーザーインターフェースに提供され、前記グラフィカルユーザーインターフェースは、前記ディスプレイ上に前記メータードリフト損失量予測の視覚的特徴付けを提示するように構成されている、実施態様11に記載のシステム。
(17) 前記物理モデルは、流体バランスモデルである、実施態様11に記載のシステム。
(18) 前記決定することは、数学的プログラミングにさらに基づき、前記物理モデルによって特徴付けられる関数を最大化または最小化することと、前記関数の入力値を少なくとも変化させることであって、前記入力値が、前記受信したデータを特徴付ける、ことと、前記関数の出力値を計算することであって、前記出力値が、前記メータードリフトの推定値を特徴付ける、ことと、を含む、実施態様11に記載のシステム。
(19) 前記動作は、反復可能な時間間隔で前記メータードリフトの推定値を決定することをさらに含む、実施態様11に記載のシステム。
(20) 命令を格納する非一時的なコンピュータプログラム製品であって、前記命令が、少なくとも1つのコンピューティングシステムの一部を形成する少なくとも1つのデータプロセッサによって実行されると、前記少なくとも1つのデータプロセッサは、
燃料貯蔵施設と動作可能に通信しているセンサから、前記燃料貯蔵施設を特徴付けるデータを受信することと、
受信した前記データに基づいて、前記燃料貯蔵施設と流体連通している燃料ディスペンサーの流量計のメータードリフトの推定値を決定することであって、前記決定することは、前記流量計の較正を特徴付ける較正パラメータが、所定の流量計較正パラメータから逸脱したかどうかを予測する少なくとも1つの予測モデルにさらに基づく、ことと、
前記メータードリフトの推定値を提供することと、
を含む動作を実行する、非一時的なコンピュータプログラム製品。

Claims (20)

  1. 方法であって、
    燃料貯蔵施設と動作可能に通信しているセンサから、前記燃料貯蔵施設を特徴付けるデータを受信することと、
    受信した前記データに基づいて、前記燃料貯蔵施設と流体連通している燃料ディスペンサーの流量計のメータードリフトの推定値を決定することであって、前記決定することは、前記流量計の較正を特徴付ける較正パラメータが、所定の流量計較正パラメータから逸脱したかどうかを予測する少なくとも1つの予測モデルにさらに基づく、ことと、
    前記メータードリフトの推定値を提供することと、
    を含む、方法。
  2. 前記少なくとも1つの予測モデルは、前記燃料貯蔵施設の所定の較正パラメータと、前記燃料貯蔵施設の物理モデルと、前記データにおける少なくとも1つのエラー度を示すエラーモデルと、を含む、請求項1に記載の方法。
  3. 前記燃料貯蔵施設のメータードリフト損失量予測を決定することをさらに含み、前記メータードリフト損失量予測の前記決定は、前記受信したデータ、前記燃料貯蔵施設の前記所定の較正パラメータ、前記物理モデル、および前記エラーモデルの最適化に基づく、請求項2に記載の方法。
  4. 前記センサは、ディップスティック、自動タンクゲージ、燃料漏れ検出センサ、磁歪プローブ、店頭デバイス、フォアコートコントローラ、バックオフィスシステム、および/または燃料ディスペンサーのうちの1つ以上を含む、請求項1に記載の方法。
  5. 前記燃料貯蔵施設を特徴付ける前記データは、前記燃料貯蔵施設から周辺環境への燃料の漏れの表示および/もしくは単位時間当たりの漏れの割合、前記燃料貯蔵施設の環境パラメータ、燃料供給者から前記燃料貯蔵施設への燃料の引き渡しの結果として前記燃料貯蔵施設に加えられた燃料の量、ならびに/または顧客への燃料の販売の結果として前記燃料貯蔵施設から除去された燃料の量、のうちの1つ以上を含む、請求項1に記載の方法。
  6. 前記メータードリフトの推定値は、前記サーバーに通信可能に結合されたディスプレイのグラフィカルユーザーインターフェースに提供され、前記グラフィカルユーザーインターフェースは、前記ディスプレイ上に前記メータードリフト損失量予測の視覚的特徴付けを提示するように構成される、請求項1に記載の方法。
  7. 前記メータードリフトの推定値は、前記サーバーに通信可能に結合されたディスプレイのグラフィカルユーザーインターフェースに提供され、前記グラフィカルユーザーインターフェースは、前記ディスプレイ上に前記メータードリフトの推定値の視覚的特徴付けを提示するように構成される、請求項1に記載の方法。
  8. 反復可能な時間間隔で前記メータードリフトの推定値を決定することをさらに含む、請求項1に記載の方法。
  9. 前記物理モデルは、流体バランスモデルである、請求項1に記載の方法。
  10. 前記決定することは、数学的プログラミングにさらに基づき、前記物理モデルによって特徴付けられる関数を最大化または最小化することと、前記関数の入力値を少なくとも変化させることであって、前記入力値が、前記受信したデータを特徴付ける、ことと、前記関数の出力値を計算することであって、前記出力値が、前記メータードリフトの推定値を特徴付ける、ことと、を含む、請求項1に記載の方法。
  11. システムであって、
    少なくとも1つのデータプロセッサと、
    前記少なくとも1つのデータプロセッサに動作を実行させるように構成された命令を格納するメモリと、
    を含み、前記動作は、
    燃料貯蔵施設と動作可能に通信しているセンサから、前記燃料貯蔵施設を特徴付けるデータを受信することと、
    受信した前記データに基づいて、前記燃料貯蔵施設と流体連通している燃料ディスペンサーの流量計のメータードリフトの推定値を決定することであって、前記決定することは、前記流量計の較正を特徴付ける較正パラメータが、所定の流量計較正パラメータから逸脱したかどうかを予測する少なくとも1つの予測モデルにさらに基づく、ことと、
    前記メータードリフトの推定値を提供することと、
    を含む、システム。
  12. 前記少なくとも1つの予測モデルは、前記燃料貯蔵施設の所定の較正パラメータと、前記燃料貯蔵施設の物理モデルと、前記データにおける少なくとも1つのエラー度を示すエラーモデルと、を含む、請求項11に記載のシステム。
  13. 前記動作は、前記燃料貯蔵施設のメータードリフト損失量予測を決定することをさらに含み、前記メータードリフト損失量予測の前記決定は、前記受信したデータ、前記燃料貯蔵施設の前記所定の較正パラメータ、前記物理モデル、および前記エラーモデルの最適化に基づく、請求項12に記載のシステム。
  14. 前記センサは、ディップスティック、自動タンクゲージ、燃料漏れ検出センサ、磁歪プローブ、店頭デバイス、フォアコートコントローラ、バックオフィスシステム、および/または燃料ディスペンサーのうちの1つ以上を含む、請求項11に記載のシステム。
  15. 前記燃料貯蔵施設を特徴付ける前記データは、前記燃料貯蔵施設から周辺環境への燃料の漏れの表示および/もしくは単位時間当たりの漏れの割合、前記燃料貯蔵施設の環境パラメータ、燃料供給者から前記燃料貯蔵施設への燃料の引き渡しの結果として前記燃料貯蔵施設に加えられた燃料の量、ならびに/または顧客への燃料の販売の結果として前記燃料貯蔵施設から除去された燃料の量、のうちの1つ以上を含む、請求項11に記載のシステム。
  16. 前記メータードリフトの推定値は、前記サーバーに通信可能に結合されたディスプレイのグラフィカルユーザーインターフェースに提供され、前記グラフィカルユーザーインターフェースは、前記ディスプレイ上に前記メータードリフト損失量予測の視覚的特徴付けを提示するように構成されている、請求項11に記載のシステム。
  17. 前記物理モデルは、流体バランスモデルである、請求項11に記載のシステム。
  18. 前記決定することは、数学的プログラミングにさらに基づき、前記物理モデルによって特徴付けられる関数を最大化または最小化することと、前記関数の入力値を少なくとも変化させることであって、前記入力値が、前記受信したデータを特徴付ける、ことと、前記関数の出力値を計算することであって、前記出力値が、前記メータードリフトの推定値を特徴付ける、ことと、を含む、請求項11に記載のシステム。
  19. 前記動作は、反復可能な時間間隔で前記メータードリフトの推定値を決定することをさらに含む、請求項11に記載のシステム。
  20. 命令を格納する非一時的なコンピュータプログラム製品であって、前記命令が、少なくとも1つのコンピューティングシステムの一部を形成する少なくとも1つのデータプロセッサによって実行されると、前記少なくとも1つのデータプロセッサは、
    燃料貯蔵施設と動作可能に通信しているセンサから、前記燃料貯蔵施設を特徴付けるデータを受信することと、
    受信した前記データに基づいて、前記燃料貯蔵施設と流体連通している燃料ディスペンサーの流量計のメータードリフトの推定値を決定することであって、前記決定することは、前記流量計の較正を特徴付ける較正パラメータが、所定の流量計較正パラメータから逸脱したかどうかを予測する少なくとも1つの予測モデルにさらに基づく、ことと、
    前記メータードリフトの推定値を提供することと、
    を含む動作を実行する、非一時的なコンピュータプログラム製品。
JP2022581572A 2020-06-30 2021-06-29 損失の認定および定量化を介したメータードリフトのリアルタイム判定 Pending JP2023532733A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063046345P 2020-06-30 2020-06-30
US63/046,345 2020-06-30
US17/144,940 US11518671B2 (en) 2020-06-30 2021-01-08 Real-time determination of meter drift via loss qualification and quantification
US17/144,940 2021-01-08
PCT/US2021/039618 WO2022006110A1 (en) 2020-06-30 2021-06-29 Real-time determination of meter drift via loss qualification and quantification

Publications (1)

Publication Number Publication Date
JP2023532733A true JP2023532733A (ja) 2023-07-31

Family

ID=77911112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022581572A Pending JP2023532733A (ja) 2020-06-30 2021-06-29 損失の認定および定量化を介したメータードリフトのリアルタイム判定

Country Status (8)

Country Link
US (2) US11518671B2 (ja)
EP (1) EP4172576A1 (ja)
JP (1) JP2023532733A (ja)
CN (1) CN116018316A (ja)
AU (1) AU2021300289A1 (ja)
BR (1) BR112022027005A2 (ja)
CA (1) CA3184392A1 (ja)
WO (1) WO2022006110A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11852563B2 (en) 2020-06-30 2023-12-26 Wayne Fueling Systems Llc Fuel leak determination via predictive modeling
US11518671B2 (en) 2020-06-30 2022-12-06 Wayne Fueling Systems Llc Real-time determination of meter drift via loss qualification and quantification
US11912561B2 (en) 2020-12-23 2024-02-27 Wayne Fueling Systems Llc Preventive maintenance of fuel dispensers through inventory reconciliation and identification of meter drift

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400253A (en) 1993-11-26 1995-03-21 Southern Power, Inc. Automated statistical inventory reconcilation system for convenience stores and auto/truck service stations
US6925397B2 (en) 1994-11-29 2005-08-02 Warren Rogers Associates Meter calibration accuracy
US6092410A (en) 1998-02-20 2000-07-25 Marconi Commerce Systems Inc. Meter calibration and drift compensation device
US6996485B2 (en) 2004-06-18 2006-02-07 Gilbarco Inc. Nullification of measurement error, particularly within a dual turbine flow meter used in a fuel dispenser
GB0421124D0 (en) 2004-09-22 2004-10-27 Airbus Uk Ltd Fuel leak estimator
AU2012244083A1 (en) 2005-04-02 2012-11-08 North American Satellite Corporation Monitoring liquid in remotely located storage tanks
US7739004B2 (en) 2006-11-29 2010-06-15 The Boeing Company Automatic engine fuel flow monitoring and alerting fuel leak detection method
US20080295568A1 (en) * 2007-06-01 2008-12-04 Gilbarco Inc. System and method for automated calibration of a fuel flow meter in a fuel dispenser
EP2602680B1 (en) 2011-12-09 2014-06-18 Endress + Hauser Messtechnik GmbH+Co. KG Method of determining a calibration time interval for a calibration of a measurement device
US9557744B2 (en) 2012-01-20 2017-01-31 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US10214410B2 (en) 2012-02-08 2019-02-26 Brigham Young University Self calibrating fuel dispensing method and system
DE102014009444A1 (de) * 2014-06-25 2015-12-31 Fresenius Medical Care Deutschland Gmbh Flussmesser und Kassettenmodul für einen Flussmesser
US10745263B2 (en) 2015-05-28 2020-08-18 Sonicu, Llc Container fill level indication system using a machine learning algorithm
US9558453B1 (en) 2015-12-21 2017-01-31 International Business Machines Corporation Forecasting leaks in pipeline network
US10301167B2 (en) 2016-08-03 2019-05-28 Paul Johnson Apparatus and method for automatically updating the relationship between measured storage tank depth and storage tank volume, and monitoring the accuracy of a dispenser flow meter
US11373105B2 (en) 2017-04-13 2022-06-28 Oracle International Corporation Autonomous artificially intelligent system to predict pipe leaks
CN108108832B (zh) 2017-11-20 2018-10-02 淮阴工学院 一种基于无线传感器网络的油罐车油气泄漏智能监测系统
US11518671B2 (en) 2020-06-30 2022-12-06 Wayne Fueling Systems Llc Real-time determination of meter drift via loss qualification and quantification
US11852563B2 (en) 2020-06-30 2023-12-26 Wayne Fueling Systems Llc Fuel leak determination via predictive modeling

Also Published As

Publication number Publication date
CA3184392A1 (en) 2022-01-06
BR112022027005A2 (pt) 2023-01-24
WO2022006110A1 (en) 2022-01-06
US11518671B2 (en) 2022-12-06
AU2021300289A1 (en) 2023-02-09
US20230139144A1 (en) 2023-05-04
US20210403312A1 (en) 2021-12-30
CN116018316A (zh) 2023-04-25
EP4172576A1 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
JP2023532733A (ja) 損失の認定および定量化を介したメータードリフトのリアルタイム判定
US11852563B2 (en) Fuel leak determination via predictive modeling
AU698873B2 (en) An apparatus and method for calibrating manifolded tanks
US6401045B1 (en) Method and apparatus for monitoring operational performance of fluid storage systems
KR20140145637A (ko) 상수도 네트워크의 자원 모니터링 시스템 및 방법
US11385950B2 (en) Failure mode specific analytics using parametric models
JP2024505618A (ja) 在庫照合及びメータドリフトの識別を通じた燃料ディスペンサの予防保守
Taha et al. Impact of float-valves on water meter performance under intermittent and continuous supply conditions
US20240159615A1 (en) Fuel leak determination via predictive modeling
US7127361B1 (en) Method and apparatus for determining fuel use efficiency for combustion systems
Gorawski et al. Liquefied petroleum storage and distribution problems and research thesis
KR20220127018A (ko) 복수의 수용가를 포함하는 블록에 대한 상수도 누수 검출 시스템
US10823125B1 (en) Systems and methods for determining fuel level based on fuel consumption and refill data
EP4098603B1 (en) Automatic remote management of fuel filling stations
Foszner et al. Fuel pipeline thermal conductivity in automatic wet stock reconciliation systems
KR200461495Y1 (ko) 상수도 통합 누수 관리 장치
AU715582B2 (en) An apparatus and method for calibrating manifolded tanks
JP2020070034A (ja) 液体の供給・管理装置
Ogwo The Shortcomings and Challenges of Metering–System Automation in the Petroleum Industry

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230302